JP2003221664A - Fabrication method of metallic nanowires - Google Patents

Fabrication method of metallic nanowires

Info

Publication number
JP2003221664A
JP2003221664A JP2002300744A JP2002300744A JP2003221664A JP 2003221664 A JP2003221664 A JP 2003221664A JP 2002300744 A JP2002300744 A JP 2002300744A JP 2002300744 A JP2002300744 A JP 2002300744A JP 2003221664 A JP2003221664 A JP 2003221664A
Authority
JP
Japan
Prior art keywords
autocatalytic
thin film
metal
nanowires
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002300744A
Other languages
Japanese (ja)
Other versions
JP3842199B2 (en
Inventor
Yun-Hi Lee
允 煕 李
Byeong-Kwon Ju
柄 權 朱
Yoon-Taek Jang
潤 澤 張
Chang-Hoon Choi
昌 勳 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JP2003221664A publication Critical patent/JP2003221664A/en
Application granted granted Critical
Publication of JP3842199B2 publication Critical patent/JP3842199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fabrication method for growing a large amount of metallic nanowires on a substrate without carrying out a lithography process. <P>SOLUTION: The fabrication method of metallic nanowires includes the steps of: forming a tungsten thin film as a layer of autocatalytic metal with a thickness of 30 μm-1,000 μm on the surface of a substrate; and forming nanowires on the front surface of the layer of autocatalytic metal, wherein the substrate is put into a chamber of a low pressure CVD apparatus and the layer of autocatalytic metal is grown by autocatalytic reaction for 10-5,000 seconds. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属ナノ線(nanow
ire)の製造方法に関し、より詳しくは、金属ナノ線を、
リソグラフィー工程を行うことなく、基板上に多量に成
長し得る金属ナノ線の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a metal nanowire (nanow).
ire) manufacturing method, more specifically, metal nanowires,
The present invention relates to a method for producing metal nanowires that can be grown in large amounts on a substrate without performing a lithography process.

【0002】[0002]

【従来の技術】従来、金属ナノ線は、原子間力顕微鏡(A
MF:Atomic Force Microscpe)又は走査トンネル顕微
鏡(STM:Scanning Tunneling Microscope)の探針又は
電子放出表示装置の電子放出用チップ等に使用されてい
るが、主に、高度の微細エッチング工程によって製造さ
れている。
2. Description of the Related Art Conventionally, metal nanowires have been tested by atomic force microscopy (A
MF: Atomic Force Microscpe) or STM: Scanning Tunneling Microscope (STM) probe, electron emission display device electron emission chip, etc., but mainly manufactured by advanced fine etching process. There is.

【0003】近年、半導体素子の小型化及び集積化が、
急速且つ持続的に行われており、この分野でも金属ナノ
線の利用はますます増加すると予想されるが、現在まで
製品化されたシリコンにより具現される金属ナノ線の最
小直径は、約0.35μmで、将来約0.1μmまですることが
可能であると展望されている。しかし、従来のリソグラ
フィー工程によって製造されるものは、0.1μmより細く
するのは困難であり、半導体基板上に微細な金属ナノ線
を形成し得る新しい方式が要求されている。
In recent years, miniaturization and integration of semiconductor devices have
Although the use of metal nanowires is expected to continue to increase rapidly and sustainably in this field, the minimum diameter of metal nanowires realized by commercialized silicon is about 0.35 μm. In the future, it is expected that it will be possible to reach about 0.1 μm. However, it is difficult to reduce the thickness of the conventional products manufactured by the lithography process to less than 0.1 μm, and a new method capable of forming fine metal nanowires on a semiconductor substrate is required.

