JP2003071546A - アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法 - Google Patents

アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法

Info

Publication number
JP2003071546A
JP2003071546A JP2001260732A JP2001260732A JP2003071546A JP 2003071546 A JP2003071546 A JP 2003071546A JP 2001260732 A JP2001260732 A JP 2001260732A JP 2001260732 A JP2001260732 A JP 2001260732A JP 2003071546 A JP2003071546 A JP 2003071546A
Authority
JP
Japan
Prior art keywords
ingot
aluminum
mold
casting
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001260732A
Other languages
English (en)
Inventor
Hiroshi Okada
浩 岡田
Yasuo Ishiwatari
保生 石渡
Susumu Nawata
進 名和田
Kazumi Tono
和美 東野
Kiyomi Tsuchiya
清美 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2001260732A priority Critical patent/JP2003071546A/ja
Publication of JP2003071546A publication Critical patent/JP2003071546A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

(57)【要約】 【課題】鋳塊を箔コイルに成形した際でもその全領域で
立方体方位粒が顕在化した金属組織を有するアルミニウ
ム鋳塊およびその連続鋳造方法ならびに係る鋳塊を用い
た電解コンデンサの電極用アルミニウム箔の製造方法を
提供する。 【解決手段】上端部3および下端部4を開放した筒状の
水冷鋳型2の上端部3からアルミニウムの溶湯Mを中空
部5に供給すると共に、冷却して凝固した鋳塊Cを下端
部4から引き下ろし且つ冷却液Wを注加してアルミニウ
ム鋳塊Cを連続鋳造する方法において、上記冷却鋳型2
の上端部3における上記溶湯注入側が、耐火性断熱材6
からなると共に、上記冷却鋳型2における冷却リング8
の鋳型長さ、鋳造速度、および冷却液量の少なくとも1
つ以上を調整することにより、上記アルミニウムの溶湯
Mの凝固開始点Gが上記耐火性断熱材6の領域内で生じ
る、アルミニウム鋳塊の連続鋳造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、アルミニウム鋳塊
およびその連続鋳造方法ならびに前記アルミニウム鋳塊
を用いた電解コンデンサの電極用アルミニウム箔の製造
方法に関する。尚、本明細書において、アルミニウムの
連続鋳造方法には、鋳塊(スラブ)の鋳込み方向の長さが
最大で4〜6メートルであるアルミニウムの半連続鋳造
方法も含まれる。また、本明細書におけるアルミニウム
には、純アルミニウムはもとより、各種のアルミニウム
合金も含まれる。
【0002】
【従来の技術】中圧または高圧電解コンデンサに用いら
れる電極用アルミニウム箔は、アルミニウムからなる鋳
塊(スラブ)の連続鋳造、均質化処理、熱間圧延、冷間圧
延、および仕上げ(最終)焼鈍の各工程を経て製造されて
いる。係る工程を経ることにより、得られる電極用アル
ミニウム箔は、立方体方位(001)[100]の結晶粒
が鮮鋭に顕在化した金属組織となるようにされている。
また、上記立方体方位粒を一層鮮鋭に顕在化させるた
め、冷間圧延と仕上げ焼鈍との間において、更に中間焼
鈍および冷間圧延を行うことも試みられている。尚、上
記鋳塊の連続鋳造は、全体が金属製の水冷鋳型を用いた
連続鋳造法により行われる。また、上記(001)は結晶
粒の圧延面に平行な結晶面を、[100]は結晶粒の圧
延方向に平行な結晶軸を、ミラー指数で表示したもので
ある。
【0003】上記アルミニウム箔は、幅が約1000m
mのコイルにおける全領域において、上記立方体方位粒
が上述したように顕在化していることが求められてい
る。しかしながら、図4(A)に示すように、上記コイル
の幅方向におけるセンターからエッジ(縁)にわたる約幅
500mmのアルミニウム箔において、幅方向のエッジ
付近に上記立方体方位(001)[100]以外の結晶方
位(非立方体方位)の結晶粒が生成し残留する場合があ
る。尚、図4(A)は、上記アルミニウム箔の表面を、塩
酸:硝酸:弗酸を50:50:1の割合で調整した薬品
(腐食液)で溶解し、係る表面に対して垂直でない光を用
いて写真撮影したもの(模式的図面)を示す。この結果、
図4(A)中で立方体方位の結晶粒は黒色として、非立方
体方位の結晶粒は白色として表示されている。上記非立
方体方位の結晶粒は、面方位および軸方位の何れかまた
は双方にて、立方体方位(001)[100]から15度
を超える傾きを有している。この結果、上記コイルの幅
方向のエッジ付近では、幅方向のセンター付近に比べて
前述した顕在化のレベルが低くなる、という問題があっ
た。このため、上記コイル中における顕在化のバラツキ
により、追って前記コンデンサの電極用アルミニウム箔
とした場合、その特性が不均一になるため、信頼性を損
なう場合があった。
【0004】発明者らが鋭意研究した結果、前述した非
立方体方位の結晶粒が生成・残留する原因は、アルミニ
