JP2003055701A - Silver powder for conductive paste and its manufacturing method and conductive paste using the silver powder - Google Patents

Silver powder for conductive paste and its manufacturing method and conductive paste using the silver powder

Info

Publication number
JP2003055701A
JP2003055701A JP2001244169A JP2001244169A JP2003055701A JP 2003055701 A JP2003055701 A JP 2003055701A JP 2001244169 A JP2001244169 A JP 2001244169A JP 2001244169 A JP2001244169 A JP 2001244169A JP 2003055701 A JP2003055701 A JP 2003055701A
Authority
JP
Japan
Prior art keywords
silver powder
conductor paste
flake
container
cured coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001244169A
Other languages
Japanese (ja)
Other versions
JP3874634B2 (en
Inventor
Masato Shimabayashi
正人 嶋林
Motonori Nishida
元紀 西田
Osamu Kajita
治 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2001244169A priority Critical patent/JP3874634B2/en
Publication of JP2003055701A publication Critical patent/JP2003055701A/en
Application granted granted Critical
Publication of JP3874634B2 publication Critical patent/JP3874634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce flake-shaped silver powder having a thin and fine shape and also to produce conductive paste where this flaky silver powder is blended and which has superior electric conductivity. SOLUTION: The above object can be attained by preparing the silver powder for conductive paste having flaky particle shape, 3-8 μm laser diffraction 50% particle size, (0.4 to 1.1)/cm<3> apparent density and (1.5 to 4.0) m<2> /g value of specific surface area by the BET method. The silver powder for conductive paste can be obtained by carrying out manufacturing by the use of a stirring ball mill of this invention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品の実装分
野において使用される導体ぺ一スト用フィラーとしての
銀粉に関するものである。本発明は、更に詳しくは、印
刷回路導体、導電接着剤、プリント配線基板のビア穴埋
め、電磁波シールドおよび電極用ぺ一ストに使用するフ
レーク状銀粉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silver powder as a filler for conductor paste used in the field of mounting electronic parts. More specifically, the present invention relates to a flake silver powder used for printed circuit conductors, conductive adhesives, filling via holes in printed wiring boards, electromagnetic wave shields, and electrode pastes.

【0002】[0002]

【従来の技術】従来より、フィラー、樹脂および溶媒を
混合してなる導体ペーストが電子部品の実装分野におい
て使用されている。このような導体ペースト用のフィラ
ーとしては、フレーク状銀粉が配合されている。フレー
ク状銀粉は、比表面積が大きくしかも見掛密度が低いの
で、フレーク状銀粉を配合した導体ペーストは優れた導
電性を有している。
2. Description of the Related Art Conventionally, a conductor paste obtained by mixing a filler, a resin and a solvent has been used in the field of mounting electronic parts. Flake-shaped silver powder is blended as a filler for such a conductor paste. Since the flake silver powder has a large specific surface area and a low apparent density, the conductor paste containing the flake silver powder has excellent conductivity.

【0003】従来、フレーク状銀粉は、一般的に、アト
マイズ法、電解法または化学還元法などの方法で得られ
た粒状銀粉をボールミル内でフレーク化することによっ
て得られていた。通常、ボールミルは円筒状または球状
の内面を有する容器を備えており、この容器内には粒状
銀粉やボール、更に必要に応じて溶媒や処理剤が仕込ま
れる。そしてこのボールミルを作動すると、容器が回転
して粒状銀粉がフレーク化される。このように、容器が
回転して、その内容物をフレーク化するボールミルの場
合、容器を高速で回転してその内容物に1G以上の遠心
力が掛かるとその内容物は容器の内面に押し付けられた
まま動かなくなるので、銀粉のフレーク化は実質的に進
まなくなる。従って、このようなボールミルの場合、容
器の内容物に加わる遠心力が1G未満になるように容器
を回転する必要がある。
Conventionally, flake-shaped silver powder has generally been obtained by flake-forming granular silver powder obtained by a method such as an atomizing method, an electrolytic method or a chemical reduction method in a ball mill. Usually, a ball mill is provided with a container having a cylindrical or spherical inner surface, and granular silver powder, balls, and if necessary, a solvent and a treating agent are charged in the container. Then, when this ball mill is operated, the container is rotated and the granular silver powder is made into flakes. In this way, in the case of a ball mill in which the container is rotated and the contents are flaked, when the container is rotated at a high speed and a centrifugal force of 1 G or more is applied to the contents, the contents are pressed against the inner surface of the container. Since it does not move as it is, flake formation of silver powder does not substantially progress. Therefore, in the case of such a ball mill, it is necessary to rotate the container so that the centrifugal force applied to the contents of the container is less than 1G.

【0004】しかしながら、近年、より薄くて細かいフ
レーク状銀粉、並びにこれを含む導電性に優れた低コス
トの導体ペーストが要求されており、そのために粒状銀
粉のフレーク化技術の改良が求められている。
However, in recent years, there has been a demand for thinner and finer flake-like silver powder and a low-cost conductor paste containing the same and having excellent conductivity, and for this reason, improvement of the flake formation technique of granular silver powder is required. .

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、薄く
て細かい形状を有するフレーク状銀粉を提供するととも
に、このフレーク状銀粉を配合した導電性に優れた導体
ペーストを提供することを課題とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a flake-shaped silver powder having a thin and fine shape and a conductive paste containing the flake-shaped silver powder and having excellent conductivity. .

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく種々検討を重ねた結果、フレーク状の粒形
を有し、レーザー回折法50%粒径が3〜8μmであ
り、見掛密度が0.4〜1.1/cm3 であり、BET
法比表面積値が1.5〜4.0m2 /gであることを特
徴とする導体ペースト用銀粉を調製することによって解
決できることを見出した。以下に、本発明を更に詳細に
説明する。
As a result of various investigations to solve the above problems, the present inventors have found that they have a flake-like particle shape and a 50% particle diameter by laser diffraction method of 3 to 8 μm. , The apparent density is 0.4 to 1.1 / cm 3 , and the BET
It was found that this can be solved by preparing a silver powder for a conductor paste, which has a specific surface area value of 1.5 to 4.0 m 2 / g. Hereinafter, the present invention will be described in more detail.

【0007】〔フレーク状銀粉〕本発明のフレーク状銀
粉は、ボールミルを使用して製造されるが、特に本発明
では攪拌ボールミルが使用される。この攪拌ボールミル
は、円筒状の内面を有する容器と、この容器内に設けら
れた攪拌翼とを備えている。この攪拌ボールミルの容器
内には、粒状銀粉、ボール、溶媒および処理剤が仕込ま
れるようになっている。従来のボールミルと異なり、容
器が回転することなく、容器内に設けられた攪拌翼が回
転して粒状銀粉をフレーク化するようになっている。上
記の攪拌ボールミルを使用すると、攪拌翼によって容器
の内容物を勢いよく攪拌することができる。従って、従
来のボールミルでは不可能であった1G以上の遠心力を
容器の内容物に加わえることができる。
[Flake Silver Powder] The flake silver powder of the present invention is produced by using a ball mill, and in particular, a stirring ball mill is used in the present invention. This stirring ball mill includes a container having a cylindrical inner surface, and a stirring blade provided inside the container. Granular silver powder, balls, a solvent, and a treating agent are charged in the container of this stirring ball mill. Unlike the conventional ball mill, the stirring blade provided inside the container rotates to turn the granular silver powder into flakes without rotating the container. When the above stirring ball mill is used, the contents of the container can be vigorously stirred by the stirring blade. Therefore, it is possible to apply a centrifugal force of 1 G or more, which is impossible with the conventional ball mill, to the contents of the container.