【0004】最近、リソグラフィーの技術に依存せず、
ナノ単位の大きさの高集積半導体素子を製造するボトム
アップ方式により、自己組立体(self-assembly)、1次元
量子線(quantum wire)のナノ線及びナノロッド(nano-r
od)を成長させる試みも行われている。ここで、半導体
素子の製造を、現在のトップダウン方式からボトムアッ
プ方式に代置しなければならないと展望されている。前
者の方式は、規則性及び再現性に優れている既に確立さ
れた技術により、半導体素子を集積化することができる
という長所があるが、リソグラフィー技術の発展に絶対
的に依存するという短所がある。一方、後者の方式は、
半導体素子を製造するとき、材料自体がナノ単位の大き
さに形成されるメカニズムを利用するもので、リソグラ
フィー技術に依存してないものの、再現性及び定形化を
達成し難く、分子素子(molecular device)を高歩留り
で集積化することが困難であるという短所がある。
Recently, independent of lithography technology,
According to the bottom-up method for manufacturing highly integrated semiconductor devices with a size of nanometer, self-assembly, one-dimensional quantum wire nanowires and nanorods are used.
There are also attempts to grow od). Here, it is expected that the manufacturing of semiconductor devices should be replaced with the current top-down method to bottom-up method. The former method has an advantage that the semiconductor device can be integrated by an already established technique having excellent regularity and reproducibility, but has a disadvantage that it absolutely depends on the development of the lithography technique. . On the other hand, the latter method
When manufacturing a semiconductor device, the material itself is formed into a size of a nano unit, and although it does not depend on the lithography technology, it is difficult to achieve reproducibility and formalization. Is difficult to integrate with high yield.

【0005】従来技術の一例として図6及び図7
(a)、(b)に示す前記電子放出用チップにおけるタ
ングステンナノ線は、バルク材料に微細なエッチングを
施して加工するため、広い基底面(base)から上に向かう
ほど鋭くなる構造を有しているが、定形化し難いという
問題があった。
As an example of the prior art, FIG. 6 and FIG.
The tungsten nanowires in the electron-emitting tip shown in (a) and (b) have a structure in which the bulk material is processed by fine etching, so that it becomes sharper from a wide base surface upward. However, there was a problem that it was difficult to standardize.

【0006】[0006]

【発明が解決しようとする課題】然るに、このような従
来のチップにおいては、チップの模様が夫々異なり、定
形化することが難しいという不都合な点があった。又、
前記各電子放出用チップは、電界放出表示素子(Field
Emission Display Device)又は増幅器の電子放出源(F
ield Emission Source)に夫々適用するために、直径1
μmのホールの中に、均一にエッチング加工して形成す
ることが難しいという不都合な点があった。
However, such conventional chips have the disadvantage that the patterns of the chips are different and it is difficult to standardize them. or,
Each of the electron emission chips is a field emission display element (Field
Emission Display Device) or amplifier electron emission source (F
ield Emission Source) for each 1
There is an inconvenience that it is difficult to form a uniform etching process in the μm hole.

【0007】本発明は、このような従来の課題に鑑みな
されたもので、金属ナノ線を、リソグラフィー工程を行
うことなく、工程中に基板上に多量に成長し得る金属ナ
ノ線の製造方法を提供することを目的とする。
The present invention has been made in view of such conventional problems, and provides a method for producing metal nanowires capable of growing a large amount on a substrate during a process without performing a lithography process. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るため、本発明は、基板上に厚さ30μm〜1000μmの自己
触媒金属薄膜を形成する段階と、前記自己触媒金属薄膜
を、低圧CVD装置を用いて、10秒〜5000秒の間、自己
触媒反応により成長させることで、自己触媒金属薄膜の
表面にナノ線を成長させる段階と、を順次行うことを特
徴とする金属ナノ線の製造方法を提供するものである。
In order to achieve such an object, the present invention provides a step of forming an autocatalytic metal thin film having a thickness of 30 μm to 1000 μm on a substrate, and the low pressure CVD of the autocatalytic metal thin film. Using the apparatus, a step of growing nanowires on the surface of an autocatalytic metal thin film by performing autocatalytic growth for 10 seconds to 5000 seconds, and manufacturing a metal nanowire characterized by the following steps. It provides a method.

【0009】本発明に係る金属ナノ線の製造方法におい
ては、前記自己触媒金属薄膜を自己触媒反応によって成
長させる時間が重要であり、その理由は下記の通りであ
る。自己触媒金属薄膜が自己触媒反応によって金属ナノ
線に成長するためには、前記自己触媒金属薄膜内に熱エ
ネルギーによる特定値以上の応力が存在する必要があ
る。更に、このような効果を表すためには、その成長時
間が10秒以上である必要があるが、成長時間が5000秒を
超えると、成長し過ぎたナノ線が相互に縺れ合って固ま
り、従来の連続膜の形態に転移するので、成長時間を10
秒〜5000秒にする。
In the method for producing metal nanowires according to the present invention, the time for growing the autocatalytic metal thin film by an autocatalytic reaction is important, and the reason is as follows. In order for an autocatalytic metal thin film to grow into a metal nanowire by an autocatalytic reaction, it is necessary that stress exceeding a specific value due to thermal energy exists in the autocatalytic metal thin film. Furthermore, in order to exhibit such an effect, it is necessary that the growth time is 10 seconds or more, but when the growth time exceeds 5000 seconds, the overgrown nanowires are entangled with each other and solidified, The growth time is 10
Second to 5000 seconds.