ウムを連続鋳造して得られる鋳塊(スラブ)における集合
組織の分布にあることを見出した。即ち、通常の連続鋳
造法により得られた鋳塊を鋳造方向と直角に切断し、露
出した切断面を塩酸:硝酸:弗酸を50:50:1の割
合に調整した薬品(腐食液)で溶解し、係る切断面に垂直
でない光を当てて写真撮影すると、現出する柱状晶にお
いて、その[100]軸が鋳造方向と平行なものは黒色
として、鋳造方向から15度を超えて傾いたものは白色
として映る。その結果、図4(B)に示すように、鋳造方
向と直交する切断面において、追って圧延時の幅方向の
エッジに相当する幅方向のエッジ(縁部)寄りでは白色に
映る柱状晶が比較的多く発達し、幅方向のセンター寄り
では黒色に映る柱状晶が比較的多く発達していたことが
判明した。これにより、前述した問題点は、上記鋳塊に
おける集合組織の不均一さが原因であることを突き止め
た。
【0005】
【発明が解決すべき課題】本発明は、以上にて説明した
従来の技術における問題点を解決し、鋳塊を箔コイルに
成形した際でも全領域で立方体方位粒が顕在化した金属
組織を有するアルミニウム鋳塊およびその連続鋳造方法
ならびに係る鋳塊を用いた電解コンデンサの電極用アル
ミニウム箔の製造方法を提供する、ことを課題とする。
【0006】
【課題を解決するための手段】本発明は、上記課題を解
決するため、発明者らが鋭意研究の結果、アルミニウム
鋳塊を連続鋳造する際、[100]柱状晶を全領域で生
成および成長させる、ことに着目して成されたものであ
る。尚、[100]柱状晶は、その[100]軸が鋳造
方向とほぼ平行となる柱状晶を指す。即ち、本発明のア
ルミニウム鋳塊(請求項1)は、上端部および下端部を開
放した筒状の冷却鋳型の上端部からアルミニウムの溶湯
を供給しつつ冷却して凝固した鋳塊を下端部から引き下
ろし且つ冷却液を注加して連続鋳造されるアルミニウム
鋳塊であって、鋳造初期に核生成した結晶が柱状晶とし
て上方および内部方向にほぼ沿って成長し且つ定常部の
鋳塊の表面からの新たな結晶の核生成が生じていないと
共に、上記鋳塊における柱状晶の[100]軸が鋳造方
向とほぼ平行である、ことを特徴とする。尚、上記「ほ
ぼ平行」とは、柱状晶の[100]軸が鋳造方向と平行
であるかあるいは係る鋳造方向から±15度以内の傾き
を有することを指す。
【0007】これによれば、上記冷却鋳型に供給された
アルミニウムの溶湯は、係る鋳型の内壁表面からは冷却
されず、鋳型の下端から斜め下向きに注加される冷却液
による冷却により凝固する。換言すれば、鋳型の内壁表
面では核生成が生じないため、係る鋳造操作を連続して
行い且つ冷却鋳型の下端部から順次引き下ろした鋳塊に
対し冷却液を注加することにより、[100]軸が鋳造
方向とほぼ平行である柱状晶を全体に形成したアルミニ
ウム鋳塊となっている。即ち、上記鋳塊においては、鋳
造初期の凝固時に核生成する結晶粒のうち、その[10
0]軸が鋳造方向(冷却鋳型の軸方向)とほぼ平行なもの
のみが成長して柱状晶となると共に、係る柱状晶は、全
体として鋳造方向に沿ってほぼ平行に成長すると共に、
本鋳塊(スラブ)の内側(中心部)に向かって成長してい
る。
【0008】尚、本明細書において、鋳造初期とは、後
述する定常条件による鋳造状態に至らない非定常条件で
鋳造を行っている時期を指す。また、上記[100]柱
状晶は、その[100]軸の向きが鋳造方向(冷却鋳型
の軸方向)と平行であるか、係る鋳造方向を中心にして
±15度以内の傾斜である結晶粒を指す。換言すると、
これらを除いたものが、非[100]柱状晶である。更
に、上記[100]柱状晶は、その軸方位と後述する圧
延方向にもなる鋳造方向との関係を表すものであり、圧
延時の圧延面と平行な面方位についてまで規定するもの
ではない。また、定常部とは、鋳塊(スラブ)の先端(下
端)を支持しつつ順次下降する下型(テーブル)の下降速
度および冷却液の給液量が定常条件となる時期を指す。
更に、以上の冷却液には、冷却水の他、冷却油なども含
まれる。加えて、本発明のアルミニウムの連続鋳造方法
には、電磁鋳造法、OCCプロセス、または発明者らが
提唱するシェルフリー鋳造法の何れを用いても良い。
【0009】また、本発明のアルミニウム鋳塊の連続鋳
造方法(請求項2)は、上端部および下端部を開放した筒
状の冷却鋳型の上端部からアルミニウムの溶湯を供給す
ると共に、冷却して凝固した鋳塊を下端部から引き下ろ
し且つ冷却液を注加してアルミニウム鋳塊を連続鋳造す
る方法において、上記冷却鋳型の上端部における前記溶
湯注入側が、耐火性断熱材からなると共に、上記冷却鋳
型における冷却リングの鋳型長さ、鋳造速度、および冷
却液量の少なくとも1つ以上を調整することにより、上
記アルミニウムの溶湯の凝固開始点が上記耐火性断熱材
の領域内で生じる、を特徴とする。
【0010】これによれば、冷却鋳型の溶湯注入側が耐
火性断熱材により構成されているため、アルミニウムの
溶湯から上記鋳型を介する抜熱が抑制される。この結
果、溶湯からの抜熱は、冷却液により冷却される下方に
のみ向かうため、[100]軸が鋳造方向とほぼ平行な
柱状晶をアルミニウム鋳塊の全体で生成できる。即ち、
溶湯の凝固開始点を耐火性断熱材の領域(レベル)内にす
るため、冷却鋳型の冷却リングの鋳型長さを短くし、鋳
造速度を低め、あるいは冷却液量を増加するの少なくと
も何れかを調整することで、冷却鋳型からの抜熱を一層
抑制でき且つ下方への上記抜熱のみに制限し易くなる。
これらにより、鋳造の定常部において、鋳塊の表面から
の新たな結晶粒の核生成が抑制されるため、[100]
軸が鋳造方向とほぼ平行な柱状晶を全体に形成した鋳塊
を確実に得ることができる。尚、耐火性断熱材には、例
えば珪酸カルシウムなどが用いられる。
【0011】更に、本発明には、前記冷却鋳型の上端部
における溶湯注入側の耐火性断熱材の内側に、黒鉛また
はこれと同等の特性を有する鋳型面を形成すると共に、
前記アルミニウムの溶湯の凝固開始点が上記鋳型面にお
いて生じる、アルミニウム鋳塊の連続鋳造方法(請求項
3)も含まれる。これによれば、黒鉛からなる鋳型面ま
たは黒鉛と同等の固体潤滑特性を有する鋳型面がアルミ
ニウムの溶湯および鋳塊の表面に接触するため、断熱材
の劣化を防止しつつ上記鋳型を介する抜熱を一層抑制す
ることができる。しかも、上記黒鉛などからなる鋳型面
のレベル中で溶湯の凝固開始点が生じるため、鋳塊表面
における核生成が抑制され、鋳造方向にほぼ平行な[1
00]軸を持った下方からの柱状晶の成長が維持され
る。その結果、[100]軸が鋳造方向にほぼ平行な柱
状晶の成長を鋳造方向および内部方向に沿ったものに容
易に制御することが可能となると共に、非[100]柱
状晶の核生成が抑制されるため、鋳造方向とほぼ平行な
[100]軸を持った柱状晶を全体に形成したアルミニ
ウム鋳塊を容易に製造することができる。
【0012】一方、本発明による電解コンデンサの電極
用アルミニウム箔の製造方法(請求項4)は、前記アルミ
ニウム鋳塊を均質化処理し、その後、係る鋳塊の上記鋳
造時の鋳造方向を圧延方向とする熱間圧延と冷間圧延と
を含む成形工程および仕上げ焼鈍を含む熱処理工程を施
す、ことを特徴とする。これによれば、前記[100]
軸が鋳造方向とほぼ平行な柱状晶を鋳塊全体に形成され
た上記鋳塊を均質化処理し、その後、上記鋳造方向に沿
った圧延方向(長手方向)の熱間圧延および冷間圧延など
の成形工程および仕上げ焼鈍などの熱処理工程が施され
る。上記成形工程の結果、箔コイルの全領域において、
均一な圧延集合組織が形成される。そして、仕上げ焼鈍
中において圧延集合組織から立方体方位の結晶粒が生成
するが、箔コイルの全領域において圧延集合組織が均一
であるため、係るコイルの全領域で均一に立方体方位の
結晶粒が顕在(鮮鋭)化する。従って、例えば静電容量な
どの特性が優れた電解コンデンサの電極用アルミニウム
箔を確実に製造することが可能となる。尚、均質化処理
には、単に熱間圧延前の加熱を目的に行う場合も含まれ
る。
【0013】また、本発明には、前記鋳塊は、前記冷間
圧延と仕上げ焼鈍との間において、中間焼鈍および仕上
げ冷間圧延を更に施される、電解コンデンサの電極用ア
ルミニウム箔の製造方法(請求項5)も含まれる。これに
よれば、中間焼鈍および仕上げ冷間圧延を更に行うこと
により、当初の冷間圧延による圧延集合組織から中間焼
鈍中において生成する不必要な非立方体方位の結晶粒が
仕上げ焼鈍中に十分に生成および成長しなくなる。この
結果、立方体方位の結晶粒が一層鮮鋭(顕在)化した電極
用アルミニウム箔を確実に製造することが可能となる。
【0014】
【発明の実施の形態】以下において、本発明の実施に好
適な形態を図面と共に説明する。図1は、本発明のアル
ミニウム鋳塊を得るための本発明による連続鋳造方法の
概略およびこれに用いる鋳造装置1を示す。係る鋳造装
置1は、シェルフリー鋳造法に専ら用いられるものであ
り、図1に示すように、平面視が矩形で上端部3および
下端部4が開放した中空部5を内側に有する筒状の水冷
鋳型(冷却鋳型)2と、この水冷鋳型2の中心軸付近に上
方から垂下するスパウト(注湯管)10と、水冷鋳型2の
下方において昇降自在に位置する下型16と、を備えて
いる。図1に示すように、水冷鋳型2は、その上端部3
寄りに配置され且つアルミニウムの溶湯Mの注入側であ
る耐火性断熱材6と、その下端部4寄りに配置され且つ
断面角形の中空部9を有する金属製の冷却リング8とか
らなる。尚、中空部5は、平面視で長方形を呈し、短辺
300〜600mm×長辺1000〜2000mmのサ
イズを有する。
【0015】上記断熱材6は、例えば珪酸カルシウムか
らなり、その内側の鋳型面となる全面に黒鉛板7が貼り
付けてある。尚、黒鉛板7に替えて、その領域まで断熱
材6からなるものにしても良い。この形態では、溶湯M
および鋳塊Cに接する部分に固体潤滑剤(例えば、炭素
粒や窒化ボロン(BN))を塗布しても良い。また、冷却
リング8の中空部9から内側で且つ斜め下向きにスリッ
トsが四角形状に形成され、中空部9に供給した高圧水
Wを、四角錐状の冷却水(冷却液)Wの膜として噴射可能
としている。尚、スリットsに替えて貫通孔にしても良
い。更に、図1に示すように、スパウト10の下端付近
には、水平な分流板12が配置され、且つスパウト10
の下方の外側には、一定の間隔を置いてアルミニウムの
溶湯M上に浮上するリング形のフロート14が配置され
る。
【0016】次に、上記鋳造装置1を用いて、本発明の
連続鋳造方法について説明する。予め、水平鋳型2の内
側の中空部5の下部には、下型16が挿入されている。
係る状態で、図1に示すように、予め不純物を除去して
精製した純アルミニウムの溶湯Mを、スパウト10中で
注下させ且つ分流板12に衝突させて、図1上方の矢印
のように、溶湯Mを水平鋳型2の内側の中空部5内に放
射状に供給する。係る中空部5内で且つ下型16の上に
順次供給された溶湯Mは、黒鉛板7に接触した後で冷却
リング8の内側表面により接触して冷却され、更に冷却
リング8から噴射される冷却水Wにより、強制的に冷却
されるため、その外側面から凝固し始める。係る凝固に
より、図1に示すように、固相線Kの下方に鋳塊Cが順
次形成される。固相線Kは、水冷鋳型2に接する最外寄
りで最も高く、次いで冷却水Wにより冷却されて中心部
寄りに延びるため、中心部付近が最も低くなる。
【0017】また、図1に示すように、溶湯Mが冷却さ
れる冷却リング8の上端から冷却水Wの噴射位置までの
距離Lが、鋳型装置1における有効モールド長となる。
尚、係る有効モールド長Lは、断熱材6を用いたシェル
フリー鋳造法の鋳造装置1では、通常の金属製冷却鋳型
を用いる連続鋳造法よりも、一般的に短くなる。更に、
冷却リング8の鋳型長さ(図1での垂直方向の長さ)を短
くし、鋳造速度を低め、あるいは冷却水Wの給水量を増
加させるの少なくとも何れか1つの調整を行うことによ
り、溶湯Mからこれが凝固した本発明のアルミニウム鋳
塊Cに変化する凝固開始点Gを、図1に示すように、耐
火性断熱材6の領域内で生じさせることができる。
【0018】以上のように、黒鉛板7を内貼りした上記
断熱材6を水冷鋳型2の上端部3寄りに配置し、有効モ
ールド長Lを比較的短くし、且つ凝固開始点Gを上記断
熱材6の領域内にすることにより、溶湯Mからの抜熱を
冷却水Wが噴射される下向き方向に集中させることがで
きる。この結果、アルミニウム鋳塊Cは、その表面に近
い固相線K付近における核生成が抑制されると共に、生
成される[100]軸の向きが鋳造方向(図1で垂直方
向)とほぼ平行な柱状晶の成長を維持することができ
る。また、図1に示すように、固相線Kは鋳塊Cの中心
部に向かうに連れて低くなるが、鋳塊Cの柱状晶は係る
固相線に対し垂直に成長するため、係る柱状晶の形状は
鋳塊Cの内部に沿ったものとなる。但し、この場合で
も、上記[100]軸と鋳造方向との関係は維持され
る。従って、ほとんどの柱状晶は、鋳造方向にほぼ沿っ
た[100]軸を持った柱状晶に制御されている。
【0019】この結果、固相線Kの下方で凝固し且つ図
1下方の太い矢印に沿って下型16と共に順次下降する
鋳塊Cのうち定常条件で凝固した全領域で、図1に示す
ように、鋳造方向とほぼ平行(図1の垂直線に対し±1
5度以下も含む)な[100]軸zを持った柱状晶Sを
形成することが可能となる。尚、下型16は、アルミニ
ウム鋳塊Cの垂直方向への伸長に応じて、図示しないピ
ット内に下降し、鋳込み方向の長さが例えば4〜6メー
トルとなった時点で停止する。また、以上のようなアル
ミニウム鋳塊Cは、電磁鋳造法やOCCプロセスによっ
ても、溶湯Mからの抜熱を鋳造方向に集中させることに
より、連続鋳造することができる。
【0020】上述した[100]軸zを有する柱状晶S
を全領域で有する鋳塊Cを用いた電解コンデンサの電極
用アルミニウム箔の製造方法を、図2(A)により説明す
る。前述した連続鋳造工程S1で得られた上記アルミニ
ウム鋳塊Cについて、不要な周辺部を面削した後、図示
しない均熱炉に装入し、図2(A)に示すように、約40
0〜620℃に加熱し且つ例えば48時間にわたり保持
する均質化処理S2を先ず行う。尚、上記面削は、係る
均質化処理S2の後で行っても良い。次に、図2(A)に
示すように、上記温度域のアルミニウム鋳塊Cを圧延機
に通す熱間圧延S3(成形工程)を行う。熱間圧延S3に
は、例えばタンデム式4段圧延機などが用いられ、前記
鋳造方向に沿った圧延方向とし、任意の圧化率で且つ任
意数のパスを行って、厚みが約7mmの図示しないコイ
ルに成形する。
【0021】次いで、熱間圧延S3により得られたコイ
ルを室温に冷却した後、図2(A)に示すように、冷間圧
延(成形工程)S4を行う。係る冷間圧延S4には、例え
ば2タンデム4段圧延機やシングル4段圧延機などが用
いられ、前記鋳造方向に沿った圧延方向とし、圧下率が
約30〜70%で5〜10パスを行うことにより、厚み
が約130μmの図示しないアルミニウム箔に成形す
る。最後に、300〜600℃に加熱し且つ例えば24
時間にわたり保持する仕上げ焼鈍(熱処理工程)S7を行
う。この結果、前記圧延S3,S4により圧延方向に沿
って変形した歪みを含む加工組織を、歪みのない立方体
方位の結晶粒に再結晶させたアルミニウム箔とすること
ができる。
【0022】尚、図2(B)に示すように、冷間圧延S4
後のアルミニウム箔に対し、中間焼鈍S5を施しても良
い。係る焼鈍S5は、180〜300℃に加熱し例えば
12時間保持した後、室温に冷却するもので、次述する
仕上げ冷間圧延S6や仕上げ焼鈍S7と組み合わせて、
前記圧延S3,S4により圧延方向に沿って変形した歪
みを含む加工組織から歪みのない立方体方位結晶を鮮鋭
化することができる。引き続いて、図2(B)に示すよう
に、仕上げ冷間圧延S6を、極く低い圧下率で1パスに
て行うことにより、約110μmの厚みとしたアルミニ
ウム箔に整形する。そして、前述した仕上げ焼鈍S7を
行うことにより、立方体方位が鮮鋭化した上記アルミニ
ウム箔を一層確実に得ることができる。
【0023】
【実施例】以下において、本発明の具体的な実施例を説
明する。表1に示す組成の純アルミニウムの溶湯Mを、
前記図1に示した鋳造装置1を用いて個別に連続鋳造す
ることにより、厚さ508mm×幅1080mmの実施
例1〜4のアルミニウム鋳塊Cを得た。これらの連続鋳
造における有効モールド長L、冷却水量、鋳造温度、お
よび下型16の下降速度も表1に示した。一方、表1に
示す純アルミニウムの溶湯Mを、表1に示す有効モール
ド長L、冷却水量、鋳造温度、および下型の下降速度で
連続鋳造することにより、同様の寸法の比較例のアルミ
ニウム鋳塊Cを得た。係る比較例の有効モールド長L
が、実施例1〜4のそれよりも長いのは、比較例に用い
る水冷鋳型が、前述した従来の連続鋳造法に用いるもの
と同様の全体が金属製で且つ内部に冷却水が充填された
形態であることに起因する。
【0024】
【表1】
【0025】実施例2のアルミニウム鋳塊Cを鋳造方向
と直角に切断し、露出した切断面を、塩酸:硝酸:弗酸
を50:50:1の割合に調整した薬品(腐食液)で溶解
し、垂直でない光を用いて写真撮影した。その結果、図
3(A)に示すように、幅方向のエッジ部(縁部)からセン
ター付近にわたって、黒色に映る[100]柱状晶が比
較的多く発達し、且つ白色に映る非[100]柱状晶の
発達が著しく抑制されていたことが判明した。尚、実施
例1,3,4の鋳塊Cも上記と同様であった。一方、比
較例のアルミニウム鋳塊Cについても、上記同様に切
断、処理、および写真撮影した結果、前記図4(B)と同
様に、幅方向のエッジ(縁部)寄りでは、白色に映る非
[100]柱状晶が比較的多く発達し、幅方向のセンタ
ー寄りでは黒色に映る[100]柱状晶が比較的多く発
達していた。以上の結果、本発明のアルミニウム鋳塊C
およびその連続鋳造方法の効果が裏付けられた。
【0026】また、実施例2および比較例のアルミニウ
ム鋳塊Cを前述した熱間圧延S3および冷間圧延S4に
より厚さ130μmのアルミニウム箔とすると共に、2
60℃で5時間加熱する中間焼鈍S5および仕上げ冷間
圧延S6で厚さ110μmのアルミニウム箔とした。こ
れらについて、500℃で1時間加熱する仕上げ焼鈍S
7を施した。得られた実施例2および比較例のアルミニ
ウム箔に対し、上記同様の薬品で溶解して露出した表面
を、上記同様に写真撮影した。その結果、実施例2のア
ルミニウム箔では、図3(B)に示すように、幅方向のエ
ッジ部からセンター付近にわたり、黒色に映る立方体方
位の結晶粒が比較的多く発達し、且つ白色に映る非立方
体方位の結晶粒の発達が著しく抑制されていた。尚、実
施例1,3,4のアルミニウム箔も上記と同様であっ
た。
【0027】一方、比較例のアルミニウム箔では、前記
図4(A)と同様に、幅方向のエッジ付近で白色に映る非
立方体方位の結晶粒が発達していた。以上の結果から、
本発明の製造方法により得られた実施例のアルミニウム
箔では、コイルの全領域で立方体方位の結晶粒が鮮鋭
(顕在)化していた。即ち、上記箔中において、立方体方
位の結晶粒が全領域で均一に分布しており、これにより
電解コンデンサの電極として用いた場合でも、所要の特
性(例えば静電容量)を安定して発揮し且つ信頼性を高め
られることが判明した。係る実施例によって、本発明に
よる電解コンデンサの電極用アルミニウム箔の製造方法
の効果が裏付けられた。
【0028】
【発明の効果】以上に説明した本発明におけるアルミニ
ウム鋳塊(請求項1)によれば、前記冷却鋳型に供給され
たアルミニウムの溶湯は係る鋳型により冷却されつつ凝
固し始め、定常部で鋳型からの抜熱が抑制され、鋳造初
期の凝固時に核生成した結晶のうち、鋳造方向にほぼ平
行な[100]軸を有する結晶のみが優先的に成長して
いる。この結果、ほとんどの柱状晶はその[100]軸
が鋳造方向とほぼ平行になっている。また、水冷鋳型の
下端部から順次引き下ろした鋳塊に冷却液を注加されて
いるため、鋳造方向に沿ってほぼ平行な[100]軸を
有する柱状晶が全体に形成されたアルミニウム鋳塊とな
る。
【0029】また、請求項2のアルミニウムの連続鋳造
方法によれば、冷却鋳型の溶湯注入側を耐火性断熱材に
より構成しているため、溶湯から上記鋳型を介する抜熱
が抑制される。この結果、溶湯からの抜熱は、冷却液に
より冷却される下方にのみ向かい、鋳造方向に沿った
[100]軸を有する柱状晶が鋳塊の全体で生成され
る。しかも、冷却鋳型における冷却リングの鋳型長さ、
鋳造速度、冷却液量の何れかを調整して、溶湯の凝固開
始点を耐火性断熱材の領域内にするため、冷却鋳型から
の抜熱を抑制し且つ下方への上記抜熱のみに制限し易く
なる。この結果、鋳造の定常部において、非[100]
柱状晶の核生成が抑制され、且つほぼ鋳造方向に沿った
[100]軸を有する柱状晶が全体に形成された鋳塊を
一層確実に得ることができる。更に、請求項3のアルミ
ニウムの連続鋳造方法によれば、黒鉛などからなる鋳型
面を有する鋳型面がアルミニウムの溶湯に接触するた
め、断熱材の劣化を防止し且つ上記鋳型を介する抜熱を
一層抑制することができる。しかも、上記鋳型面のレベ
ル中において、溶湯の凝固開始点が生じるため、表面近
傍の新たな核生成を抑制し、鋳造方向に平行な[10
0]軸を有する下方からの柱状晶の成長が維持できる。
従って、[100]軸が鋳造方向にほぼ平行な柱状晶を
全体に形成したアルミニウム鋳塊を容易に製造すること
ができる。
【0030】一方、本発明における電解コンデンサの電
極用アルミニウム箔の製造方法(請求項4)によれば、前
記鋳塊に対して、鋳造方向に沿った圧延方向(長手方向)
の熱間圧延および冷間圧延などの成形工程および仕上げ
焼鈍などの熱処理工程が施される。従って、全領域で立
方体方位の結晶粒が鮮鋭(顕在)化し、例えば静電容量な
どの特性が優れた電解コンデンサの電極用アルミニウム
箔を確実に製造することができる。また、請求項5の電
解コンデンサの電極用アルミニウム箔の製造方法によれ
ば、更に鮮鋭(顕在)化された立方体方位の結晶粒を有す
るアルミニウム箔を一層確実に製造することができる。
【図面の簡単な説明】
【図1】本発明の連続鋳造方法を示す概略図。
【図2】(A),(B)は本発明の電極用アルミニウム箔の
製造方法を示す流れ図。
【図3】(A),(B)は実施例の鋳塊またはアルミニウム
箔の組織を示す模式的図面。
【図4】(A),(B)は従来のアルミニウム箔または鋳塊
の組織を示す模式的図面。
【符号の説明】
2……水冷鋳型(冷却鋳型), 3……上端部,4
……下端部, 6……耐火性断熱
材,7……黒鉛板(鋳型面), 8……冷却リ
ング,M……溶湯, C……アル
ミニウム鋳塊,W……冷却水(冷却液), G
……凝固開始点,S……柱状晶,
z……[100]軸S3…熱間圧延,
S4…冷間圧延,S5…中間焼鈍,
S6…仕上げ冷間圧延,S7…仕上げ焼鈍
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/059 B22D 11/059 110 110F 120 120A (72)発明者 石渡 保生 静岡県庵原郡蒲原町蒲原161番地 日本軽 金属株式会社蒲原電解・鋳造工場内 (72)発明者 名和田 進 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 東野 和美 静岡県庵原郡蒲原町蒲原161番地 日本軽 金属株式会社蒲原製造所内 (72)発明者 土屋 清美 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽分析センター内 Fターム(参考) 4E002 AA08 AD13 BD02 BD09 4E004 AA07 NA02 NC08

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】上端部および下端部を開放した筒状の冷却
    鋳型の上端部からアルミニウムの溶湯を供給しつつ冷却
    して凝固した鋳塊を下端部から引き下ろし且つ冷却液を
    注加して連続鋳造されるアルミニウム鋳塊であって、 鋳造初期に核生成した結晶が柱状晶として上方および内
    部方向にほぼ沿って成長し且つ定常部の鋳塊の表面から
    の新たな結晶の核生成が生じていないと共に、上記鋳塊
    における柱状晶の[100]軸が鋳造方向とほぼ平行で
    ある、 ことを特徴とするアルミニウム鋳塊。
  2. 【請求項2】上端部および下端部を開放した筒状の冷却
    鋳型の上端部からアルミニウムの溶湯を供給すると共
    に、冷却して凝固した鋳塊を下端部から引き下ろし且つ
    冷却液を注加してアルミニウム鋳塊を連続鋳造する方法
    において、 上記冷却鋳型の上端部における上記溶湯注入側が、耐火
    性断熱材からなると共に、上記冷却鋳型における冷却リ
    ングの鋳型長さ、鋳造速度、および冷却液量の少なくと
    も1つ以上を調整することにより、上記アルミニウムの
    溶湯の凝固開始点が上記耐火性断熱材の領域内で生じ
    る、 ことを特徴とするアルミニウム鋳塊の連続鋳造方法。
  3. 【請求項3】前記冷却鋳型の上端部における溶湯注入側
    の耐火性断熱材の内側に、黒鉛またはこれと同等の特性
    を有する鋳型面を形成すると共に、前記アルミニウムの
    溶湯の凝固開始点が上記鋳型面において生じる、 ことを特徴とする請求項2に記載のアルミニウム鋳塊の
    連続鋳造方法。
  4. 【請求項4】請求項1の前記アルミニウム鋳塊を均質化
    処理し、 その後、係る鋳塊の上記鋳造時の鋳造方向を圧延方向と
    する熱間圧延と冷間圧延とを含む成形工程および仕上げ
    焼鈍を含む熱処理工程を施す、 ことを特徴とする電解コンデンサの電極用アルミニウム
    箔の製造方法。
  5. 【請求項5】前記鋳塊は、前記冷間圧延と仕上げ焼鈍と
    の間において、中間焼鈍および仕上げ冷間圧延を更に施
    される、ことを特徴とする請求項4に記載の電解コンデ
    ンサの電極用アルミニウム箔の製造方法。
JP2001260732A 2001-08-30 2001-08-30 アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法 Pending JP2003071546A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260732A JP2003071546A (ja) 2001-08-30 2001-08-30 アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260732A JP2003071546A (ja) 2001-08-30 2001-08-30 アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法

Publications (1)

Publication Number Publication Date
JP2003071546A true JP2003071546A (ja) 2003-03-11

Family

ID=19087892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260732A Pending JP2003071546A (ja) 2001-08-30 2001-08-30 アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法

Country Status (1)

Country Link
JP (1) JP2003071546A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341307A (ja) * 2005-05-10 2006-12-21 Nippon Light Metal Co Ltd アルミニウムの竪型連続鋳造装置およびこの鋳造装置を用いた竪型連続鋳造方法
JP2007167863A (ja) * 2005-12-19 2007-07-05 Kobe Steel Ltd アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
JP2008246560A (ja) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd アルミニウム鋳塊の鋳造方法
JP2009513357A (ja) * 2005-10-28 2009-04-02 ノベリス・インコーポレイテッド 鋳造金属の均質化および熱処理
CN102085559A (zh) * 2009-12-02 2011-06-08 雷斯工程株式会社 轻合金制车辆车轮的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194294A (en) * 1981-05-25 1982-11-29 Nippon Light Metal Co Ltd Production of gray-colored expanded aluminum material
JPS6046937U (ja) * 1983-09-06 1985-04-02 日本軽金属株式会社 中空ビレツトの鋳造装置
JPS63144846A (ja) * 1986-12-08 1988-06-17 ウエグスタ−フ エンジニアリング インコ−ポレ−テツド 連続鋳造方法および装置
JPS63286267A (ja) * 1987-05-19 1988-11-22 Kobe Steel Ltd 単結晶または一方向凝固鋳塊の連続製造方法
JPH01224141A (ja) * 1988-03-03 1989-09-07 Nippon Mining Co Ltd 連続鋳造方法及び装置
JPH03294439A (ja) * 1990-04-12 1991-12-25 Kobe Steel Ltd 耐熱性アルミニウム合金材の製造方法
JPH0768350A (ja) * 1993-09-01 1995-03-14 Honda Motor Co Ltd 均一で、且つ微細な金属組織を持つ機械的特性の優れた金属塊状物の製造方法
JPH10152762A (ja) * 1996-11-21 1998-06-09 Furukawa Electric Co Ltd:The Di加工性に優れるアルミニウム合金硬質板の製造方法
JPH10189396A (ja) * 1996-12-26 1998-07-21 Nippon Light Metal Co Ltd 電解コンデンサ陽極用アルミニウム合金

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194294A (en) * 1981-05-25 1982-11-29 Nippon Light Metal Co Ltd Production of gray-colored expanded aluminum material
JPS6046937U (ja) * 1983-09-06 1985-04-02 日本軽金属株式会社 中空ビレツトの鋳造装置
JPS63144846A (ja) * 1986-12-08 1988-06-17 ウエグスタ−フ エンジニアリング インコ−ポレ−テツド 連続鋳造方法および装置
JPS63286267A (ja) * 1987-05-19 1988-11-22 Kobe Steel Ltd 単結晶または一方向凝固鋳塊の連続製造方法
JPH01224141A (ja) * 1988-03-03 1989-09-07 Nippon Mining Co Ltd 連続鋳造方法及び装置
JPH03294439A (ja) * 1990-04-12 1991-12-25 Kobe Steel Ltd 耐熱性アルミニウム合金材の製造方法
JPH0768350A (ja) * 1993-09-01 1995-03-14 Honda Motor Co Ltd 均一で、且つ微細な金属組織を持つ機械的特性の優れた金属塊状物の製造方法
JPH10152762A (ja) * 1996-11-21 1998-06-09 Furukawa Electric Co Ltd:The Di加工性に優れるアルミニウム合金硬質板の製造方法
JPH10189396A (ja) * 1996-12-26 1998-07-21 Nippon Light Metal Co Ltd 電解コンデンサ陽極用アルミニウム合金

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341307A (ja) * 2005-05-10 2006-12-21 Nippon Light Metal Co Ltd アルミニウムの竪型連続鋳造装置およびこの鋳造装置を用いた竪型連続鋳造方法
JP4655994B2 (ja) * 2005-05-10 2011-03-23 日本軽金属株式会社 アルミニウムの竪型連続鋳造装置およびこの鋳造装置を用いた竪型連続鋳造方法
JP2009513357A (ja) * 2005-10-28 2009-04-02 ノベリス・インコーポレイテッド 鋳造金属の均質化および熱処理
JP2007167863A (ja) * 2005-12-19 2007-07-05 Kobe Steel Ltd アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
JP4504914B2 (ja) * 2005-12-19 2010-07-14 株式会社神戸製鋼所 アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス
JP2008246560A (ja) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd アルミニウム鋳塊の鋳造方法
CN102085559A (zh) * 2009-12-02 2011-06-08 雷斯工程株式会社 轻合金制车辆车轮的制造方法
JP2011115812A (ja) * 2009-12-02 2011-06-16 Reizu Eng:Kk 軽合金製車両ホイールの製造方法

Similar Documents

Publication Publication Date Title
RU2424869C2 (ru) Гомогенизация и термическая обработка отливаемого металла
JP2010156007A (ja) 耐食性及び表面処理性に優れるマグネシウム合金板材とその製造方法
JP4193171B2 (ja) 加工性に優れた含Ti銅合金板または条製造用鋳塊の製造方法
JP3657217B2 (ja) 熱間圧延用マグネシウム合金スラブの製造方法及びマグネシウム合金の熱間圧延方法
DE2031844C3 (de) Verfahren zur Herstellung eines gerichtet erstarrten Gußstückes
JP2003071546A (ja) アルミニウム鋳塊およびその連続鋳造方法ならびに前記アルミニウム鋳塊を用いた電解コンデンサの電極用アルミニウム箔の製造方法
JP5113413B2 (ja) アルミニウム鋳塊の鋳造方法
KR20190120303A (ko) 강의 연속 주조 방법
JP2008212972A (ja) 高Ni含有鋼鋳片の製造方法
JP4540516B2 (ja) ワークロールの製造方法
JP3022211B2 (ja) 丸ビレット鋳片の連続鋳造用鋳型及びその鋳型を用いた連続鋳造方法
JP6829817B2 (ja) 銅鋳造材の製造方法、並びに銅荒引線の製造方法
JP2016043377A (ja) Cu−Ga合金の連続鋳造方法
JP2006247672A (ja) Ni基溶湯の連続鋳造用モールドフラックスおよびNi材の連続鋳造方法
JP2003500543A (ja) 平版印刷板用の支持体として使用されるアルミニウム合金板
RU2468885C2 (ru) Способ и машина для непрерывного или полунепрерывного литья металлов
WO2023084864A1 (ja) アルミニウム合金鋳塊、アルミニウム合金材およびアルミニウム合金材の製造方法
WO2023084867A1 (ja) アルミニウム合金鋳塊、アルミニウム合金材およびアルミニウム合金材の製造方法
JPS63123550A (ja) ベリリウム銅合金の連続鋳塊及びその連続鋳造法
JPS6087963A (ja) 平滑表面を有する金属鋳塊の連続鋳造法及び装置
JP2005028452A (ja) Al−Mg−Si系合金の連続鋳造方法およびAl−Mg−Si系合金鋳塊、Al−Mg−Si系合金板材の製造方法およびAl−Mg−Si系合金板材、ならびに放熱部材の製造方法および放熱部材
Ohno Grain growth control by solidification technology
CN116783315A (zh) 铝合金锻造品及其制造方法
CN118265807A (en) Aluminum alloy ingot, aluminum alloy material, and method for producing aluminum alloy material
JPS62292244A (ja) 荒引線の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221