JP2009097082A - Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device - Google Patents

Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device Download PDF

Info

Publication number
JP2009097082A
JP2009097082A JP2008233027A JP2008233027A JP2009097082A JP 2009097082 A JP2009097082 A JP 2009097082A JP 2008233027 A JP2008233027 A JP 2008233027A JP 2008233027 A JP2008233027 A JP 2008233027A JP 2009097082 A JP2009097082 A JP 2009097082A
Authority
JP
Japan
Prior art keywords
silver
metal nanoparticles
iron
aqueous dispersion
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008233027A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirai
博幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008233027A priority Critical patent/JP2009097082A/en
Priority to EP08016787A priority patent/EP2045028A1/en
Publication of JP2009097082A publication Critical patent/JP2009097082A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide metal nanoparticles which easily and quickly form a conductive pattern on a resin substrate of low heat resistance, a manufacturing method therefor a water dispersion material, a manufacturing method of a printed wiring-electrode, and a printed circuit board-device. <P>SOLUTION: The metal nanoparticles include either silver or a silver alloy, and an iron compound, and have a mean particle diameter of 1 nm to 100 nm. In a preferable embodiment, the content of iron atoms in the iron compound is 0.01 atom% to 10 atom% with respect to either of the silver or the silver alloy. The water dispersion material consists of the metal nanoparticles. In the manufacturing method of the printed wiring-electrode, the water dispersion material is applied by coating on the resin substrate, then it is dried at 200°C or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高温の焼成を行わなくても低インピーダンスの微細な配線パターンを形成することができる環境に優しい金属ナノ粒子及び金属ナノ粒子の製造方法、並びに水性分散物、プリント配線・電極の製造方法、及びプリント配線基板・デバイスに関する。   The present invention relates to an environment-friendly metal nanoparticle capable of forming a fine wiring pattern with low impedance without firing at a high temperature, a method for producing the metal nanoparticle, and an aqueous dispersion, printed wiring / electrode production. The present invention relates to a method and a printed wiring board / device.

平均粒径が100nm以下である金属ナノ粒子分散物の製造方法として、ガス中蒸発法を用いて調製される10nm以下の金属ナノ粒子を分散溶媒中にコロイド状に分散した分散液及びその製造方法が提案されている(特許文献1参照)。
また、還元にアミン化合物を用いる液相還元法を利用して、平均粒径が数nm〜数10nmの金属微粒子を湿式で作製し、コロイド状態を維持するためにその表面を高分子樹脂などで被覆した分散物及びその製造方法が提案されている(特許文献2参照)。
As a method for producing a metal nanoparticle dispersion having an average particle size of 100 nm or less, a dispersion obtained by colloidally dispersing 10 nm or less of metal nanoparticles prepared using a gas evaporation method in a dispersion solvent, and a method for producing the same Has been proposed (see Patent Document 1).
In addition, by using a liquid phase reduction method using an amine compound for reduction, metal fine particles having an average particle diameter of several nanometers to several tens of nanometers are prepared by a wet method, and the surface thereof is made of a polymer resin or the like in order to maintain a colloidal state. A coated dispersion and a method for producing the same have been proposed (see Patent Document 2).

一般に、平均粒径が数nm〜数10nmの金属ナノ粒子は、その融点よりも格段に低い温度で焼結することが知られている。これは、金属粒子の粒子径を極めて小さくすると、粒子表面に存在するエネルギー状態の高い原子の割合が大きくなり、金属原子の表面拡散が無視できないほど大きくなり、この金属原子の表面拡散に起因して、金属粒子相互の界面の延伸が起こり焼結されると考えられる。   In general, it is known that metal nanoparticles having an average particle diameter of several nanometers to several tens of nanometers are sintered at a temperature much lower than their melting point. This is because when the particle size of the metal particle is extremely small, the proportion of atoms in the energy state present on the particle surface increases and the surface diffusion of the metal atom becomes so large that it cannot be ignored. Therefore, it is considered that the interface between the metal particles is stretched and sintered.

このような金属ナノ粒子は、表面が接触すると相互に融着を起こして凝集し、分散溶媒中での安定性を失うので、金属ナノ粒子表面をアルキルアミン等で被覆して分散安定性を付与する方法が提案されている(特許文献3参照)。しかし、この提案では、焼結するための高温加熱により、導電性が低下してしまうという問題がある。
また、特許文献4には、粒径0.6μm以下の銀粉と、ポリオール類とからなる銀インクが提案されている。この提案によれば、焼結温度は下げることはできるが、微細な導電パターンを形成するには更なる改良が必要である。
When such metal nanoparticles are brought into contact with each other, they coalesce with each other and agglomerate and lose stability in the dispersion solvent. Therefore, the metal nanoparticle surface is coated with alkylamine to provide dispersion stability. Has been proposed (see Patent Document 3). However, in this proposal, there is a problem that the conductivity is lowered by high-temperature heating for sintering.
Patent Document 4 proposes a silver ink composed of silver powder having a particle diameter of 0.6 μm or less and polyols. According to this proposal, the sintering temperature can be lowered, but further improvement is necessary to form a fine conductive pattern.

また、基板上に微細な導電パターンを迅速に形成するため、インクジェット及びディスペンサー等の技術を用いて金又は銀のナノ粒子分散液を吐出させ、金又は銀の導電パターンを形成する方法が提案されている(特許文献5参照)。この提案で使用される金属ナノ粒子分散液は、金属ナノ粒子の凝集及び沈降を防止するため、有機物からなる分散剤を多く含有しており、塗設後200℃〜300℃の温度に加熱して有機物を分解することが必要となる。このため、樹脂基板のような耐熱性の低い基板を用いることが困難である。また、分散溶媒として有機溶媒を主に使用しているため、加熱時に有機溶媒を回収するなどの環境面への配慮が必要であり、更なる改良、開発が望まれているのが現状である。   In addition, in order to quickly form a fine conductive pattern on a substrate, a method of forming a gold or silver conductive pattern by ejecting a gold or silver nanoparticle dispersion using an ink jet or dispenser technique has been proposed. (See Patent Document 5). The metal nanoparticle dispersion used in this proposal contains a large amount of organic dispersant to prevent aggregation and settling of metal nanoparticles, and is heated to a temperature of 200 ° C. to 300 ° C. after coating. It is necessary to decompose organic matter. For this reason, it is difficult to use a substrate having low heat resistance such as a resin substrate. In addition, since organic solvents are mainly used as the dispersion solvent, environmental considerations such as recovery of the organic solvent during heating are necessary, and further improvements and developments are desired at present. .

特開平3−34211号公報JP-A-3-34211 特開平11−319538号公報JP 11-319538 A 特開2004−256757号公報JP 2004-256757 A 特開2005−93380号公報JP 2005-93380 A 特開2002−299833号公報JP 2002-299833 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、200℃以下の低温で樹脂基板に印刷又は塗布することにより低抵抗の導電パターンを形成することができる金属ナノ粒子及び金属ナノ粒子の製造方法、並びに該金属ナノ粒子を含有する水性分散物を提供することを目的とする。
また、本発明は、インクジェットプリンター及びディスペンサーを用いてオンデマンドで基板上に最小線幅/配線間隔が20μm/20μm程度の微細な導電パターン及び金属光沢を有する画像を環境に優しく形成することができるプリント配線・電極の製造方法、及びプリント配線基板・デバイスを提供することを目的とする。
An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention includes metal nanoparticles capable of forming a low-resistance conductive pattern by printing or coating on a resin substrate at a low temperature of 200 ° C. or lower, a method for producing the metal nanoparticles, and the metal nanoparticles. The object is to provide an aqueous dispersion.
In addition, the present invention can form an image having a fine conductive pattern and a metallic luster with a minimum line width / interval of about 20 μm / 20 μm on a substrate on demand using an inkjet printer and a dispenser. An object of the present invention is to provide a printed wiring / electrode manufacturing method and a printed wiring board / device.

前記課題を解決するための手段としては以下の通りである。即ち、
<1> 銀及び銀合金のいずれかと、鉄化合物とからなり、平均粒径が1nm〜100nmであることを特徴とする金属ナノ粒子である。
該<1>に記載の金属ナノ粒子においては、銀及び銀合金のいずれかと、鉄化合物とからなり、平均粒径が1nm〜100nmであるので、200℃以下の低温で樹脂基板に印刷又は塗布することにより低抵抗の導電パターンを形成することができる。
<2> 鉄化合物における鉄原子の含有量が、銀及び銀合金のいずれかに対して0.01原子%〜10原子%である前記<1>に記載の金属ナノ粒子である。
<3> 銀合金における銀以外の金属の標準電極電位が、次反応式、Fe2+ = Fe3++eの標準電極電位より貴である前記<1>から<2>のいずれかに記載の金属ナノ粒子である。
<4> 銀及び銀合金のいずれかが、鉄(II)化合物で還元されて生成されたものである前記<1>から<3>のいずれかに記載の金属ナノ粒子である。
<5> 前記<1>から<4>のいずれかに記載の金属ナノ粒子を製造する方法であって、
銀塩の水溶液、又は銀塩及び銀以外の金属塩の水溶液に、鉄(II)塩水溶液を添加して酸化還元反応を行い、更に脱塩処理を行うことを特徴とする金属ナノ粒子の製造方法である。
<6> 酸化還元反応時に有機酸及びその塩のいずれかを共存させる前記<5>に記載の金属ナノ粒子の製造方法である。
<7> 前記<1>から<4>のいずれかに記載の金属ナノ粒子を含有することを特徴とする水性分散物である。
該<7>に記載の水性分散物においては、本発明の前記金属ナノ粒子を含有するので、インクジェットプリンター及びディスペンサーを用いてオンデマンドで樹脂基板上に微細な導電パターンを環境に優しく容易に形成することができる。
また、普通紙及びコート紙上にインクジェットプリンター及びディスペンサーを用いて金属光沢を有する画像を形成することができる。
<8> インクジェットプリンター用水性インク及びディスペンサー用水性インクのいずれかである前記<7>に記載の水性分散物である。
<9> 有機酸及びその塩のいずれかを全固形分に対して0.01質量%〜10質量%含有する前記<7>から<8>のいずれかに記載の水性分散物である。
<10> 前記<7>から<9>のいずれかに記載の水性分散物を樹脂基板上に塗設し、200℃以下で乾燥することを特徴とするプリント配線・電極の製造方法である。
<11> 前記<7>から<9>のいずれかに記載の水性分散物を樹脂基板上に塗設し、レーザー照射することを特徴とするプリント配線・電極の製造方法である。
<12> 前記<10>から<11>のいずれかに記載のプリント配線・電極の製造方法により製造されたことを特徴とするプリント配線基板・デバイスである。
Means for solving the above problems are as follows. That is,
<1> Metal nanoparticles comprising any one of silver and a silver alloy and an iron compound, and having an average particle diameter of 1 nm to 100 nm.
The metal nanoparticles according to <1> are composed of either silver or a silver alloy and an iron compound, and have an average particle diameter of 1 nm to 100 nm. Therefore, printing or coating is performed on a resin substrate at a low temperature of 200 ° C. or lower. By doing so, a low-resistance conductive pattern can be formed.
<2> The metal nanoparticles according to <1>, wherein the content of iron atoms in the iron compound is 0.01 atomic% to 10 atomic% with respect to either silver or a silver alloy.
<3> The metal according to any one of <1> to <2>, wherein a standard electrode potential of a metal other than silver in the silver alloy is nobler than a standard electrode potential of the following reaction formula, Fe 2+ = Fe 3+ + e Nanoparticles.
<4> The metal nanoparticles according to any one of <1> to <3>, wherein any one of silver and a silver alloy is produced by reduction with an iron (II) compound.
<5> A method for producing the metal nanoparticles according to any one of <1> to <4>,
Production of metal nanoparticles characterized in that an iron (II) salt aqueous solution is added to a silver salt aqueous solution or an aqueous solution of a silver salt and a metal salt other than silver, followed by oxidation-reduction reaction and further desalting treatment Is the method.
<6> The method for producing metal nanoparticles according to <5>, wherein either an organic acid or a salt thereof is allowed to coexist during the oxidation-reduction reaction.
<7> An aqueous dispersion comprising the metal nanoparticles according to any one of <1> to <4>.
In the aqueous dispersion according to <7>, since the metal nanoparticles of the present invention are contained, a fine conductive pattern is easily formed on a resin substrate on demand using an ink jet printer and a dispenser. can do.
Further, an image having metallic luster can be formed on plain paper and coated paper using an ink jet printer and a dispenser.
<8> The aqueous dispersion according to <7>, wherein the aqueous dispersion is any one of an aqueous ink for an inkjet printer and an aqueous ink for a dispenser.
<9> The aqueous dispersion according to any one of <7> to <8>, wherein the organic acid or a salt thereof is contained in an amount of 0.01% by mass to 10% by mass with respect to the total solid content.
<10> A method for producing a printed wiring / electrode, comprising coating the aqueous dispersion according to any one of <7> to <9> on a resin substrate and drying at 200 ° C. or lower.
<11> A method for producing a printed wiring / electrode, comprising coating the aqueous dispersion according to any one of <7> to <9> on a resin substrate and irradiating with a laser.
<12> A printed wiring board / device manufactured by the method for manufacturing a printed wiring / electrode according to any one of <10> to <11>.

本発明によると、従来における問題を解決することができ、200℃以下の低温で樹脂基板に印刷又は塗布することにより低抵抗の導電パターンを形成することができる金属ナノ粒子及び金属ナノ粒子の製造方法、並びに該金属ナノ粒子を含有する水性分散物を提供することができる。
また、本発明は、インクジェットプリンター及びディスペンサーを用いてオンデマンドで基板上に最小線幅/配線間隔が20μm/20μm程度の微細な導電パターン及び金属光沢を有する画像を環境に優しく形成することができるプリント配線・電極の製造方法、及びプリント配線基板・デバイスを提供することができる。
According to the present invention, conventional problems can be solved, and metal nanoparticles and metal nanoparticles that can form a low-resistance conductive pattern by printing or coating on a resin substrate at a low temperature of 200 ° C. or less. Methods and aqueous dispersions containing the metal nanoparticles can be provided.
In addition, the present invention can form an image having a fine conductive pattern and a metallic luster with a minimum line width / interval of about 20 μm / 20 μm on a substrate on demand using an inkjet printer and a dispenser. A printed wiring / electrode manufacturing method and a printed wiring board / device can be provided.

(金属ナノ粒子)
本発明の金属ナノ粒子は、銀及び銀合金のいずれかと、鉄化合物とからなる。
前記銀及び銀合金のいずれかは、鉄(II)化合物で還元されて生成されることが好ましい。
(Metal nanoparticles)
The metal nanoparticles of the present invention comprise either silver or a silver alloy and an iron compound.
Either of the silver and the silver alloy is preferably produced by reduction with an iron (II) compound.

前記金属ナノ粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば球状、立方体状、平板状、ロッド状、ワイヤー状など任意の形状をとることができる。そして、平板状、ロッド状、又はワイヤー状の金属ナノ粒子の平均粒径は、平板状では厚みで規定し、ロッド状、又はワイヤー状では短軸(幅)の長さで規定する。
前記金属ナノ粒子の平均粒径は、1nm〜100nmであり、3nm〜50nmが好ましい。前記平均粒径が、1nm未満であると、金属ナノ粒子が融着しやすくなることがあり、100nmを超えると、分散液中で沈降しやすくなり不都合である。
ここで、前記金属ナノ粒子の平均粒径は、例えば、透過型電子顕微鏡(TEM)を用い、TEM像を観察することにより求めることができる。
There is no restriction | limiting in particular as a shape of the said metal nanoparticle, According to the objective, it can select suitably, For example, arbitrary shapes, such as spherical shape, cube shape, flat plate shape, rod shape, wire shape, can be taken. The average particle diameter of the flat, rod-shaped, or wire-shaped metal nanoparticles is defined by the thickness in the flat plate shape, and is defined by the length of the short axis (width) in the rod-shaped or wire shape.
The average particle diameter of the metal nanoparticles is 1 nm to 100 nm, preferably 3 nm to 50 nm. If the average particle size is less than 1 nm, the metal nanoparticles may be easily fused, and if it exceeds 100 nm, the particles are liable to settle in the dispersion.
Here, the average particle diameter of the metal nanoparticles can be determined, for example, by observing a TEM image using a transmission electron microscope (TEM).

前記銀合金を形成する銀以外の金属としては、特に制限はなく、目的に応じて適宜選択することができ、例えば金、パラジウム、イリジウム、白金、ルテニウム、銅、ニッケル、ロジウム、オスミウム、レニウム、コバルト、タングステン、モリブデン、錫、鉄などが挙げられる。これらの中でも、パラジウム、イリジウム、金、白金が特に好ましい。
前記銀合金における銀以外の金属の含有量は、導電性及び分散安定性の観点から、銀に対して50原子%以下であることが好ましく、30原子%以下であることがより好ましい。前記銀以外の金属の含有量が50原子%を超えると、導電性が低下したり、分散安定性が悪化することがある。
前記銀合金における銀以外の金属の標準電極電位が、次反応式、Fe2+ = Fe3++eの標準電極電位(0.771V、25℃)より貴であることが、製造方法の容易性の点で好ましい。金属の標準電極電位は、「化学便覧改訂3版 基礎編II 473頁〜478頁」に記載されてものを参考にできる。
前記標準電極電位は、同一金属であっても金属化合物の種類や共存する化合物種によって異なるので、金属種に対応して適宜選択して使用することができる。
The metal other than silver forming the silver alloy is not particularly limited and can be appropriately selected depending on the purpose. For example, gold, palladium, iridium, platinum, ruthenium, copper, nickel, rhodium, osmium, rhenium, Examples include cobalt, tungsten, molybdenum, tin, and iron. Among these, palladium, iridium, gold, and platinum are particularly preferable.
The content of metals other than silver in the silver alloy is preferably 50 atomic percent or less, more preferably 30 atomic percent or less, based on silver, from the viewpoints of conductivity and dispersion stability. When the content of the metal other than silver exceeds 50 atomic%, the conductivity may be lowered or the dispersion stability may be deteriorated.
The standard electrode potential of the metal other than silver in the silver alloy is more noble than the standard electrode potential (0.771 V, 25 ° C.) of the following reaction formula, Fe 2+ = Fe 3+ + e This is preferable. The standard electrode potential of the metal can be referred to what is described in “Chemical Handbook Revised Edition, Basic Edition II, pages 473 to 478”.
The standard electrode potential varies depending on the type of metal compound and the coexisting compound type even if it is the same metal, and can be appropriately selected and used according to the metal type.

前記鉄化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば酸化鉄(III)、酸化鉄(II)、四三酸化鉄、後述の有機酸(又はその塩)から形成される有機酸鉄(III)、などが挙げられる。
前記鉄化合物は、銀又は銀合金中に含有されていてもよく、銀又は銀合金を被覆していてもよい。前記銀又は銀合金を被覆している場合、鉄化合物は、必ずしもコアとなる銀又は銀合金の全表面積を被覆している必要はなく、その一部を被覆していればよい。
前記鉄化合物における鉄原子の含有量は、導電性及び分散安定性の観点から、銀又は銀合金に対して0.01原子%〜10原子%が好ましく、0.1原子%〜5原子%がより好ましい。前記含有量が、0.01原子%未満であると、分散安定性が悪くなることがあり、10原子%を超えると、導電性が低下することがある。
前記鉄化合物における鉄原子の含有量は、例えばICP(高周波誘導結合プラズマ)により測定することができる。
There is no restriction | limiting in particular as said iron compound, According to the objective, it can select suitably, For example, from iron oxide (III), iron oxide (II), iron trioxide, and the below-mentioned organic acid (or its salt). Organic acid iron (III) formed, etc. are mentioned.
The iron compound may be contained in silver or a silver alloy, and may cover silver or a silver alloy. When the silver or silver alloy is coated, the iron compound does not necessarily have to cover the entire surface area of the silver or silver alloy serving as the core, but only needs to cover a part thereof.
The content of iron atoms in the iron compound is preferably 0.01 atomic% to 10 atomic%, and preferably 0.1 atomic% to 5 atomic% with respect to silver or the silver alloy, from the viewpoints of conductivity and dispersion stability. More preferred. When the content is less than 0.01 atomic%, the dispersion stability may be deteriorated. When the content exceeds 10 atomic%, the conductivity may be lowered.
The content of iron atoms in the iron compound can be measured by, for example, ICP (high frequency inductively coupled plasma).

前記金属ナノ粒子中の銀又は銀合金の含有量は90質量%〜99.9質量%が好ましく、鉄の含有量は10質量%〜0.01質量%が好ましい。
前記銀又は銀合金、及び鉄の含有量は、例えばICP(高周波誘導結合プラズマ)により測定することができる。
The content of silver or silver alloy in the metal nanoparticles is preferably 90% by mass to 99.9% by mass, and the content of iron is preferably 10% by mass to 0.01% by mass.
The contents of the silver or silver alloy and iron can be measured by, for example, ICP (high frequency inductively coupled plasma).

本発明において、前記金属ナノ粒子の平均粒径及び鉄の含有量は、後述する金属ナノ粒子の製造方法で、金属塩及び鉄(II)塩の濃度、有機酸(又はその塩)の濃度、粒子形成時の溶媒種や温度などを適宜選択することにより制御することができる。   In the present invention, the average particle size of the metal nanoparticles and the iron content are determined by the method for producing metal nanoparticles described later, the concentration of metal salt and iron (II) salt, the concentration of organic acid (or salt thereof), It can be controlled by appropriately selecting the solvent type and temperature at the time of particle formation.

(金属ナノ粒子の製造方法)
本発明の金属ナノ粒子の製造方法は、本発明の前記金属ナノ粒子を製造する方法であって、
銀塩の水溶液、又は銀塩及び銀以外の金属塩の水溶液に、鉄(II)塩水溶液を添加して酸化還元反応を行い、更に脱塩処理を行う。
(Method for producing metal nanoparticles)
The method for producing metal nanoparticles of the present invention is a method for producing the metal nanoparticles of the present invention,
An aqueous iron (II) salt solution is added to an aqueous silver salt solution or an aqueous solution of a silver salt and a metal salt other than silver, and an oxidation-reduction reaction is performed, followed by desalting.

前記銀塩、銀以外の金属塩、及び鉄(II)塩としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸塩、塩化物、燐酸塩、硫酸塩、テトラフルオロホウ酸塩、アンミン錯体、クロロ錯体、有機酸塩などが挙げられる。これらの中でも、水に対する溶解度の大きい硝酸塩、テトラフルオロホウ酸塩、アンミン錯体、クロロ錯体、有機酸塩が特に好ましい。   There is no restriction | limiting in particular as said silver salt, metal salts other than silver, and iron (II) salt, According to the objective, it can select suitably, For example, nitrate, chloride, phosphate, sulfate, tetrafluoro Examples thereof include borates, ammine complexes, chloro complexes, and organic acid salts. Among these, nitrates, tetrafluoroborates, ammine complexes, chloro complexes, and organic acid salts having high solubility in water are particularly preferable.

前記酸化還元反応時には、有機酸及びその塩のいずれかを共存させることが好ましい。
前記酸化還元反応時に共存させる有機酸又はその塩の量は、特に制限はなく、目的に応じて適宜選択することができるが、鉄(II)に対し好ましくは0.01倍モル〜5倍モル(より好ましくは0.05倍モル〜4倍モル)の範囲が、生成した金属ナノ粒子の組成が均一になる点から好ましい。
なお、銀塩の水溶液、又は銀塩及び銀以外の金属塩の水溶液には、後述の水と混和する有機溶媒を含有してもよく、鉄(II)塩水溶液には、後述の水と混和する有機溶媒を含有してもよい。
前記脱塩処理は、金属ナノ粒子を形成した後、限外ろ過、透析、ゲルろ過などの手法により行うことができる。
In the oxidation-reduction reaction, either an organic acid or a salt thereof is preferably allowed to coexist.
The amount of the organic acid or salt thereof coexisting during the oxidation-reduction reaction is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01-fold mol to 5-fold mol with respect to iron (II). The range of (more preferably 0.05 times to 4 times mole) is preferable from the point that the composition of the generated metal nanoparticles becomes uniform.
In addition, the aqueous solution of silver salt or the aqueous solution of metal salt other than silver salt and silver may contain an organic solvent miscible with water described later, and the aqueous iron (II) salt solution is miscible with water described later. An organic solvent may be contained.
The desalting treatment can be performed by techniques such as ultrafiltration, dialysis, and gel filtration after forming metal nanoparticles.

(水性分散物)
本発明の水性分散物は、本発明の前記金属ナノ粒子を含有し、有機酸又はその塩、分散媒、更に必要に応じてその他の成分を含有してなる。
(Aqueous dispersion)
The aqueous dispersion of the present invention contains the metal nanoparticles of the present invention, and contains an organic acid or a salt thereof, a dispersion medium, and, if necessary, other components.

本発明の前記金属ナノ粒子の前記水性分散物における含有量は、0.1質量%〜99質量%が好ましく、1質量%〜95質量%がより好ましい。前記含有量が、0.1質量%未満であると、描画したときの導電パターンの抵抗値が大きくなり、99質量%を超えると、粒子の融着が起こりやすくなることがある。   0.1 mass%-99 mass% are preferable, and, as for content in the said aqueous dispersion of the said metal nanoparticle of this invention, 1 mass%-95 mass% are more preferable. When the content is less than 0.1% by mass, the resistance value of the conductive pattern when drawn becomes large, and when it exceeds 99% by mass, the particles may be easily fused.

前記有機酸、及び有機酸塩を形成する有機酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酢酸、プロピオン酸、クエン酸、酒石酸、コハク酸、酪酸、フマル酸、乳酸、シュウ酸、グリコール酸、アクリル酸、エチレンジアミン四酢酸、イミノ二酢酸、ニトリロ三酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミン二プロピオン酸、エチレンジアミン二酢酸、ジアミノプロパノール四酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロトリメチレンホスホン酸、ビス(2−エチルヘキシル)スルホこはく酸、など挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、有機カルボン酸又はその塩が特に好ましい。
前記有機酸の塩としては、例えばアルカリ金属塩、アンモニウム塩などが挙げられ、これらの中でも、アンモニウム塩が特に好ましい。
The organic acid and the organic acid forming the organic acid salt are not particularly limited and may be appropriately selected depending on the intended purpose. For example, acetic acid, propionic acid, citric acid, tartaric acid, succinic acid, butyric acid, fumaric acid Acid, lactic acid, oxalic acid, glycolic acid, acrylic acid, ethylenediaminetetraacetic acid, iminodiacetic acid, nitrilotriacetic acid, glycol etherdiaminetetraacetic acid, ethylenediaminedipropionic acid, ethylenediaminediacetic acid, diaminopropanoltetraacetic acid, hydroxyethyliminodiacetic acid Nitrilotrimethylenephosphonic acid, bis (2-ethylhexyl) sulfosuccinic acid, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, organic carboxylic acids or salts thereof are particularly preferable.
Examples of the organic acid salt include alkali metal salts and ammonium salts. Among these, ammonium salts are particularly preferable.

前記水性分散物は、有機酸及びその塩のいずれかを全固形分に対し0.01質量%〜10質量%含有することが好ましく、0.05質量%〜5質量%がより好ましい。前記含有量が、0.01質量%未満であると、分散安定性が悪くなることがあり、10質量%を超えると、導電性が低下することがある。
前記有機酸又はその塩の含有量は、例えば熱分析(TG)などにより測定することができる。
The aqueous dispersion preferably contains 0.01% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass, based on the total solid content of any of organic acids and salts thereof. When the content is less than 0.01% by mass, the dispersion stability may be deteriorated. When the content exceeds 10% by mass, the conductivity may be lowered.
The content of the organic acid or salt thereof can be measured by, for example, thermal analysis (TG).

本発明の水性分散物における分散溶媒としては、主として水が用いられ、水と混和する有機溶媒を50容量%以下の割合で併用することができる。
前記有機溶媒としては、例えば、沸点が好ましくは120℃〜300℃(より好ましくは130℃〜250℃)のアルコール系化合物が好適に用いられる。このような高沸点アルコール系化合物を併用することにより、インクジェットプリンター及びディスペンサーの吐出部ノズルの乾燥による目詰まりを防止することができる。
前記アルコール系化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1−エトキシ−2−プロパノール、エタノールアミン、ジエタノールアミン、2−(2−アミノエトキシ)エタノール、2−ジメチルアミノイソプロパノール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
As a dispersion solvent in the aqueous dispersion of the present invention, water is mainly used, and an organic solvent miscible with water can be used in a proportion of 50% by volume or less.
As the organic solvent, for example, an alcohol compound having a boiling point of preferably 120 ° C. to 300 ° C. (more preferably 130 ° C. to 250 ° C.) is suitably used. By using such a high boiling alcohol compound in combination, it is possible to prevent clogging due to drying of the discharge part nozzles of the ink jet printer and the dispenser.
The alcohol compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol 200, polyethylene glycol 300, glycerin, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1-ethoxy-2-propanol, ethanolamine, diethanolamine, 2- (2-aminoethoxy) ethanol , 2-dimethylaminoisopropanol, and the like. These may be used individually by 1 type and may use 2 or more types together.

本発明の水性分散物は、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンを含まないことが好ましい。
前記水性分散物の電気伝導度は1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
前記水性分散物の20℃における粘度は、0.5mPa・s〜100mPa・sが好ましく、1mPa・s〜50mPa・sがより好ましい。
The aqueous dispersion of the present invention preferably does not contain inorganic ions such as alkali metal ions, alkaline earth metal ions, and halide ions.
The electric conductivity of the aqueous dispersion is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
The viscosity of the aqueous dispersion at 20 ° C. is preferably 0.5 mPa · s to 100 mPa · s, and more preferably 1 mPa · s to 50 mPa · s.

本発明の水性分散物には、必要に応じて、各種の添加剤、例えば、界面活性剤、後述の硬膜剤、重合性化合物、酸化防止剤、粘度調整剤など、を含有することができる。   The aqueous dispersion of the present invention can contain various additives, for example, a surfactant, a hardening agent described later, a polymerizable compound, an antioxidant, a viscosity modifier, and the like, if necessary. .

本発明の水性分散物は、インクジェットプリンター用水性インク及びディスペンサー用水性インクのいずれかとして用いられる。
インクジェットプリンターによる画像形成用途において、水性分散物を塗設する基板としては、例えば紙、コート紙、表面に親水性ポリマーなどを塗設したPETフィルム、ポリエチレンラミネート紙などが挙げられる。
本発明の水性分散物は、更に、以下に説明するプリント配線・電極の製造方法に好適に使用することができる。
The aqueous dispersion of the present invention is used as either an aqueous ink for an ink jet printer or an aqueous ink for a dispenser.
In the image forming application by the ink jet printer, examples of the substrate on which the aqueous dispersion is coated include paper, coated paper, PET film having a hydrophilic polymer coated on the surface, polyethylene laminated paper, and the like.
Further, the aqueous dispersion of the present invention can be suitably used in a method for producing a printed wiring / electrode described below.

(プリント配線・電極の製造方法及びプリント配線基板・デバイス)
本発明のプリント配線・電極の製造方法は、第1形態では、本発明の前記水性分散物を樹脂基板上に塗設し、200℃以下で乾燥する。
本発明のプリント配線・電極の製造方法は、第2形態では、本発明の前記水性分散物を樹脂基板上に塗設し、レーザー照射する。
本発明のプリント配線基板・デバイスは、本発明の第1及び第2形態のいずれかに記載のプリント配線・電極の製造方法により製造される。
以下、本発明のプリント配線・電極の製造方法の説明を通じて、本発明のプリント配線・デバイスの詳細についても明らかにする。
(Printed wiring / electrode manufacturing method and printed wiring board / device)
In the printed wiring / electrode manufacturing method of the present invention, in the first embodiment, the aqueous dispersion of the present invention is coated on a resin substrate and dried at 200 ° C. or lower.
In the second embodiment of the method for producing a printed wiring / electrode according to the present invention, the aqueous dispersion according to the present invention is coated on a resin substrate and irradiated with a laser beam.
The printed wiring board / device of the present invention is manufactured by the method for manufacturing a printed wiring / electrode according to any one of the first and second embodiments of the present invention.
Hereinafter, the details of the printed wiring / device of the present invention will be clarified through the description of the printed wiring / electrode manufacturing method of the present invention.

前記水性分散物を塗設する基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プリント配線用基板には、以下のものが挙げられるが、これらの中でも、製造適性、軽量性、可撓性などの点から樹脂基板が特に好ましい。
(1)石英ガラス、無アルカリガラス、結晶化透明ガラス、パイレックス(登録商標)ガラス、サファイア等のガラス
(2)Al、MgO、BeO、ZrO、Y、ThO、CaO、GGG(ガドリウム・ガリウム・ガーネット)等のセラミックス
(3)ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、PET、PEN、フッ素樹脂、フェノキシ樹脂、ポリオレフィン系樹脂、ナイロン、スチレン系樹脂、ABS樹脂等の熱可塑性樹脂
(4)エポキシ樹脂等の熱硬化性樹脂
(5)金属
There is no restriction | limiting in particular as a board | substrate which coats the said aqueous dispersion, According to the objective, it can select suitably, For example, although the following are mentioned to the board | substrate for printed wiring, Among these, it manufactures. A resin substrate is particularly preferable from the viewpoints of suitability, lightness, flexibility, and the like.
(1) Quartz glass, alkali-free glass, crystallized transparent glass, Pyrex (registered trademark) glass, glass such as sapphire (2) Al 2 O 3 , MgO, BeO, ZrO 2 , Y 2 O 3 , ThO 2 , CaO , Ceramics such as GGG (gadolinium gallium garnet) (3) polycarbonate, acrylic resins such as polymethyl methacrylate, vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, polyarylate, polysulfone, polyethersulfone , Polyimide, PET, PEN, fluororesin, phenoxy resin, polyolefin resin, nylon, styrene resin, ABS resin and other thermoplastic resins (4) epoxy resin and other thermosetting resins (5) metal

前記基板材料としては、所望により併用してもよい。用途に応じてこれらの基板材料から適宜選択して、フィルム状等の可撓性基板、又は剛性のある基板とすることができる。
前記基板の形状としては、円盤状、カード状、シート状等のいずれの形状であってもよい。また、三次元的に積層されたものでもよい。更に基板のプリント配線を行う箇所にアスペクト比1以上の細孔、細溝を有していてもよく、これらの中に、インクジェットプリンター又はディスペンサーにより本発明の水性分散物を吐出することもできる。
The substrate material may be used in combination as desired. Depending on the application, the substrate material can be appropriately selected to form a flexible substrate such as a film or a rigid substrate.
The shape of the substrate may be any shape such as a disk shape, a card shape, or a sheet shape. Moreover, the thing laminated | stacked three-dimensionally may be used. Furthermore, the place which performs the printed wiring of a board | substrate may have the fine pore and fine groove | channel of aspect ratio 1 or more, and the aqueous dispersion of this invention can also be discharged in these by an inkjet printer or a dispenser.

前記基板の表面は親水化処理を施すことが好ましい。また、前記基板表面に親水性ポリマーを塗設したものが好ましい。更に、前記基板表面にシランカップリング剤又はチタンカップリング剤を塗設し、加水分解したものも好ましい。これらにより水性分散物の基板への塗布性が良化する。   The surface of the substrate is preferably subjected to a hydrophilic treatment. Moreover, what coated the hydrophilic polymer on the said substrate surface is preferable. Furthermore, the thing which coated the silane coupling agent or the titanium coupling agent on the said substrate surface, and hydrolyzed it is also preferable. These improve the applicability of the aqueous dispersion to the substrate.

前記親水化処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば薬品処理、機械的粗面化処理、コロナ放電処理、火炎処理、紫外線処理、グロー放電処理、活性プラズマ処理、レーザー処理などが挙げられる。これらの親水化処理により表面の表面張力を30dyne/cm以上にすることが好ましい。   The hydrophilic treatment is not particularly limited and may be appropriately selected depending on the intended purpose. For example, chemical treatment, mechanical roughening treatment, corona discharge treatment, flame treatment, ultraviolet treatment, glow discharge treatment, active plasma Treatment, laser treatment and the like. It is preferable that the surface tension of the surface is 30 dyne / cm or more by these hydrophilic treatments.

前記基板表面に塗設する親水性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ゼラチン、ゼラチン誘導体、ガゼイン、寒天、でんぷん、ポリビニルアルコール、ポリアクリル酸共重合体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、デキストラン、などが挙げられる。
前記親水性ポリマー層の層厚(乾燥時)は、0.001μm〜100μmが好ましく、0.01μm〜20μmがより好ましい。
前記親水性ポリマー層には、硬膜剤を添加して膜強度を高めることが好ましい。前記硬膜剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばホルムアルデヒド、グルタルアルデヒド等のアルデヒド化合物;ジアセチル、シクロペンタンジオン等のケトン化合物;ジビニルスルホン等のビニルスルホン化合物;2−ヒドロキシ−4,6−ジクロロ−1,3,5−トリアジン等のトリアジン化合物;米国特許第3,103,437号明細書等に記載のイソシアネート化合物、などが挙げられる。
前記親水性ポリマー層は、上記化合物を水などの適当な溶媒に溶解又は分散させて塗布液を調製し、スピンコート、ディップコート、エクストルージョンコート、バーコート等の塗布法を利用して親水化処理した基板表面に塗布することにより形成することができる。更に、基板と上記親水性ポリマー層の間に、密着性の改善など必要により下引き層を導入してもよい。
The hydrophilic polymer to be coated on the substrate surface is not particularly limited and may be appropriately selected depending on the intended purpose. For example, gelatin, gelatin derivatives, casein, agar, starch, polyvinyl alcohol, polyacrylic acid copolymer Examples include coalesce, carboxymethylcellulose, hydroxyethylcellulose, polyvinylpyrrolidone, dextran, and the like.
The layer thickness (when dried) of the hydrophilic polymer layer is preferably 0.001 μm to 100 μm, and more preferably 0.01 μm to 20 μm.
It is preferable to increase the film strength by adding a hardener to the hydrophilic polymer layer. The hardener is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aldehyde compounds such as formaldehyde and glutaraldehyde; ketone compounds such as diacetyl and cyclopentanedione; vinylsulfone compounds such as divinylsulfone. A triazine compound such as 2-hydroxy-4,6-dichloro-1,3,5-triazine; an isocyanate compound described in US Pat. No. 3,103,437, and the like.
The hydrophilic polymer layer is prepared by dissolving or dispersing the above compound in an appropriate solvent such as water to prepare a coating solution, and hydrophilizing using a coating method such as spin coating, dip coating, extrusion coating, bar coating, etc. It can form by apply | coating to the processed substrate surface. Furthermore, an undercoat layer may be introduced between the substrate and the hydrophilic polymer layer as necessary, for example, to improve adhesion.

本発明の水性分散物を基板上に塗設する方法としては、前述の各種塗布法や公知の印刷法を用いることができる。
基板表面にパターンを形成するには、インクジェットプリンター及びディスペンサーを用いてパターン状に描画し、その後、乾燥することにより、導電パターンを得ることができる。
前記乾燥温度は200℃以下が好ましく、40℃〜150℃がより好ましい。前記乾燥手段としては、例えば電気炉、マイクロ波等の電磁波、赤外線、ホットプレート、レーザービーム、電子ビーム、イオンビーム、熱線等が挙げられる。これらの中でも、局所的に微細に加熱できる点でレーザービーム、電子ビーム、イオンビーム、熱線が好ましく、比較的小型で、簡易にエネルギー照射が可能な点でレーザービームが最も好ましい。
As a method of coating the aqueous dispersion of the present invention on the substrate, the above-described various coating methods and known printing methods can be used.
In order to form a pattern on the substrate surface, a conductive pattern can be obtained by drawing in a pattern using an inkjet printer and a dispenser and then drying.
The drying temperature is preferably 200 ° C. or lower, and more preferably 40 ° C. to 150 ° C. Examples of the drying means include electric furnaces, electromagnetic waves such as microwaves, infrared rays, hot plates, laser beams, electron beams, ion beams, and heat rays. Among these, a laser beam, an electron beam, an ion beam, and a heat ray are preferable in that they can be locally finely heated, and a laser beam is most preferable in that it is relatively small and can be easily irradiated with energy.

前記レーザー照射を施すことにより、描画パターンの緻密性が上がり、電気伝導性が向上するのでプリント配線や電極形成には好ましい。レーザーの波長は紫外、可視、赤外のいずれの光も利用できる。
代表的なレーザーとしては、例えばAlGaAs、InGaAsP、GaN系等の半導体レーザー、Nd:YAGレーザー、ArF、KrF、XeCl等のエキシマレーザー、色素レーザー、ルビーレーザー等の固体レーザー、He−Ne、He−Xe、He−Cd、CO、Ar等の気体レーザー、自由電子レーザー等が挙げられる。また、面発光型半導体レーザーやこれを1次元又は2次元に配列したマルチモードアレイを用いることもできる。これらのレーザービームとしては、第二高調波、第三高調波等の高次高調波を利用してもよい。これらのレーザービームは、連続的に照射しても、パルス状に複数回照射してもよい。また、照射エネルギーは金属ナノ粒子が実質的にアブレーションせずに、溶融するように設定することが好ましい。
By applying the laser irradiation, the denseness of the drawing pattern is increased and the electrical conductivity is improved, so that it is preferable for the formation of printed wiring and electrodes. The laser wavelength can be any of ultraviolet, visible and infrared light.
Typical lasers include, for example, semiconductor lasers such as AlGaAs, InGaAsP, and GaN, excimer lasers such as Nd: YAG laser, ArF, KrF, and XeCl, solid lasers such as dye laser and ruby laser, He—Ne, and He— Examples thereof include gas lasers such as Xe, He—Cd, CO 2 and Ar, and free electron lasers. Also, a surface emitting semiconductor laser or a multimode array in which these are arranged one-dimensionally or two-dimensionally can be used. As these laser beams, higher harmonics such as second harmonic and third harmonic may be used. These laser beams may be irradiated continuously or may be irradiated multiple times in a pulsed manner. The irradiation energy is preferably set so that the metal nanoparticles melt without substantially ablating.

−用途−
本発明のプリント配線・電極の製造方法は、例えばIC基板等の多層基板、透明導電膜の形成、プリント配線基板の配線回路の形成;ビルドアップ配線板、プラスチック配線板、プリント配線板、セラミック配線板等の多層配線板に微細な回路パターン形成;配線板表裏面間を結ぶ方向の微細な導通用孔部の形成、基板上に形成する各種デバイスの形成などに幅広く適用される。
-Application-
The printed wiring / electrode manufacturing method of the present invention includes, for example, a multilayer substrate such as an IC substrate, formation of a transparent conductive film, formation of a wiring circuit of the printed wiring substrate; build-up wiring board, plastic wiring board, printed wiring board, ceramic wiring It is widely applied to the formation of fine circuit patterns on multilayer wiring boards such as boards; the formation of fine holes for conduction in the direction connecting the front and back surfaces of the wiring boards, and the formation of various devices formed on the substrate.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
以下の実施例及び比較例において、「金属ナノ粒子の平均粒径」、「金属ナノ粒子における鉄及び銀の含有量、鉄化合物における鉄の含有量」、「水性分散物の粘度」、及び「描画部の抵抗率」は、以下のようにして測定した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
In the following examples and comparative examples, “average particle diameter of metal nanoparticles”, “content of iron and silver in metal nanoparticles, iron content in iron compound”, “viscosity of aqueous dispersion”, and “ The “resistivity of the drawing part” was measured as follows.

<金属ナノ粒子の平均粒径>
金属ナノ粒子の平均粒径は、透過型電子顕微鏡(TEM;日本分光株式会社製、JEM−2000FX)を用い、TEM像を観察することにより求めた。
<Average particle diameter of metal nanoparticles>
The average particle diameter of the metal nanoparticles was determined by observing a TEM image using a transmission electron microscope (TEM; manufactured by JASCO Corporation, JEM-2000FX).

<金属ナノ粒子における鉄及び銀の含有量、鉄化合物における鉄の含有量>
金属ナノ粒子における鉄及び銀の含有量は、ICP(高周波誘導結合プラズマ;島津製作所製、ICPS−1000IV)により測定した。
<Iron and silver content in metal nanoparticles, iron content in iron compounds>
The iron and silver contents in the metal nanoparticles were measured by ICP (high frequency inductively coupled plasma; manufactured by Shimadzu Corporation, ICPS-1000IV).

<水性分散物の粘度>
水性分散物の粘度は、粘度計(CBCマテリアルズ社製、VISCOMATE VM−1G)により、25℃で測定した。
<Viscosity of aqueous dispersion>
The viscosity of the aqueous dispersion was measured at 25 ° C. using a viscometer (manufactured by CBC Materials, VISCOMATE VM-1G).

<照射部(描画部)の抵抗率>
三菱化学株式会社製のLoresta−GP MCP−T600を用い表面抵抗を測定し、膜厚から換算して抵抗率を求めた。
<Resistivity of irradiation part (drawing part)>
The surface resistance was measured using Loresta-GP MCP-T600 manufactured by Mitsubishi Chemical Corporation, and the resistivity was obtained by conversion from the film thickness.

(実施例1)
10質量%の硝酸銀水溶液20mL、20質量%の酒石酸カリウムナトリウム4水和物水溶液20mL、水60mL、及び1−エトキシ−2−プロパノール20mLの混合溶液Aを調製した。更に30質量%の硫酸鉄(II)7水和物水溶液11mL、20質量%の酒石酸カリウムナトリウム4水和物水溶液20mL、水60mL、及び1−エトキシ−2−プロパノール20mLの混合溶液Bを調製した。
次に、混合溶液Aを撹拌しながら、この中に混合溶液Bを添加した。生成した沈殿物を限外ろ過し、1−エトキシ−2−プロパノールを15容量%含有する水溶液に分散した。
得られた銀ナノ粒子の平均粒径は20nmであった(図1参照)。
得られた銀ナノ粒子水性分散物における鉄の含有量、及び銀の含有量は、銀21.6質量%、鉄0.09質量%(銀に対する鉄原子の割合は0.8原子%)であった。
得られた水性分散物の粘度は5.2mPa・s(25℃)であった。
また、XRD測定(理学電機株式会社製、RINT2500)より金属銀の回折パターンを得た。
また、FT−IR測定(日本分光株式会社製)から酒石酸が粒子に存在することがわかった。
得られた水性分散物を乾燥させて熱分析(TG)(理学電機株式会社製)したところ、550℃までの加熱による質量減は1.8%であった。
Example 1
A mixed solution A consisting of 20 mL of a 10% by mass aqueous silver nitrate solution, 20 mL of a 20% by mass aqueous potassium sodium tartrate tetrahydrate solution, 60 mL of water, and 20 mL of 1-ethoxy-2-propanol was prepared. Furthermore, 11 mL of 30 mass% iron (II) sulfate heptahydrate aqueous solution, 20 mL of 20 mass% aqueous potassium sodium tartrate tetrahydrate solution, 60 mL of water, and 20 mL of 1-ethoxy-2-propanol were prepared. .
Next, the mixed solution B was added to the mixed solution A while stirring. The generated precipitate was ultrafiltered and dispersed in an aqueous solution containing 15% by volume of 1-ethoxy-2-propanol.
The average particle diameter of the obtained silver nanoparticles was 20 nm (see FIG. 1).
In the obtained silver nanoparticle aqueous dispersion, the iron content and the silver content are 21.6% by mass of silver and 0.09% by mass of iron (ratio of iron atoms to silver is 0.8 atomic%). there were.
The viscosity of the obtained aqueous dispersion was 5.2 mPa · s (25 ° C.).
Moreover, the diffraction pattern of metallic silver was obtained from the XRD measurement (RINT2500, manufactured by Rigaku Corporation).
Moreover, it turned out that tartaric acid exists in particle | grains from FT-IR measurement (made by JASCO Corporation).
When the obtained aqueous dispersion was dried and subjected to thermal analysis (TG) (manufactured by Rigaku Corporation), the mass loss due to heating up to 550 ° C. was 1.8%.

次に、市販の2軸延伸熱固定済の厚さ300μmのポリエチレンテレフタレート(PET)基板に8W/m・分のコロナ放電処理を施し、下記組成の下引き層を乾燥厚みが0.8μmになるように塗設した。
−下引き層の組成−
ブチルアクリレート(40質量%)、スチレン(20質量%)、グリシジルアクリレート(40質量%)の共重合体ラテックスにヘキサメチレン−1,6−ビス(エチレンウレア)を0.5質量%含有したもの。
Next, a commercially available biaxially stretched heat-fixed polyethylene terephthalate (PET) substrate having a thickness of 300 μm was subjected to a corona discharge treatment of 8 W / m 2 · min, and the undercoat layer having the following composition was dried to a thickness of 0.8 μm. Coated to be.
-Composition of the undercoat layer-
A copolymer latex of butyl acrylate (40% by mass), styrene (20% by mass), and glycidyl acrylate (40% by mass) containing 0.5% by mass of hexamethylene-1,6-bis (ethylene urea).

次に、下引き層の表面に8W/m・分のコロナ放電処理を施して、ヒドロキシエチルセルロースを親水性ポリマー層として乾燥厚みが0.2μmになるように塗設した。
次に、ディスペンサーを用いて、水性分散物を親水性ポリマー層上に描画して60℃にて30分間電気オーブンで乾燥した。描画部の抵抗率は18.2μΩ・cmであった。また、809nmの半導体レーザーを50mJ/cm照射したところ、照射部(描画部)の抵抗率は7.8μΩ・cmになった。これにより、本発明の水性分散物を用いることにより、低抵抗の導電パターンを容易に形成できることがわかった。
Next, the surface of the undercoat layer was subjected to a corona discharge treatment of 8 W / m 2 · min, and hydroxyethyl cellulose was coated as a hydrophilic polymer layer so that the dry thickness was 0.2 μm.
Next, the aqueous dispersion was drawn on the hydrophilic polymer layer using a dispenser and dried in an electric oven at 60 ° C. for 30 minutes. The resistivity of the drawing part was 18.2 μΩ · cm. When the semiconductor laser of 809 nm was irradiated with 50 mJ / cm 2 , the resistivity of the irradiated part (drawing part) was 7.8 μΩ · cm. Thereby, it turned out that a low resistance conductive pattern can be easily formed by using the aqueous dispersion of the present invention.

(実施例2)
10質量%の硝酸銀水溶液20mL、10質量%の硝酸パラジウム水溶液3mL、20質量%の酒石酸カリウムナトリウム4水和物水溶液25mL、水60mL、及び1,3−プロパンジオール20mLの混合溶液Aを調製した。次に、30質量%の硫酸鉄(II)7水和物水溶液14mL、20質量%のクエン酸三ナトリウム2水和物水溶液25mL、水60mL、及び1,3−プロパンジオール20mLの混合溶液Bを調製した。
次に、混合溶液Aを撹拌しながら、この中に混合溶液Bを添加した。生成した沈殿物を限外ろ過し、1,3−プロパンジオールを20容量%含有する水溶液に分散した。
得られた銀合金ナノ粒子の平均粒径は10nmであった(図2参照)。
得られた銀合金ナノ粒子水性分散物における各金属の含有量は、銀12.8質量%、パラジウム1.3質量%、鉄0.12質量%(銀に対するパラジウム原子及び鉄原子の割合はそれぞれ10.3原子%及び1.8原子%)であった。
得られた水性分散物の粘度は5.0mPa・s(25℃)であった。
また、XRD測定より銀−パラジウム合金の回折パターンを得た。
得られた水性分散物を乾燥させて熱分析(TG)したところ、550℃までの加熱による質量減は2.1%であった。
(Example 2)
A mixed solution A of 20 mL of 10% by mass aqueous silver nitrate solution, 3 mL of 10% by mass aqueous palladium nitrate solution, 25 mL of 20% by mass aqueous potassium sodium tartrate tetrahydrate, 60 mL of water, and 20 mL of 1,3-propanediol was prepared. Next, 14 mL of a 30% by mass iron (II) sulfate heptahydrate aqueous solution, 25 mL of a 20% by mass trisodium citrate dihydrate aqueous solution, 60 mL of water, and 20 mL of 1,3-propanediol were mixed. Prepared.
Next, the mixed solution B was added to the mixed solution A while stirring. The produced precipitate was ultrafiltered and dispersed in an aqueous solution containing 20% by volume of 1,3-propanediol.
The average particle diameter of the obtained silver alloy nanoparticles was 10 nm (see FIG. 2).
The content of each metal in the obtained silver alloy nanoparticle aqueous dispersion is 12.8% by mass of silver, 1.3% by mass of palladium, and 0.12% by mass of iron (the ratios of palladium atom and iron atom to silver are respectively 10.3 atomic% and 1.8 atomic%).
The viscosity of the obtained aqueous dispersion was 5.0 mPa · s (25 ° C.).
Moreover, the diffraction pattern of the silver-palladium alloy was obtained from the XRD measurement.
When the obtained aqueous dispersion was dried and subjected to thermal analysis (TG), the mass loss due to heating up to 550 ° C. was 2.1%.

実施例1と同様に親水化処理したPET基板に、ディスペンサーを用いて、上記水性分散物を親水性ポリマー層上に描画して60℃にて30分間電気オーブンで乾燥した。描画部の抵抗率は95.8μΩ・cmであった。809nmの半導体レーザーを50mJ/cm照射したところ、照射部(描画部)の抵抗率は19.5μΩ・cmであった。これにより、本発明の水性分散物を用いることにより、低抵抗の導電パターンを容易に形成できることが分かった。 Using a dispenser, the aqueous dispersion was drawn on a hydrophilic polymer layer on a hydrophilically treated PET substrate as in Example 1, and dried in an electric oven at 60 ° C. for 30 minutes. The resistivity of the drawing part was 95.8 μΩ · cm. When 50 mJ / cm 2 of 809 nm semiconductor laser was irradiated, the resistivity of the irradiated part (drawing part) was 19.5 μΩ · cm. Thereby, it turned out that a low resistance conductive pattern can be easily formed by using the aqueous dispersion of the present invention.

(実施例3)
実施例2において、硝酸パラジウムの代わりに塩化白金(II)酸カリウムを等モル用いた以外は、実施例2と同様にして、微量の鉄化合物(銀合金に対する鉄原子の割合は1.1原子%)を含む14.8質量%の銀合金ナノ粒子(平均粒径18nm)の水性分散物を得た。
得られた水性分散物を実施例1と同様に60℃で乾燥し、必要に応じて更にレーザー照射することにより低抵抗の導電パターンを作製した。
(Example 3)
In Example 2, except that equimolar amount of potassium chloroplatinum (II) was used instead of palladium nitrate, the same procedure as in Example 2 was performed, except that a small amount of iron compound (the ratio of iron atom to silver alloy was 1.1 atom) An aqueous dispersion of 14.8% by mass of silver alloy nanoparticles (average particle size 18 nm) was obtained.
The obtained aqueous dispersion was dried at 60 ° C. in the same manner as in Example 1, and further subjected to laser irradiation as necessary to produce a low resistance conductive pattern.

(実施例4)
実施例2において、10質量%の硝酸銀水溶液10mL及び10質量%の硝酸パラジウム水溶液10mLに添加量を変えた以外は、実施例2と同様にして、銀合金ナノ粒子(平均粒径14nm)を含有する水性分散物を調製した。
得られた銀合金ナノ粒子水性分散物の各金属の含有量は、銀7.0質量%、パラジウム4.6質量%、鉄0.8質量%(銀合金に対する鉄原子の割合は13.2原子%)であった。
実施例2と同様に基板上に描画して乾燥し、レーザー照射したところ、照射部(描画部)の抵抗率は実施例2の場合より2桁程度高くなった。
Example 4
In Example 2, silver alloy nanoparticles (average particle size 14 nm) were contained in the same manner as in Example 2 except that the addition amount was changed to 10 mL of a 10% by mass aqueous silver nitrate solution and 10 mL of a 10% by mass aqueous palladium nitrate solution. An aqueous dispersion was prepared.
The content of each metal in the obtained silver alloy nanoparticle aqueous dispersion was 7.0% by mass of silver, 4.6% by mass of palladium, and 0.8% by mass of iron (the ratio of iron atom to silver alloy was 13.2%). Atomic%).
In the same manner as in Example 2, drawing on the substrate, drying, and laser irradiation, the resistivity of the irradiated part (drawing part) was about two orders of magnitude higher than in Example 2.

(比較例1)
実施例1において、硫酸鉄(II)7水和物の代わりに10質量%の水素化ホウ素ナトリウム水溶液を9mL添加して硝酸銀を還元した以外は、実施例1と同様にして、鉄を含有しない銀ナノ粒子(平均粒径6nm)が得られたが、溶媒への分散性が著しく悪化し、水性分散物が調製できなかった。
(Comparative Example 1)
In Example 1, instead of iron (II) sulfate heptahydrate, no iron was contained in the same manner as in Example 1 except that 9 mL of a 10% by mass aqueous sodium borohydride solution was added to reduce silver nitrate. Silver nanoparticles (average particle size 6 nm) were obtained, but the dispersibility in the solvent was remarkably deteriorated, and an aqueous dispersion could not be prepared.

(実施例5)
実施例1において、表1に示すように限外ろ過する際の洗浄水の量を変えることにより銀に対する鉄原子の割合を変化させたサンプルNo.1〜No.5の各金属ナノ粒子を調製した。次に、1−エトキシ−2−プロパノールを15容量%含有する水溶液にこれらのナノ粒子を分散させ、実施例1と同様にしてPET基板上に描画し、60℃で乾燥させて照射部(描画部)の抵抗率を測定した。また、水性分散物の安定性を沈降法により下記基準で評価した。結果を表1に示す。なお、分散安定性は数字が大きいほど優れていることを示す。
〔評価基準〕
1:10分間以内にほとんど沈降
2:2時間以内にほとんど沈降
3:6時間経過後も分散
(Example 5)
In Example 1, as shown in Table 1, sample No. 1 in which the ratio of iron atoms to silver was changed by changing the amount of washing water during ultrafiltration. 1-No. Five metal nanoparticles were prepared. Next, these nanoparticles were dispersed in an aqueous solution containing 15% by volume of 1-ethoxy-2-propanol, drawn on a PET substrate in the same manner as in Example 1, dried at 60 ° C., and irradiated (drawing). Part) was measured. In addition, the stability of the aqueous dispersion was evaluated by the sedimentation method according to the following criteria. The results are shown in Table 1. In addition, it shows that dispersion stability is so excellent that a number is large.
〔Evaluation criteria〕
1: Almost settled within 10 minutes 2: Almost settled within 2 hours 3: Dispersed after 6 hours

表1の結果から、鉄原子の割合が10原子%を超えると導電性が大きく低下することが分かった。 From the results in Table 1, it was found that the conductivity was greatly reduced when the proportion of iron atoms exceeded 10 atomic%.

(比較例2)
実施例1において、硝酸銀の代わりに8質量%の塩化金(III)カリウム2水和物水溶液を20mL使用して金ナノ粒子分散液を調製した。その結果、平均粒径50nmの金ナノ粒子が得られたが溶媒への分散性が著しく悪化し、水性分散物が調製できなかった。更にこの金ナノ粒子は、鉄の含有量が金原子に対して原子比で210原子%と高いこと、熱分析による質量減も30.3%と高いことが分かった。
(Comparative Example 2)
In Example 1, a gold nanoparticle dispersion was prepared by using 20 mL of 8% by mass aqueous solution of potassium chloride (III) chloride dihydrate instead of silver nitrate. As a result, gold nanoparticles having an average particle diameter of 50 nm were obtained, but the dispersibility in the solvent was remarkably deteriorated, and an aqueous dispersion could not be prepared. Further, the gold nanoparticles were found to have an iron content as high as 210 atomic% with respect to gold atoms and a mass loss by thermal analysis as high as 30.3%.

(比較例3)
特開2004−256757号公報(特許文献3)の実施例1にしたがって、Agナノ粒子(平均粒径12nm)を含む導電性インクを調製した。この導電性インクを用いて市販の2軸延伸熱固定済の厚さ300μmPET基板にディスペンサーで描画して60℃にて30分間電気オーブンで乾燥した。描画部の抵抗率は1Ω・cm以上と非常に高い値であった。
(Comparative Example 3)
According to Example 1 of Unexamined-Japanese-Patent No. 2004-256757 (patent document 3), the conductive ink containing Ag nanoparticle (average particle diameter of 12 nm) was prepared. Using this conductive ink, drawing was performed with a dispenser on a commercially available biaxially stretched 300 μm thick PET substrate that had been heat-fixed and dried in an electric oven at 60 ° C. for 30 minutes. The resistivity of the drawing part was a very high value of 1 Ω · cm or more.

(実施例6)
エチレングリコール40mlを三口フラスコに入れ170℃に加熱した。この中に塩化白金(IV)酸0.52mgをエチレングリコール10mlに溶解した溶液を添加した。その後、ポリビニルピロリドン(PVP)(K−30)0.45gと硝酸銀0.34gを含有するエチレングリコール溶液40mlを毎分2mlの速度で添加した。170℃で30分間加熱後室温まで冷却した。この液を撹拌しながら硝酸銀0.15gを溶解したエチレングリコール溶液20mlを添加し、更に酒石酸カリウムナトリウム4水和物0.29g、及び硫酸鉄(II)7水和物0.28gを水10mlに溶解した水溶液を添加した。5分間撹拌した後、水を加えて遠心分離し、伝導度が50μS/cm以下になるまで精製した。最後に、エチレングリコールを20容量%含有する水に分散した。得られた銀ナノ粒子は短軸径(平均粒径)50nm、長さ数μmのワイヤー状であった(図3参照)。
得られた銀ナノ粒子水性分散物における鉄の含有量、及び銀の含有量は、銀28.6質量%、鉄0.06質量%(銀に対する鉄原子の割合は0.4原子%)であった。また熱分析(TG)での550℃までの加熱による質量減は2.8%であった。
この水性分散物も実施例1と同様に60℃で乾燥し、必要に応じて更にレーザー照射することにより低抵抗の導電パターンを作製することができた。
(Example 6)
40 ml of ethylene glycol was placed in a three-necked flask and heated to 170 ° C. To this was added a solution prepared by dissolving 0.52 mg of chloroplatinic (IV) acid in 10 ml of ethylene glycol. Thereafter, 40 ml of an ethylene glycol solution containing 0.45 g of polyvinylpyrrolidone (PVP) (K-30) and 0.34 g of silver nitrate was added at a rate of 2 ml per minute. The mixture was heated at 170 ° C. for 30 minutes and then cooled to room temperature. While stirring this solution, 20 ml of an ethylene glycol solution in which 0.15 g of silver nitrate was dissolved was added, and 0.29 g of potassium sodium tartrate tetrahydrate and 0.28 g of iron (II) sulfate heptahydrate were added to 10 ml of water. Dissolved aqueous solution was added. After stirring for 5 minutes, water was added and the mixture was centrifuged and purified until the conductivity was 50 μS / cm or less. Finally, it was dispersed in water containing 20% by volume of ethylene glycol. The obtained silver nanoparticles were in the form of a wire having a short axis diameter (average particle diameter) of 50 nm and a length of several μm (see FIG. 3).
In the obtained silver nanoparticle aqueous dispersion, the iron content and the silver content were 28.6% by mass of silver and 0.06% by mass of iron (ratio of iron atoms to silver was 0.4 atomic%). there were. Moreover, the mass loss by the heating to 550 degreeC by a thermal analysis (TG) was 2.8%.
This aqueous dispersion was also dried at 60 ° C. in the same manner as in Example 1, and a low resistance conductive pattern could be produced by further laser irradiation as necessary.

本発明の金属ナノ粒子及び該金属ナノ粒子を含有する水性分散物は、200℃以下の低温で樹脂基板に印刷又は塗布することにより低抵抗の導電パターンを形成することができ、高温の焼成を行うことなく、低インピーダンスの微細な配線パターンを形成することができる。
本発明のプリント配線・電極の製造方法は、例えばIC基板等の多層基板、透明導電膜の形成、プリント配線基板の配線回路の形成;ビルドアップ配線板、プラスチック配線板、プリント配線板、セラミック配線板等の多層配線板に微細な回路パターンの形成、配線板表裏面間を結ぶ方向の微細な導通用孔部の形成、基板上に形成する各種デバイスの形成などに適用できる。
The metal nanoparticle of the present invention and the aqueous dispersion containing the metal nanoparticle can form a low-resistance conductive pattern by printing or coating on a resin substrate at a low temperature of 200 ° C. or lower. A low-impedance fine wiring pattern can be formed without this.
The printed wiring / electrode manufacturing method of the present invention includes, for example, a multilayer substrate such as an IC substrate, formation of a transparent conductive film, formation of a wiring circuit of the printed wiring substrate; build-up wiring board, plastic wiring board, printed wiring board, ceramic wiring The present invention can be applied to formation of a fine circuit pattern on a multilayer wiring board such as a board, formation of a fine hole for conduction in a direction connecting the front and back surfaces of the wiring board, and formation of various devices formed on the substrate.

図1は、実施例1の金属ナノ粒子含有水性分散物の透過型電子顕微鏡(TEM)写真である。1 is a transmission electron microscope (TEM) photograph of the aqueous dispersion containing metal nanoparticles of Example 1. FIG. 図2は、実施例2の金属ナノ粒子含有水性分散物の透過型電子顕微鏡(TEM)写真である。2 is a transmission electron microscope (TEM) photograph of the aqueous dispersion containing metal nanoparticles of Example 2. FIG. 図3は、実施例6の金属ナノ粒子含有水性分散物の透過型電子顕微鏡(TEM)写真である。FIG. 3 is a transmission electron microscope (TEM) photograph of the aqueous dispersion containing metal nanoparticles of Example 6.

Claims (12)

銀及び銀合金のいずれかと、鉄化合物とからなり、平均粒径が1nm〜100nmであることを特徴とする金属ナノ粒子。   A metal nanoparticle comprising any one of silver and a silver alloy and an iron compound, and having an average particle diameter of 1 nm to 100 nm. 鉄化合物における鉄原子の含有量が、銀及び銀合金のいずれかに対して0.01原子%〜10原子%である請求項1に記載の金属ナノ粒子。   2. The metal nanoparticles according to claim 1, wherein the content of iron atoms in the iron compound is 0.01 atom% to 10 atom% with respect to either silver or a silver alloy. 銀合金における銀以外の金属の標準電極電位が、次反応式、Fe2+ = Fe3++eの標準電極電位より貴である請求項1から2のいずれかに記載の金属ナノ粒子。 3. The metal nanoparticle according to claim 1, wherein the standard electrode potential of a metal other than silver in the silver alloy is nobler than the standard electrode potential of the following reaction formula, Fe 2+ = Fe 3+ + e . 銀及び銀合金のいずれかが、鉄(II)化合物で還元されて生成されたものである請求項1から3のいずれかに記載の金属ナノ粒子。   The metal nanoparticles according to any one of claims 1 to 3, wherein any one of silver and a silver alloy is produced by reduction with an iron (II) compound. 請求項1から4のいずれかに記載の金属ナノ粒子を製造する方法であって、
銀塩の水溶液、又は銀塩及び銀以外の金属塩の水溶液に、鉄(II)塩水溶液を添加して酸化還元反応を行い、更に脱塩処理を行うことを特徴とする金属ナノ粒子の製造方法。
A method for producing the metal nanoparticles according to any one of claims 1 to 4,
Production of metal nanoparticles characterized in that an iron (II) salt aqueous solution is added to a silver salt aqueous solution or an aqueous solution of a silver salt and a metal salt other than silver, followed by oxidation-reduction reaction and further desalting treatment Method.
酸化還元反応時に有機酸及びその塩のいずれかを共存させる請求項5に記載の金属ナノ粒子の製造方法。   The method for producing metal nanoparticles according to claim 5, wherein either an organic acid or a salt thereof is allowed to coexist during the oxidation-reduction reaction. 請求項1から4のいずれかに記載の金属ナノ粒子を含有することを特徴とする水性分散物。   An aqueous dispersion containing the metal nanoparticles according to any one of claims 1 to 4. インクジェットプリンター用水性インク及びディスペンサー用水性インクのいずれかである請求項7に記載の水性分散物。   The aqueous dispersion according to claim 7, which is one of an aqueous ink for an inkjet printer and an aqueous ink for a dispenser. 有機酸及びその塩のいずれかを全固形分に対して0.01質量%〜10質量%含有する請求項7から8のいずれかに記載の水性分散物。   The aqueous dispersion according to any one of claims 7 to 8, comprising 0.01% by mass to 10% by mass of any one of an organic acid and a salt thereof with respect to the total solid content. 請求項7から9のいずれかに記載の水性分散物を樹脂基板上に塗設し、200℃以下で乾燥することを特徴とするプリント配線・電極の製造方法。   A method for producing a printed wiring / electrode, comprising coating the aqueous dispersion according to claim 7 on a resin substrate and drying at 200 ° C. or lower. 請求項7から9のいずれかに記載の水性分散物を樹脂基板上に塗設し、レーザー照射することを特徴とするプリント配線・電極の製造方法。   A method for producing a printed wiring / electrode, comprising coating the aqueous dispersion according to claim 7 on a resin substrate and irradiating with a laser. 請求項10から11のいずれかに記載のプリント配線・電極の製造方法により製造されたことを特徴とするプリント配線基板・デバイス。   A printed wiring board / device manufactured by the printed wiring / electrode manufacturing method according to claim 10.
JP2008233027A 2007-09-26 2008-09-11 Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device Pending JP2009097082A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008233027A JP2009097082A (en) 2007-09-26 2008-09-11 Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device
EP08016787A EP2045028A1 (en) 2007-09-26 2008-09-24 Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007248816 2007-09-26
JP2008233027A JP2009097082A (en) 2007-09-26 2008-09-11 Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device

Publications (1)

Publication Number Publication Date
JP2009097082A true JP2009097082A (en) 2009-05-07

Family

ID=40700358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233027A Pending JP2009097082A (en) 2007-09-26 2008-09-11 Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device

Country Status (1)

Country Link
JP (1) JP2009097082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044509A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Conductive ink composition, and solar cell module formed using the composition
JP2011521055A (en) * 2008-05-15 2011-07-21 アプライド・ナノテック・ホールディングス・インコーポレーテッド Photocuring process for metal ink
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering
US9598776B2 (en) 2012-07-09 2017-03-21 Pen Inc. Photosintering of micron-sized copper particles
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP2011521055A (en) * 2008-05-15 2011-07-21 アプライド・ナノテック・ホールディングス・インコーポレーテッド Photocuring process for metal ink
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering
JP2011044509A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Conductive ink composition, and solar cell module formed using the composition
US9598776B2 (en) 2012-07-09 2017-03-21 Pen Inc. Photosintering of micron-sized copper particles

Similar Documents

Publication Publication Date Title
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP5111170B2 (en) Metal nanowire and method for producing the same, aqueous dispersion and transparent conductor
JP5163655B2 (en) Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment liquid
CN104024351B (en) Conducting metal and method
KR101512220B1 (en) Metal nanowires, method for producing same, transparent conductor and touch panel
CN107113981B (en) Substrate for printed wiring board and method for manufacturing substrate for printed wiring board
US20150166810A1 (en) Metal Nanoparticle Synthesis and Conductive Ink Formulation
JP4428085B2 (en) Method for producing copper fine particles
JP6033545B2 (en) Conductor film using high concentration dispersion of copper-based nanoparticles and method for producing the same
KR20110028632A (en) Core-shell metallic nanoparticles, methods of production thereof, and ink compositions containing the same
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
JP6536581B2 (en) Fine metal particle dispersion
JP2004143325A (en) Electroconductive ink
JP2004253794A (en) Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board
JP2009097082A (en) Metal nanoparticles, manufacturing method of the same, water dispersion material, manufacturing method of printed wiring-electrode, and printed-circuit board-device
JP2006225712A (en) Catalyst for electroless plating, and electroless plating method
KR102456821B1 (en) Copper oxide ink and a method for manufacturing a conductive substrate using the same, a product including a coating film and a method for manufacturing a product using the same, a method for manufacturing a product having a conductive pattern, and a product having a conductive pattern
JP2005247905A (en) Metallic inkjet ink
WO2013145953A1 (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
KR20090025894A (en) Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays
US10237976B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP2019044156A (en) Molecular organic reactive ink for conductive silver printing
JP7063778B2 (en) Molecular organic reactive inks for conductive metal printing with photoinitiators
US20190106790A1 (en) Method for manufacturing a part or a supported microstructure by laser exposure of a metal oxalate layer
JP4254313B2 (en) Conductive ink and method for producing the same