【0010】請求項2の発明は、前記自己触媒金属薄膜
の形成前に、前記基板の上面に所定厚さの絶縁膜を形成
する段階をさらに含めて構成され、前記絶縁膜は、湿式
酸化法で形成される酸化膜であることを特徴とする。請
求項3のように、前記自己触媒金属薄膜は、99.9%以上
のタングステン金属ソースをスパッタ装置に装着し、25
℃〜300℃の温度でスパッタリングによって形成すると
よい。
The invention of claim 2 further comprises the step of forming an insulating film of a predetermined thickness on the upper surface of the substrate before forming the self-catalytic metal thin film, wherein the insulating film is a wet oxidation method. It is an oxide film formed by. The autocatalytic metal thin film according to claim 3, wherein 99.9% or more of a tungsten metal source is attached to a sputtering apparatus.
It may be formed by sputtering at a temperature of ℃ to 300 ℃.

【0011】請求項4のように、前記自己触媒金属薄膜
の成長は、低圧CVD装置のチャンバの内部にAr/H2
ガスを30〜300sccmで注入し、10mtorr〜100torrのガス
圧力及び500〜850℃の温度条件下で行うとよい。
According to a fourth aspect of the present invention, the growth of the autocatalytic metal thin film is performed by Ar / H 2 inside a chamber of a low pressure CVD apparatus.
It is advisable to inject the gas at 30 to 300 sccm under the gas pressure of 10 mtorr to 100 torr and the temperature condition of 500 to 850 ° C.

【0012】[0012]

【発明の実施の形態】以下、本発明の金属ナノ線の製造
方法について、実施例に基づき、より詳しく説明する。 実施例 例えばSi基板(ウエハー)を電気炉に入れて、湿式酸
化法(wet air oxidation)を施して基板上に絶縁膜の
酸化膜を厚さ200〜1000nmで形成して、電子ビーム蒸着
装置(E-beam Evaporator)又はスパッタ装置を利用し、
前記酸化膜が形成された基板の表面に自己触媒金属薄膜
(layer of autocatalytic metal)として例えばタン
グステン薄膜を厚さ30〜1000nmで形成する。次いで、前
記タングステン薄膜が形成された基板を、低圧CVD装
置を用いて自己触媒反応(autocatalytic reaction)を
施すことで、前記タングステン薄膜の表面に個別又は束
状のタングステンナノ線を成長させる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the method for producing metal nanowires of the present invention will be described in more detail with reference to Examples. Example For example, a Si substrate (wafer) is placed in an electric furnace and subjected to wet air oxidation to form an oxide film of an insulating film with a thickness of 200 to 1000 nm on the substrate. E-beam Evaporator) or sputtering equipment,
An autocatalytic metal thin film is formed on the surface of the substrate on which the oxide film is formed.
As a (layer of autocatalytic metal), for example, a tungsten thin film is formed with a thickness of 30 to 1000 nm. Then, the substrate on which the tungsten thin film is formed is subjected to an autocatalytic reaction using a low pressure CVD apparatus to grow individual or bundled tungsten nanowires on the surface of the tungsten thin film.

【0013】以下、上記製造方法を、より詳しく説明す
る。本実施例は、a)基板上に絶縁膜を形成する段階
と、b)上記絶縁膜の上に自己触媒金属薄膜を形成する
段階と、c)金属ナノ線を成長させる段階からなる。よ
り詳しくは、 a) 電気炉の内部に基板を装入して、電気炉を1100℃
の温度下で湿式酸化法を施して前記基板の表面に500nm
の絶縁膜である酸化膜を形成する段階と、 b) 99.9%以上のタングステンから成る金属ソースを
スパッタ装置の内部に装着し、スパッタ装置の内部温度
を25℃〜300℃下でスパッタリングを施して酸化膜表面
に30〜1000nmのタングステン薄膜を形成する、前記絶縁
膜である酸化膜の上に自己触媒金属薄膜を形成する段階
と、 c) 前記タングステン薄膜が形成された基板を低圧C
VD装置に入れ、低圧CVD装置のチャンバ内部にAr
/H2ガスを30〜300sccmで注入し、10mtorr〜100torrの
ガス圧力及び500〜850℃の温度に約10秒〜5000秒間保持
することで、タングステン薄膜を自己触媒化させて薄膜
表面にタングステンナノ線を成長させる、金属ナノ線を
成長させる段階とからなっている。
The above manufacturing method will be described in more detail below. The present example comprises a) a step of forming an insulating film on a substrate, b) a step of forming an autocatalytic metal thin film on the insulating film, and c) a step of growing a metal nanowire. More specifically, a) Insert the substrate inside the electric furnace, and heat the electric furnace at 1100 ° C.
The wet oxidation method is applied at a temperature of 500 nm on the surface of the substrate.
The step of forming an oxide film, which is an insulating film, and b) mounting a metal source made of 99.9% or more of tungsten inside the sputter device, and performing sputtering at an internal temperature of the sputter device of 25 ° C to 300 ° C. Forming a tungsten thin film of 30 to 1000 nm on the surface of the oxide film, forming an autocatalytic metal thin film on the oxide film which is the insulating film, and c) applying a low pressure C to the substrate on which the tungsten thin film is formed.
Put it in the VD equipment and put Ar inside the chamber of the low pressure CVD equipment.
/ H 2 gas is injected at 30 to 300 sccm, and is maintained at a gas pressure of 10 mtorr to 100 torr and a temperature of 500 to 850 ° C. for about 10 seconds to 5000 seconds to self-catalyze the tungsten thin film to form a tungsten nano film on the thin film surface. Growing a wire, and growing a metal nanowire.

【0014】図1(a)、(b)及び図2に示す本実施
例により成長されたタングステンナノ線は、直径約10〜
100nmで、直径4インチの基板の表面に高密度、かつ均
一に形成されると共に、直線性に優れている。又、タン
グステンナノ線の面密度は、ナノ線の成長時間及び自己
触媒金属薄膜の厚さを変更することで、調節することが
できる。図3及び図4に示したように、ナノ線の成長時
間及びタングステン薄膜の厚さを変化させることでタン
グステンナノ線の面密度が異なることが分かる。特に、
図5に示したように、ナノ線の成長時間が非常に短い場
合(図5(a)、10秒未満の場合)にはナノ線の成長が
全然行われず、これと反対に、ナノ線の成長時間が非常
に長い場合(図5(c)、5000秒超過の場合)には自己
触媒金属膜の表面状態が成長前と同じような状態にな
る。図5(b)は、本発明により成長時間を10〜5000秒
とした時、基板の全面に均一に形成された金属ナノ線を
示している。
The tungsten nanowires grown according to this embodiment shown in FIGS. 1 (a), 1 (b) and 2 have a diameter of about 10 to 10.
With 100 nm, it is formed uniformly and densely on the surface of a 4-inch diameter substrate, and has excellent linearity. Also, the surface density of the tungsten nanowires can be adjusted by changing the growth time of the nanowires and the thickness of the autocatalytic metal thin film. As shown in FIGS. 3 and 4, it can be seen that the areal density of the tungsten nanowires is different by changing the growth time of the nanowires and the thickness of the tungsten thin film. In particular,
As shown in FIG. 5, when the nanowire growth time is very short (FIG. 5 (a), less than 10 seconds), no nanowire growth occurs. When the growth time is very long (FIG. 5C, when it exceeds 5000 seconds), the surface state of the autocatalytic metal film becomes the same as that before the growth. FIG. 5B shows metal nanowires uniformly formed on the entire surface of the substrate when the growth time is set to 10 to 5000 seconds according to the present invention.

【0015】本発明に係る金属ナノ線の製造方法の最も
大きい特徴の一つは、図2〜図4に示したように、ナノ
線の成長過程で、基板に蒸着された金属薄膜の全面積が
自己触媒役割を行うと同時に、金属薄膜自体がナノ線に
成長展開されるということである。即ち、本発明に係る
金属ナノ線の製造方法においては、ナノリソグラフィー
技術を使用することなく、金属ナノ線を工程中に直接基
板上に成長させることができる。
One of the greatest features of the method for producing metal nanowires according to the present invention is that, as shown in FIGS. 2 to 4, the total area of the metal thin film deposited on the substrate during the nanowire growth process. Plays an autocatalytic role, and at the same time, the metal thin film itself grows and develops into nanowires. That is, in the method for producing metal nanowires according to the present invention, the metal nanowires can be grown directly on the substrate during the process without using the nanolithography technique.

【0016】従来は、バルクタングステン片又は厚さ数
mmのタングステン線をエッチング溶液に浸漬して全体又
は先端を加工するか、若しくは、半導体微細ホトエッチ
ング及びリソグラフィー工程を施してマイクロチップを
形成していた。しかし、本発明に係る金属ナノ線の製造
方法においては、ナノリソグラフィー工程を行うことな
く、ナノ単位の大きさの直径を有するナノ線を工程中に
基板上に成長させることができる。
Conventionally, bulk tungsten pieces or thickness numbers
A tungsten wire of mm was soaked in an etching solution to process the whole or the tip, or a semiconductor fine photoetching and lithography process was performed to form a microchip. However, in the method for producing metal nanowires according to the present invention, nanowires having a diameter of a nano unit can be grown on the substrate during the process without performing the nanolithography process.

【0017】尚、本発明の技術的思想及び範囲は、上記
実施例により限定されるものではなく、本発明の範囲か
ら外れない限り、金属ナノ線を成長させる基材となる基
板等の単純変更は、本発明の範囲に属する。例えば、金
属ナノ線を成長させる基板としては、Siの他、通常70
0℃以上の高温で変形が起らない高融点ガラス、アルミ
ナ等を適用することも可能である。
The technical idea and scope of the present invention are not limited to the above embodiments, and simple modifications of the substrate or the like serving as a base material for growing metal nanowires are possible unless they deviate from the scope of the present invention. Belong to the scope of the present invention. For example, as a substrate for growing metal nanowires, in addition to Si, usually 70
It is also possible to apply high melting point glass, alumina, or the like that does not deform at a high temperature of 0 ° C. or higher.

【0018】また、上記実施例では、本発明により成長
されたナノ線が電子素材分野に応用されることを想定し
て、基板に酸化膜の絶縁膜を形成することを前提として
いるが、絶縁膜の形成が本発明によるナノ線の成長メカ
ニズムに重要な影響を及ぼすものではなく、絶縁膜の形
成段階は省略することができる。
Further, in the above-mentioned embodiment, it is premised that the nanowire grown according to the present invention is applied to the field of electronic materials, and an insulating film of an oxide film is formed on the substrate. The formation of the film does not significantly affect the nanowire growth mechanism according to the present invention, and the step of forming the insulating film can be omitted.

【0019】[0019]

【発明の効果】以上で述べたように、本発明に係る金属
ナノ線の製造方法においては、基板上に直接金属ナノ線
を成長させる方法であって、工程中に基板の所望の位置
に選択的に金属ナノ線を成長させて集積化し得るため、
極めて便利であるという効果がある。
As described above, the method for producing metal nanowires according to the present invention is a method for directly growing metal nanowires on a substrate, and selecting the desired position on the substrate during the process. Since it is possible to grow and integrate metal nanowires,
It has the effect of being extremely convenient.

【0020】又、本発明に係る金属ナノ線の製造方法に
おいては、金属ナノ線を利用したナノ電子/スピン素子
類、ナノ機器類、探針類、電子放出表示装置(electron
emission display)、ナノ生体駆動器(nano-biodrive
r)等の核心作動体(core effector)及び結線を量産する
技術として利用することができる。
In addition, in the method for producing metal nanowires according to the present invention, nanoelectron / spin devices, nanodevices, probes, and electron emission display devices utilizing metal nanowires are used.
emission display), nano-biodrive
It can be used as a technique for mass-producing core effectors and connections such as r).

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)は本発明の金属ナノ線の製造方
法により基板上に工程中に成長したタングステンナノ線
を示した走査電子顕微鏡写真。
1A and 1B are scanning electron micrographs showing tungsten nanowires grown on a substrate during a process by the method for producing metal nanowires of the present invention.

【図2】本発明の金属ナノ線の製造方法により基板上に
工程中に成長したタングステンナノ線を示した走査電子
顕微鏡写真。
FIG. 2 is a scanning electron micrograph showing tungsten nanowires grown on a substrate during a process by the method for producing metal nanowires of the present invention.

【図3】自己触媒薄膜の厚さとナノ線の成長時間を変化
させてナノ線の面密度を調節した状態を示した走査電子
顕微鏡写真。
FIG. 3 is a scanning electron micrograph showing a state in which the surface density of nanowires is adjusted by changing the thickness of the autocatalytic thin film and the growth time of nanowires.

【図4】自己触媒薄膜の厚さとナノ線の成長時間を変化
させてナノ線の面密度を調節した状態を示した別の走査
電子顕微鏡写真。
FIG. 4 is another scanning electron micrograph showing a state in which the area density of nanowires is adjusted by changing the thickness of the autocatalytic thin film and the growth time of nanowires.

【図5】(a)〜(c)はナノ線の異なる成長時間によ
って観察された基板の表面状態を示した走査電子顕微鏡
写真。
5A to 5C are scanning electron micrographs showing the surface state of the substrate observed by different growth times of nanowires.

【図6】従来の微細エッチング工程により製造されたタ
ングステンナノ線を示した走査電子顕微鏡写真。
FIG. 6 is a scanning electron micrograph showing a tungsten nanowire manufactured by a conventional fine etching process.

【図7】(a)、(b)は従来の薄膜コーティング工程
により炭素ナノチューブの表面に形成されたタングステ
ンナノ線を示した走査電子顕微鏡写真。
7A and 7B are scanning electron micrographs showing tungsten nanowires formed on the surface of carbon nanotubes by a conventional thin film coating process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01J 9/02 H01J 9/02 B (72)発明者 朱 柄 權 大韓民国ソウル特別市城北區城北洞227− 5新元グリーン ビラ、201号 (72)発明者 張 潤 澤 大韓民国ソウル特別市中浪區新内洞東星ア パート402−2207 (72)発明者 崔 昌 勳 大韓民国京畿道城南市壽井區山城洞1632番 地 Fターム(参考) 4K029 AA06 BA01 CA05 DC03 EA01 GA01 4M104 AA01 BB18 CC01 DD28 DD31 DD35 DD37 DD78 EE02 EE14 HH14 5C127 AA01 BA09 BA13 BA15 BB02 CC03 DD07 DD08 DD39 EE04 EE17 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI theme code (reference) // H01J 9/02 H01J 9/02 B (72) Inventor Zhu pattern Sangbuk, Seoul, Korea 227-5 Shingen Green Villa, No. 201 (72) Inventor Zhang Jun Sawa, Seoul, South Korea, Sungnam-dong, Shinnai-dong Dongsung Ap-apart 402-2207 (72) Inventor Choi, Chang, Gyeonggi-do, Seoul South Korea 1632 F-term, Mt.Dongsanseong-dong (reference) 4K029 AA06 BA01 CA05 DC03 EA01 GA01 4M104 AA01 BB18 CC01 DD28 DD31 DD35 DD37 DD78 EE02 EE14 HH14 5C127 AA01 BA09 BA13 BA15 BB02 CC03 DD07 DD08 DD39 EE04 EE17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に厚さ30μm〜1000μmの自己触媒金
属薄膜を形成する段階と、 前記自己触媒金属薄膜を、低圧CVD装置を用いて、10
秒〜5000秒の間、自己触媒反応により成長させること
で、自己触媒金属薄膜の表面にナノ線を成長させる段階
と、 を順次行うことを特徴とする金属ナノ線の製造方法。
1. A step of forming an autocatalytic metal thin film having a thickness of 30 μm to 1000 μm on a substrate, and the step of forming the autocatalytic metal thin film using a low pressure CVD apparatus.
A method for producing a metal nanowire, which comprises sequentially performing a step of growing a nanowire on the surface of an autocatalytic metal thin film by growing by an autocatalytic reaction for 2 seconds to 5000 seconds.
【請求項2】前記自己触媒金属薄膜の形成前に、前記基
板の上面に所定厚さの絶縁膜を形成する段階をさらに含
めて構成され、前記絶縁膜は、湿式酸化法で形成される
酸化膜であることを特徴とする請求項1に記載の金属ナ
ノ線の製造方法。
2. The method further comprises the step of forming an insulating film of a predetermined thickness on the upper surface of the substrate before forming the autocatalytic metal thin film, the insulating film being formed by a wet oxidation method. It is a film, The manufacturing method of the metal nanowire of Claim 1 characterized by the above-mentioned.
【請求項3】前記自己触媒金属薄膜は、99.9%以上のタ
ングステン金属ソースをスパッタ装置に装着し、25℃〜
300℃の温度でスパッタリングによって形成することを
特徴とする請求項1又は2に記載の金属ナノ線の製造方
法。
3. The autocatalytic metal thin film is provided with a tungsten metal source of 99.9% or more in a sputtering apparatus, and the temperature is 25 ° C.
The method for producing metal nanowires according to claim 1 or 2, which is formed by sputtering at a temperature of 300 ° C.
【請求項4】前記自己触媒金属薄膜の成長は、低圧CV
D装置のチャンバの内部にAr/H2ガスを30〜300sccm
で注入し、10mtorr〜100torrのガス圧力及び500〜850℃
の温度条件下で行うことを特徴とする請求項1〜3のい
ずれか1つに記載の金属ナノ線の製造方法。
4. The growth of the autocatalytic metal thin film is performed by low pressure CV.
Ar / H 2 gas in the chamber of D device is 30 ~ 300sccm
Injected at 10mtorr-100torr gas pressure and 500-850 ℃
The method for producing metal nanowires according to claim 1, wherein the method is performed under the temperature condition of.
JP2002300744A 2001-10-15 2002-10-15 Method for producing metal nanowires Expired - Fee Related JP3842199B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0063421A KR100388433B1 (en) 2001-10-15 2001-10-15 Fabricating method of metallic nanowires
KR2001-63421 2001-10-15

Publications (2)

Publication Number Publication Date
JP2003221664A true JP2003221664A (en) 2003-08-08
JP3842199B2 JP3842199B2 (en) 2006-11-08

Family

ID=19715125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300744A Expired - Fee Related JP3842199B2 (en) 2001-10-15 2002-10-15 Method for producing metal nanowires

Country Status (3)

Country Link
US (1) US6808605B2 (en)
JP (1) JP3842199B2 (en)
KR (1) KR100388433B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004412A (en) * 2006-06-23 2008-01-10 Dialight Japan Co Ltd Cold-cathode electron source

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456016B1 (en) * 2002-01-10 2004-11-06 학교법인 포항공과대학교 A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom
KR100647581B1 (en) * 2003-07-02 2006-11-24 삼성에스디아이 주식회사 Microporous thin film comprising nano particles and preparing process thereof
US7181836B2 (en) * 2003-12-19 2007-02-27 General Electric Company Method for making an electrode structure
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
WO2007001343A2 (en) * 2004-08-20 2007-01-04 Ion America Corporation Nanostructured fuel cell electrode
KR100723418B1 (en) * 2005-02-25 2007-05-30 삼성전자주식회사 Silicon nano wire, Semicondutor device comprising silicon nano wire and manufacturing method of silicon nano wire
WO2006099776A1 (en) * 2005-03-25 2006-09-28 Zhongshan University Preparing a single component metal nanowire directly by physical vapor phase method
US7402531B1 (en) 2005-12-09 2008-07-22 Hewlett-Packard Development Company, L.P. Method for selectively controlling lengths of nanowires
KR100790863B1 (en) * 2005-12-28 2008-01-03 삼성전자주식회사 Method of manufacturing nano-wire
US7859036B2 (en) * 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
KR100904588B1 (en) * 2007-07-05 2009-06-25 삼성전자주식회사 Method of preparing core/shell type Nanowire, Nanowire prepared therefrom and Display device comprising the same
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
US8839659B2 (en) 2010-10-08 2014-09-23 Board Of Trustees Of Northern Illinois University Sensors and devices containing ultra-small nanowire arrays
CN103050350A (en) * 2012-12-28 2013-04-17 青岛润鑫伟业科贸有限公司 Preparation method of field emitting cathode
US9618465B2 (en) 2013-05-01 2017-04-11 Board Of Trustees Of Northern Illinois University Hydrogen sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301789A (en) * 1996-05-17 1997-11-25 Sumitomo Electric Ind Ltd High porosity ceramic film and its production
JP2000219600A (en) * 1999-01-27 2000-08-08 Nippon Steel Corp Microcrystal grain and microcrystal fine line and their formation
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
JP2001220674A (en) * 1999-12-02 2001-08-14 Ricoh Co Ltd Carbon nanotube, producing method therefor and electron emitting source
JP2001236879A (en) * 2000-01-07 2001-08-31 Samsung Sdi Co Ltd Manufacturing method of tripolar field-emission element using carbon nanotube
JP2001519594A (en) * 1997-10-10 2001-10-23 ミネソタ マイニング アンド マニュファクチャリング カンパニー Catalyst for membrane electrode assembly and fabrication method
JP2002141633A (en) * 2000-10-25 2002-05-17 Lucent Technol Inc Article comprising vertically nano-interconnected circuit device and method for making the same
US20030189202A1 (en) * 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581091A (en) * 1994-12-01 1996-12-03 Moskovits; Martin Nanoelectric devices
JPH11246300A (en) * 1997-10-30 1999-09-14 Canon Inc Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same
KR100276431B1 (en) * 1997-12-22 2000-12-15 정선종 Formation method for regular silicon quantum dot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301789A (en) * 1996-05-17 1997-11-25 Sumitomo Electric Ind Ltd High porosity ceramic film and its production
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
JP2001519594A (en) * 1997-10-10 2001-10-23 ミネソタ マイニング アンド マニュファクチャリング カンパニー Catalyst for membrane electrode assembly and fabrication method
JP2000219600A (en) * 1999-01-27 2000-08-08 Nippon Steel Corp Microcrystal grain and microcrystal fine line and their formation
JP2001220674A (en) * 1999-12-02 2001-08-14 Ricoh Co Ltd Carbon nanotube, producing method therefor and electron emitting source
JP2001236879A (en) * 2000-01-07 2001-08-31 Samsung Sdi Co Ltd Manufacturing method of tripolar field-emission element using carbon nanotube
JP2002141633A (en) * 2000-10-25 2002-05-17 Lucent Technol Inc Article comprising vertically nano-interconnected circuit device and method for making the same
US20030189202A1 (en) * 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004412A (en) * 2006-06-23 2008-01-10 Dialight Japan Co Ltd Cold-cathode electron source

Also Published As

Publication number Publication date
KR100388433B1 (en) 2003-06-25
US6808605B2 (en) 2004-10-26
US20030072885A1 (en) 2003-04-17
KR20030031334A (en) 2003-04-21
JP3842199B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US6833558B2 (en) Parallel and selective growth method of carbon nanotube on the substrates for electronic-spintronic device applications
JP2003221664A (en) Fabrication method of metallic nanowires
JP4970038B2 (en) Method for synthesizing nanoscale fiber structure and electronic component including the fiber structure
US20100227058A1 (en) Method for fabricating carbon nanotube array
US6652762B2 (en) Method for fabricating nano-sized diamond whisker, and nano-sized diamond whisker fabricated thereby
US8821975B2 (en) Method for making branched carbon nanotubes
US20090188695A1 (en) Nanostructures and method for making such nanostructures
JP2009536912A (en) Assisted selective growth of dense and vertically aligned carbon nanotubes
CN108767108A (en) Hall device preparation method and hall device
JP2008028373A (en) Nanowire and device equipped with the nanowire, and manufacturing method of the same
KR100405974B1 (en) Method for developing carbon nanotube horizontally
KR100422333B1 (en) Method for manufacturing a metal film having giant single crystals and the metal film
KR100434272B1 (en) Method for developing carbon nanotube horizontally
KR100455663B1 (en) Metal/nanomaterial heterostructure and method for the preparation thereof
JP2005288636A (en) Carbon nano-tube forming method using nano-indent edge and anti-dot catalyst array
JP3421332B1 (en) Method for producing carbon nanotube
US20060216528A1 (en) Nanoparticle structure and method of manufacturing the same
KR100374042B1 (en) Semiconductor device fabrication method using selective excluding process of carbon nanotube having various characteristics
KR100829578B1 (en) Metal nano-tip and method of manufacturing the same
US9099329B2 (en) In nanowire, device using the same and method of manufacturing in nanowire
KR20060039577A (en) Fabrication method of metallic nanoparticles
EP1702352A2 (en) Nanotube fabrication basis
JP4854180B2 (en) Method for producing InSb nanowire structure
JP2606033B2 (en) Manufacturing method of fine needle by electron beam
Lee et al. Synthesis and Characterization of Ni/Si Nanowires for Electrical Transport

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees