JP2018085437A - Method for manufacturing electronic component and electronic component - Google Patents

Method for manufacturing electronic component and electronic component Download PDF

Info

Publication number
JP2018085437A
JP2018085437A JP2016227721A JP2016227721A JP2018085437A JP 2018085437 A JP2018085437 A JP 2018085437A JP 2016227721 A JP2016227721 A JP 2016227721A JP 2016227721 A JP2016227721 A JP 2016227721A JP 2018085437 A JP2018085437 A JP 2018085437A
Authority
JP
Japan
Prior art keywords
electrode
glass
component
electronic component
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227721A
Other languages
Japanese (ja)
Inventor
石田 卓也
Takuya Ishida
卓也 石田
祥文 間木
Yoshifumi Maki
祥文 間木
真哉 平井
Masaya Hirai
真哉 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2016227721A priority Critical patent/JP2018085437A/en
Publication of JP2018085437A publication Critical patent/JP2018085437A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electronic component capable of forming an electrode by plating processing without mixing an additive agent into the inside of a component element body in advance.SOLUTION: A method for manufacturing an electronic component comprises: step A of preparing a component element body 10 made of a glass-based insulator material; step B of applying an additive element 40 for promoting a reduction of the glass-based insulator material to a surface of the component element body; step C of forming a reduction part 301 of the glass-based insulator material on the surface of the component element body to which the additive agent is applied by irradiating electrode forming regions S1 and S2 on the surface of the component element body with a laser beam; and step D of forming electrodes 30 and 31 in the electrode forming regions on the surface of the component element body on which the reduction part is formed by growing a plated metal 302 with the reduction part as a nucleus by subjecting the component element body to plating processing.SELECTED DRAWING: Figure 4

Description

本発明は、電子部品の製造方法及び電子部品、特にガラス系絶縁体材料からなる部品素体に電極を形成する方法及びその電子部品に関する。 The present invention relates to a method for manufacturing an electronic component and an electronic component, and more particularly to a method for forming an electrode on a component body made of a glass-based insulator material and the electronic component.

従来から、ガラス系絶縁体材料からなる部品素体に外部電極を形成した電子部品が知られている。このような電子部品における外部電極の形成方法は、部品素体の両端面に電極ペーストを塗布し、焼付けして下地電極を形成した後、その下地電極の上にめっき処理によって上層電極を形成するのが一般的である。しかしながら、この方法では、下地電極の形成にペーストの塗布工程と焼付けに伴う加熱工程とを必要とするため、製造工程の増加、及びコスト上昇を招くという問題がある。 Conventionally, an electronic component in which an external electrode is formed on a component body made of a glass-based insulator material is known. In such an electronic component, an external electrode is formed by applying an electrode paste on both end faces of a component body and baking to form a base electrode, and then forming an upper layer electrode on the base electrode by plating. It is common. However, this method requires a paste application step and a heating step accompanying baking to form the base electrode, and thus causes an increase in manufacturing steps and cost.

さらに、下地電極の形成において導電ペーストを塗布する際、その塗布形状に制約があるという問題がある。例えば直方体形状の部品素体の端部に導電ペーストをディップ法により形成する場合、導電ペーストは部品素体の両端面だけでなく、両端面に隣接する4つの側面にも回り込んで塗布される。つまり、5面にペーストが塗布される。そのため、例えば両端面とその両端面に隣接する1つの側面とに外部電極を形成したい場合、上述のような導電ペーストを用いた方法は採用できない。 Furthermore, when applying the conductive paste in the formation of the base electrode, there is a problem that the application shape is limited. For example, when a conductive paste is formed at the end of a rectangular parallelepiped component body by the dipping method, the conductive paste is applied not only to both end surfaces of the component body but also to four side surfaces adjacent to both end surfaces. . That is, the paste is applied to the five surfaces. Therefore, for example, when it is desired to form external electrodes on both end faces and one side face adjacent to both end faces, the method using the conductive paste as described above cannot be adopted.

このような従来の電極形成方法に代えて、めっき処理だけで電極を形成する方法が提案されている(特許文献1)。まず、添加剤として窒化物(例:AlN)を予め混ぜ込んだ絶縁体基板を準備する。その絶縁体基板のめっきを析出させたい部分にレーザを照射し、窒素を蒸発させる。つまり、レーザを照射すると、窒化物が分解されるため、窒素が蒸発し、Alが絶縁体基板の表面に残る。最表面は酸化するが、化学的還元処理を行った後に無電解めっき(例:Cu)を行うことによって、Alを核としてめっきを析出させることが可能となる。 Instead of such a conventional electrode forming method, a method of forming an electrode only by plating is proposed (Patent Document 1). First, an insulator substrate in which a nitride (eg, AlN) is mixed in advance as an additive is prepared. A portion of the insulator substrate on which plating is to be deposited is irradiated with a laser to evaporate nitrogen. That is, when the laser is irradiated, nitride is decomposed, so that nitrogen evaporates and Al remains on the surface of the insulator substrate. Although the outermost surface is oxidized, by performing electroless plating (for example, Cu) after the chemical reduction treatment, it is possible to deposit the plating with Al as a nucleus.

しかし、この工法では、基板を構成する絶縁体材料の中に予め添加剤を混ぜ込んでおく必要があり、この混ぜ込まれた添加剤が製品の完成後も電子部品の内部に残留する。そのため、電子部品としての電気的特性に影響を与える可能性がある。しかも、レーザを照射する前に添加剤を混合した絶縁体材料を準備する必要があるので、工程が複雑になり、コスト上昇をまねく可能性もある。 However, in this construction method, it is necessary to mix an additive in the insulator material constituting the substrate in advance, and the mixed additive remains inside the electronic component even after the product is completed. Therefore, there is a possibility of affecting the electrical characteristics of the electronic component. In addition, since it is necessary to prepare an insulator material mixed with an additive before irradiating with a laser, the process becomes complicated and the cost may increase.

米国特許出願公開US2007−0247822A1US Patent Application Publication US2007-0247822A1

本発明の目的は、部品素体の内部に予め添加剤を混ぜ込むことなく、めっき処理により電極を形成可能な電子部品の製造方法及び電子部品を提案するものである。 An object of the present invention is to propose an electronic component manufacturing method and an electronic component capable of forming an electrode by plating without mixing an additive in the component element body in advance.

前記目的を達成するため、第1の発明は、ガラス系絶縁体材料からなる部品素体を準備する工程Aと、前記ガラス系絶縁体材料の還元を促進する添加剤を前記部品素体の表面に付与する工程Bと、前記添加剤を付与した前記部品素体の表面の電極形成領域にレーザを照射することにより、前記部品素体の表面にガラス系絶縁体材料の還元部を形成する工程Cと、前記還元部を形成した部品素体をめっき処理することにより、前記還元部を核にしてめっき金属を成長させ、前記部品素体の表面の電極形成領域に電極を形成する工程Dと、を備える電子部品の製造方法を提供するものである。 In order to achieve the above object, the first invention provides a process A for preparing a component body made of a glass-based insulator material, and an additive for promoting reduction of the glass-based insulator material. And a step of forming a reduced portion of the glass-based insulator material on the surface of the component body by irradiating a laser to an electrode forming region on the surface of the component body to which the additive is applied. C, and a step D of forming an electrode in an electrode forming region on the surface of the component element body by plating the component element body on which the reduced portion is formed, thereby growing a plating metal with the reduced element as a nucleus. The manufacturing method of an electronic component provided with these is provided.

第2の発明は、ガラス系絶縁体材料からなる部品素体と、前記部品素体の表面の一部を還元することにより形成された還元部と、前記還元部上に形成されためっき電極と、を有する電子部品を提供する。 According to a second aspect of the present invention, there is provided a component body made of a glass-based insulator material, a reduction portion formed by reducing a part of the surface of the component body, and a plating electrode formed on the reduction portion. And providing an electronic component.

ガラス系絶縁体材料の表面にめっき電極を直接形成するには、ガラス系絶縁体材料の表面の電極形成領域に抵抗値の低い部分を形成する必要がある。しかし、特許文献1のように予めガラス系絶縁体材料に窒化物などを混ぜ込むと、電子部品としての電気的特性に悪影響を及ぼす。本発明者らは、窒化物などを含まないガラス系絶縁体材料の表面にレーザを照射することにより、抵抗値の低い還元部を形成することに着目した。しかし、ガラス系絶縁体材料であるSiO2は赤外線より短波長の領域では吸収率が低いため、レーザを直接照射するだけでは還元は困難である。そこで、本発明ではガラス系絶縁体材料からなる部品素体の表面にガラス系絶縁体材料の還元を促進する添加剤を付与し、その上からレーザを照射した。添加剤がレーザの吸収性を高めることで、局所加熱された部品素体の表面部が変質し(例えばSiO2がSi23やSiOへ還元され)、還元部を形成できることを発見した。添加剤は部品素体の表面に単に付与するだけであり、予め部品素体に添加剤を混ぜ込む必要がない。添加剤の作用により、レーザを照射した部品素体の表面のガラス系絶縁体材料の還元反応が促進され、還元部が形成される。還元部の表面抵抗は、ガラス系絶縁体材料の表面抵抗より低い。そのため、レーザを照射した部品素体をめっき処理すると、レーザ照射部にめっき金属が析出し、それを核としてめっき金属が成長することで、電極を形成することができる。なお、還元部とは、ガラス系絶縁体材料の還元物だけでなく、添加剤の成分が混合している場合もあり得る。 In order to directly form the plating electrode on the surface of the glass-based insulator material, it is necessary to form a portion having a low resistance value in the electrode formation region on the surface of the glass-based insulator material. However, if nitride or the like is mixed in the glass-based insulator material in advance as in Patent Document 1, it adversely affects the electrical characteristics of the electronic component. The inventors of the present invention focused on forming a reduced portion having a low resistance value by irradiating the surface of a glass-based insulator material containing no nitride or the like with a laser. However, SiO 2, which is a glass-based insulator material, has a low absorptance in a wavelength region shorter than that of infrared rays. Therefore, reduction is difficult only by direct laser irradiation. Therefore, in the present invention, an additive for promoting the reduction of the glass-based insulator material is applied to the surface of the component body made of the glass-based insulator material, and laser is irradiated from above. It has been discovered that the additive improves the laser absorption, thereby altering the surface of the locally heated component body (for example, SiO 2 is reduced to Si 2 O 3 or SiO) and forming a reduced portion. The additive is simply applied to the surface of the component body, and it is not necessary to add the additive to the component body in advance. By the action of the additive, the reduction reaction of the glass-based insulator material on the surface of the component body irradiated with the laser is promoted, and a reducing portion is formed. The surface resistance of the reducing portion is lower than the surface resistance of the glass-based insulator material. Therefore, when the component body irradiated with the laser is plated, the plating metal is deposited on the laser irradiation portion, and the plating metal grows using the plating metal as a nucleus, whereby an electrode can be formed. Note that the reducing portion may include not only a reduced product of the glass-based insulator material but also a component of the additive.

ガラスとは、昇温によりガラス転移現象を示す非晶質固体のことであり、ガラスセラミックスでもよい。ガラスセラミックスとは、通常のガラスが非晶質であるのに対し、紫外線照射あるいは熱処理などによって微結晶を発生させ、「結晶粒子の集合体としたガラス」のことである。さらに、結晶化ガラス(ガラスを再加熱して「結晶を析出させて作った材料」である。例として、Li2O−Al23−SiO2系がある)でもよい。無機酸化物(Al23、BaTiO3、SrTiO3、Fe23、CaO、MgO、SiO2などがある)でもよい。少なくとも、従来のような特性に影響を与える窒化物を含有しないガラスが用いられる。 Glass is an amorphous solid that exhibits a glass transition phenomenon when heated, and may be glass ceramics. Glass ceramics refers to “glass in which crystal grains are aggregated” by generating microcrystals by ultraviolet irradiation or heat treatment, while ordinary glass is amorphous. Further, it may be crystallized glass (“a material made by recrystallizing the glass to produce crystals”. As an example, there is a Li 2 O—Al 2 O 3 —SiO 2 system). Inorganic oxides (Al 2 O 3 , BaTiO 3 , SrTiO 3 , Fe 2 O 3 , CaO, MgO, SiO 2, etc.) may be used. At least a glass that does not contain a nitride that affects properties as in the prior art is used.

添加剤(還元剤)は、レーザを吸収する性質を持つ材料であり、絶縁体ガラスを伝熱によって還元できるものである。添加剤として例えば、金属酸化物、窒化物、炭化物などが考えられる。代表的な炭化物として、炭素Cからなる黒鉛等がある。金属酸化物の例としてTiO2、Al23、ZnO、Fe23、CuOなどがある。添加剤の付与方法としては、添加剤の粉末を部品素体の表面に振りかけてもよいし、添加剤の粉末を液体(例えば水など)に混ぜて部品素体の表面に塗布し、乾燥させてもよい。 The additive (reducing agent) is a material having a property of absorbing a laser, and can reduce the insulating glass by heat transfer. As the additive, for example, metal oxide, nitride, carbide, and the like are conceivable. Typical carbides include graphite made of carbon C. TiO 2, Al 2 O 3 as an example of metal oxides, ZnO, Fe 2 O 3, CuO and the like. As a method for applying the additive, the additive powder may be sprinkled on the surface of the component body, or the additive powder may be mixed with a liquid (eg, water), applied to the surface of the component body, and dried. May be.

使用するレーザとしては、添加剤(還元剤)の吸収率が高く、ガラス系材料が還元できる温度以上に加熱できる出力を備えたレーザが好ましい。例えば、YVO4レーザ、YAGレーザなどを使用できる。波長の範囲としては、193nm〜10600nmの範囲が望ましい。出力の範囲は数W程度までの範囲がよい。 As the laser to be used, a laser having a high absorption rate of the additive (reducing agent) and having an output capable of heating to a temperature at which the glass-based material can be reduced is preferable. For example, a YVO 4 laser or a YAG laser can be used. The wavelength range is preferably 193 nm to 10600 nm. The output range is preferably about several W.

めっき処理方法としては、電解めっき又は無電解めっきを使用できる。特に、電解めっきはめっき電極の厚さをコントロールしやすい点で有利である。めっき処理は1回だけに限らず、複数回実施してもよい。例えば、ある材料(例えばNi)をめっきした後、その上に別の材料(例えばSn)をめっきしてもよい。 As a plating method, electrolytic plating or electroless plating can be used. In particular, electrolytic plating is advantageous in that the thickness of the plating electrode can be easily controlled. The plating process is not limited to one time but may be performed a plurality of times. For example, after plating a certain material (for example, Ni), another material (for example, Sn) may be plated thereon.

本発明方法の特徴の1つは、異形状の電極を容易に形成できる点である。レーザを照射できる部分であれば、特定箇所にのみ還元部を形成できるからである。例えば、直方体形状の部品素体の長手方向両端面と、これら両端面に隣接する1つの面(例えば底面)にだけ還元部を形成した場合には、一対のL字形外部電極を形成することが可能になる。つまり、両端面と底面とにだけ外部電極を形成し、上面や幅方向両側面には電極を形成しないようにすることもできる。L字形の外部電極を形成する利点は、実装のために必要な箇所にだけ外部電極が形成されるので、その外部電極と部品素体の内部に形成された内部電極との間の寄生容量を低減でき、電子部品の電気的特性を向上させ得る点である。さらに、回路基板などにこの電子部品を高密度で実装した場合、隣接する電子部品との絶縁距離を確保しやすいこと、さらには複数の回路基板を厚み方向に平行に配置した場合に、電子部品とその上側に配置される回路基板の導電部との絶縁距離を確保しやすいこと、等の利点がある。 One of the features of the method of the present invention is that an irregularly shaped electrode can be easily formed. This is because the reducing portion can be formed only at a specific portion as long as it can be irradiated with a laser. For example, in the case where the reducing portions are formed only on the longitudinal end surfaces of the rectangular parallelepiped component element body and one surface (for example, the bottom surface) adjacent to the both end surfaces, a pair of L-shaped external electrodes can be formed. It becomes possible. That is, it is possible to form external electrodes only on both end faces and the bottom face and not form electrodes on the top face and both side faces in the width direction. The advantage of forming an L-shaped external electrode is that the external electrode is formed only at a location necessary for mounting, so that the parasitic capacitance between the external electrode and the internal electrode formed inside the component element body is reduced. It is possible to reduce the electrical characteristics of the electronic component. Furthermore, when this electronic component is mounted at a high density on a circuit board, etc., it is easy to ensure an insulation distance from an adjacent electronic component. Furthermore, when a plurality of circuit boards are arranged in parallel in the thickness direction, the electronic component There is an advantage that it is easy to ensure an insulation distance between the conductive portion of the circuit board and the circuit board disposed on the upper side.

工程Cと工程Dとの間に、レーザの未照射部の添加剤を除去する工程Eを含んでもよい。本発明では、添加剤を部品素体の表面に付与するだけであるから、レーザの未照射部の添加剤は簡単に除去できる。除去方法としては、水洗などの公知の清浄化処理を行ってもよいし、粘着性のあるものに押し付けて除去してもよいし、弱いレーザを照射して除去してもよい。但し、この場合のレーザは、部品素体に影響を及ぼさないように、還元部を形成する際のレーザに比べて出力の低いレーザを使用する必要がある。 Between the process C and the process D, you may include the process E which removes the additive of the unirradiated part of a laser. In the present invention, since the additive is only applied to the surface of the component body, the additive in the unirradiated portion of the laser can be easily removed. As a removal method, a known cleaning treatment such as washing may be performed, or it may be removed by pressing against an adhesive, or may be removed by irradiation with a weak laser. However, in this case, it is necessary to use a laser having a lower output than the laser used to form the reduction portion so as not to affect the component body.

本発明が対象とする電子部品は、チップ部品のような個別部品だけでなく、例えば回路基板や回路モジュールのような部品を含む。形成される電極は、外部電極に限らず、配線電極や回路部であってもよい。 Electronic components targeted by the present invention include not only individual components such as chip components, but also components such as circuit boards and circuit modules. The formed electrode is not limited to the external electrode, and may be a wiring electrode or a circuit part.

以上のように、本発明によれば、ガラス系絶縁体材料からなる部品素体の表面に還元を促進する添加剤を付与し、その部品素体の表面部にレーザを照射することにより、部品素体の表面部にガラス系絶縁体材料の還元部を形成し、還元部を形成した部品素体をめっき処理することにより部品素体の表面に選択的に電極を形成するので、ガラス系の部品素体の表面にめっき電極を簡単に形成できる。従来のように、部品素体の内部に予め添加剤を混ぜ込む必要がないので、製造工程が簡素化されると共に、電子部品の電気的特性を損なうことがない、という優れた効果を有する。さらに、添加剤を付与できかつレーザを照射できる部分であれば、部品素体の任意の部分に電極を形成できるので、異形状の外部電極でも容易に形成できる。 As described above, according to the present invention, an additive for promoting reduction is applied to the surface of a component body made of a glass-based insulator material, and the surface portion of the component body is irradiated with a laser, thereby providing a component. Since a reduced portion of the glass-based insulator material is formed on the surface portion of the element body and the electrode is selectively formed on the surface of the component element body by plating the component element body on which the reduced portion is formed. Plating electrodes can be easily formed on the surface of the component body. As in the prior art, since it is not necessary to add an additive into the component body in advance, the manufacturing process is simplified, and the electrical characteristics of the electronic component are not impaired. Furthermore, since the electrode can be formed on any part of the component body as long as the additive can be applied and the laser can be irradiated, even an external electrode having a different shape can be easily formed.

本発明に係る電子部品の第1実施形態の斜視図である。1 is a perspective view of a first embodiment of an electronic component according to the present invention. 図1に示す電子部品の分解斜視図である。It is a disassembled perspective view of the electronic component shown in FIG. 図1の電子部品をY方向から見たときの断面図である。It is sectional drawing when the electronic component of FIG. 1 is seen from the Y direction. 部品素体の底面の長さ方向両端部に電極を形成する工程を示す図である。It is a figure which shows the process of forming an electrode in the length direction both ends of the bottom face of a component element | base_body. 添加剤の違いによって、レーザ照射の前後でのガラス系絶縁体材料の抵抗値の変化を示す図である。It is a figure which shows the change of the resistance value of the glass-type insulator material before and behind laser irradiation by the difference in an additive. 添加剤としてFe23を使用した場合の、レーザ照射前と照射後のXPSによる分析結果を示す図である。When the additive was used Fe 2 O 3, is a diagram showing the results of analysis by XPS of after irradiation and before laser irradiation. 電極部の最終的な断面形状の一例を示す図である。It is a figure which shows an example of the final cross-sectional shape of an electrode part. 本発明に係る電子部品の他の幾つかの例の斜視図である。It is a perspective view of some other examples of the electronic component which concerns on this invention.

図1は本発明に係る電子部品の一例であるチップ型インダクタ1を示す。図1では、インダクタ1の底面が上向きとなるように表されている。インダクタ1はケイ酸ガラスSiO2を主成分とするガラス系絶縁体材料からなる部品素体10を備えており、部品素体10の長さ方向両端部の電極形成領域には外部電極30,31がそれぞれ形成されている。この実施例のインダクタ1の形状は、図1に示すようにY軸及びZ軸方向の寸法に比べてX軸方向の寸法が長い直方体である。なお、この明細書で「直方体」とは、コーナ部がエッジ状であるものに限らず、面取りやR面が形成されたものでもよい。 FIG. 1 shows a chip inductor 1 which is an example of an electronic component according to the present invention. In FIG. 1, the bottom surface of the inductor 1 is shown facing upward. The inductor 1 includes a component body 10 made of a glass-based insulator material mainly composed of silicate glass SiO 2 , and external electrodes 30 and 31 are formed in electrode forming regions at both ends in the length direction of the component body 10. Are formed respectively. The shape of the inductor 1 of this embodiment is a rectangular parallelepiped having a longer dimension in the X-axis direction than that in the Y-axis and Z-axis directions, as shown in FIG. In this specification, the “cuboid” is not limited to a corner portion having an edge shape, and a chamfered or rounded surface may be formed.

部品素体10は、図2に示すように、例えばシリカガラス(SiO2)を主体とする絶縁体層12a〜12eを積層し、焼結することによって得られる。絶縁体層12a〜12eは、上下方向(Z軸方向)に順に積層されている。上下両端の絶縁体層12a、12eを除く中間の絶縁体層12b〜12d上には、内部電極20を構成するコイル導体21〜23がそれぞれ形成されている。これら3つのコイル導体21〜23はビア導体24、25によって相互に接続され、全体としてらせん状に形成されている。コイル導体21〜23及びビア導体24、25は、Au,Ag,Pd,Cu,Ni等の導電性材料で形成されている。コイル導体21の一端部(引出部)21aが部品素体10のX軸方向の一端面10aに露出しており、コイル導体23の一端部(引出部)23aが部品素体10のX軸方向の他端面10bに露出している。内部電極20の両端部21a,23aが露出している部品素体10の端面10a,10bが引き出し面である。なお、この実施例ではコイル導体21〜23が2ターン分のコイルを形成している例を示したが、ターン数は任意であり、コイル導体の形状及び絶縁体層の層数も任意に選択できる。また、コイル導体を有しない絶縁体層12a、12eの層数も任意である。 As shown in FIG. 2, the component body 10 is obtained by laminating and sintering insulating layers 12a to 12e mainly composed of silica glass (SiO 2 ), for example. The insulator layers 12a to 12e are sequentially stacked in the vertical direction (Z-axis direction). Coil conductors 21 to 23 constituting the internal electrode 20 are formed on the intermediate insulator layers 12b to 12d excluding the insulator layers 12a and 12e at the upper and lower ends, respectively. These three coil conductors 21 to 23 are connected to each other by via conductors 24 and 25, and are formed in a spiral shape as a whole. The coil conductors 21 to 23 and the via conductors 24 and 25 are made of a conductive material such as Au, Ag, Pd, Cu, or Ni. One end portion (leading portion) 21 a of the coil conductor 21 is exposed on one end surface 10 a in the X-axis direction of the component element body 10, and one end portion (leading portion) 23 a of the coil conductor 23 is exposed in the X-axis direction of the component element body 10. It is exposed to the other end face 10b. The end surfaces 10a and 10b of the component body 10 where both end portions 21a and 23a of the internal electrode 20 are exposed are lead surfaces. In this embodiment, the coil conductors 21 to 23 form a coil for two turns. However, the number of turns is arbitrary, and the shape of the coil conductor and the number of insulating layers are also arbitrarily selected. it can. Further, the number of the insulator layers 12a and 12e having no coil conductor is also arbitrary.

外部電極30、31は、図3に示すように、部品素体10をY方向から見たとき、外部電極30、31はそれぞれL字形に形成されている。すなわち、外部電極30は部品素体10のX軸方向の一端面10aと底面(実装面)10cの一部とを覆うようにL字形に形成され、外部電極31は部品素体10のX軸方向の他端面10bと底面10cの一部とを覆うようにL字形に形成されている。図3に示すように、部品素体10の端面10aを覆う外部電極30の部分はコイル導体23の引出部23aと接続されており、部品素体10の端面10bを覆う外部電極31の部分はコイル導体21の引出部21aと接続されている。外部電極30,31は、後述するようにめっき処理により形成されている。 As shown in FIG. 3, the external electrodes 30 and 31 are formed in an L shape when the component body 10 is viewed from the Y direction. That is, the external electrode 30 is formed in an L shape so as to cover one end surface 10 a in the X-axis direction of the component base body 10 and a part of the bottom surface (mounting surface) 10 c, and the external electrode 31 is formed in the X-axis of the component base body 10. It is formed in an L shape so as to cover the other end surface 10b in the direction and a part of the bottom surface 10c. As shown in FIG. 3, the portion of the external electrode 30 that covers the end surface 10 a of the component body 10 is connected to the lead-out portion 23 a of the coil conductor 23, and the portion of the external electrode 31 that covers the end surface 10 b of the component body 10 is The coil conductor 21 is connected to the lead portion 21a. The external electrodes 30 and 31 are formed by plating as described later.

外部電極30、31の下層には、部品素体10が変質した還元部301が形成されている。還元部301は、後述するように部品素体10の表面にガラス系絶縁体材料の還元を促進する添加剤を付与し、その上からレーザを照射することにより、部品素体10の表面部を変質させることで形成される。具体的には、ガラス系絶縁体材料であるSiO2がSi23やSiOへ還元される。還元部301の表面抵抗は、ガラス系絶縁体材料の表面抵抗より低い。 In the lower layer of the external electrodes 30, 31, a reducing part 301 in which the component body 10 is altered is formed. As will be described later, the reducing unit 301 applies an additive that promotes the reduction of the glass-based insulator material to the surface of the component body 10, and irradiates the laser from above to add the surface portion of the component body 10. It is formed by altering. Specifically, SiO 2 that is a glass-based insulator material is reduced to Si 2 O 3 or SiO. The surface resistance of the reducing part 301 is lower than the surface resistance of the glass-based insulator material.

還元部301の上には、外部電極であるめっき電極302が連続的に形成されている。図3では、部品素体10の一端側の外部電極30について、還元部301及びめっき電極302を拡大図示しているが、他端側の外部電極31についても同様である。図3では、還元部301及びめっき電極302の表面が平坦な層状に形成されているが、実際にはレーザ加工により凹凸状に形成されている場合もある。また、還元部301は、レーザ照射の方法によって断続状や筋状などに形成されていてもよい。めっき電極302は湿式めっき法により形成されたものであり、還元部301が断続的又は間隔をあけて形成されている場合であっても、連続面状のめっき電極302が形成される。めっき電極302の材料は、例えばCu,Au,Ag,Pd,Ni,Sn等が使用されている。なお、めっき電極302は、1層に限らず、多層のめっき層で構成されていてもよい。最外層のめっき電極は、はんだ濡れ性のよい材料が望ましい。 On the reduction part 301, the plating electrode 302 which is an external electrode is continuously formed. In FIG. 3, the reducing portion 301 and the plating electrode 302 are enlarged for the external electrode 30 on one end side of the component body 10, but the same applies to the external electrode 31 on the other end side. In FIG. 3, the surfaces of the reducing portion 301 and the plating electrode 302 are formed in a flat layer shape, but may actually be formed in a concavo-convex shape by laser processing. Moreover, the reduction | restoration part 301 may be formed in the intermittent form, the stripe form, etc. with the method of laser irradiation. The plating electrode 302 is formed by a wet plating method, and the continuous planar plating electrode 302 is formed even when the reducing portion 301 is formed intermittently or at intervals. For example, Cu, Au, Ag, Pd, Ni, Sn or the like is used as the material of the plating electrode 302. Note that the plating electrode 302 is not limited to a single layer, and may be formed of multiple plating layers. The outermost plating electrode is preferably a material with good solder wettability.

図4は部品素体10の底面10cの長さ方向両端部に電極を形成する工程を示している。実際には部品素体10の両端面10a,10bにも同様に電極が形成されるが、ここでは省略する。最初に、図4の(a)のようにシリカガラス系絶縁体材料(主成分はSiO2)で構成された部品素体10を準備し、部品素体10の底面10c上に添加剤40を全面に付与する。添加剤40の付与方法としては、添加剤の乾燥した粉末を部品素体10の表面に振りかけてもよいし、添加剤の粉末を水などの溶剤に溶いて部品素体10の表面に塗布し、乾燥させてもよい。なお、添加剤40の付与は、底面10cの全面に行う必要はなく、少なくとも電極を形成すべき領域を含む領域に付与すればよい。添加剤としては、レーザの吸収性が高く、部品素体10の表面部のガラス系絶縁体材料の還元反応を促進できる材料が選択される。例えばC、TiO2、Al23、ZnO、Fe23、CuOなどが用いられる。 FIG. 4 shows a process of forming electrodes at both ends in the length direction of the bottom surface 10 c of the component body 10. In practice, electrodes are similarly formed on both end faces 10a and 10b of the component body 10, but they are omitted here. First, as shown in FIG. 4A, a component body 10 made of a silica glass-based insulator material (main component is SiO 2 ) is prepared, and an additive 40 is added onto the bottom surface 10 c of the component body 10. Apply to the entire surface. As a method for applying the additive 40, a dry powder of the additive may be sprinkled on the surface of the component body 10, or the additive powder is dissolved in a solvent such as water and applied to the surface of the component body 10. It may be dried. The additive 40 need not be applied to the entire bottom surface 10c, but may be applied to at least a region including a region where an electrode is to be formed. As the additive, a material having high laser absorbability and capable of promoting the reduction reaction of the glass-based insulator material on the surface portion of the component body 10 is selected. For example C, TiO 2, Al 2 O 3, ZnO, Fe 2 O 3, CuO and the like.

次に、図4の(b)のように、添加剤40が付与された部品素体10の上方から、電極形成領域S1、S2にレーザ発生装置41によりレーザLを均一に照射する。レーザLとしては、ガラス系材料が還元できる温度以上に加熱できる出力を備えたレーザであって、例えばYVO4レーザ、YAGレーザなどを使用できる。レーザLによる局部加熱により、ガラス系絶縁体材料の還元反応が促進され、還元部301が形成される。具体的には、部品素体10の表面部のSiO2の一部がSi23やSiOへ還元される。還元部301の表面抵抗は、ガラス系絶縁体材料の表面抵抗より低い。なお、還元部301は、その全てがガラス系絶縁体材料の還元物に変質している訳ではなく、一部にSiO2及び添加剤が含まれている可能性がある。 Next, as shown in FIG. 4B, the laser generator 41 uniformly irradiates the electrode formation regions S1 and S2 from above the component body 10 to which the additive 40 has been applied. The laser L is a laser having an output capable of being heated to a temperature higher than that at which the glass-based material can be reduced. For example, a YVO 4 laser, a YAG laser, or the like can be used. By the local heating by the laser L, the reduction reaction of the glass-based insulator material is promoted, and the reduction part 301 is formed. Specifically, a part of the SiO 2 on the surface portion of the component body 10 is reduced to Si 2 O 3 or SiO. The surface resistance of the reducing part 301 is lower than the surface resistance of the glass-based insulator material. Note that not all of the reducing portion 301 is transformed into a reduced product of a glass-based insulator material, and there is a possibility that SiO 2 and an additive are partially included.

次に、図4の(c)のように、レーザLの未照射部(電極形成領域S1、S2以外の領域)の添加剤40を除去する。除去方法としては種々の方法を適用可能であり、還元部301を損傷/再酸化させない方法であれば如何なる方法でもよい。例えば、粘着性のあるものに押し付けて除去する方法、弱いレーザを照射して除去する方法などがある。未照射部の添加剤40を除去することにより、部品素体10の底面10aの電極形成領域S1、S2には、還元部301が残る。図4の(c)では還元部301が面状に連続しているように描かれているが、レーザLの走査方法、照射エネルギー、照射範囲などを設定することによって、断続状、筋状など任意の形態の還元部301を形成できる。 Next, as shown in FIG. 4C, the additive 40 in the unirradiated portion of the laser L (region other than the electrode formation regions S1 and S2) is removed. Various methods can be applied as the removing method, and any method may be used as long as the reducing unit 301 is not damaged / reoxidized. For example, there are a method of removing by pressing against an adhesive, a method of removing by irradiating with a weak laser. By removing the additive 40 in the unirradiated portion, the reducing portion 301 remains in the electrode formation regions S1 and S2 on the bottom surface 10a of the component body 10. In FIG. 4C, the reduction part 301 is drawn so as to be continuous in a planar shape, but by setting the scanning method, irradiation energy, irradiation range, etc. of the laser L, it is intermittent, streaky, etc. An arbitrary form of the reducing unit 301 can be formed.

次に、図4の(d)のように、電解めっきによって還元部301上にめっき電極302を析出させる。導電性を有する還元部301における電流密度が他の部分より高いので、還元部301の表面にめっき金属が速やかに析出する。析出しためっき金属を核としてめっき金属が周囲へと成長することで、電極形成領域S1、S2に連続しためっき電極302が形成される。したがって、還元部301が断続的又は筋状であっても、平面状の連続しためっき電極302を形成することができる。 Next, as shown in FIG. 4D, a plating electrode 302 is deposited on the reduction portion 301 by electrolytic plating. Since the current density in the reducing part 301 having conductivity is higher than that in the other parts, the plating metal is rapidly deposited on the surface of the reducing part 301. The plating metal grows around the deposited plating metal as a nucleus, so that the plating electrode 302 continuous in the electrode formation regions S1 and S2 is formed. Therefore, even if the reducing portion 301 is intermittent or streaked, the planar continuous plating electrode 302 can be formed.

めっき処理時間、電圧または電流を制御することによって、めっき電極の形成時間や厚さをコントロールすることが可能である。さらに、1回目のめっき処理により形成しためっき電極302の上に追加のめっき処理を行うことにより、多層構造のめっき電極を形成することもできる。この場合には、すでに下地となるめっき電極が形成されているので、追加のめっき処理時間は短くて済む。 By controlling the plating process time, voltage or current, it is possible to control the formation time and thickness of the plating electrode. Furthermore, a plating electrode having a multilayer structure can be formed by performing an additional plating process on the plating electrode 302 formed by the first plating process. In this case, since the plating electrode as a base is already formed, the additional plating processing time can be shortened.

図5は、レーザ照射の前後でのガラス系絶縁体材料の抵抗値の変化を示す。照射前の抵抗値は1011Ω・m以上である。ここでは、添加剤としてC、TiO2、Al23、ZnO、Fe23、CuOの他に、比較例としてAlとBiも使用した。これら添加剤を水に溶いて一定厚みに塗布した。レーザはYVO4レーザ(波長1064nm)を使用し、表1に示す条件で照射した。

Figure 2018085437
FIG. 5 shows changes in the resistance value of the glass-based insulator material before and after laser irradiation. The resistance value before irradiation is 10 11 Ω · m or more. Here, in addition to C, TiO 2 , Al 2 O 3 , ZnO, Fe 2 O 3 and CuO as additives, Al and Bi were also used as comparative examples. These additives were dissolved in water and applied to a certain thickness. The laser used was a YVO 4 laser (wavelength 1064 nm), and irradiation was performed under the conditions shown in Table 1.
Figure 2018085437

図5から明らかなように、添加剤としてC、TiO2、Al23、ZnO、Fe23を使用した場合には、いずれも103〜104Ω・m程度まで抵抗値を低下させることができた。CuOの場合には、やや抵抗値の低下は小さく、107Ω・m程度まで低下した。これにより、低抵抗の還元部が形成されたことがわかる。一方、金属AlおよびBiでは抵抗値の変化が認められなかった。 As is apparent from FIG. 5, when C, TiO 2 , Al 2 O 3 , ZnO, or Fe 2 O 3 is used as an additive, the resistance value decreases to about 10 3 to 10 4 Ω · m. I was able to. In the case of CuO, the resistance value decreased slightly and decreased to about 10 7 Ω · m. Thereby, it turns out that the low resistance reduction part was formed. On the other hand, no change in resistance value was observed for the metals Al and Bi.

表2は、各添加剤について、波長1000nm付近でのレーザの吸収率を示す。吸収率は、レーザ光を物質に入射して、その透過光を分光測定することにより得られたものである。C、TiO2、Al23、ZnO、Fe23、CuOでは、いずれも吸収率が高く、特に炭素Cの吸収率が最も高い。一方で、Alの吸収率は1%以下であるため、熱を効率よく伝達させることができなかったことが、還元反応が促進されない原因であると考えられる。BiについてもAlと同様である。

Figure 2018085437
Table 2 shows the laser absorptance in the vicinity of a wavelength of 1000 nm for each additive. The absorptance is obtained by making laser light incident on a substance and spectroscopically measuring the transmitted light. C, TiO 2 , Al 2 O 3 , ZnO, Fe 2 O 3 , and CuO all have high absorption rates, and carbon C has the highest absorption rate. On the other hand, since the absorption rate of Al is 1% or less, it was considered that the reason why the heat could not be efficiently transferred was that the reduction reaction was not promoted. Bi is the same as Al.
Figure 2018085437

図6は、レーザ照射前と照射後のXPSによる分析結果を示す。ガラス系絶縁体材料は元々、SiO2側にピークが存在していたが、添加剤(Fe23)の塗布後にレーザ照射を行うと、Si23やSiO側へピーク位置が変化した。SiO2は赤外線より短波長の領域では吸収率が低いため、そのままレーザを照射するだけでは還元は困難である。添加剤(Fe23)を塗布すると、添加剤がレーザを吸収してSiO2へ伝熱し、これによりSiO2の還元反応が促進されたと推測することができる。Fe23以外の添加剤(C、TiO2、Al23、ZnO、CuO)でも同様な効果を発揮できた。 FIG. 6 shows the analysis results by XPS before and after laser irradiation. The glass-based insulator material originally had a peak on the SiO 2 side, but when the laser irradiation was performed after the application of the additive (Fe 2 O 3 ), the peak position changed to the Si 2 O 3 or SiO side. . Since SiO 2 has a low absorptance in the region of shorter wavelength than infrared rays, reduction is difficult only by irradiating the laser as it is. When applying the additive (Fe 2 O 3), it conducts the heat to the SiO 2 additive absorbs the laser, thereby it can be inferred that the reduction reaction of SiO 2 was promoted. Similar effects could be achieved with additives other than Fe 2 O 3 (C, TiO 2 , Al 2 O 3 , ZnO, CuO).

表3は、レーザ照射後の部品素体に対し、Niの電解めっきを以下の条件で行った。具体的には、バレルめっきを使用した。

Figure 2018085437
In Table 3, Ni electroplating was performed on the component body after laser irradiation under the following conditions. Specifically, barrel plating was used.
Figure 2018085437

なお、Niめっき以外にCuめっきを行ってもよいし、Niめっきの後にSnめっきを行うこともできる。めっき金属の種類や、層数は任意に選択できる。さらに、電解めっきの他に無電解めっきを行うこともできる。 In addition to Cu plating, Cu plating may be performed, or Sn plating may be performed after Ni plating. The kind of plating metal and the number of layers can be arbitrarily selected. In addition to electroplating, electroless plating can also be performed.

図7は、電極部の最終的な断面形状の一例を示す。ここで、ガラス系絶縁体材料からなる部品素体10の上に還元部301が断続的に形成され、その上にNiめっき302aが形成され、その上にSnめっき302bが形成されている。図7では、部品素体10の表面は平坦なSnめっき302bで覆われているが、最上層のめっき302bの表面が凹凸状であってもよい。 FIG. 7 shows an example of the final cross-sectional shape of the electrode part. Here, the reduction part 301 is intermittently formed on the component body 10 made of a glass-based insulator material, the Ni plating 302a is formed thereon, and the Sn plating 302b is formed thereon. In FIG. 7, the surface of the component body 10 is covered with the flat Sn plating 302b, but the surface of the uppermost plating 302b may be uneven.

図1に示すようにL字形の外部電極30、31を形成した電子部品1の場合、上述のような電気的特性の違いの他に、以下のような違いも発生する。すなわち、外部電極が電子部品1の上面に形成されていないので、実装状態において電子部品1の上方に近接して別の電子部品又は導体が存在する場合でも、ショートの発生リスクを低減できる。さらに、外部電極がY方向の両側面にも形成されていないので、電子部品1のY方向に隣接して別の電子部品が実装されている場合でも、隣接する電子部品との絶縁距離を確保できると共に、外部電極に塗布されるはんだ同士の距離も確保できる。そのため、隣接する電子部品とのショートの発生リスクを低減できる。その結果、L字形外部電極を有する電子部品1の場合には、さらなる高密度実装が可能になる。 In the case of the electronic component 1 in which the L-shaped external electrodes 30 and 31 are formed as shown in FIG. 1, the following differences occur in addition to the above-described differences in electrical characteristics. That is, since the external electrode is not formed on the upper surface of the electronic component 1, the risk of occurrence of a short circuit can be reduced even when another electronic component or conductor is present close to the electronic component 1 in the mounted state. Furthermore, since the external electrodes are not formed on both side surfaces in the Y direction, even when another electronic component is mounted adjacent to the Y direction of the electronic component 1, an insulation distance from the adjacent electronic component is ensured. In addition, the distance between the solders applied to the external electrodes can be secured. Therefore, the risk of occurrence of a short circuit with an adjacent electronic component can be reduced. As a result, in the case of the electronic component 1 having an L-shaped external electrode, further high-density mounting is possible.

図9は、本発明を用いて外部電極を形成した電子部品の他の例を示す。図9の(a)は、部品素体10の底面10c(図9では上下逆転して示してある)のx方向両端部とx方向両端面10a、10bとに外部電極30、31が形成された電子部品を示している。他の面には外部電極が形成されていない。この場合は、内部電極の端部21a,23aが部品素体10の両端面10a、10bには露出しておらず、底面10cにのみ露出している。部品素体10の底面10cには、外部電極30、31が内部電極の端部23a,21aとそれぞれ接続されるように形成されている。この実施形態では、外部電極30、31が端面10a、10bの一部に形成されているが、端面10a、10bの全面に形成してもよい。 FIG. 9 shows another example of an electronic component in which external electrodes are formed using the present invention. 9A shows that the external electrodes 30 and 31 are formed on both the x-direction both ends and the x-direction both end surfaces 10a and 10b of the bottom surface 10c (shown upside down in FIG. 9) of the component body 10. FIG. Electronic parts are shown. External electrodes are not formed on the other surface. In this case, the end portions 21a and 23a of the internal electrode are not exposed at the both end faces 10a and 10b of the component body 10, but are exposed only at the bottom face 10c. External electrodes 30 and 31 are formed on the bottom surface 10c of the component body 10 so as to be connected to the end portions 23a and 21a of the internal electrodes, respectively. In this embodiment, the external electrodes 30 and 31 are formed on part of the end faces 10a and 10b, but may be formed on the entire end faces 10a and 10b.

図9の(b)は、多端子型の電子部品を示している。この例では、内部電極の引き出し部21a,23aが部品素体10の両端面10a、10bには露出しておらず、y方向両側面10d,10eに露出している。部品素体10の両側面10d,10e及び底面10c(図9では上側の面)の4箇所には、それぞれ外部電極30、31、32、33が形成されている。x方向両端面10a,10bと上面(図9では下側の面)には外部電極が形成されていない。 FIG. 9B shows a multi-terminal electronic component. In this example, the lead portions 21a and 23a of the internal electrodes are not exposed at both end faces 10a and 10b of the component body 10, but are exposed at both side faces 10d and 10e in the y direction. External electrodes 30, 31, 32, and 33 are formed at four locations on both side surfaces 10 d and 10 e and the bottom surface 10 c (upper surface in FIG. 9) of the component body 10, respectively. External electrodes are not formed on the x-direction end faces 10a and 10b and the upper surface (the lower surface in FIG. 9).

上記実施形態では、本発明をチップ型インダクタの外部電極の形成に適用した例を示したが、これに限るものではない。本発明が対象とする電子部品としては、インダクタに限らず、レーザ照射によって変質し、めっき電極の析出起点となる還元部が形成されるガラス系絶縁体材料からなる部品素体を使用した電子部品であれば、適用可能である。 In the above-described embodiment, the example in which the present invention is applied to the formation of the external electrode of the chip-type inductor is shown, but the present invention is not limited to this. The electronic component targeted by the present invention is not limited to an inductor, but an electronic component that uses a component body made of a glass-based insulator material that is altered by laser irradiation to form a reducing portion that becomes a deposition starting point of a plating electrode. If so, it is applicable.

本発明において、レーザの照射方法は、1本のレーザを分光して、複数箇所に同時にレーザを照射してもよい。さらに、レーザの焦点をずらして、レーザの焦点が合っている場合に比べて、レーザの照射範囲を広げてもよい。 In the present invention, the laser irradiation method may be to split one laser beam and simultaneously irradiate a plurality of locations with the laser beam. Furthermore, the laser irradiation range may be widened by shifting the focus of the laser as compared with the case where the laser is in focus.

本発明は、めっき金属が複数層で形成される場合に、めっき金属の最下層を還元部の全域に広がるように成長させる場合に限らない。めっき金属の最下層を還元部のみに析出するよう形成し、めっき金属の上層を還元部を含む電極形成領域の全域に広がるように成長させてもよい。 The present invention is not limited to the case where the lowermost layer of the plating metal is grown so as to spread over the entire reducing portion when the plating metal is formed of a plurality of layers. The lowermost layer of the plating metal may be formed so as to be deposited only in the reducing portion, and the upper layer of the plating metal may be grown so as to spread over the entire electrode forming region including the reducing portion.

1 電子部品
10 部品素体
10a、10b 両端面
10c 底面
20 内部電極
21a、23a 一端部(引出部)
30、31 外部電極
301 還元部
302 めっき電極
40 添加剤
L レーザ
S1、S2 電極形成領域
DESCRIPTION OF SYMBOLS 1 Electronic component 10 Component body 10a, 10b Both end surface 10c Bottom surface 20 Internal electrode 21a, 23a One end part (drawing part)
30, 31 External electrode 301 Reduction part 302 Plating electrode 40 Additive L Laser S1, S2 Electrode formation region

Claims (7)

ガラス系絶縁体材料からなる部品素体を準備する工程Aと、
前記ガラス系絶縁体材料の還元を促進する添加剤を前記部品素体の表面に付与する工程Bと、
前記添加剤を付与した前記部品素体の表面の電極形成領域にレーザを照射することにより、前記部品素体の表面にガラス系絶縁体材料の還元部を形成する工程Cと、
前記還元部を形成した部品素体をめっき処理することにより、前記還元部を核にしてめっき金属を成長させ、前記部品素体の表面の電極形成領域に電極を形成する工程Dと、
を備える電子部品の製造方法。
Step A for preparing a component body made of a glass-based insulator material;
Step B for applying an additive that promotes reduction of the glass-based insulator material to the surface of the component body;
Forming a reduced portion of the glass-based insulator material on the surface of the component element body by irradiating a laser on the electrode forming region on the surface of the component element body to which the additive has been added; and
Plating the component body on which the reduced portion is formed, growing a plating metal with the reduced portion as a nucleus, and forming an electrode in an electrode formation region on the surface of the component body; and
An electronic component manufacturing method comprising:
前記添加剤は、TiO2、Al23、ZnO、Fe23、CuO、Cから選ばれる少なくとも1つである、請求項1に記載の電子部品の製造方法。 2. The method of manufacturing an electronic component according to claim 1, wherein the additive is at least one selected from TiO 2 , Al 2 O 3 , ZnO, Fe 2 O 3 , CuO, and C. 2 . 前記工程Cと工程Dとの間に、前記レーザの未照射部の添加剤を除去する工程Eを含む、請求項1又は2に記載の電子部品の製造方法。 The manufacturing method of the electronic component of Claim 1 or 2 including the process E which removes the additive of the unirradiated part of the said laser between the said process C and the process D. 前記ガラス系絶縁体材料はケイ酸ガラスである、請求項1〜3のいずれか1項に記載の電子部品の製造方法。 The method for manufacturing an electronic component according to claim 1, wherein the glass-based insulator material is silicate glass. 前記レーザはYVO4レーザ又はYAGレーザである、請求項1〜4のいずれか1項に記載の電子部品の製造方法。 The method for manufacturing an electronic component according to claim 1, wherein the laser is a YVO 4 laser or a YAG laser. 前記部品素体は、ガラス系絶縁体材料からなる複数の層を積層したものであり、
前記層間には内部電極が形成されており、
前記内部電極の一部が前記部品素体の電極形成領域に露出している、請求項1〜5のいずれか1項に記載の電子部品の製造方法。
The component body is a laminate of a plurality of layers made of a glass-based insulator material,
Internal electrodes are formed between the layers,
The method for manufacturing an electronic component according to claim 1, wherein a part of the internal electrode is exposed in an electrode formation region of the component element body.
ガラス系絶縁体材料からなる部品素体と、
前記部品素体の表面の一部を還元することにより形成された還元部と、
前記還元部上に形成されためっき電極と、を有する電子部品。
A component body made of a glass-based insulator material;
A reducing part formed by reducing a part of the surface of the component element body;
An electronic component comprising: a plating electrode formed on the reducing portion.
JP2016227721A 2016-11-24 2016-11-24 Method for manufacturing electronic component and electronic component Pending JP2018085437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227721A JP2018085437A (en) 2016-11-24 2016-11-24 Method for manufacturing electronic component and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227721A JP2018085437A (en) 2016-11-24 2016-11-24 Method for manufacturing electronic component and electronic component

Publications (1)

Publication Number Publication Date
JP2018085437A true JP2018085437A (en) 2018-05-31

Family

ID=62238497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227721A Pending JP2018085437A (en) 2016-11-24 2016-11-24 Method for manufacturing electronic component and electronic component

Country Status (1)

Country Link
JP (1) JP2018085437A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433084A (en) * 1987-07-29 1989-02-02 Tdk Corp Partial modification method for oxide ceramic surface
JPH01134988A (en) * 1987-10-07 1989-05-26 Corning Glass Works Thermal writing on glass or glass-ceramic substrate and copper blurred glass
JPH10107395A (en) * 1996-09-30 1998-04-24 Taiyo Yuden Co Ltd Circuit board and its manufacture
JP2004253794A (en) * 2003-01-29 2004-09-09 Fuji Photo Film Co Ltd Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board
JP2012023380A (en) * 2010-07-14 2012-02-02 Korea Advanced Inst Of Sci Technol Method for fabricating pattern
JP2013211390A (en) * 2012-03-30 2013-10-10 Dowa Holdings Co Ltd Method of manufacturing ceramic circuit board
KR101402010B1 (en) * 2012-12-04 2014-06-02 한국화학연구원 Method for fabricating the conductive fine patterns using metal nano-ink for direct laser patterning
US20160067996A1 (en) * 2013-05-23 2016-03-10 Byd Company Limited Method for forming pattern on surface of insulating substrate and ceramic article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433084A (en) * 1987-07-29 1989-02-02 Tdk Corp Partial modification method for oxide ceramic surface
JPH01134988A (en) * 1987-10-07 1989-05-26 Corning Glass Works Thermal writing on glass or glass-ceramic substrate and copper blurred glass
JPH10107395A (en) * 1996-09-30 1998-04-24 Taiyo Yuden Co Ltd Circuit board and its manufacture
JP2004253794A (en) * 2003-01-29 2004-09-09 Fuji Photo Film Co Ltd Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board
JP2012023380A (en) * 2010-07-14 2012-02-02 Korea Advanced Inst Of Sci Technol Method for fabricating pattern
JP2013211390A (en) * 2012-03-30 2013-10-10 Dowa Holdings Co Ltd Method of manufacturing ceramic circuit board
KR101402010B1 (en) * 2012-12-04 2014-06-02 한국화학연구원 Method for fabricating the conductive fine patterns using metal nano-ink for direct laser patterning
US20160067996A1 (en) * 2013-05-23 2016-03-10 Byd Company Limited Method for forming pattern on surface of insulating substrate and ceramic article

Similar Documents

Publication Publication Date Title
US11322293B2 (en) Method for manufacturing ceramic electronic component, and ceramic electronic component
CN102693836B (en) Monolithic ceramic electronic component and manufacture method thereof
US11605493B2 (en) Method of manufacturing electronic component and electronic component
JP5429067B2 (en) Ceramic electronic component and manufacturing method thereof
JP6627734B2 (en) Ceramic electronic component and method of manufacturing the same
JP5471686B2 (en) Manufacturing method of multilayer ceramic electronic component
TW201712162A (en) Method for manufacturing ceramic electronic component, and ceramic electronic component
US11821090B2 (en) Method of manufacturing ceramic electronic component
JP2018085437A (en) Method for manufacturing electronic component and electronic component
JP2013084701A (en) Electronic component and method of manufacturing the same
US10971305B2 (en) Method for manufacturing ceramic electronic component and ceramic electronic component
TW200828367A (en) Method of making thin-film capacitors on metal foil using thick top electrodes
JP2003124061A (en) Thin film capacitor, chip capacitor and lc filter using the same, and its manufacturing method
JP5796643B2 (en) Multilayer ceramic electronic components
RU2803161C2 (en) Ceramics metallization method
JP5980240B2 (en) Coil body with ceramic core
TW201337980A (en) Coil body with ceramic iron core
JP5363887B2 (en) Multilayer wiring board
JP2009158523A (en) Wiring board and method of manufacturing the same
KR101069952B1 (en) Low Temperature Co-fired Ceramic Substrate and manufacturing method thereof
JP2004266113A (en) Method for manufacturing ceramic electronic part
JPS59119793A (en) Method of producing circuit board
JPH04357131A (en) Compound element for electronic connection and method for manufacturing same
JPS59121911A (en) Method of producing electrolytic condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210709

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210713

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210806

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210817

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220419

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220527

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220527