【0008】本発明によると、攪拌ボールミルの容器の
内容物(即ち、粒状銀粉、ボール、溶媒および処理剤)
に対して加えられる遠心力の大きさは、特に限定されな
いが、好ましくは、容器の内容物に対して5G〜300
Gの遠心力が加わるように攪拌翼は回転される。これに
よって、粒状銀粉のフレーク化を促進することができ
る。
According to the present invention, the contents of the vessel of the stirred ball mill (ie, granular silver powder, balls, solvent and treating agent).
The magnitude of the centrifugal force applied to is not particularly limited, but is preferably 5 G to 300 with respect to the content of the container.
The stirring blade is rotated so that the G centrifugal force is applied. This can promote flake formation of the granular silver powder.

【0009】本発明によると、容器に仕込まれる粒状銀
粉は、特に限定されず、従来周知のアトマイズ法、電解
法または化学還元法などの方法で得られた粒状銀粉が使
用される。
According to the present invention, the granular silver powder charged in the container is not particularly limited, and the granular silver powder obtained by a conventionally known method such as atomizing method, electrolytic method or chemical reduction method is used.

【0010】また、本発明においては、従来周知のボー
ルを使用して粒状銀粉のフレーク化を行うことができる
が、好ましくは、ボールとして、1mm以下、特に0.
1〜1mmの直径を有するチタンまたはジルコニア製の
ものが使用される。特に、本発明においては、プラズマ
回転電極法によって製造されたチタン製のボールが好適
に使用される。このようなプラズマ回転電極法によって
製造された直径が1mm以下のチタン製ボールは、均一
な球形を有しており、本発明のフレーク状銀粉を得るた
めのボールとして特に好ましい。
Further, in the present invention, it is possible to make flakes of granular silver powder by using conventionally well-known balls, but it is preferable that the balls have a diameter of 1 mm or less, particularly 0.
Those made of titanium or zirconia having a diameter of 1-1 mm are used. In particular, in the present invention, titanium balls produced by the plasma rotating electrode method are preferably used. Titanium balls having a diameter of 1 mm or less produced by such a plasma rotary electrode method have a uniform spherical shape and are particularly preferable as the balls for obtaining the flake silver powder of the present invention.

【0011】また、本発明において、攪拌ボールミルの
容器に仕込まれる溶媒も、特に限定されない。このよう
な溶媒としては、例えば水(特にイオン交換水)、メタ
ノール、エタノール、プロパノール、ブタノール、ペン
タノール、ジメチルケトン、ジエチルケトン、ジエチル
エーテル、ジメチルエーテル、ジフェニルエーテル、ト
ルエンおよびキシレンが挙げられる。これらの溶媒は、
単独で、または適宜組み合わせて使用される。
Further, in the present invention, the solvent charged in the container of the stirring ball mill is not particularly limited. Examples of such a solvent include water (particularly ion-exchanged water), methanol, ethanol, propanol, butanol, pentanol, dimethyl ketone, diethyl ketone, diethyl ether, dimethyl ether, diphenyl ether, toluene and xylene. These solvents are
They are used alone or in appropriate combination.

【0012】さらに、本発明において、容器に仕込まれ
る処理剤も、特に限定されない。このような処理剤とし
ては、例えば界面活性剤および/または脂肪酸が挙げら
れる。
Further, in the present invention, the treating agent charged in the container is not particularly limited. Examples of such a treating agent include a surfactant and / or a fatty acid.

【0013】ここで、上記の界面活性剤としては、特に
非イオン界面活性剤が挙げられ、さらに具体的には、例
えばポリオキシエチレンアルキルエーテル、ポリオキシ
エチレンアルキルフェニルエーテル、ポリオキシエチレ
ン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪
酸エステル、およびソルビタン脂肪酸エステルが挙げら
れる。これらの界面活性剤は、単独でまたは2種類以上
が組み合わせて使用される。
Here, as the above-mentioned surfactants, nonionic surfactants are particularly mentioned, and more specifically, for example, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, Examples include polyoxyethylene sorbitan fatty acid ester, and sorbitan fatty acid ester. These surfactants are used alone or in combination of two or more kinds.

【0014】また、上記の脂肪酸としては、例えばオレ
イン酸、ステアリン酸およびミリスチン酸が挙げられ
る。これらの脂肪酸は単独でまたは2種類以上が組み合
わせて使用される。
Examples of the above-mentioned fatty acids include oleic acid, stearic acid and myristic acid. These fatty acids may be used alone or in combination of two or more.

【0015】界面活性剤および/または脂肪酸が処理剤
として使用される場合、この界面活性剤および/または
脂肪酸は、合計で、得られるフレーク状銀粉の表面積1
2 あたり0.005g〜0.1gとなるように、容器
内に仕込まれる。なお、処理剤として界面活性剤が単独
使用される場合、容器に入れる溶媒としては水が特に好
ましい、また、処理剤として脂肪酸が単独使用される場
合には、容器に入れる溶媒としては、エタノールが特に
好ましい。
When a surfactant and / or a fatty acid is used as the treating agent, this surfactant and / or fatty acid is added in total to a surface area of 1 of the obtained flake silver powder.
It is charged in a container so that it is 0.005 g to 0.1 g per m 2 . When the surfactant is used alone as the treating agent, water is particularly preferable as the solvent to be placed in the container.When the fatty acid is used alone as the treating agent, ethanol is used as the solvent to be placed in the container. Particularly preferred.

【0016】本発明によると、得られたフレーク状銀粉
は、レーザー回折法50%粒径が3〜8μm(更には3
〜6μm、最適には4〜5μm)であり、見掛密度が
0.4〜1.1/cm3 であり、しかもBET法比表面
積値が1.5〜4.0m2 /gになっている。
According to the present invention, the obtained flaky silver powder has a 50% particle size by laser diffraction of 3 to 8 μm (further 3
~6Myuemu, ideal for a is 4 to 5 [mu] m), a apparent density 0.4 to 1.1 / cm 3, yet BET specific surface area value becomes 1.5~4.0m 2 / g There is.

【0017】〔導体ペースト〕このようにして得られた
フレーク状銀粉は、例えば、樹脂と混合されて導体ペー
ストとして利用される。本発明によるフレーク状銀粉
は、従来法によって得られたフレーク状銀粉よりも、粒
径が小さく、見掛密度が小さく、且つ比表面積が大きい
ので、導体ペーストへの銀粉の配合量を減らしても、優
れた導電率を有する導体ペーストの調製が可能である。
[Conductor Paste] The flaky silver powder thus obtained is mixed with a resin and used as a conductor paste. Since the flake silver powder according to the present invention has a smaller particle size, a smaller apparent density, and a larger specific surface area than the flake silver powder obtained by the conventional method, even if the compounding amount of the silver powder in the conductor paste is reduced. It is possible to prepare a conductor paste having excellent conductivity.

【0018】なお、本発明の導体ペーストを得るための
樹脂としては、エポキシ樹脂やアクリル樹脂など、従来
周知の樹脂が任意に使用される。なお、導体ペーストに
は、さらに、溶剤を添加してもよい。
As the resin for obtaining the conductor paste of the present invention, any conventionally known resin such as epoxy resin or acrylic resin may be used. A solvent may be further added to the conductor paste.

【0019】本発明の導体ペースト中の銀粉の配合量
は、特に限定されないが、本発明によると、導体ペース
ト中の固形分中の銀粉含有量〔(銀粉の質量)÷(銀粉
の質量+樹脂の質量)×100〕は、好ましくは55〜
80質量%、更に好ましくは60〜80質量%、最適に
は65〜80質量%になっている。この点において本発
明のフレーク状銀粉および導体ペーストは、従来のもの
と顕著に相違する。即ち、従来の導体ペーストでは、十
分な導電性を確保するためには銀粉が85質量%以上配
合されている必要があり、銀粉の含有量が80質量%以
下でれば電気抵抗率が極めて大きくなったが、本発明の
導体ペーストでは、銀粉が85質量%以上配合されてい
る場合に優れた導電性を有していることは当然である
が、銀粉が80質量%以下であっても優れた導電性を有
している点で、従来の導体ペーストと顕著に相違する。
The content of silver powder in the conductor paste of the present invention is not particularly limited, but according to the present invention, the content of silver powder in the solid content of the conductor paste [(mass of silver powder) / (mass of silver powder + resin) Mass) × 100] is preferably 55 to
It is 80% by mass, more preferably 60 to 80% by mass, and most preferably 65 to 80% by mass. In this respect, the flake silver powder and the conductor paste of the present invention are significantly different from the conventional ones. That is, in the conventional conductor paste, silver powder needs to be blended in an amount of 85 mass% or more in order to secure sufficient conductivity, and if the content of the silver powder is 80 mass% or less, the electrical resistivity is extremely high. However, it is natural that the conductor paste of the present invention has excellent conductivity when the silver powder is blended in an amount of 85 mass% or more, but is excellent even when the silver powder is 80 mass% or less. In addition, the conductive paste is remarkably different from the conventional conductive paste.

【0020】具体的に示すと、本発明の導体ペースト中
に、80〜85質量%のフレーク状銀粉が配合されてい
る場合、導体ペーストの硬化塗膜は、10×10 -7 Ω
・m以下の電気抵抗率を有している。また、本発明の導
体ペースト中に、70〜80質量%のフレーク状銀粉が
配合されている場合、導体ペーストの硬化塗膜は、30
×10-7Ω・m以下、具体的には10×10-7Ω・m〜
30×10-7Ω・mの電気抵抗率を有している。さら
に、本発明の導体ペースト中に、60〜70質量%のフ
レーク状銀粉が配合されている場合、導体ペーストの硬
化塗膜は、100×10-7Ω・m以下、具体的には30
×10-7Ω・m〜100×10-7Ω・mの電気抵抗率を
有している。また更に、本発明の導体ペースト中に、5
5〜60質量%のフレーク状銀粉が配合されている場
合、導体ペーストの硬化塗膜は、500×10-7Ω・m
以下、具体的には100×10-7Ω・m〜500×10
-7Ω・mの電気抵抗率を有している。
Specifically, when 80 to 85% by mass of flake-shaped silver powder is mixed in the conductor paste of the present invention, the cured coating film of the conductor paste is 10 × 10 -7 Ω.
-It has an electrical resistivity of m or less. Moreover, when 70-80 mass% of flake silver powder is mix | blended with the conductor paste of this invention, the hardened coating film of a conductor paste will be 30.
× 10 −7 Ω · m or less, specifically 10 × 10 −7 Ω · m
It has an electric resistivity of 30 × 10 −7 Ω · m. Furthermore, when 60 to 70% by mass of flake-shaped silver powder is mixed in the conductor paste of the present invention, the cured coating film of the conductor paste is 100 × 10 −7 Ω · m or less, specifically 30
It has an electrical resistivity of × 10 -7 Ω · m~100 × 10 -7 Ω · m. Furthermore, in the conductor paste of the present invention, 5
When 5 to 60% by mass of flake silver powder is blended, the cured coating film of the conductor paste is 500 × 10 −7 Ω · m.
Hereinafter, specifically, 100 × 10 −7 Ω · m to 500 × 10
-It has an electrical resistivity of -7 Ω · m.

【0021】[0021]

【実施例】次に本発明を実施例に基づいて更に詳細に説
明する。
EXAMPLES The present invention will be described in more detail based on examples.

【0022】(実施例1)半径が15cmで、高さが3
0cmの円筒容器と、この円筒容器内に配置された攪拌
翼(半径14cm)とを備えた攪拌ボールミルを用意し
た。
Example 1 A radius of 15 cm and a height of 3
A stirring ball mill provided with a 0 cm cylindrical container and a stirring blade (radius 14 cm) arranged in the cylindrical container was prepared.

【0023】10kgの粒状銀紛(BET法比表面積値
1.0m2 /g)、および30kgのチタン製ボール
(直径0.8mm)を攪拌ボールミルの円筒容器内に仕
込んだ。また、8kgのエタノール、および0.2kg
のオレイン酸を、併せて円筒容器内に仕込んだ。
10 kg of granular silver powder (BET specific surface area value 1.0 m 2 / g) and 30 kg of titanium balls (diameter 0.8 mm) were placed in a cylindrical container of a stirring ball mill. Also, 8 kg of ethanol and 0.2 kg
The oleic acid of was also charged in a cylindrical container.

【0024】攪拌翼の回転数を1000rpmに設定し
て、攪拌ボールミルを始動させて粒状銀粉のフレーク化
を開始した。攪拌ボールミルを3時間運転した後に、攪
拌翼の回転を停止した。その後、円筒容器の内容物をろ
過し、ろ液から溶媒を除去して乾燥させてフレーク状銀
粉1を得た。
The rotation speed of the stirring blade was set to 1000 rpm and the stirring ball mill was started to start flake formation of the granular silver powder. After the stirring ball mill was operated for 3 hours, the rotation of the stirring blade was stopped. Then, the content of the cylindrical container was filtered, the solvent was removed from the filtrate, and the filtrate was dried to obtain flake silver powder 1.

【0025】(実施例2)実施例1で使用したのと同じ
攪拌ボールミルを用意した。10kgの粒状銀紛(BE
T法比表面積値1.0m2 /g)、および37kgのジ
ルコニア製ボール(直径0.8mm)を攪拌ボールミル
の円筒容器内に仕込んだ。また、10kgのイオン交換
水、および0.6kgのジオレイン酸ポリエチレングリ
コールを、併せて円筒容器内に仕込んだ。
(Example 2) The same stirred ball mill as that used in Example 1 was prepared. 10 kg of granular silver powder (BE
A T method specific surface area value of 1.0 m 2 / g) and 37 kg of zirconia balls (diameter 0.8 mm) were placed in a cylindrical container of a stirring ball mill. Further, 10 kg of ion-exchanged water and 0.6 kg of polyethylene glycol dioleate were charged together in a cylindrical container.

【0026】攪拌翼の回転数を1000rpmに設定し
て、攪拌ボールミルを始動させて粒状銀粉のフレーク化
を開始した。攪拌ボールミルを3時間運転した後に、攪
拌翼の回転を停止した。その後、円筒容器の内容物をろ
過し、水洗して乾燥させてフレーク状銀粉2を得た。
The rotation speed of the stirring blade was set to 1000 rpm and the stirring ball mill was started to start flake formation of the granular silver powder. After the stirring ball mill was operated for 3 hours, the rotation of the stirring blade was stopped. Then, the contents of the cylindrical container were filtered, washed with water and dried to obtain flake silver powder 2.

【0027】(実施例3)実施例1で使用したのと同じ
攪拌ボールミルを用意した。10kgの粒状銀紛(BE
T法比表面積値1.0m2 /g)、および30kgのチ
タン製粉砕ボール(直径0.8mm)を攪拌ボールミル
の円筒容器内に仕込んだ。また、10kgのイオン交換
水、0.1kgのオレイン酸、および0.6kgのジオ
レイン酸ポリエチレングリコールを併せて円筒容器内に
仕込んだ。
Example 3 The same stirred ball mill used in Example 1 was prepared. 10 kg of granular silver powder (BE
A T method specific surface area value of 1.0 m 2 / g) and 30 kg of titanium crushed balls (diameter 0.8 mm) were placed in a cylindrical container of a stirring ball mill. Further, 10 kg of ion-exchanged water, 0.1 kg of oleic acid, and 0.6 kg of polyethylene glycol dioleate were put together into a cylindrical container.

【0028】攪拌翼の回転数を1000rpmに設定し
て、攪拌ボールミルを始動させて粒状銀粉のフレーク化
を開始した。攪拌ボールミルを3時間運転した後に、攪
拌翼の回転を停止した。その後、円筒容器の内容物をろ
過し、水洗して乾燥させてフレーク状銀粉3を得た。
The rotating speed of the stirring blade was set to 1000 rpm and the stirring ball mill was started to start flake formation of the granular silver powder. After the stirring ball mill was operated for 3 hours, the rotation of the stirring blade was stopped. Then, the contents of the cylindrical container were filtered, washed with water and dried to obtain flake silver powder 3.

【0029】(比較例1)半径が15cmで高さが30
cmの回転する円筒容器を備えた従来周知のボールミル
を用意した。10kgの粒状銀紛(BET法比表面積値
1.0m2 /g)、および30kgのチタン製粉砕ボー
ル(直径0.8mm)を上記ボールミルの円筒容器内に
仕込んだ。また、8kgのエタノール、および0.2k
gのオレイン酸を、併せて円筒容器内に仕込んだ。
COMPARATIVE EXAMPLE 1 A radius of 15 cm and a height of 30
A conventionally known ball mill having a rotating cylindrical container of cm was prepared. 10 kg of granular silver powder (BET specific surface area value 1.0 m 2 / g) and 30 kg of titanium crushed balls (diameter 0.8 mm) were charged in the cylindrical container of the ball mill. Also, 8 kg of ethanol and 0.2 k
The oleic acid of g was put together in a cylindrical container.

【0030】円筒容器の回転数を75rpmに設定し
て、ボールミルを始動させて粒状銀粉のフレーク化を開
始した。ボールミルを24時間運転した後に、円筒容器
の回転を停止した。その後、円筒容器の内容物をろ過し
て乾燥させてフレーク状銀粉11を得た。
The rotational speed of the cylindrical container was set to 75 rpm and the ball mill was started to start flake formation of the granular silver powder. After operating the ball mill for 24 hours, the rotation of the cylindrical container was stopped. Then, the contents of the cylindrical container were filtered and dried to obtain flake silver powder 11.

【0031】上記のようにして本発明に従うフレーク状
銀粉1、2および3、並びに比較例としてのフレーク状
銀粉11について、レーザー回折50%粒径、見掛密度
およびBET法比表面積値を測定した。これらの測定デ
ータを表1に記載する。
As described above, with respect to the flaky silver powders 1, 2 and 3 according to the present invention and the flaky silver powder 11 as a comparative example, the laser diffraction 50% particle size, the apparent density and the BET specific surface area value were measured. . These measurement data are shown in Table 1.

【0032】なお、レーザー回折50%粒径、見掛密度
およびBET法比表面積値は、次のようにして測定し
た。 レーザー回折50%粒径; 株式会社島津製作所製SA
LD−3000Jを使用して測定した。 見掛密度; JIS Z 2504に従って測定した。 BET法比表面積値; 株式会社島津製作所製フローソ
ーブII2300を使用して測定した。
The laser diffraction 50% particle size, the apparent density and the BET specific surface area value were measured as follows. Laser diffraction 50% particle size; Shimadzu Corporation SA
It measured using LD-3000J. Apparent density: Measured according to JIS Z 2504. BET specific surface area value: Measured using a Flowsorb II2300 manufactured by Shimadzu Corporation.

【0033】[0033]

【表1】 [Table 1]

【0034】表1の結果より明らかなように、比較例と
してのフレーク状銀粉11と比べて、本発明に従うフレ
ーク状銀粉1〜3は、いずれも、レーザー回折50%粒
径が小さく、見掛密度が小さく、しかもBET法比表面
積値が大きくなっていることが分かる。
As is clear from the results shown in Table 1, all of the flaky silver powders 1 to 3 according to the present invention have a smaller 50% particle size by laser diffraction than the flake silver powder 11 as a comparative example, and the apparent flake silver powders are apparent. It can be seen that the density is low and the BET specific surface area value is high.

【0035】また、本発明に従うフレーク状銀粉1およ
び比較例としてのフレーク状銀粉11を使用して導体ペ
ーストを調製した。表2に示す組成にてフレーク状銀
粉、アクリル樹脂およびイソプロピルアルコールを混合
し、本発明に従う導体ペースト1−55、1−60、1
−65、1−70、1−75および1−80、並びに比
較例としての導体ペースト11−75、11−80およ
び11−85を調製した。
A conductor paste was prepared using the flake silver powder 1 according to the present invention and the flake silver powder 11 as a comparative example. Flake-shaped silver powder, acrylic resin and isopropyl alcohol are mixed in the composition shown in Table 2, and the conductor pastes 1-55, 1-60, 1 according to the present invention are mixed.
-65, 1-70, 1-75 and 1-80, and conductor pastes 11-75, 11-80 and 11-85 as comparative examples were prepared.

【0036】[0036]

【表2】 [Table 2]

【0037】上記のようにして得られた本発明に従う導
体ペースト1−55、1−60、1−65、1−70、
1−75および1−80、並びに比較例としての導体ペ
ースト11−75、11−80および11−85のそれ
ぞれを、ガラス基板上に幅が5mmで長さが5cmのラ
イン状になるように塗布した。その後、100℃で15
分間加熱して硬化させて、膜厚13μmの硬化塗膜1−
55、1−60、1−65、1−70、1−75および
1−80、並びに硬化塗膜11−75、11−80およ
び11−85を得た。
The conductor pastes 1-55, 1-60, 1-65, 1-70 according to the present invention obtained as described above,
1-75 and 1-80, and conductor pastes 11-75, 11-80 and 11-85 as comparative examples, respectively, were applied on a glass substrate in a line shape having a width of 5 mm and a length of 5 cm. did. Then, at 100 ℃ 15
Cured by heating for 1 minute to form a 13 μm thick cured coating film 1-
55, 1-60, 1-65, 1-70, 1-75 and 1-80, and cured coating films 11-75, 11-80 and 11-85 were obtained.

【0038】〔室温における電気抵抗率〕上記のように
して得られた長さ5cmを有するライン状の硬化塗膜の
両端部から0.5mmの所に4端子法電気抵抗測定器の
プローブを当てて、その間(即ち、膜厚13μm、幅5
mmおよび長さ4cm分の硬化塗膜)における室温での
電気抵抗値を測定した。硬化塗膜の膜厚、幅および長さ
から電気抵抗率に換算した結果を、図1に表す。
[Electrical Resistivity at Room Temperature] A probe of a four-terminal method electrical resistance measuring device was applied to the area of 0.5 mm from both ends of the line-shaped cured coating film having a length of 5 cm obtained as described above. In the meantime (that is, film thickness 13 μm, width 5
The electric resistance value at room temperature of a cured coating film having a length of 4 mm and a length of 4 mm was measured. The results of converting the film thickness, width and length of the cured coating film into electrical resistivity are shown in FIG.

【0039】図1に示す結果より明らかなように、本発
明による導体ペーストは、比較例としての導体ペースト
よりも、フレーク状銀粉の含有量が低くても優れた導電
性を有していることが分かる。具体的には、従来の導体
ペーストでは十分な導電性を得るためにはフレーク状銀
粉を85質量%以上含有させる必要があるのに対し、本
発明の導体ペーストでは、フレーク状銀粉の含有量が8
0質量%以上において良好な導電性を有していることに
加え、フレーク状銀粉の含有率を80質量%以下(80
〜60質量%)に減らしても、優れた導電性を有してい
ることが明らかとなった。
As is clear from the results shown in FIG. 1, the conductor paste according to the present invention has better conductivity than the conductor paste as the comparative example even when the content of the flake silver powder is low. I understand. Specifically, in the conventional conductor paste, in order to obtain sufficient conductivity, it is necessary to contain flake-shaped silver powder in an amount of 85% by mass or more, whereas in the conductor paste of the present invention, the content of flake-shaped silver powder is 8
In addition to having good conductivity at 0 mass% or more, the content of flaky silver powder is 80 mass% or less (80
It has been found that even if the amount is reduced to 60% by mass), excellent conductivity is achieved.

【0040】〔昇温加熱後の電気抵抗値〕また、先に作
製した本発明に従う硬化塗膜1−80、並びに比較例と
しての硬化塗膜11−80および11−85について、
100℃から200℃への昇温加熱後の電気抵抗値の変
化を測定した。この測定は次のようにして行った。
[Electrical resistance value after heating at elevated temperature] In addition, regarding the cured coating films 1-80 according to the present invention prepared above and the cured coating films 11-80 and 11-85 as comparative examples,
The change in electric resistance value after heating by heating from 100 ° C. to 200 ° C. was measured. This measurement was performed as follows.

【0041】即ち、温度制御が可能なオーブンを用意
し、まず、温度を100℃に設定してオーブンを作動す
る。30分後、オーブン内の温度が一定に保たれてか
ら、試料、即ち硬化塗膜が形成されたガラス基板をオー
ブンに入れる。15分経過後に、試料をオーブンから取
り出すとともにオーブンを125℃に再設定する。試料
をオーブンから取り出して15分間室温で放置し、先に
述べたのと同様にして4端子法電気抵抗測定器を用いて
硬化塗膜の電気抵抗値を測定する。電気抵抗値を測定し
てから約15分経過後(オーブンを125℃に再設定し
てから30分経過後)に、この試料を再びオーブンに入
れる。以下、同様にして、オーブンを25℃づつ段階的
に昇温し、30分間かけてオーブンの温度を安定させた
後にオーブンに試料を入れて15分間試料を加熱し、そ
の後試料をオーブンから取り出して15分間室温に放置
してから、その電気抵抗値を測定した。200℃まで昇
温させた。
That is, an oven whose temperature can be controlled is prepared. First, the temperature is set to 100 ° C. and the oven is operated. After 30 minutes, the temperature in the oven is kept constant, and then the sample, that is, the glass substrate on which the cured coating film is formed, is placed in the oven. After 15 minutes, remove the sample from the oven and reset the oven to 125 ° C. The sample is taken out of the oven and left at room temperature for 15 minutes, and the electrical resistance value of the cured coating film is measured using a four-terminal method electrical resistance measuring instrument in the same manner as described above. About 15 minutes after measuring the electric resistance value (30 minutes after resetting the oven to 125 ° C.), the sample is put into the oven again. In the same manner, the temperature of the oven is raised stepwise by 25 ° C., the temperature of the oven is stabilized over 30 minutes, the sample is put in the oven and the sample is heated for 15 minutes, and then the sample is taken out of the oven. After being left at room temperature for 15 minutes, its electric resistance value was measured. The temperature was raised to 200 ° C.

【0042】図2は、測定された昇温加熱後の電気抵抗
値の測定データから作成した電気抵抗値の変化を表して
いる。また、図3は、図2に示す本発明の導体ペースト
1−70、1−75および1−80に関する測定データ
を編集して、100℃における電気抵抗値を1として加
熱による電気抵抗値の変化率を表している。
FIG. 2 shows the change in the electric resistance value created from the measured data of the electric resistance value after the measured heating and heating. In addition, FIG. 3 is a compilation of the measurement data for the conductor pastes 1-70, 1-75 and 1-80 of the present invention shown in FIG. It represents the rate.

【0043】図2に示す結果より明らかなように、15
0℃から200℃の間(175℃付近)において僅かな
電気抵抗値のピークが観測された。このピークは、図3
を参照すると更に明らかである。これは、本発明による
導体ペーストに含まれるフレーク状銀粉が150℃から
200℃の間(175℃付近)において溶融しているた
めと考えられる。このように150℃から200℃の間
(175℃付近)において溶融する本発明による導体ペ
ーストは、電子部品の確実且つ強固な実装に役立つもの
と考えられる。
As is clear from the results shown in FIG.
A slight electric resistance peak was observed between 0 ° C and 200 ° C (around 175 ° C). This peak is shown in FIG.
Will be more apparent with reference to. It is considered that this is because the flake-shaped silver powder contained in the conductor paste according to the present invention is melted between 150 ° C and 200 ° C (around 175 ° C). Thus, the conductor paste according to the present invention that melts between 150 ° C. and 200 ° C. (around 175 ° C.) is considered to be useful for reliable and firm mounting of electronic components.

【0044】〔表面状態〕本発明に従う硬化塗膜1−8
0および比較例としての硬化塗膜11−80について、
175℃での加熱処理の前後における表面状態を走査電
子顕微鏡(SEM)を使用して観察した。図4は、硬化
塗膜1−80の100℃および175℃での加熱処理後
の表面状態を示す拡大図であり、図5は硬化塗膜11−
80の175℃での加熱処理後の表面状態を示す拡大図
である。
[Surface Condition] Cured coating film 1-8 according to the present invention
0 and the cured coating film 11-80 as a comparative example,
The surface condition before and after the heat treatment at 175 ° C. was observed using a scanning electron microscope (SEM). FIG. 4 is an enlarged view showing the surface state of the cured coating film 1-80 after heat treatment at 100 ° C. and 175 ° C., and FIG. 5 is the cured coating film 11-.
It is an enlarged view which shows the surface state of 80 after heat processing at 175 degreeC.

【0045】図4より明らかなように、本発明に従う硬
化塗膜1−80の場合、100℃での加熱処理では、フ
レーク状銀粉が鋭いエッジを有しており、鱗状に配列さ
れて硬化塗膜が形成されている様子が観察されたが、1
75℃での加熱処理後には、フレーク状銀粉のエッジは
僅かに溶融して収縮し、フレーク状銀粉同士の接触がや
や低下している様子が確認された。このフレーク状銀粉
同士の接触の低下が、図2および図3に示す電気抵抗値
のピークを与えているものと考えられる。一方、比較例
としての硬化塗膜11−80では、100℃での加熱処
理では、硬化塗膜1−80の場合と同様に、フレーク状
銀粉は鋭いエッジを有しており、鱗状に配列されて硬化
塗膜が形成されている様子が観察されたが(図示せ
ず)、図5に示すように、この鋭いエッジは加熱処理を
行った後にも残っており、175℃の加熱処理ではフレ
ーク状銀粉の溶融の開始は確認されなかった。図4およ
び図5に示す表面状態の比較より、本発明のフレーク状
銀粉は、従来のフレーク状銀粉よりも細かく且つ薄い形
状を有しており、比較的低温、即ち150℃から200
℃の間(特に175℃)においてフレーク状銀粉を部分
的に溶融させることができる。従って、本発明の導体ペ
ーストは電子部品の確実且つ強固な実装に役立つものと
考えられる。
As is clear from FIG. 4, in the case of the cured coating film 1-80 according to the present invention, the heat treatment at 100 ° C. causes the flaky silver powder to have sharp edges and be arranged in a scale-like cured coating. It was observed that the film was formed.
After the heat treatment at 75 ° C., it was confirmed that the edges of the flaky silver powder were slightly melted and shrunk, and the contact between the flaky silver powders was slightly lowered. It is considered that the decrease in the contact between the flaky silver powder particles gives the peak of the electric resistance value shown in FIGS. 2 and 3. On the other hand, in the case of the cured coating film 11-80 as a comparative example, in the heat treatment at 100 ° C., the flaky silver powder has sharp edges and is arranged in a scale like the cured coating film 1-80. Although it was observed that a cured coating film had been formed (not shown), as shown in FIG. 5, the sharp edges remained after the heat treatment, and the flake was generated by the heat treatment at 175 ° C. No onset of melting of the powdery silver powder was confirmed. From the comparison of the surface states shown in FIGS. 4 and 5, the flake silver powder of the present invention has a finer and thinner shape than the conventional flake silver powder, and is at a relatively low temperature, that is, 150 ° C. to 200 ° C.
The flaky silver powder can be partially melted between 0 ° C (particularly 175 ° C). Therefore, the conductor paste of the present invention is considered to be useful for reliable and firm mounting of electronic components.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による導体ペーストと従来の導体ペー
ストについての、フレーク状銀粉の含有量と電気抵抗率
との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the content of flaky silver powder and the electrical resistivity of a conductor paste according to the present invention and a conventional conductor paste.

【図2】 本発明によるフレーク状銀粉と従来のフレー
ク状銀粉についての、昇温加熱後の電気抵抗値の変化を
示す図である。
FIG. 2 is a diagram showing changes in the electric resistance values of the flake silver powder according to the present invention and the conventional flake silver powder after heating at elevated temperatures.

【図3】 本発明によるフレーク状銀粉についての昇温
加熱後の電気抵抗値の変化率を示す図である。
FIG. 3 is a diagram showing a rate of change in electric resistance value of the flake silver powder according to the present invention after heating at elevated temperature.

【図4】 本発明による硬化塗膜の100℃と175℃
での加熱処理における表面状態を比較する図である。
FIG. 4 100 ° C. and 175 ° C. of a cured coating according to the invention
It is a figure which compares the surface state in the heat processing in.

【図5】 比較例としての硬化塗膜の175℃での加熱
処理における表面状態を比較する図である。
FIG. 5 is a diagram comparing surface states of a cured coating film as a comparative example in a heat treatment at 175 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶田 治 京都府宇治市五ケ庄北ノ庄11−11 Fターム(参考) 4K017 AA03 BA02 CA03 DA01 DA07 EA01 EA04 4K018 BA01 BB01 BB04 BC08 BD04 5G301 DA03 DA42 DD01 DE10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Osamu Kajita             11-11 Gonosho Kitanosho, Uji City, Kyoto Prefecture F-term (reference) 4K017 AA03 BA02 CA03 DA01 DA07                       EA01 EA04                 4K018 BA01 BB01 BB04 BC08 BD04                 5G301 DA03 DA42 DD01 DE10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 フレーク状の粒形を有し、レーザー回折
法50%粒径が3〜8μmであり、見掛密度が0.4〜
1.1/cm3 であり、しかもBET法比表面積値が
1.5〜4.0m2 /gであることを特徴とする導体ペ
ースト用銀粉。
1. A flake-shaped particle shape, a 50% particle size by laser diffraction method is 3 to 8 μm, and an apparent density is 0.4 to
1.1 / cm 3, and moreover silver conductor paste BET specific surface area value is equal to or is 1.5~4.0m 2 / g.
【請求項2】 円筒状の内面を有する容器と、前記容器
内に設けられた攪拌翼とを備えた攪拌ボールミルを使用
する導体ペースト用銀粉の製造方法であって、前記製造
方法は、粒状銀粉、前記粒状銀粉をフレーク化するため
のボール、溶媒および処理剤を前記容器内に仕込み、5
〜300Gの遠心力が前記容器内に加わるように、前記
攪拌翼を回転させて、前記粒状銀粉をフレーク化してろ
過し、これによってレーザー回折法50%粒径が3〜8
μmであり、見掛密度が0.4〜1.1/cm3 であ
り、しかもBET法比表面積値が1.5〜4.0m2
gであるフレーク状銀粉を得ることを特徴とするフレー
ク状銀粉の製造方法。
2. A method for producing a silver powder for a conductor paste using a stirring ball mill provided with a container having a cylindrical inner surface and a stirring blade provided in the container, wherein the manufacturing method is granular silver powder. , A ball for flake the granular silver powder, a solvent and a treating agent are charged into the container, and 5
The stirring blade is rotated so that a centrifugal force of up to 300 G is applied to the inside of the container, and the granular silver powder is flaked and filtered, whereby a 50% particle diameter by laser diffraction is 3-8.
μm, the apparent density is 0.4 to 1.1 / cm 3 , and the BET specific surface area value is 1.5 to 4.0 m 2 /
A method for producing flaky silver powder, characterized in that the flaky silver powder of g is obtained.
【請求項3】 前記処理剤は、脂肪酸および/または界
面活性剤から成り、得られるフレーク状銀粉の表面積1
2 あたり合計で0.005〜0.1gの前記処理剤が
前記容器内に仕込まれていることを特徴とする請求項2
に記載のフレーク状銀粉の製造方法。
3. The surface treatment 1 of the resulting flake-shaped silver powder, wherein the treating agent comprises a fatty acid and / or a surfactant.
A total of 0.005 to 0.1 g of the treating agent per m 2 is charged in the container.
The method for producing a flake-shaped silver powder according to.
【請求項4】 前記ボールは、チタンまたはジルコニア
から成り、0.1〜1mmの直径を有していることを特
徴とする請求項2に記載のフレーク状銀粉の製造方法。
4. The method for producing flaky silver powder according to claim 2, wherein the ball is made of titanium or zirconia and has a diameter of 0.1 to 1 mm.
【請求項5】 レーザー回折法50%粒径が3〜8μm
であり、見掛密度が0.4〜1.1/cm3 であり、し
かもBET法比表面積値が1.5〜4.0m2 /gであ
るフレーク状銀粉、および樹脂からなる導体ペーストで
あって、前記導体ペーストは、150〜200℃の間に
電気抵抗値のピークを有することを特徴とする導体ペー
スト。
5. Laser diffraction method 50% particle size is 3 to 8 μm
And a conductor paste composed of a resin and a flaky silver powder having an apparent density of 0.4 to 1.1 / cm 3 and a BET specific surface area value of 1.5 to 4.0 m 2 / g. The conductor paste has a peak electric resistance value in the range of 150 to 200 ° C.
【請求項6】 前記導体ペーストは、80〜85質量%
の前記フレーク状銀粉を含んでおり、前記導体ペースト
の硬化塗膜は、10×10-7Ω・m以下の電気抵抗率を
有していることを特徴とする請求項5に記載の導体ペー
スト。
6. The conductive paste is 80 to 85 mass%.
6. The conductor paste according to claim 5, wherein the conductor paste contains the flake-shaped silver powder, and the cured coating film of the conductor paste has an electric resistivity of 10 × 10 −7 Ω · m or less. .
【請求項7】 前記導体ペーストは、70〜80質量%
の前記フレーク状銀粉を含んでおり、前記導体ペースト
の硬化塗膜は、30×10-7Ω・m以下の電気抵抗率を
有していることを特徴とする請求項5に記載の導体ペー
スト。
7. The conductor paste is 70-80% by mass.
6. The conductor paste according to claim 5, wherein the conductor paste contains the flake-shaped silver powder, and the cured coating film of the conductor paste has an electric resistivity of 30 × 10 −7 Ω · m or less. .
【請求項8】 前記導体ペーストは、60〜70質量%
の前記フレーク状銀粉を含んでおり、前記導体ペースト
の硬化塗膜は、100×10-7Ω・m以下の電気抵抗率
を有していることを特徴とする請求項5に記載の導体ペ
ースト。
8. The conductive paste is 60 to 70 mass%.
6. The conductor paste according to claim 5, wherein the conductor paste contains the flake-shaped silver powder, and the cured coating film of the conductor paste has an electric resistivity of 100 × 10 −7 Ω · m or less. .
JP2001244169A 2001-08-10 2001-08-10 Flake-like silver powder for conductor paste and conductor paste using the same Expired - Fee Related JP3874634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244169A JP3874634B2 (en) 2001-08-10 2001-08-10 Flake-like silver powder for conductor paste and conductor paste using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244169A JP3874634B2 (en) 2001-08-10 2001-08-10 Flake-like silver powder for conductor paste and conductor paste using the same

Publications (2)

Publication Number Publication Date
JP2003055701A true JP2003055701A (en) 2003-02-26
JP3874634B2 JP3874634B2 (en) 2007-01-31

Family

ID=19074146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244169A Expired - Fee Related JP3874634B2 (en) 2001-08-10 2001-08-10 Flake-like silver powder for conductor paste and conductor paste using the same

Country Status (1)

Country Link
JP (1) JP3874634B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084860A (en) * 2005-09-20 2007-04-05 Mitsui Mining & Smelting Co Ltd Method for producing flake silver powder and flake silver powder produced by the method
JP2007265801A (en) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd Conductive powder and forming method of conductive powder
JP2008174698A (en) * 2007-01-19 2008-07-31 Nippon Koken Kogyo Kk Smooth flaky powder, high-brightness pigment, and method for producing the same
JP2009242914A (en) * 2008-03-31 2009-10-22 Mitsui Mining & Smelting Co Ltd Flake silver powder, and method for producing the same
JP2010180471A (en) * 2009-02-09 2010-08-19 Dowa Electronics Materials Co Ltd Flaky silver powder and method for producing the same, and conductive paste
JP2010236039A (en) * 2009-03-31 2010-10-21 Dowa Electronics Materials Co Ltd Flaky silver powder, its production method and conductive paste
JP2011052300A (en) * 2009-09-04 2011-03-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2011086930A (en) * 2009-09-18 2011-04-28 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding film and wiring board
JP2011521093A (en) * 2008-05-28 2011-07-21 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal effect pigments with additives
JP2012092442A (en) * 2010-10-01 2012-05-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2012151276A (en) * 2011-01-19 2012-08-09 Yokohama Rubber Co Ltd:The Conductive composition for forming solar cell collector electrode, and solar cell
WO2012120884A1 (en) * 2011-03-10 2012-09-13 東洋インキScホールディングス株式会社 Flaked silver powder and method for manufacturing same, electroconductive composition, electroconductive sheet, electromagnetic shielding sheet, and layered body having electroconductive pattern
KR101301634B1 (en) * 2005-10-03 2013-08-29 미쓰이 긴조꾸 고교 가부시키가이샤 Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
WO2014050155A1 (en) 2012-09-27 2014-04-03 三ツ星ベルト株式会社 Conductive composition and conductive molded body
KR20150033600A (en) 2012-07-18 2015-04-01 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Ultrathin flake-type silver powder and manufacturing method therefor
CN105772743A (en) * 2016-05-13 2016-07-20 江苏理工学院 Preparing method for flake silver powder applied to touch screen
CN105880628A (en) * 2016-05-13 2016-08-24 江苏理工学院 Preparation method of bright silver powder used in jewelry industry
WO2017026162A1 (en) * 2015-08-07 2017-02-16 福田金属箔粉工業株式会社 Aggregate of flaked silver particles and paste containing said aggregate of silver particles
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
WO2018066722A1 (en) * 2016-10-04 2018-04-12 엘에스니꼬동제련 주식회사 Manufacturing method for flake-type silver powder using agglomerated silver powder
CN107983946A (en) * 2016-10-26 2018-05-04 中国科学院苏州纳米技术与纳米仿生研究所 A kind of method for reducing silver powder specific surface area
JP2022062181A (en) * 2019-03-20 2022-04-19 尾池工業株式会社 Flaky silver particle, silver dispersion liquid, and conductive paste
CN114888294A (en) * 2022-05-14 2022-08-12 安徽纳洛米特新材料科技股份有限公司 Method for industrially producing flaky nano nickel powder

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084860A (en) * 2005-09-20 2007-04-05 Mitsui Mining & Smelting Co Ltd Method for producing flake silver powder and flake silver powder produced by the method
KR101301634B1 (en) * 2005-10-03 2013-08-29 미쓰이 긴조꾸 고교 가부시키가이샤 Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2007265801A (en) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd Conductive powder and forming method of conductive powder
JP2008174698A (en) * 2007-01-19 2008-07-31 Nippon Koken Kogyo Kk Smooth flaky powder, high-brightness pigment, and method for producing the same
US10950770B2 (en) 2008-01-17 2021-03-16 Nichia Corporation Method for producing an electronic device
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US10573795B2 (en) 2008-01-17 2020-02-25 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US11652197B2 (en) 2008-01-17 2023-05-16 Nichia Corporation Method for producing an electronic device
JP2009242914A (en) * 2008-03-31 2009-10-22 Mitsui Mining & Smelting Co Ltd Flake silver powder, and method for producing the same
JP2011521093A (en) * 2008-05-28 2011-07-21 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal effect pigments with additives
US9931524B2 (en) 2008-05-28 2018-04-03 Eckart Gmbh Metal effect pigment with additive
JP2010180471A (en) * 2009-02-09 2010-08-19 Dowa Electronics Materials Co Ltd Flaky silver powder and method for producing the same, and conductive paste
JP2010236039A (en) * 2009-03-31 2010-10-21 Dowa Electronics Materials Co Ltd Flaky silver powder, its production method and conductive paste
JP2011052300A (en) * 2009-09-04 2011-03-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2015073105A (en) * 2009-09-18 2015-04-16 東洋インキScホールディングス株式会社 Electromagnetic wave shielding film, and wiring board
JP2011086930A (en) * 2009-09-18 2011-04-28 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding film and wiring board
JP2012092442A (en) * 2010-10-01 2012-05-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2012151276A (en) * 2011-01-19 2012-08-09 Yokohama Rubber Co Ltd:The Conductive composition for forming solar cell collector electrode, and solar cell
JP2012188699A (en) * 2011-03-10 2012-10-04 Toyo Ink Sc Holdings Co Ltd Flaked silver powder and its production method, and conductive composition
WO2012120884A1 (en) * 2011-03-10 2012-09-13 東洋インキScホールディングス株式会社 Flaked silver powder and method for manufacturing same, electroconductive composition, electroconductive sheet, electromagnetic shielding sheet, and layered body having electroconductive pattern
KR20150033600A (en) 2012-07-18 2015-04-01 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Ultrathin flake-type silver powder and manufacturing method therefor
KR20190119189A (en) 2012-07-18 2019-10-21 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Ultrathin flake-type silver powder and manufacturing method therefor
WO2014050155A1 (en) 2012-09-27 2014-04-03 三ツ星ベルト株式会社 Conductive composition and conductive molded body
US9773582B2 (en) 2012-09-27 2017-09-26 Mitsuboshi Belting Ltd. Conductive composition and conductive molded body
KR101976301B1 (en) 2015-08-07 2019-05-07 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Aggregate of flaked silver particles and paste containing said aggregate of silver particles
TWI642067B (en) * 2015-08-07 2018-11-21 日商福田金屬箔粉工業股份有限公司 Aggregate of flaky silver particles and paste containing aggregates of the silver particles
KR20180038410A (en) * 2015-08-07 2018-04-16 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 Aggregate of flaked silver particles and paste containing said aggregate of silver particles
WO2017026162A1 (en) * 2015-08-07 2017-02-16 福田金属箔粉工業株式会社 Aggregate of flaked silver particles and paste containing said aggregate of silver particles
CN105880628A (en) * 2016-05-13 2016-08-24 江苏理工学院 Preparation method of bright silver powder used in jewelry industry
CN105772743A (en) * 2016-05-13 2016-07-20 江苏理工学院 Preparing method for flake silver powder applied to touch screen
WO2018066722A1 (en) * 2016-10-04 2018-04-12 엘에스니꼬동제련 주식회사 Manufacturing method for flake-type silver powder using agglomerated silver powder
CN107983946A (en) * 2016-10-26 2018-05-04 中国科学院苏州纳米技术与纳米仿生研究所 A kind of method for reducing silver powder specific surface area
JP2022062181A (en) * 2019-03-20 2022-04-19 尾池工業株式会社 Flaky silver particle, silver dispersion liquid, and conductive paste
CN114888294A (en) * 2022-05-14 2022-08-12 安徽纳洛米特新材料科技股份有限公司 Method for industrially producing flaky nano nickel powder

Also Published As

Publication number Publication date
JP3874634B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP2003055701A (en) Silver powder for conductive paste and its manufacturing method and conductive paste using the silver powder
TWI599420B (en) Dendrite copper powder
JP6976597B2 (en) Copper particle mixture and its production method, copper particle mixture dispersion, copper particle mixture-containing ink, copper particle mixture storage method and copper particle mixture sintering method
JP6423139B2 (en) Flake silver powder, method for producing the same, and conductive paste
WO2006057348A1 (en) Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
WO2003038838A1 (en) Ag COMPOUND PASTE
WO2017154251A1 (en) Conductive paste
CN103137243B (en) Conductive paste and the preparation method of conductive paste
JP2010180471A (en) Flaky silver powder and method for producing the same, and conductive paste
WO2006118182A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JPWO2012077548A1 (en) Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
JP6167060B2 (en) Flaked copper powder and method for producing the same
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2004149903A (en) Conductive powder, conductive composition, and production method for conductive powder
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6466758B2 (en) Silver-coated flaky copper powder, method for producing the same, and conductive paste using the silver-coated flaky copper powder
JP5756694B2 (en) Flat metal particles
JP2017084587A (en) Silver oxide slurry, and conductive paste and method for producing the same
JP3932336B2 (en) Method for producing copper powder for conductive paste
JPH0931402A (en) Production of carbon-based conductive paste
JP6914999B2 (en) Surface treatment copper powder
KR100390638B1 (en) Electrically conductive silicone paste
JP7288133B1 (en) Silver powder, method for producing silver powder, and conductive paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3874634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees