WO2018066722A1 - Manufacturing method for flake-type silver powder using agglomerated silver powder - Google Patents

Manufacturing method for flake-type silver powder using agglomerated silver powder Download PDF

Info

Publication number
WO2018066722A1
WO2018066722A1 PCT/KR2016/011090 KR2016011090W WO2018066722A1 WO 2018066722 A1 WO2018066722 A1 WO 2018066722A1 KR 2016011090 W KR2016011090 W KR 2016011090W WO 2018066722 A1 WO2018066722 A1 WO 2018066722A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
silver powder
flake
silver
agglomerated
Prior art date
Application number
PCT/KR2016/011090
Other languages
French (fr)
Korean (ko)
Inventor
이미영
최재원
강태훈
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Priority to PCT/KR2016/011090 priority Critical patent/WO2018066722A1/en
Publication of WO2018066722A1 publication Critical patent/WO2018066722A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a method for producing a flake silver powder for conductive paste used in electronic parts such as electrode materials.
  • well-dispersed silver powder of uniform size in the metal powder may be utilized as an important material for various electronic industries such as conductive inks, pastes, and adhesives.
  • Low-temperature curable conductive paste is required to exhibit the required conductivity at a low drying temperature of 250 degrees or less, and as a conductive filler, flake silver powder having a larger contact area between particles than spherical is mainly used.
  • Electrodes patterns As the electrode patterns become finer, such as touch screen panels (TSPs), flexible printed circuit boards (FPCBs), RFID antennas, and metal meshes for transparent electrodes, silver powder used in conductive pastes is also used. A fine powder having a small particle size is required.
  • the manufacture of flake silver powder consists of the synthesis process of silver powder (called raw powder) used as raw material and the processing process of processing raw powder into flake shape through mechanical milling using beads.
  • raw powder silver powder
  • micron-sized spherical silver powder was used as the powder.
  • the powder when a small mechanical force is applied to reduce the particle size increase, the powder is fine in size, but the partially flaked spherical silver powder has a problem of decreasing the conductivity of the electrode due to the small contact area between the powder particles.
  • the present inventors intend to disclose a method for producing flake silver powder using agglomerated powder, not spherical powder.
  • the present invention is to solve the above problems by using agglomerated powder rather than spherical powder as the raw material of the flake silver powder, it is possible to manufacture at a low manufacturing cost using a universal milling equipment and beads (1mm ⁇ 5mm) In addition, the particle size is easy to control, and the contact area between the particles has a high conductivity to provide a fine flake silver powder manufacturing method.
  • the present invention provides a method for producing flake silver powder, comprising a flaked step (S2) of obtaining a flake powder by milling through beads using agglomerated silver powder as a raw powder, wherein the agglomerated silver powder has a primary particle size
  • the silver particle which is 0.1-0.8 micrometer aggregates, and it provides the manufacturing method of the flake silver powder which is a powder whose average particle diameter is 2.0-10.0 micrometer, and whose specific surface area is 1.0-2.5 m ⁇ 2> / g.
  • the flaked powder is separated from the beads, washed, dried and pulverized to obtain a flake silver powder (S4); further comprising a mean particle size (D50) of 0.5 to 3.0 ⁇ m and a specific surface area of 1.0 to Provided is a method for producing flake silver powder, which obtains flake silver powder of 3.0 m 2 / g and a tap density of 2.5 to 4.5 g / cc.
  • the flakes step (S2) is a slurry of the aggregated silver powder, flake silver powder manufacturing, characterized in that the step of milling at 300 to 700rpm speed for 3 to 6 hours using beads of 1 to 5mm Provide a method.
  • the flakes step (S2) Previously, preparing a flake silver powder further comprising; raw material powder manufacturing step (S1) of preparing a coagulated silver powder by adding a reducing solution containing a reducing agent to a silver source solution containing silver (Ag) at an input rate.
  • raw material powder manufacturing step (S1) of preparing a coagulated silver powder by adding a reducing solution containing a reducing agent to a silver source solution containing silver (Ag) at an input rate.
  • the raw material powder manufacturing step (S1) is to produce agglomerated silver powder by adding the reducing solution so that the reducing agent in the reducing solution per 1kg of silver (Ag) in the silver source solution is introduced at a rate of 1 to 100g / min Flakes, characterized in that the step provides a powder manufacturing method.
  • the present invention is the primary silver particles having a particle size of 0.1 to 0.8 ⁇ m agglomerated, by milling through beads using agglomerated silver powder having an average particle diameter of 2.0 to 10.0 ⁇ m, specific surface area of 1.0 to 2.5m 2 / g Flake Silver, which is a flake powder, provides a powder.
  • the flake silver powder provides a flake silver powder, characterized in that the average particle diameter (D50) of 0.5 to 3.0 ⁇ m, specific surface area 1.0 to 3.0m 2 / g, tap density 2.5 to 4.5g / cc.
  • D50 average particle diameter
  • the present invention is the flake silver powder; And a binder resin; provides a conductive paste comprising a.
  • the present invention uses agglomerated powder having a primary particle size of 0.1 to 0.8 ⁇ m and an average particle size of 2.0 to 10.0 ⁇ m, thereby making it possible to use general milling equipment such as attrition mill and beads of general size of 1 to 5 mm. Therefore, it is possible to provide a method for producing uniform and fine flake silver powder having excellent electrical conductivity with a wide contact area between particles without causing aggregation between powders at low manufacturing cost.
  • agglomerated powders having a primary particle diameter of 0.1 to 0.8 ⁇ m, an average particle diameter of 2.0 to 10.0 ⁇ m, and a specific surface area of 1.0 to 2.5 m 2 / g are used at a low production cost by using a general milling equipment and 1 to 5 mm beads. It is possible to provide a method for producing flake silver powder having a mean particle diameter (D50) to 3.0 ⁇ m, a specific surface area of 1.0 to 3.0 m 2 / g, and a tap density of 2.5 to 4.5 g / cc.
  • D50 mean particle diameter
  • D50 mean particle diameter
  • the fine flake silver powder uses a touch screen panel (TSP), a flexible printed circuit board (FPCB), or an RFID, in which an electrode pattern having a line width of 80 ⁇ m or less is used. It may be particularly suitably used for antennas, metal meshes for transparent electrodes, and the like.
  • FIG. 1 The schematic diagram which flake-shaped the spherical powder with the raw material powder in FIG. 1 is shown.
  • Example 2 shows a SEM photograph of the aggregated silver powder according to Example 1 of the present invention.
  • Example 3 shows a SEM photograph of the flake silver powder according to Example 1 of the present invention.
  • Example 4 is a SEM photograph of the aggregated silver powder according to Example 2 of the present invention.
  • Example 5 is a SEM photograph of the flake silver powder according to Example 2 of the present invention.
  • Example 6 is a SEM photograph of the aggregated silver powder according to Example 3 of the present invention.
  • Example 7 shows an SEM photograph of the flake silver powder according to Example 3 of the present invention.
  • Flakes silver powder manufacturing method comprises a raw material powder manufacturing step (S1), flakes step (S2) and after-treatment step (S3).
  • the flake forming step (S2) according to the present invention is necessarily included, and steps other than those which may unnecessarily obscure the subject matter of the invention can be omitted.
  • Raw material powder manufacturing step (S1) is a step for producing agglomerated silver powder, the specific method is as follows.
  • a silver source is added to a silver source solution to reduce silver (Ag) to precipitate silver particles. That is, after preparing a silver source solution containing silver (Ag), a reducing solution containing a reducing agent is added to reduce the silver to obtain a silver powder. The reducing solution may be slowly added or temporarily added while the silver source solution is stirred.
  • the silver source solution containing silver (Ag) is not limited as long as it is a solution in which silver particles can be precipitated by a reducing agent, and a silver oxide solution, a silver nitrate solution, a silver salt complex, or a silver intermediate solution can be used. Can be.
  • the silver oxide solution will be described as an example.
  • the pH in the silver source solution can be adjusted using an alkali solution.
  • an alkaline solution preferably sodium hydroxide (NaOH) solution
  • NaOH sodium hydroxide
  • a silver source solution containing silver oxide is prepared and used. If the pH of the silver source solution is 10 or less, the unreacted reaction may not occur because the rate of reduction by the reducing agent added during the precipitation of the silver particles is slowed.
  • An alkaline solution sodium hydroxide (NaOH, 45% concentration) is added in an amount of 20 to 50 parts by weight based on 100 parts by weight of silver nitrate solution (20 to 50% concentration) to adjust the pH of the silver source solution to 10 to 14.
  • the reducing agent may be used alone or in combination of any one or more selected from the group consisting of glucose, ascorbic acid, hydrazine, hydroquinone and formalin.
  • the reducing agent may react with all the ions using 0.1 to 1.5 equivalents of the silver ion content, and when insufficient, unreacted reaction may occur, and residual organic matter may be deposited in the powder when over-added.
  • the primary particle size of the aggregated silver powder prepared by adjusting the rate of introducing the reducing solution into the silver source solution may be adjusted.
  • the feed rate of the reducing solution can be expressed as the feed rate of the reducing agent in terms of (solids) mass into which the reducing agent in the reducing solution is added, compared to 1 kg of silver (Ag) in the silver source solution, and the present invention provides a reducing agent compared to 1 kg of silver (Ag). Reducing solution is added so that is added at 1 to 100g / min.
  • a relatively fine agglomerated silver powder having a primary particle size of 0.1 ⁇ m is prepared when injected at a rate close to 100 g / min, and a primary particle diameter of 0.8 is added when injected at a speed close to 1 g / min.
  • a relatively coarse aggregated silver powder close to ⁇ m is produced. If the feed rate is less than 1g / min or more than 100g / min the effect of controlling the primary particle size of the aggregated silver powder produced is insignificant.
  • the primary particle size of the aggregated silver powder does not become smaller than 0.1 ⁇ m, and even if the reducing agent is added at a rate of less than 1 g / min, the primary particle diameter of the aggregated silver powder is 0.8. It is not larger than ⁇ m. That is, when the reducing solution input rate is controlled within the above range, the aggregated silver powder having a primary particle size adjustable within the range of 0.1 to 0.8 ⁇ m may be prepared.
  • a reducing solution is added to the silver source solution at the content ratio and the feeding rate to cause a precipitation reaction to precipitate the aggregated silver powder.
  • Flaking step (S2) is a step to flake through the milling (milling) through the beads by slurrying the aggregated silver powder, a specific method is as follows.
  • Agglomerated silver powder may be used agglomerated silver powder prepared through the raw material powder manufacturing step (S1), but is not limited thereto, and primary silver particles having a particle diameter of 0.1 to 0.8 ⁇ m are agglomerated, and the average particle diameter is 2.0 to 10.0 ⁇ and a powder having a specific surface area of 1.0 to 2.5 m 2 / g are used.
  • Agglomerated silver powders are slurried.
  • the lubricant is added to the solvent, stirred until the lubricant is dissolved, and then the aggregated silver powder is dispersed in the solvent to form a slurry.
  • the flakes obtained are highly dependent on the properties of the powder.
  • a solvent in which the aggregated silver powder is dispersed a mixed solvent of water, an organic solvent, and water and an organic solvent can be used. In consideration of the residual of the solvent component as a contaminant on the particle surface, it is preferable to use a solvent having a composition close to water.
  • an organic solvent alone in consideration of the stabilization of the quality of the aggregated silver powder in the slurry to increase the dispersibility of the powder.
  • the use of alcohols such as methanol, ethanol, ethylene glycol, etc. as the organic solvent is highly volatile, and the flake silver powder may have little residue on the particle surface during drying.
  • the blending amount of the aggregated silver powder in the solvent is appropriately determined.
  • the solvent is used 30 to 50 parts by weight based on 100 parts by weight of the aggregated silver powder, and the lubricant is 0.5 to 5 parts by weight based on 100 parts by weight of the aggregated silver powder.
  • the slurry containing the aggregated silver powder is milled using an impact mill using the impact of the beads.
  • the attrition mill is a milling apparatus in which a shaft and zirconia balls are filled in a vertical alumina. Detailed milling process is shown in Table 1 below.
  • Powder loading 5 ⁇ 8kg Ball material Zirconia Ball size 1-5mm Ball input 250 to 500 wt.% Of Ag powder Milling time 3 ⁇ 6hrs Milling speed 300 ⁇ 700rpm slush Fatty acid group menstruum Alcohol group
  • the fine flakes are partially flake, and the contact area between the powders is small, so that the conductivity decreases. Accordingly, when the mechanical collision force is increased to increase the conductivity, the flake is strengthened and the conductivity is reduced. Was improved but difficult to obtain fine powder.
  • the flake powder when used to obtain the fine flake powder, the flakes are partially flaked as in the case of using the spherical powder, but the contact area between the aggregated powders is wide, so that the flake silver powder having fine conductivity and excellent conductivity can be obtained.
  • the particle size of the aggregated powder which is a raw material powder, the particle size of the flake silver powder is easy.
  • Post-treatment step (S3) is a purification step including a washing, drying, and disintegration process, by using a screen (screen) to separate the ball / slurry, and further adding a solvent and stirring silver
  • the powder is washed, dried and crushed.
  • the prepared flake may be a step of gravity settling the powder, removing a solution containing an organic material such as a lubricant on the upper layer, and then drying the slurry at 80 ° C. for 10 hrs.
  • the washing method is not particularly limited, but a method of recovering the flake silver powder by injecting the flake silver powder solid-liquid separated from the slurry into the washing liquid, stirring using a stirrer or an ultrasonic cleaner, and then solid-liquid separation again can be used. .
  • a method of recovering the flake silver powder by injecting the flake silver powder solid-liquid separated from the slurry into the washing liquid, stirring using a stirrer or an ultrasonic cleaner, and then solid-liquid separation again can be used.
  • cleaning liquid may use water, in order to remove a lubricant and organic substance efficiently, it is preferable to use aqueous alkali solution or ethanol aqueous solution.
  • the flake silver powder prepared through the post treatment has an average particle diameter (D50) of 0.5 to 3.0 ⁇ m, a specific surface area of 1.0 to 3.0 m 2 / g, and a tap density of 2.5 to 4.5 g / cc.
  • D50 average particle diameter
  • the flake silver powder produced by the flake silver powder manufacturing method according to an embodiment of the present invention is fine with a wire width of 80 ⁇ m or less, such as a touch screen panel (TSP), a flexible printed circuit board (FPCB), an RFID antenna, a metal mesh for a transparent electrode, and the like. It is most suitable for use in conductive pastes for electronic components requiring electrode patterns.
  • the agglomerated silver powder solution obtained as described above was filtered using Nutsche, washed with 50 L of pure water, and dried at 80 ° C. for 10 hours to obtain agglomerated silver powder.
  • the SEM photograph of the aggregated silver powder obtained by the above process is shown in Fig. 2, and the characteristics thereof are as shown in Table 2, the primary particle diameter is 0.1 ⁇ 0.3 ⁇ m, the average particle diameter is 3.5 ⁇ m, the specific surface area is 2.3m 2 / g.
  • a slurry of 0.06 kg was added to 3.0 kg of ethanol and stirred until the lubricant was dissolved. Then, 6 kg of the prepared aggregated silver powder was added and stirred well to prepare a silver slurry solution.
  • Table 1 The conditions as shown in Table 1, that is, 30 kg of zirconia beads having a diameter of 1.0 mm were filled in an Attrition mill, and then a silver slurry solution was added thereto to apply a mechanical shock at a rotational speed of 500 rpm to flake.
  • flakes were processed for 3 hours. Thereafter, the slurry was transferred from the Attrition mill to the washing tank by using a pump, allowed to stand for a certain time to settle the flake silver powder, and then the supernatant was discarded. 10 L of ethanol was further added for washing the powder, followed by stirring for a predetermined time, and the above process was repeated to obtain a high concentration of silver slurry, and then dried at 80 ° C. for 10 hours to obtain flake silver powder.
  • Fine flake silver powder was obtained by pulverizing and sieving the flake silver powder obtained as mentioned above.
  • the SEM photograph is shown in FIG.
  • Table 3 D10 0.6 micrometer, D50 1.0 micrometer, D90 2.1 micrometer Dmax 4.4micrometer by PSA, tap density was 3.8g / cc, and specific surface area was 2.2m ⁇ 2> / g.
  • Agglomerated silver powder was prepared in the same manner as in Example 1 except that the reducing agent solution was added at a rate of 80 ml / min.
  • the SEM photograph of the aggregated silver powder obtained by the above process is shown in FIG. 4, and the characteristics thereof are as shown in Table 2, and the primary particle diameter is 0.2 to 0.5 ⁇ m, the average particle diameter is 4.8 ⁇ m, and the specific surface area is 1.5 m. 2 / g.
  • Flaking and post-treatment were performed in the same manner as in Example 1 using the prepared aggregated silver powder, and the SEM image of the obtained fine flake silver powder is shown in FIG. 5.
  • Table 3 D10 0.8 micrometer, D50 1.7 micrometer, D90 3.9 micrometer Dmax 10.0 micrometer by PSA, tap density was 4.2 g / cc, and specific surface area was 1.6 m ⁇ 2> / g.
  • Agglomerated silver powder was prepared in the same manner as in Example 1 except that the reducing agent solution was added at a rate of 10 ml / min.
  • the SEM image of the aggregated silver powder obtained by the above process is shown in FIG. 6, and the characteristics thereof are as shown in Table 2, and the primary particle diameter is 0.4 to 0.7 ⁇ m, the average particle diameter is 8.5 ⁇ m, and the specific surface area is 1.1 m. 2 / g.
  • Flaking and post-treatment were performed in the same manner as in Example 1 using the prepared aggregated silver powder, and the SEM image of the obtained fine flake silver powder is shown in FIG. 7.
  • Table 3 D10 1.0 micrometer, D50 2.5 micrometer, D90 5.4 micrometer Dmax 12.0 micrometer by PSA, tap density were 4.3 g / cc, and the specific surface area was 1.2 m ⁇ 2> / g.
  • the silver source solution was stirred, the reduction solution was added collectively to this silver source solution, and it stirred for further 5 minutes after completion
  • the SEM photograph of the spherical silver powder obtained by the above process is shown in FIG. 8, The characteristic was 1.1 micrometer in average particle diameter, and 0.9 m ⁇ 2> / g of specific surface areas as shown in Table 2.
  • Example 2 By using the spherical silver powder flakes in the same manner as in Example 1 to obtain a fine flake silver powder, the SEM image of the obtained fine flake silver powder is shown in FIG. As shown in Table 3, D10 0.8 micrometer, D50 1.4 micrometer, D90 2.7 micrometer, Dmax 5.8 micrometer, tap density was 3.4 g / cc, and specific surface area was 1.2 m ⁇ 2> / g by PSA.
  • Spherical silver powder was prepared in the same manner as in Comparative Example 1.
  • Flaking and post-treatment were carried out in the same manner as in Example 1, except that the milling time was 6 hours using the spherical silver powder, and the SEM image of the obtained fine flake silver powder is shown in FIG. 10.
  • Table 3 D10 0.9 ⁇ m, D50 1.8 ⁇ m, D90 4.5 ⁇ m Dmax 13.2 ⁇ m, tap density of 3.1g / cc and specific surface area of the PSA were 1.6m 2 / g.
  • Spherical silver powder was prepared in the same manner as in Comparative Example 1.
  • the spherical silver powder was flaked and post-treated in the same manner as in Example 1 except that the rotational speed was 700 rpm and the milling time was 6 hours.
  • the SEM photograph of the obtained flake silver powder is shown in FIG. 11. As shown in Table 3, D10 1.3 ⁇ m, D50 4.5 ⁇ m, D90 11.2 ⁇ m Dmax 30.2 ⁇ m, tap density 2.0g / cc, specific surface area 2.4M 2 / g by PSA.
  • a silver oxide solution was prepared in the same manner as in Example 1. Then, 3.0 kg of a 50% concentration reduction solution was added to the silver oxide solution by dumping to reduce the aggregated silver powder.
  • the reducing agent used at this time was hydroquinone, and the reaction temperature was maintained at 25 ° C. Thereafter, the mixture was washed and dried in the same manner as in Example 1 to obtain aggregated silver powder.
  • the SEM photograph of the aggregated silver powder obtained by the above process is shown in FIG. 12, and the characteristics thereof are as shown in Table 2, the primary particle diameter is 0.1 ⁇ m or less, the average particle diameter is 1.5 ⁇ m, and the specific surface area is 3.2 m 2. / g.
  • Example 2 Flake and post-treatment in the same manner as in Example 1 using the prepared aggregated silver powder and obtained fine flake silver powder D10 0.5 ⁇ m, D50 0.8 ⁇ m, D90 1.3 ⁇ m Dmax by PSA as shown in Table 3
  • the tap density was 3.2 m / g and the specific surface area was 3.1 m 2 / g.
  • the silver source solution was stirred, the reduction solution was added collectively to this silver source solution, and it stirred for further 5 minutes after completion
  • the SEM photograph of the aggregated silver powder obtained by the above process is shown in FIG. 13, and the characteristics thereof are 0.8-1.1 ⁇ m in primary particle diameter, 8.0 ⁇ m in average particle diameter, and 0.4 m in specific surface area as shown in Table 2. 2 / g.
  • Flaking and post-treatment were carried out in the same manner as in Example 1 using the prepared aggregated powder, and the SEM photograph of the obtained flake silver powder is shown in FIG. 14.
  • Table 3 D10 2.4 micrometers, D50 6.6 micrometers, D90 14.7 micrometers Dmax 34.7 micrometers by PSA, 2.9 g / cc of tap densities, and specific surface area were 1.0 m ⁇ 2> / g.
  • Example 1 Cohesive 0.1-0.3 3.5 2.3
  • Example 2 Cohesive 0.2-0.5 4.8 1.5
  • Example 3 Cohesive 0.4-0.6 8.5 1.1 Comparative Example 1 rectangle - 1.1 0.9 Comparative Example 2 rectangle - 1.1 0.9 Comparative Example 3 rectangle - 1.1 0.9 Comparative Example 4 Cohesive ⁇ 0.1 1.5 3.2 Comparative Example 5 Cohesive 0.8 ⁇ 1.1 8.0 0.4
  • the fine flakes silver powder can be prepared using the spherical powder through Comparative Example 1, but it can be seen that the conductivity is poor due to partial flakes, and by increasing the milling time through Comparative Example 2 by increasing the mechanical impact force Although the flakes have been strengthened but also partially flakes, the conductivity is not good.
  • the comparative example 3 shows that the conductivity is slightly improved by increasing the rotational speed as well as the milling time, thereby increasing the mechanical impact force, but the aggregation between particles is improved. It can be seen that the fine flakes generated are difficult to obtain powder.

Abstract

The present invention relates to a manufacturing method for a flake silver powder, the method comprising a flaking step (S2) of obtaining a flaked powder by milling through beads using an agglomerated silver powder as a raw material powder, wherein the agglomerated silver powder has an average diameter of 2.0 to 10.0 μm and a specific surface area of 1.0 to 2.5 m2/g by agglomerating primary silver particles having a diameter of 0.1 to 0.8 μm. Provided according to the present invention is a manufacturing method wherein, by using an agglomerated powder rather than a spherical powder as a raw material powder, a general-purpose milling device and beads are used to produce, at low cost, a uniform and fine flake silver powder which exhibits no agglomeration between powders and exhibits excellent electrical conductivity thanks to the wide contact area between the particles.

Description

응집형 은 분말을 이용한 플레이크형 은 분말의 제조방법Method for producing flake type silver powder using agglomerated silver powder
본 발명은 전극재료 등 전자부품에 사용되는 도전성 페이스트용 플레이크 은 분말의 제조방법에 관한 것이다.The present invention relates to a method for producing a flake silver powder for conductive paste used in electronic parts such as electrode materials.
일반적으로 금속 분말 중에서 균일한 크기의 잘 분산된 은(Silver) 분말은 전도성 잉크나 페이스트(Pastes) 그리고 접착제(Adhesives) 등의 여러 가지 전자 산업에 중요한 재료로서 활용될 수 있다.In general, well-dispersed silver powder of uniform size in the metal powder may be utilized as an important material for various electronic industries such as conductive inks, pastes, and adhesives.
저온 경화형 전도성 페이스트는 250도 이하의 낮은 건조 온도에서 요구되는 전도성이 발휘되어야 함으로 전도성 필러로써 구형보다는 입자 간의 접촉 면적이 큰 플레이크 은 분말이 주로 사용된다.Low-temperature curable conductive paste is required to exhibit the required conductivity at a low drying temperature of 250 degrees or less, and as a conductive filler, flake silver powder having a larger contact area between particles than spherical is mainly used.
터치 스크린 패널(touch screen panel, TSP), 연성회로기판(flexible printed circuit board, FPCB), RFID 안테나, 투명 전극용 메탈 메쉬(metal mesh) 등 전극 패턴이 미세화됨에 따라 전도성 페이스트에 사용되는 은 분말 또한 입경이 작은 미세 분말이 요구된다.As the electrode patterns become finer, such as touch screen panels (TSPs), flexible printed circuit boards (FPCBs), RFID antennas, and metal meshes for transparent electrodes, silver powder used in conductive pastes is also used. A fine powder having a small particle size is required.
플레이크 은 분말의 제조는 원료로 사용되는 은 분말(원료분말이라 칭함)의 합성 공정과 비즈를 이용하여 기계적 밀링을 통해 원료분말을 플레이크 형상으로 가공하는 가공 공정으로 이루어지는데, 기존 플레이크 은 분말은 원료분말로써 마이크론(micron) 크기의 구형 은 분말이 사용되었다. The manufacture of flake silver powder consists of the synthesis process of silver powder (called raw powder) used as raw material and the processing process of processing raw powder into flake shape through mechanical milling using beads. As the powder, micron-sized spherical silver powder was used.
하지만, 플레이크 가공공정에서 구형의 원료분말이 플레이크 형상으로 변형됨에 따라 도 1에 나타낸 것과 같이 그 입경은 증가하게 되고, 만약 은 분말의 소성 변형이 과하게 될 경우, 분말 간의 과응집에 의해 미세하고 균일한 플레이크 은 분말은 제조하기 어려운 문제점이 있다. However, as the spherical raw powder is deformed into the flake shape in the flake processing process, the particle diameter increases as shown in FIG. 1, and if the plastic deformation of the silver powder is excessive, fine and uniformity is caused by the coagulation between the powders. One flake silver powder has a problem that is difficult to manufacture.
반면, 입경 증대를 감소시키기 위해 기계적 힘을 적게 가할 경우, 분말의 크기는 미세하나, 부분적으로 플레이크화된 구형 은 분말 입자 간의 접촉 면적이 작아 전극의 전도성을 저하시키는 문제점이 있다. On the other hand, when a small mechanical force is applied to reduce the particle size increase, the powder is fine in size, but the partially flaked spherical silver powder has a problem of decreasing the conductivity of the electrode due to the small contact area between the powder particles.
즉, 원료분말로 마이크론 크기의 구형 은 분말 사용 시, 미세하고 균일한 플레이크 은 분말을 제조하기 어렵거나, 미세 분말일 경우에는 구형 분말 또는 부분적으로 플레이크화된 분말이 존재하여 입자 간의 접촉면적이 작아 전극의 전도성은 좋지 못하다. In other words, when using micron-sized spherical silver powder as a raw material powder, it is difficult to prepare fine and uniform flake silver powder, or in the case of fine powder, spherical powder or partially flaked powder is present so that the contact area between particles is small. The conductivity of the electrode is poor.
또한, 미세 플레이크 은 분말을 제조하기 위해 원료분말로써 입경이 작은 나노(nano) 은 분말을 사용할 경우, 입자의 표면에너지가 커 입자 간 응집하려는 경향이 증가하게 되고 이는 플레이크 은 분말의 분산성을 저하시키는 결과를 초래하고, 또한 나노 분말을 사용함에 따라 제조 비용도 증가한다. In addition, when using nano silver powder having a small particle size as a raw material powder to produce fine flake silver powder, the surface energy of the particles is large and the tendency to agglomerate between particles increases, which decreases the dispersibility of the flake silver powder. And the manufacturing cost also increases with the use of nanopowders.
또한, 종래 특허(한국등록특허 제1327973호 등)와 같이 마이크론 크기의 구형 분말을 사용하여도 작은 크기의 비즈(0.2mm)를 사용함으로써 은 입자와 비즈의 충돌 시의 소성 변형 응력을 적정하게 하여 응집을 일으키지 않고 미세한 플레이크 은 분말을 얻을 수 있으나, 고가의 밀링 설비(Super Apex Mill) 및 비즈(0.2mm)를 사용해야 하므로 제조 비용이 증가하고 작은 비즈 사용에 따라 작업성이 떨어지는 문제점이 있다. In addition, even if a micron-sized spherical powder is used as in the conventional patent (Korea Patent No. 1327973, etc.), by using small size beads (0.2 mm), the plastic strain stress at the time of collision between the silver particles and the beads is appropriately adjusted. Fine flake powder can be obtained without causing agglomeration, but expensive milling equipment (Super Apex Mill) and beads (0.2 mm) have to be used, which increases manufacturing costs and decreases workability due to the use of small beads.
상기와 같은 문제점을 해결하기 위하여 본 특허 발명자들은 구형 분말이 아닌 응집형 분말을 사용하여 플레이크 은 분말을 제조하는 방법을 개시하고자 한다. In order to solve the above problems, the present inventors intend to disclose a method for producing flake silver powder using agglomerated powder, not spherical powder.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 플레이크 은 분말의 원료분말로써 구형이 아닌 응집형 분말을 사용함으로써, 범용 밀링 설비 및 비즈(1mm~5mm)를 사용하여 낮은 제조 비용으로 제조가 가능하고, 입도 제어가 용이하며, 입자 간의 접촉 면적이 넓어 전도성이 우수한 미세 플레이크 은 분말을 제조하는 방법을 제공하는 것이다. The present invention is to solve the above problems by using agglomerated powder rather than spherical powder as the raw material of the flake silver powder, it is possible to manufacture at a low manufacturing cost using a universal milling equipment and beads (1mm ~ 5mm) In addition, the particle size is easy to control, and the contact area between the particles has a high conductivity to provide a fine flake silver powder manufacturing method.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 플레이크 은 분말 제조방법으로서, 원료분말로서 응집형 은 분말을 사용하여 비즈를 통한 밀링으로 플레이크화된 분말을 얻는 플레이크화 단계(S2);를 포함하며, 상기 응집형 은 분말은 일차입자경이 0.1 내지 0.8㎛인 은 입자가 응집되어, 평균 입경이 2.0 내지 10.0㎛이고, 비표면적이 1.0 내지 2.5m2/g인 분말인 플레이크 은 분말 제조방법을 제공한다.The present invention provides a method for producing flake silver powder, comprising a flaked step (S2) of obtaining a flake powder by milling through beads using agglomerated silver powder as a raw powder, wherein the agglomerated silver powder has a primary particle size The silver particle which is 0.1-0.8 micrometer aggregates, and it provides the manufacturing method of the flake silver powder which is a powder whose average particle diameter is 2.0-10.0 micrometer, and whose specific surface area is 1.0-2.5 m <2> / g.
또한 상기 플레이크화 하는 단계(S3); 이후에, 플레이크화된 분말을 비즈와 분리하고, 세척, 건조 및 해쇄하여 플레이크 은 분말을 얻는 후처리 단계(S4);를 더 포함하여, 평균 입경(D50) 0.5 내지 3.0μm, 비표면적 1.0 내지 3.0m2/g, 탭밀도 2.5 내지 4.5g/cc인 플레이크 은 분말을 얻는 플레이크 은 분말 제조방법을 제공한다.In addition, the flakes step (S3); Thereafter, the flaked powder is separated from the beads, washed, dried and pulverized to obtain a flake silver powder (S4); further comprising a mean particle size (D50) of 0.5 to 3.0 µm and a specific surface area of 1.0 to Provided is a method for producing flake silver powder, which obtains flake silver powder of 3.0 m 2 / g and a tap density of 2.5 to 4.5 g / cc.
또한 상기 플레이크화 하는 단계(S2)는 상기 응집형 은 분말을 슬러리화하고, 1 내지 5mm의 비즈를 이용하여 3 내지 6시간 동안 300 내지 700rpm 속도로 밀링하는 단계인 것을 특징으로 하는 플레이크 은 분말 제조방법을 제공한다.In addition, the flakes step (S2) is a slurry of the aggregated silver powder, flake silver powder manufacturing, characterized in that the step of milling at 300 to 700rpm speed for 3 to 6 hours using beads of 1 to 5mm Provide a method.
또한 상기 플레이크화 단계(S2); 이전에, 은(Ag)을 포함하는 은 소스 용액에 환원제를 포함하는 환원 용액을 투입속도를 갖고 투입하여 응집형 은 분말을 제조하는 원료분말 제조단계(S1);를 더 포함하는 플레이크 은 분말 제조방법을 제공한다.In addition, the flakes step (S2); Previously, preparing a flake silver powder further comprising; raw material powder manufacturing step (S1) of preparing a coagulated silver powder by adding a reducing solution containing a reducing agent to a silver source solution containing silver (Ag) at an input rate. Provide a method.
또한 상기 원료분말 제조단계(S1)는 상기 은 소스 용액 내의 은(Ag) 1kg 당 상기 환원 용액 내의 환원제가 1 내지 100g/min 의 속도로 투입되도록 상기 환원 용액을 투입하여 응집형 은 분말을 제조하는 단계인 것을 특징으로 하는 플레이크 은 분말 제조방법을 제공한다.In addition, the raw material powder manufacturing step (S1) is to produce agglomerated silver powder by adding the reducing solution so that the reducing agent in the reducing solution per 1kg of silver (Ag) in the silver source solution is introduced at a rate of 1 to 100g / min Flakes, characterized in that the step provides a powder manufacturing method.
또한 본 발명은 입경이 0.1 내지 0.8㎛인 일차 은 입자가 응집되어, 평균 입경이 2.0 내지 10.0㎛이고, 비표면적이 1.0 내지 2.5m2/g인 응집형 은 분말을 사용하여 비즈를 통한 밀링으로 플레이크화된 분말인 플레이크 은 분말을 제공한다.In addition, the present invention is the primary silver particles having a particle size of 0.1 to 0.8㎛ agglomerated, by milling through beads using agglomerated silver powder having an average particle diameter of 2.0 to 10.0㎛, specific surface area of 1.0 to 2.5m 2 / g Flake Silver, which is a flake powder, provides a powder.
또한 상기 플레이크 은 분말은 평균 입경(D50) 0.5 내지 3.0μm, 비표면적 1.0 내지 3.0m2/g, 탭밀도 2.5 내지 4.5g/cc인 것을 특징으로 하는 플레이크 은 분말을 제공한다.In addition, the flake silver powder provides a flake silver powder, characterized in that the average particle diameter (D50) of 0.5 to 3.0μm, specific surface area 1.0 to 3.0m 2 / g, tap density 2.5 to 4.5g / cc.
본 발명은 상기 플레이크 은 분말; 및 바인더 수지;를 포함하는 전도성 페이스트를 제공한다. The present invention is the flake silver powder; And a binder resin; provides a conductive paste comprising a.
본 발명은 원료분말로써 일차입자경 0.1~0.8μm, 평균입경 2.0~10.0μm의 응집형 분말을 사용함으로써 어트리션 밀(Attrition mill) 등의 범용 밀링 설비 및 1~5mm의 범용 크기의 비즈를 이용하여 낮은 제조 비용으로 분말 간의 응집을 일으키지 않고, 입자 간 넓은 접촉 면적으로 전기 전도성이 우수한 균일하고 미세한 플레이크 은 분말을 제조하는 방법을 제공할 수 있다.The present invention uses agglomerated powder having a primary particle size of 0.1 to 0.8 μm and an average particle size of 2.0 to 10.0 μm, thereby making it possible to use general milling equipment such as attrition mill and beads of general size of 1 to 5 mm. Therefore, it is possible to provide a method for producing uniform and fine flake silver powder having excellent electrical conductivity with a wide contact area between particles without causing aggregation between powders at low manufacturing cost.
또한 본 발명의 제조방법을 통해 원료분말인 응집형 분말의 입경을 조절함으로써 분말 간의 응집을 일으키지 않고 균일하고 미세한 플레이크 은 분말의 입도를 제어할 수 있다.In addition, by controlling the particle size of the agglomerated powder that is the raw material powder through the production method of the present invention, it is possible to control the particle size of the uniform and fine flake silver powder without causing agglomeration between the powders.
더욱 구체적으로 원료분말로써 일차입자경 0.1 내지 0.8μm, 평균입경 2.0 내지 10.0μm, 비표면적 1.0 내지 2.5m2/g의 응집형 분말을 범용 밀링 설비 및 1 내지 5mm 비즈를 이용하여 낮은 제조비용으로 0.5 내지 3.0μm 평균입경(D50), 1.0 내지 3.0m2/g의 비표면적, 2.5 내지 4.5g/cc의 탭 밀도를 가지는 플레이크 은 분말을 제조하는 방법을 제공할 수 있다. More specifically, as a raw material powder, agglomerated powders having a primary particle diameter of 0.1 to 0.8 μm, an average particle diameter of 2.0 to 10.0 μm, and a specific surface area of 1.0 to 2.5 m 2 / g are used at a low production cost by using a general milling equipment and 1 to 5 mm beads. It is possible to provide a method for producing flake silver powder having a mean particle diameter (D50) to 3.0 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a tap density of 2.5 to 4.5 g / cc.
본 발명의 일실시예에 의해 제조된 미세 플레이크 은 분말을 이용하여 선폭 80μm 이하의 전극 패턴이 사용되는 터치 스크린 패널(touch screen panel, TSP), 연성회로기판(flexible printed circuit board, FPCB), RFID 안테나, 투명 전극용 메탈 메쉬(metal mesh) 등에 특히 적합하게 사용될 수 있다. According to an embodiment of the present invention, the fine flake silver powder uses a touch screen panel (TSP), a flexible printed circuit board (FPCB), or an RFID, in which an electrode pattern having a line width of 80 μm or less is used. It may be particularly suitably used for antennas, metal meshes for transparent electrodes, and the like.
도 1에 구형 분말을 원료분말로 플레이크화한 모식도를 나타내었다. The schematic diagram which flake-shaped the spherical powder with the raw material powder in FIG. 1 is shown.
도 2에 본 발명의 실시예 1에 따른 응집형 은 분말의 SEM 사진을 나타내었다.2 shows a SEM photograph of the aggregated silver powder according to Example 1 of the present invention.
도 3에 본 발명의 실시예 1에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.3 shows a SEM photograph of the flake silver powder according to Example 1 of the present invention.
도 4에 본 발명의 실시예 2에 따른 응집형 은 분말의 SEM 사진을 나타내었다.4 is a SEM photograph of the aggregated silver powder according to Example 2 of the present invention.
도 5에 본 발명의 실시예 2에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.5 is a SEM photograph of the flake silver powder according to Example 2 of the present invention.
도 6에 본 발명의 실시예 3에 따른 응집형 은 분말의 SEM 사진을 나타내었다.6 is a SEM photograph of the aggregated silver powder according to Example 3 of the present invention.
도 7에 본 발명의 실시예 3에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.7 shows an SEM photograph of the flake silver powder according to Example 3 of the present invention.
도 8에 본 발명의 비교예 1에 따른 구형 은 분말의 SEM 사진을 나타내었다.8 shows a SEM photograph of the spherical silver powder according to Comparative Example 1 of the present invention.
도 9에 본 발명의 비교예 1에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.9 shows a SEM photograph of the flake silver powder according to Comparative Example 1 of the present invention.
도 10에 본 발명의 비교예 2에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.10 shows a SEM photograph of the flake silver powder according to Comparative Example 2 of the present invention.
도 11에 본 발명의 비교예 3에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.11 shows a SEM photograph of the flake silver powder according to Comparative Example 3 of the present invention.
도 12에 본 발명의 비교예 4에 따른 응집형 은 분말의 SEM 사진을 나타내었다.12 is a SEM photograph of the aggregated silver powder according to Comparative Example 4 of the present invention.
도 13에 본 발명의 비교예 5에 따른 응집형 은 분말의 SEM 사진을 나타내었다.13 shows a SEM photograph of the aggregated silver powder according to Comparative Example 5 of the present invention.
도 14에 본 발명의 비교예 6에 따른 플레이크 은 분말의 SEM 사진을 나타내었다.14 shows a SEM photograph of the flake silver powder according to Comparative Example 6 of the present invention.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is limited only by the scope of the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise indicated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless otherwise indicated, the termcomprise, constitutes, and configure means to include the referenced article, step, or group of articles, and step, and any other article It is not intended to exclude a stage or group of things or groups of stages.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.On the other hand, various embodiments of the present invention can be combined with any other embodiment unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention and the effects thereof.
본 발명의 일실시예에 따른 플레이크 은 분말 제조방법은 원료 분말 제조단계(S1), 플레이크화 단계(S2) 및 후처리 단계(S3)를 포함하여 이루어진다. 본 발명에 따른 플레이크화 단계(S2)를 반드시 포함하고, 발명의 요지를 불필요하게 흐릴 수 있는 이외의 단계는 생략 가능하다. Flakes silver powder manufacturing method according to an embodiment of the present invention comprises a raw material powder manufacturing step (S1), flakes step (S2) and after-treatment step (S3). The flake forming step (S2) according to the present invention is necessarily included, and steps other than those which may unnecessarily obscure the subject matter of the invention can be omitted.
본 발명의 일실시예에 따른 원료분말 제조단계(S1)는 응집형 은 분말을 제조하는 단계로서, 구체적인 방법은 다음과 같다. Raw material powder manufacturing step (S1) according to an embodiment of the present invention is a step for producing agglomerated silver powder, the specific method is as follows.
은 소스(Ag source) 용액에 환원 용액을 첨가하여 은(Ag)을 환원시켜 은 입자(silver particle)를 석출한다. 즉 은(Ag)을 포함하는 은 소스 용액을 제조한 뒤, 환원제를 포함하는 환원 용액을 투입하여 은을 환원시켜 은 분말을 얻는다. 은 소스 용액이 교반되는 상태 하에서 환원 용액을 천천히 투입하거나, 일시에 투입할 수 있다.A silver source is added to a silver source solution to reduce silver (Ag) to precipitate silver particles. That is, after preparing a silver source solution containing silver (Ag), a reducing solution containing a reducing agent is added to reduce the silver to obtain a silver powder. The reducing solution may be slowly added or temporarily added while the silver source solution is stirred.
상기의 은(Ag)을 포함하는 은 소스(Ag source) 용액은 환원제에 의해 은 입자가 석출될 수 있는 상태의 용액이라면 제한되지 않으며, 산화은 용액, 질산은 용액, 은 염 착체 또는 은 중간체 용액을 사용할 수 있다. 이하 산화은 용액을 예로 들어 설명한다.The silver source solution containing silver (Ag) is not limited as long as it is a solution in which silver particles can be precipitated by a reducing agent, and a silver oxide solution, a silver nitrate solution, a silver salt complex, or a silver intermediate solution can be used. Can be. Hereinafter, the silver oxide solution will be described as an example.
은 소스 용액 내의 pH는 알칼리 용액을 이용하여 조절이 가능하며, 본 발명에 따른 원료분말 제조단계에서는 pH가 10 내지 14가 되도록 알칼리 용액, 바람직하게는 수산화나트륨(NaOH) 용액을 질산은 용액에 첨가하여 산화은을 포함하는 은 소스 용액을 제조하여 사용한다. 은 소스 용액의 pH가 10 이하일 경우에는 은 입자 석출 과정에서 투입된 환원제에 의한 환원 속도가 느려져 반응이 종결되지 않는 미반응이 발생할 수 있다. The pH in the silver source solution can be adjusted using an alkali solution.In the raw material powder preparation step according to the present invention, an alkaline solution, preferably sodium hydroxide (NaOH) solution, is added to the silver nitrate solution so that the pH is 10 to 14. A silver source solution containing silver oxide is prepared and used. If the pH of the silver source solution is 10 or less, the unreacted reaction may not occur because the rate of reduction by the reducing agent added during the precipitation of the silver particles is slowed.
알칼리 용액(수산화나트륨(NaOH, 45% 농도))은 질산은 용액(20~50% 농도) 100 중량부에 대하여 20 내지 50 중량부로 첨가되어 은 소스 용액의 pH를 10 내지 14가 되도록 조절한다. An alkaline solution (sodium hydroxide (NaOH, 45% concentration)) is added in an amount of 20 to 50 parts by weight based on 100 parts by weight of silver nitrate solution (20 to 50% concentration) to adjust the pH of the silver source solution to 10 to 14.
상기 환원제는 포도당, 아스코르브산, 하이드라진, 하이드로퀴논 및 포르말린으로 구성되는 군에서 선택되는 어느 1종 이상을 단독 또는 혼합상태로 사용할 수 있다. 환원제는 은 이온 함량 대비 0.1 내지 1.5당량을 사용하는 것이 모든 이온을 반응시킬 수 있으며, 부족할 시 미반응이 일어나며, 과첨가 시 분말 내에 잔류 유기물이 침적될 수 있다. The reducing agent may be used alone or in combination of any one or more selected from the group consisting of glucose, ascorbic acid, hydrazine, hydroquinone and formalin. The reducing agent may react with all the ions using 0.1 to 1.5 equivalents of the silver ion content, and when insufficient, unreacted reaction may occur, and residual organic matter may be deposited in the powder when over-added.
은 소스 용액에 환원 용액을 투입하는 속도를 조절하여 제조되는 응집형 은 분말의 일차입자경 크기를 조절할 수 있다. 환원 용액의 투입속도는 은 소스 용액 내의 은(Ag) 1kg 대비, 환원 용액 내의 환원제가 투입되는 (고형분)질량으로 환산한 환원제의 투입속도로 나타낼 수 있으며, 본 발명은 은(Ag) 1kg 대비 환원제가 1 내지 100g/min로 투입되도록 환원 용액을 투입한다. 상기 투입속도 범위 내에서 100g/min에 가까운 속도로 투입할 경우 1차 입자경이 0.1μm에 가까운 상대적으로 미세한 응집형 은 분말이 제조되고, 1g/min 에 가까운 속도로 투입할 경우 1차 입자경이 0.8μm에 가까운 상대적으로 조대한 응집형 은 분말이 제조된다. 투입속도가 1g/min 미만이거나 100g/min을 초과하는 경우 제조되는 응집형 은 분말의 1차입경이 제어되는 효과가 미미하다. 즉 100g/min을 초과하는 속도로 환원제를 투입하더라도 응집형 은 분말의 1차 입자경이 0.1μm보다 작아지지 않으며, 1g/min 미만의 속도로 환원제를 투입하더라도 응집형 은 분말의 1차 입자경이 0.8μm보다 커지지 않는다. 즉 상기 범위 내에서 환원 용액 투입속도를 조절하는 경우 1차 입자경이 0.1 내지 0.8μm 범위 내에서 조절 가능한 응집형 은 분말을 제조할 수 있다.The primary particle size of the aggregated silver powder prepared by adjusting the rate of introducing the reducing solution into the silver source solution may be adjusted. The feed rate of the reducing solution can be expressed as the feed rate of the reducing agent in terms of (solids) mass into which the reducing agent in the reducing solution is added, compared to 1 kg of silver (Ag) in the silver source solution, and the present invention provides a reducing agent compared to 1 kg of silver (Ag). Reducing solution is added so that is added at 1 to 100g / min. Within the input speed range, a relatively fine agglomerated silver powder having a primary particle size of 0.1 μm is prepared when injected at a rate close to 100 g / min, and a primary particle diameter of 0.8 is added when injected at a speed close to 1 g / min. A relatively coarse aggregated silver powder close to μm is produced. If the feed rate is less than 1g / min or more than 100g / min the effect of controlling the primary particle size of the aggregated silver powder produced is insignificant. That is, even if the reducing agent is added at a rate exceeding 100 g / min, the primary particle size of the aggregated silver powder does not become smaller than 0.1 μm, and even if the reducing agent is added at a rate of less than 1 g / min, the primary particle diameter of the aggregated silver powder is 0.8. It is not larger than μm. That is, when the reducing solution input rate is controlled within the above range, the aggregated silver powder having a primary particle size adjustable within the range of 0.1 to 0.8 μm may be prepared.
상기 함량 비율 및 투입속도로 은 소스 용액에 환원 용액을 투입하고 석출반응을 일으켜 응집형 은 분말을 석출한다.A reducing solution is added to the silver source solution at the content ratio and the feeding rate to cause a precipitation reaction to precipitate the aggregated silver powder.
이 후 순수를 이용하여 세척 및 건조함으로써 원료분말을 제조하는 단계를 완료하여 일차입자경이 0.1 내지 0.8㎛이며, 평균 입경이 2.0 내지 10.0㎛이고, 비표면적이 1.0 내지 2.5m2/g 인 응집형의 은 분말을 얻는다. Thereafter, the steps of preparing a raw material powder by washing and drying with pure water were completed to have a primary particle diameter of 0.1 to 0.8 µm, an average particle diameter of 2.0 to 10.0 µm, and a specific surface area of 1.0 to 2.5 m 2 / g. Get silver powder.
본 발명의 일실시예에 따른 플레이크화 단계(S2)는 응집형 은 분말을 슬러리화시켜 비즈를 통한 밀링(milling)을 통해 플레이크화 하는 단계로서, 구체적인 방법은 다음과 같다. 응집형 은 분말은 상기 원료분말 제조단계(S1)를 통해 제조된 응집형 은 분말을 사용할 수 있으나 이에 제한되는 것은 아니며, 입경이 0.1 내지 0.8㎛인 일차 은 입자가 응집되어, 평균 입경이 2.0 내지 10.0㎛이고, 비표면적이 1.0 내지 2.5m2/g 인 분말을 사용한다. Flaking step (S2) according to an embodiment of the present invention is a step to flake through the milling (milling) through the beads by slurrying the aggregated silver powder, a specific method is as follows. Agglomerated silver powder may be used agglomerated silver powder prepared through the raw material powder manufacturing step (S1), but is not limited thereto, and primary silver particles having a particle diameter of 0.1 to 0.8 μm are agglomerated, and the average particle diameter is 2.0 to 10.0 탆 and a powder having a specific surface area of 1.0 to 2.5 m 2 / g are used.
응집형 은 분말을 슬러리화시킨다. 용매에 윤활제를 첨가하고, 윤활제가 용해될 때까지 교반한 뒤 응집형 은 분말을 용매 중에 분산시켜 슬러리를 생성한다. 원료분말의 특성에 따라 얻어지는 플레이크 은 분말의 특성이 크게 좌우된다. 응집형 은 분말이 분산되는 용매로는 물, 유기용매, 물과 유기용매의 혼합 용매를 이용할 수 있다. 입자 표면에의 오염 성분으로서의 용매 성분의 잔류를 고려할 때, 물에 가까운 조성의 용매를 사용하는 것이 좋다. 또는 슬러리 중에서의 응집형 은 분말의 분산성을 높여 플레이크화할 때의 품질 안정화를 고려할 때 유기용매를 단독으로 이용하는 것이 좋다. 유기용매로서는 메탄올, 에탄올, 에틸렌글리콜 등의 알코올류를 사용하는 것이 휘발성이 높아 플레이크 은 분말의 건조시 입자 표면에의 잔류가 적어 좋다. 플레이크화를 통한 생산 효율과 밀링 효율을 고려하여 용매에 대한 응집형 은 분말의 배합량을 적절하게 결정한다. Agglomerated silver powders are slurried. The lubricant is added to the solvent, stirred until the lubricant is dissolved, and then the aggregated silver powder is dispersed in the solvent to form a slurry. According to the characteristics of the raw material powder, the flakes obtained are highly dependent on the properties of the powder. As a solvent in which the aggregated silver powder is dispersed, a mixed solvent of water, an organic solvent, and water and an organic solvent can be used. In consideration of the residual of the solvent component as a contaminant on the particle surface, it is preferable to use a solvent having a composition close to water. Alternatively, it is preferable to use an organic solvent alone in consideration of the stabilization of the quality of the aggregated silver powder in the slurry to increase the dispersibility of the powder. The use of alcohols such as methanol, ethanol, ethylene glycol, etc. as the organic solvent is highly volatile, and the flake silver powder may have little residue on the particle surface during drying. In consideration of the production efficiency and the milling efficiency through flake formation, the blending amount of the aggregated silver powder in the solvent is appropriately determined.
상기 용매는 응집형 은 분말 100 중량부에 대하여 30 내지 50 중량부 사용되며, 상기 윤활제는 응집형 은 분말 100 중량부에 대하여 0.5 내지 5 중량부 사용된다. The solvent is used 30 to 50 parts by weight based on 100 parts by weight of the aggregated silver powder, and the lubricant is 0.5 to 5 parts by weight based on 100 parts by weight of the aggregated silver powder.
응집형 은 분말을 포함하는 슬러리를 어트리션밀을 이용하여 비즈의 충격을 이용하여 밀링한다. 상기 어트리션밀은 수직형의 알루미나자에 샤프트, 지르코니아 볼을 채운 밀링장치이다. 상세한 밀링 과정은 하기 표 1과 같다.The slurry containing the aggregated silver powder is milled using an impact mill using the impact of the beads. The attrition mill is a milling apparatus in which a shaft and zirconia balls are filled in a vertical alumina. Detailed milling process is shown in Table 1 below.
분말 장입량Powder loading 5~8kg5 ~ 8kg
볼 재질Ball material 지르코니아Zirconia
볼 사이즈Ball size 1~5mm1-5mm
볼 투입량Ball input Ag분말대비 250내지500wt.%250 to 500 wt.% Of Ag powder
밀링시간Milling time 3~6hrs3 ~ 6hrs
밀링속도Milling speed 300~700rpm300 ~ 700rpm
윤활제slush Fatty acid groupFatty acid group
용매menstruum 알코올 그룹Alcohol group
미세 플레이크 은 분말을 얻기 위해서 구형 분말을 사용하는 경우 부분적으로 플레이크화되어 분말 간의 접촉 면적이 작아 전도성이 저하되는 문제점이 있고, 이에 따라 전도성을 높이기 위해 기계적 충돌 힘을 증가시키면 플레이크화는 강화되어 전도성은 개선되나 미세 분말을 얻기 어려운 문제점이 있었다.In the case of using spherical powder to obtain fine powder, the fine flakes are partially flake, and the contact area between the powders is small, so that the conductivity decreases. Accordingly, when the mechanical collision force is increased to increase the conductivity, the flake is strengthened and the conductivity is reduced. Was improved but difficult to obtain fine powder.
반면, 미세 플레이크 은 분말을 얻기 위해서 응집형 분말을 사용하는 경우 구형 분말을 사용한 것과 마찬가지로 부분적으로 플레이크화가 되지만, 응집형 분말 간의 접촉 면적이 넓어 미세 분말이면서 전도성이 우수한 플레이크 은 분말을 얻을 수 있다. 또한 원료 분말인 응집형 분말의 입경을 조절함으로써 플레이크 은 분말의 입경제어가 용이하다. On the other hand, when the flake powder is used to obtain the fine flake powder, the flakes are partially flaked as in the case of using the spherical powder, but the contact area between the aggregated powders is wide, so that the flake silver powder having fine conductivity and excellent conductivity can be obtained. In addition, by adjusting the particle size of the aggregated powder, which is a raw material powder, the particle size of the flake silver powder is easy.
본 발명의 일실시예에 따른 후처리 단계(S3)는 세척, 건조, 해쇄 공정을 포함하는 정제단계로서, 스크린(screen)을 이용하여 볼/슬러리를 분리하고 용매를 추가로 투입 후 교반하여 은 분말을 세척하고, 건조 및 해쇄한다. 더욱 구체적으로 제조된 플레이크 은 분말을 중력침강시킨 후 상층에 윤활제 등 유기물을 포함하는 용액을 제거한 후 슬러리를 80℃, 10hrs 동안 건조하는 단계일 수 있다. 세척 방법으로는 특별히 한정되는 것은 아니지만 슬러리로부터 고액 분리한 플레이크 은 분말을 세정액에 투입하고, 교반기 또는 초음파 세정기를 사용하여 교반한 후, 다시 고액 분리하여 플레이크 은 분말을 회수하는 방법이 이용될 수 있다. 또한 표면 흡착물을 충분히 제거하기 위해서는 세정액으로의 투입, 교반 세정, 및 고액 분리로 이루어지는 조작을 수회 반복하여 행하는 것이 바람직하다. 세정액은 물을 이용해도 좋지만, 윤활제 및 유기물을 효율적으로 제거하기 위하여 알칼리 수용액 또는 에탄올 수용액을 사용하는 것이 좋다.Post-treatment step (S3) according to an embodiment of the present invention is a purification step including a washing, drying, and disintegration process, by using a screen (screen) to separate the ball / slurry, and further adding a solvent and stirring silver The powder is washed, dried and crushed. More specifically, the prepared flake may be a step of gravity settling the powder, removing a solution containing an organic material such as a lubricant on the upper layer, and then drying the slurry at 80 ° C. for 10 hrs. The washing method is not particularly limited, but a method of recovering the flake silver powder by injecting the flake silver powder solid-liquid separated from the slurry into the washing liquid, stirring using a stirrer or an ultrasonic cleaner, and then solid-liquid separation again can be used. . In addition, in order to fully remove surface adsorbate, it is preferable to repeat operation which consists of input to washing | cleaning liquid, stirring washing | cleaning, and solid-liquid separation several times. Although the washing | cleaning liquid may use water, in order to remove a lubricant and organic substance efficiently, it is preferable to use aqueous alkali solution or ethanol aqueous solution.
상기 후처리를 거쳐 제조된 플레이크 은 분말은 평균 입경(D50) 0.5 내지 3.0μm, 비표면적 1.0 내지 3.0m2/g, 탭밀도 2.5 내지 4.5g/cc를 갖는다.The flake silver powder prepared through the post treatment has an average particle diameter (D50) of 0.5 to 3.0 μm, a specific surface area of 1.0 to 3.0 m 2 / g, and a tap density of 2.5 to 4.5 g / cc.
본 발명의 일실시예에 따른 플레이크 은 분말 제조방법에 의해 제조된 플레이크 은 분말은 TSP(touch screen panel), FPCB(flexible printed circuit board), RFID 안테나, 투명 전극용 metal mesh 등 선폭 80μm 이하의 미세 전극 패턴이 요구되는 전자 부품용 전도성 페이스트에 사용되는데 가장 적합하다. The flake silver powder produced by the flake silver powder manufacturing method according to an embodiment of the present invention is fine with a wire width of 80 μm or less, such as a touch screen panel (TSP), a flexible printed circuit board (FPCB), an RFID antenna, a metal mesh for a transparent electrode, and the like. It is most suitable for use in conductive pastes for electronic components requiring electrode patterns.
실시예 및 실험예Examples and Experimental Examples
(1) 실시예 1 (1) Example 1
먼저 9kg의 질산은 용액을 9L의 순수에 용해시켜 질산은 수용액을 제조하고, 이것에 45% 농도의 NaOH 용액 3.7kg을 한번에 첨가하여 교반함으로써 pH 10의 산화은 용액을 얻었다. 그리고 이 산화은 용액에 15% 농도의 환원 용액 3.5kg을 300ml/min 속도로 첨가하여 교반함으로써 응집형 은 분말을 환원시켰다. 이 때 사용한 환원제는 포도당이며, 반응온도는 25℃를 유지하였다.First, 9 kg of silver nitrate solution was dissolved in 9 L of pure water to prepare an aqueous solution of silver nitrate, and 3.7 kg of 45% NaOH solution was added thereto and stirred to obtain a silver oxide solution of pH 10. Then, 3.5 kg of the reducing solution of 15% concentration was added to the silver oxide solution at 300 ml / min, followed by stirring to reduce the aggregated silver powder. The reducing agent used at this time was glucose, and the reaction temperature was maintained at 25 ° C.
상기와 같이 얻어진 응집형 은 분말 용액을 누체(Nutsche)를 이용하여 여과하고 50L의 순수를 이용하여 세정하고, 다시 80℃에서 10시간 건조하여 응집형 은 분말을 얻었다. 이상과 같은 공정으로 얻어진 응집형 은 분말의 SEM 사진을 도 2에 나타내었고, 그 특성은 표 2에 나타낸 것과 같이 1차 입자 지름이 0.1~0.3μm, 평균입경이 3.5μm, 비표면적이 2.3 m2/g이었다.The agglomerated silver powder solution obtained as described above was filtered using Nutsche, washed with 50 L of pure water, and dried at 80 ° C. for 10 hours to obtain agglomerated silver powder. The SEM photograph of the aggregated silver powder obtained by the above process is shown in Fig. 2, and the characteristics thereof are as shown in Table 2, the primary particle diameter is 0.1 ~ 0.3μm, the average particle diameter is 3.5μm, the specific surface area is 2.3m 2 / g.
에탄올 3.0kg에 0.06kg의 윤활제를 넣고 윤활제가 용해될 때까지 교반한 뒤, 상기 제조된 응집형 은 분말 6kg을 넣고 잘 교반함으로써 은 슬러리 용액을 제조하였다. 표 1에 나타낸 것과 같은 조건, 즉 직경 1.0mm의 지르코니아 비즈 30kg을 Attrition mill에 충진한 뒤, 은 슬러리 용액을 투입하여 500rpm의 회전속도로 기계적인 충격을 가하여 플레이크화를 행하였다. A slurry of 0.06 kg was added to 3.0 kg of ethanol and stirred until the lubricant was dissolved. Then, 6 kg of the prepared aggregated silver powder was added and stirred well to prepare a silver slurry solution. The conditions as shown in Table 1, that is, 30 kg of zirconia beads having a diameter of 1.0 mm were filled in an Attrition mill, and then a silver slurry solution was added thereto to apply a mechanical shock at a rotational speed of 500 rpm to flake.
이 때 플레이크화는 3시간 진행하였다. 이 후, 펌프를 이용하여 슬러리를 Attrition mill에서 세척 탱크로 이송시키고, 일정 시간 가만히 두어 플레이크 은 분말을 침강 시킨 뒤, 상등액을 버렸다. 분말 세척을 위해 에탄올 10L를 추가 첨가하여 일정 시간 교반한 뒤, 상기의 공정을 반복하여 고농도의 은 슬러리를 얻은 후, 80℃에서 10시간 건조하여 플레이크 은 분말을 얻었다. At this time, flakes were processed for 3 hours. Thereafter, the slurry was transferred from the Attrition mill to the washing tank by using a pump, allowed to stand for a certain time to settle the flake silver powder, and then the supernatant was discarded. 10 L of ethanol was further added for washing the powder, followed by stirring for a predetermined time, and the above process was repeated to obtain a high concentration of silver slurry, and then dried at 80 ° C. for 10 hours to obtain flake silver powder.
상기와 같이 얻어진 플레이크 은 분말을 해쇄, sieving함으로써 미세 플레이크 은 분말을 얻었다. SEM 사진을 도 3에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 0.6μm, D50 1.0μm, D90 2.1μm Dmax 4.4μm, 탭밀도는 3.8g/cc, 비표면적은 2.2 m2/g이었다.Fine flake silver powder was obtained by pulverizing and sieving the flake silver powder obtained as mentioned above. The SEM photograph is shown in FIG. As shown in Table 3, D10 0.6 micrometer, D50 1.0 micrometer, D90 2.1 micrometer Dmax 4.4micrometer by PSA, tap density was 3.8g / cc, and specific surface area was 2.2m <2> / g.
(2) 실시예 2(2) Example 2
*환원제 용액을 80ml/min 속도로 첨가한 것 외에 실시예 1과 동일한 방법으로 응집형 은 분말을 제조하였다. 상기와 같은 공정으로 얻어진 응집형 은 분말의 SEM 사진을 도 4에 나타내었고, 그 특성은 표 2에 나타낸 것과 같이 1차 입자 지름이 0.2~0.5μm, 평균입경이 4.8μm, 비표면적이 1.5 m2/g이었다.Agglomerated silver powder was prepared in the same manner as in Example 1 except that the reducing agent solution was added at a rate of 80 ml / min. The SEM photograph of the aggregated silver powder obtained by the above process is shown in FIG. 4, and the characteristics thereof are as shown in Table 2, and the primary particle diameter is 0.2 to 0.5 μm, the average particle diameter is 4.8 μm, and the specific surface area is 1.5 m. 2 / g.
상기 제조된 응집형 은 분말을 이용하여 실시예 1과 동일한 방법으로 플레이크화 및 후처리 하였으며, 얻어진 미세 플레이크 은 분말의 SEM 사진을 도 5에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 0.8μm, D50 1.7μm, D90 3.9μm Dmax 10.0μm, 탭밀도는 4.2g/cc, 비표면적은 1.6m2/g이었다.Flaking and post-treatment were performed in the same manner as in Example 1 using the prepared aggregated silver powder, and the SEM image of the obtained fine flake silver powder is shown in FIG. 5. As shown in Table 3, D10 0.8 micrometer, D50 1.7 micrometer, D90 3.9 micrometer Dmax 10.0 micrometer by PSA, tap density was 4.2 g / cc, and specific surface area was 1.6 m <2> / g.
(3) 실시예 3(3) Example 3
환원제 용액을 10ml/min 속도로 첨가한 것 외에 실시예 1과 동일한 방법으로 응집형 은 분말을 제조하였다. 상기와 같은 공정으로 얻어진 응집형 은 분말의 SEM 사진을 도 6에 나타내었고, 그 특성은 표 2에 나타낸 것과 같이 1차 입자 지름이 0.4~0.7μm, 평균입경이 8.5μm, 비표면적이 1.1 m2/g이었다. Agglomerated silver powder was prepared in the same manner as in Example 1 except that the reducing agent solution was added at a rate of 10 ml / min. The SEM image of the aggregated silver powder obtained by the above process is shown in FIG. 6, and the characteristics thereof are as shown in Table 2, and the primary particle diameter is 0.4 to 0.7 μm, the average particle diameter is 8.5 μm, and the specific surface area is 1.1 m. 2 / g.
상기 제조된 응집형 은 분말을 이용하여 실시예 1과 동일한 방법으로 플레이크화 및 후처리 하였으며, 얻어진 미세 플레이크 은 분말의 SEM 사진을 도 7에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 1.0μm, D50 2.5μm, D90 5.4μm Dmax 12.0μm, 탭밀도는 4.3g/cc, 비표면적은 1.2m2/g이었다. Flaking and post-treatment were performed in the same manner as in Example 1 using the prepared aggregated silver powder, and the SEM image of the obtained fine flake silver powder is shown in FIG. 7. As shown in Table 3, D10 1.0 micrometer, D50 2.5 micrometer, D90 5.4 micrometer Dmax 12.0 micrometer by PSA, tap density were 4.3 g / cc, and the specific surface area was 1.2 m <2> / g.
(4) 비교예 1(4) Comparative Example 1
상온의 순수 9.6kg에 질산은 용액 220mL, 암모니아(농도 25%) 180ml를 넣고 교반하여 용해시켜 은 소스 용액을 조제하였다. 한편 상온의 순수 10kg에 하이드로퀴논 55g을 넣고 교반하여 용해시켜 환원 용액을 조제하였다.220 mL of silver nitrate solution and 180 mL of ammonia (concentration 25%) were added to 9.6 kg of pure water at room temperature, and the mixture was stirred and dissolved to prepare a silver source solution. Meanwhile, 55 g of hydroquinone was added to 10 kg of pure water at room temperature, and stirred to dissolve to prepare a reducing solution.
이어서, 은 소스 용액을 교반한 상태로 하고, 이 은 소스 용액에 환원 용액을 일괄 첨가하여, 첨가 종료 후부터 5분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고, 건조하여, 구형 은 분말을 얻었다. 이상과 같은 공정으로 얻어진 구형 은 분말의 SEM 사진을 도 8에 나타내었고, 그 특성은 표 2에 나타낸 것과 같이 평균입경이 1.1μm, 비표면적이 0.9 m2/g이었다.Subsequently, the silver source solution was stirred, the reduction solution was added collectively to this silver source solution, and it stirred for further 5 minutes after completion | finish of addition, and grew particle | grains in the mixed liquid. Then, stirring was stopped, the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifugal separator, the media was washed with pure water, and dried to obtain spherical silver powder. The SEM photograph of the spherical silver powder obtained by the above process is shown in FIG. 8, The characteristic was 1.1 micrometer in average particle diameter, and 0.9 m <2> / g of specific surface areas as shown in Table 2.
상기 구형 은 분말을 이용하여 실시예 1과 동일한 방법으로 플레이크화 하여 미세 플레이크 은 분말을 얻었으며, 얻어진 미세 플레이크 은 분말의 SEM 사진을 도 9에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 0.8μm, D50 1.4μm, D90 2.7μm, Dmax 5.8μm, 탭밀도는 3.4g/cc, 비표면적은 1.2m2/g 이었다.By using the spherical silver powder flakes in the same manner as in Example 1 to obtain a fine flake silver powder, the SEM image of the obtained fine flake silver powder is shown in FIG. As shown in Table 3, D10 0.8 micrometer, D50 1.4 micrometer, D90 2.7 micrometer, Dmax 5.8 micrometer, tap density was 3.4 g / cc, and specific surface area was 1.2 m <2> / g by PSA.
(5) 비교예 2(5) Comparative Example 2
비교예 1과 동일 방법으로 구형 은 분말을 제조하였다. Spherical silver powder was prepared in the same manner as in Comparative Example 1.
상기 구형 은 분말을 이용하여 밀링 시간을 6시간으로 한 것 이외에는 실시예 1과 동일한 방법으로 플레이크화 및 후처리 하였으며, 얻어진 미세 플레이크 은 분말의 SEM 사진을 도 10에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 0.9μm, D50 1.8μm, D90 4.5μm Dmax 13.2μm, 탭밀도는 3.1g/cc, 비표면적은 1.6m2/g 이었다.Flaking and post-treatment were carried out in the same manner as in Example 1, except that the milling time was 6 hours using the spherical silver powder, and the SEM image of the obtained fine flake silver powder is shown in FIG. 10. As shown in Table 3, D10 0.9μm, D50 1.8μm, D90 4.5μm Dmax 13.2μm, tap density of 3.1g / cc and specific surface area of the PSA were 1.6m 2 / g.
(6) 비교예 3(6) Comparative Example 3
비교예 1과 동일 방법으로 구형 은 분말을 제조하였다. Spherical silver powder was prepared in the same manner as in Comparative Example 1.
상기 구형 은 분말을 이용하여 회전 속도를 700rpm, 밀링 시간을 6시간으로 한 것 이외에는 실시예 1과 동일한 방법으로 플레이크화 및 후처리 하였으며, 얻어진 플레이크 은 분말의 SEM 사진을 도 11에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 1.3μm, D50 4.5μm, D90 11.2μm Dmax 30.2μm, 탭밀도는 2.0g/cc, 비표면적은 2.4m2/g 이었다.The spherical silver powder was flaked and post-treated in the same manner as in Example 1 except that the rotational speed was 700 rpm and the milling time was 6 hours. The SEM photograph of the obtained flake silver powder is shown in FIG. 11. As shown in Table 3, D10 1.3μm, D50 4.5μm, D90 11.2μm Dmax 30.2μm, tap density 2.0g / cc, specific surface area 2.4M 2 / g by PSA.
(7) 비교예 4(7) Comparative Example 4
실시예 1과 동일한 방법으로 산화은 용액을 제조하였다. 그리고 이 산화은 용액에 50% 농도의 환원 용액 3.0kg을 Dumping 방식으로 첨가하여 응집형 은 분말을 환원시켰다. 이 때 사용한 환원제는 하이드로퀴논이며, 반응온도는 25℃를 유지하였다. 이후, 실시예 1과 동일 방법으로 세정 및 건조하여 응집형 은 분말을 얻었다. A silver oxide solution was prepared in the same manner as in Example 1. Then, 3.0 kg of a 50% concentration reduction solution was added to the silver oxide solution by dumping to reduce the aggregated silver powder. The reducing agent used at this time was hydroquinone, and the reaction temperature was maintained at 25 ° C. Thereafter, the mixture was washed and dried in the same manner as in Example 1 to obtain aggregated silver powder.
이상과 같은 공정으로 얻어진 응집형 은 분말의 SEM 사진을 도 12에 나타내었고, 그 특성은 표 2에 나타낸 것과 같이 1차 입자 지름이 0.1μm 이하, 평균입경이 1.5μm, 비표면적이 3.2 m2/g이었다. The SEM photograph of the aggregated silver powder obtained by the above process is shown in FIG. 12, and the characteristics thereof are as shown in Table 2, the primary particle diameter is 0.1 μm or less, the average particle diameter is 1.5 μm, and the specific surface area is 3.2 m 2. / g.
상기 제조된 응집형 은 분말을 이용하여 실시예 1과 동일한 방법으로 플레이크화 및 후처리 하였으며 얻어진 미세 플레이크 은 분말은 표 3에 나타낸 것과 같이 PSA에 의한 D10 0.5μm, D50 0.8μm, D90 1.3μm Dmax 3.2μm, 탭밀도는 2.8g/cc, 비표면적은 3.1m2/g 이었다.Flake and post-treatment in the same manner as in Example 1 using the prepared aggregated silver powder and obtained fine flake silver powder D10 0.5μm, D50 0.8μm, D90 1.3μm Dmax by PSA as shown in Table 3 The tap density was 3.2 m / g and the specific surface area was 3.1 m 2 / g.
(8) 비교예 5(8) Comparative Example 5
상온의 순수 1765g에 질산은 용액 160g, 암모니아수(농도 25%) 50ml를 넣고 교반하여 용해시켜 pH 6.5~7.0의 은 소스 용액을 조제하였다. 한편 상온의 순수 2000g에 하이드로퀴논 50g, 하이드라진 1g을 넣고 교반하여 용해시켜 환원 용액을 조제하였다.160 g of silver nitrate solution and 50 ml of ammonia water (concentration 25%) were added and dissolved in 1765 g of pure water at room temperature to prepare a silver sauce solution having a pH of 6.5-7.0. Meanwhile, 50 g of hydroquinone and 1 g of hydrazine were added to 2000 g of pure water at room temperature, followed by stirring to prepare a reducing solution.
이어서, 은 소스 용액을 교반한 상태로 하고, 이 은 소스 용액에 환원 용액을 일괄 첨가하여, 첨가 종료 후부터 5분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 원심분리기를 이용하여 은 입자와 반응 용액을 고액 분리하고, 순수를 통해 세척 및 건조 하여 응집형 은 분말을 제조하였다. 이상과 같은 공정으로 얻어진 응집형 은 분말의 SEM 사진을 도 13에 나타내었고, 그 특성은 표 2에 나타낸 것과 같이 1차 입자 지름이 0.8~1.1μm, 평균입경이 8.0μm, 비표면적이 0.4 m2/g이었다. Subsequently, the silver source solution was stirred, the reduction solution was added collectively to this silver source solution, and it stirred for further 5 minutes after completion | finish of addition, and grew particle | grains in the mixed liquid. Thereafter, stirring was stopped, and the silver particles and the reaction solution were solid-liquid separated using a centrifuge, washed and dried through pure water to prepare aggregated silver powder. The SEM photograph of the aggregated silver powder obtained by the above process is shown in FIG. 13, and the characteristics thereof are 0.8-1.1 μm in primary particle diameter, 8.0 μm in average particle diameter, and 0.4 m in specific surface area as shown in Table 2. 2 / g.
상기 제조된 응집형 분말을 이용하여 실시예 1과 동일한 방법으로 플레이크화 및 후처리하였으며, 얻어진 플레이크 은 분말의 SEM 사진을 도 14에 나타내었다. 표 3에 나타낸 것과 같이 PSA에 의한 D10 2.4μm, D50 6.6μm, D90 14.7μm Dmax 34.7μm, 탭밀도는 2.9g/cc, 비표면적은 1.0m2/g 이었다.Flaking and post-treatment were carried out in the same manner as in Example 1 using the prepared aggregated powder, and the SEM photograph of the obtained flake silver powder is shown in FIG. 14. As shown in Table 3, D10 2.4 micrometers, D50 6.6 micrometers, D90 14.7 micrometers Dmax 34.7 micrometers by PSA, 2.9 g / cc of tap densities, and specific surface area were 1.0 m <2> / g.
<전도성 페이스트 제조 및 전극 형성><Conductive Paste Preparation and Electrode Formation>
실시예 및 비교예에 의해 제조된 플레이크 은 분말 75 중량%와 에칠셀룰로오즈 바인더 3 중량%, 부칠캐비톨아세테이트 22 중량%를 혼합, 분산하여 전도성 페이스트를 제조한 뒤, PET film 위에 applicator를 이용하여 도막을 형성한 후, 130℃에서 10분간 건조 후, 전극막의 전도성을 측정하여 표 3에 나타내었다. 75% by weight of the flake silver powder prepared in Examples and Comparative Examples, 3% by weight of ethyl cellulose binder, 22% by weight of butylcarbitol acetate were mixed and dispersed to prepare a conductive paste, and then coated on a PET film using an applicator. After forming, after drying for 10 minutes at 130 ℃, the conductivity of the electrode film was measured and shown in Table 3.
형상shape 1차 입자경(μm)Primary particle size (μm) 평균입경(μm)Average particle size (μm) 비표면적(m2/g)Specific surface area (m 2 / g)
실시예1Example 1 응집형Cohesive 0.1~0.30.1-0.3 3.53.5 2.32.3
실시예 2Example 2 응집형Cohesive 0.2~0.50.2-0.5 4.84.8 1.51.5
실시예 3Example 3 응집형Cohesive 0.4~0.60.4-0.6 8.58.5 1.11.1
비교예 1Comparative Example 1 구형rectangle -- 1.11.1 0.90.9
비교예 2Comparative Example 2 구형rectangle -- 1.11.1 0.90.9
비교예 3Comparative Example 3 구형rectangle -- 1.11.1 0.90.9
비교예 4Comparative Example 4 응집형Cohesive <0.1<0.1 1.51.5 3.23.2
비교예 5Comparative Example 5 응집형Cohesive 0.8~1.10.8 ~ 1.1 8.08.0 0.40.4
PSA(um)PSA (um) 비표면적(m2/g)Specific surface area (m 2 / g) 탭밀도(g/cc)Tap Density (g / cc) 도막 전기 전도도(mΩ/cm)Coating Film Electrical Conductivity (mΩ / cm)
D10D10 D50D50 D90D90 DmaxDmax
실시예1Example 1 0.60.6 1.01.0 2.12.1 4.44.4 2.22.2 3.83.8 20~2220-22
실시예 2Example 2 0.80.8 1.71.7 3.93.9 10.010.0 1.61.6 4.24.2 16~1816-18
실시예 3Example 3 1.01.0 2.52.5 5.45.4 12.012.0 1.21.2 4.34.3 13~1413-14
비교예 1Comparative Example 1 0.80.8 1.41.4 2.72.7 5.85.8 1.21.2 3.43.4 750~880750-880
비교예 2Comparative Example 2 0.90.9 1.81.8 4.54.5 13.213.2 1.61.6 3.13.1 95~11095-110
비교예 3Comparative Example 3 1.31.3 4.54.5 11.211.2 30.230.2 2.42.4 2.02.0 53~6053-60
비교예 4Comparative Example 4 0.50.5 0.80.8 1.31.3 3.23.2 3.13.1 2.82.8 72~8572-85
비교예 5Comparative Example 5 2.42.4 6.66.6 14.714.7 34.734.7 1.01.0 2.92.9 8~98-9
표 3에 나타나는 것과 같이 실시예 1 내지 3 및 비교예 4, 5를 통해 원료 분말인 응집형 분말의 입경에 따라 제조된 플레이크 은 분말의 입도가 제어 가능함을 알 수 있고, 원료분말의 입경이 작을수록 미세 플레이크 은 분말을 제조하기에는 유리하나, 전기 전도성이 좋지 못하고, 입경이 클수록 전기 전도성은 좋으나 미세 플레이크 은 분말을 얻기 어려운 것을 알 수 있었다. As shown in Table 3, it can be seen from Examples 1 to 3 and Comparative Examples 4 and 5 that the particle size of the flake silver powder prepared according to the particle size of the aggregated powder as the raw material powder can be controlled, and that the particle size of the raw powder is small. It was found that the finer the flake silver powder was, the better the electrical conductivity was, and the larger the particle diameter was, the better the electrical conductivity was, but the fine flake silver powder was difficult to obtain.
또한 비교예 1을 통해 구형 분말을 이용하여 미세 플레이크 은 분말을 제조할 수 있으나 부분적으로 플레이크화되어 전도성이 좋지 못함을 알 수 있으며, 비교예 2를 통해 밀링 시간을 증가시킴으로써 기계적 충돌 힘을 증가시켜 플레이크화를 강화하였으나 역시 부분적으로 플레이크화되어 전도성이 좋지 못함을 알 수 있고, 비교예 3을 통해 밀링 시간 뿐만 아니라 회전 속도를 증가시켜 기계적 충돌 힘을 더욱 증가시킴으로써 전도성은 소폭 개선되나 입자 간의 응집이 발생되어 미세 플레이크 은 분말을 얻기 어려운 것을 알 수 있다. In addition, the fine flakes silver powder can be prepared using the spherical powder through Comparative Example 1, but it can be seen that the conductivity is poor due to partial flakes, and by increasing the milling time through Comparative Example 2 by increasing the mechanical impact force Although the flakes have been strengthened but also partially flakes, the conductivity is not good.The comparative example 3 shows that the conductivity is slightly improved by increasing the rotational speed as well as the milling time, thereby increasing the mechanical impact force, but the aggregation between particles is improved. It can be seen that the fine flakes generated are difficult to obtain powder.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like illustrated in the above-described embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.

Claims (8)

  1. 플레이크 은 분말 제조방법으로서,Flake is a powder manufacturing method
    원료분말로서 응집형 은 분말을 사용하여 비즈를 통한 밀링으로 플레이크화된 분말을 얻는 플레이크화 단계(S2);를 포함하며, It includes; flakes step (S2) of obtaining a flake powder by milling through beads using agglomerated silver powder as a raw material powder,
    상기 응집형 은 분말은 일차입자경이 0.1 내지 0.8㎛인 은 입자가 응집되어, 평균 입경이 2.0 내지 10.0㎛이고, 비표면적이 1.0 내지 2.5m2/g인 분말인 플레이크 은 분말 제조방법.The agglomerated silver powder is a flake silver powder manufacturing method of a silver particle having a primary particle diameter of 0.1 to 0.8㎛ aggregated, the average particle diameter is 2.0 to 10.0㎛, a specific surface area of 1.0 to 2.5m 2 / g.
  2. 제1항에 있어서,The method of claim 1,
    상기 플레이크화 하는 단계(S3); 이후에,Flakes (S3); Since the,
    플레이크화된 분말을 비즈와 분리하고, 세척, 건조 및 해쇄하여 플레이크 은 분말을 얻는 후처리 단계(S4);를 더 포함하여,A post-treatment step (S4) of separating the flake powder from the beads, washing, drying and pulverizing to obtain the flake silver powder;
    평균 입경(D50) 0.5 내지 3.0μm, 비표면적 1.0 내지 3.0m2/g, 탭밀도 2.5 내지 4.5g/cc인 플레이크 은 분말을 얻는 플레이크 은 분말 제조방법.A flake silver powder production method for obtaining a flake silver powder having an average particle diameter (D50) of 0.5 to 3.0 µm, a specific surface area of 1.0 to 3.0 m 2 / g, and a tap density of 2.5 to 4.5 g / cc.
  3. 제1항에 있어서,The method of claim 1,
    상기 플레이크화 하는 단계(S2)는 상기 응집형 은 분말을 슬러리화하고, 1 내지 5mm의 비즈를 이용하여 3 내지 6시간 동안 300 내지 700rpm 속도로 밀링하는 단계인 것을 특징으로 하는 플레이크 은 분말 제조방법.The flaking step (S2) is a method of producing a flake silver powder, characterized in that the slurry of the aggregated silver powder, and milling at 300 to 700rpm speed for 3 to 6 hours using beads of 1 to 5mm. .
  4. 제1항에 있어서,The method of claim 1,
    상기 플레이크화 단계(S2); 이전에,The flakes step (S2); Before,
    은(Ag)을 포함하는 은 소스 용액에 환원제를 포함하는 환원 용액을 투입속도를 갖고 투입하여 응집형 은 분말을 제조하는 원료분말 제조단계(S1);를 더 포함하는 플레이크 은 분말 제조방법.Raw material powder production step (S1) of preparing agglomerated silver powder by adding a reducing solution containing a reducing agent to a silver source solution containing silver (Ag) at an input speed (S1); flake silver powder manufacturing method further comprising.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 원료분말 제조단계(S1)는 상기 은 소스 용액 내의 은(Ag) 1kg 당 상기 환원 용액 내의 환원제가 1 내지 100g/min 의 속도로 투입되도록 상기 환원 용액을 투입하여 응집형 은 분말을 제조하는 단계인 것을 특징으로 하는 플레이크 은 분말 제조방법.The raw material powder manufacturing step (S1) is a step of preparing the aggregated silver powder by adding the reducing solution so that the reducing agent in the reducing solution per 1kg of silver (Ag) in the silver source solution is introduced at a rate of 1 to 100g / min Flakes silver powder production method, characterized in that.
  6. 입경이 0.1 내지 0.8㎛인 일차 은 입자가 응집되어, 평균 입경이 2.0 내지 10.0㎛이고, 비표면적이 1.0 내지 2.5m2/g인 응집형 은 분말을 사용하여 비즈를 통한 밀링으로 플레이크화된 분말인 플레이크 은 분말.Primary silver particles having a particle diameter of 0.1 to 0.8 mu m are aggregated and flake powdered by milling through beads using agglomerated silver powder having an average particle diameter of 2.0 to 10.0 mu m and a specific surface area of 1.0 to 2.5 m 2 / g. Phosphorus Flake Silver Powder.
  7. 제6항에 있어서,The method of claim 6,
    상기 플레이크 은 분말은 평균 입경(D50) 0.5 내지 3.0μm, 비표면적 1.0 내지 3.0m2/g, 탭밀도 2.5 내지 4.5g/cc인 것을 특징으로 하는 플레이크 은 분말.The flake silver powder is a flake silver powder, characterized in that the average particle diameter (D50) 0.5 to 3.0μm, specific surface area 1.0 to 3.0m 2 / g, tap density 2.5 to 4.5g / cc.
  8. 제6항의 플레이크 은 분말; 및 바인더 수지;를 포함하는 전도성 페이스트.Flake silver powder of claim 6; And a binder resin.
PCT/KR2016/011090 2016-10-04 2016-10-04 Manufacturing method for flake-type silver powder using agglomerated silver powder WO2018066722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/011090 WO2018066722A1 (en) 2016-10-04 2016-10-04 Manufacturing method for flake-type silver powder using agglomerated silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/011090 WO2018066722A1 (en) 2016-10-04 2016-10-04 Manufacturing method for flake-type silver powder using agglomerated silver powder

Publications (1)

Publication Number Publication Date
WO2018066722A1 true WO2018066722A1 (en) 2018-04-12

Family

ID=61831480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011090 WO2018066722A1 (en) 2016-10-04 2016-10-04 Manufacturing method for flake-type silver powder using agglomerated silver powder

Country Status (1)

Country Link
WO (1) WO2018066722A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055701A (en) * 2001-08-10 2003-02-26 Fukuda Metal Foil & Powder Co Ltd Silver powder for conductive paste and its manufacturing method and conductive paste using the silver powder
KR20080046195A (en) * 2005-09-20 2008-05-26 미쓰이 긴조꾸 고교 가부시키가이샤 Process for producing flaky silver powder and flaky silver powder produced by the process
JP2012092442A (en) * 2010-10-01 2012-05-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2014181399A (en) * 2013-03-21 2014-09-29 Sumitomo Metal Mining Co Ltd Method for manufacturing silver particles
JP2015183200A (en) * 2014-03-20 2015-10-22 住友金属鉱山株式会社 Silver powder and production method thereof
KR20170038465A (en) * 2015-09-30 2017-04-07 엘에스니꼬동제련 주식회사 The manufacturing method of flake silver powder using the agglomerated silver powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055701A (en) * 2001-08-10 2003-02-26 Fukuda Metal Foil & Powder Co Ltd Silver powder for conductive paste and its manufacturing method and conductive paste using the silver powder
KR20080046195A (en) * 2005-09-20 2008-05-26 미쓰이 긴조꾸 고교 가부시키가이샤 Process for producing flaky silver powder and flaky silver powder produced by the process
JP2012092442A (en) * 2010-10-01 2012-05-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2014181399A (en) * 2013-03-21 2014-09-29 Sumitomo Metal Mining Co Ltd Method for manufacturing silver particles
JP2015183200A (en) * 2014-03-20 2015-10-22 住友金属鉱山株式会社 Silver powder and production method thereof
KR20170038465A (en) * 2015-09-30 2017-04-07 엘에스니꼬동제련 주식회사 The manufacturing method of flake silver powder using the agglomerated silver powder

Similar Documents

Publication Publication Date Title
WO2018080092A1 (en) Silver powder and preparation method therefor
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
KR101800605B1 (en) The manufacturing method of silver powder
WO2017043837A1 (en) Method for preparing silver powder using silver grains
JP2013139589A (en) Silver fine particles, method for producing the same, and conductive paste, conductive film, and electronic device containing the silver fine particles
CN111511489B (en) Surface-treated silver powder and method for producing same
WO2018080090A1 (en) Surface-treated silver powder and method for producing same
KR20170038467A (en) The manufacturing method of flake silver powder using the agglomerated silver powder
WO2020071841A1 (en) Silver powder and method for manufacturing same
KR20170038465A (en) The manufacturing method of flake silver powder using the agglomerated silver powder
KR20180078208A (en) Surface treated silver powder and manufacturing method of the same
WO2018066724A1 (en) Method for preparing silver powder
WO2018066722A1 (en) Manufacturing method for flake-type silver powder using agglomerated silver powder
JP7208842B2 (en) Easily crushable copper powder and its production method
KR20120020343A (en) Synthesis method of platy silver powder of size and thickness controlled by addition agents and platy silver powder thereof
CN104575668B (en) A kind of nanometer antiwear conductive silver paste
KR102007856B1 (en) The manufacturing method of silver powder with improved dispersibility
WO2020106120A1 (en) Method for preparing monodispersed silver powder
WO2018066723A1 (en) Method for preparing flake-type silver powder by using agglomerated silver powder
US11920215B2 (en) Easily-crushable copper powder and manufacturing method therefor
WO2018070817A1 (en) Silver powder for high temperature sintering, and preparation method therefor
WO2019088507A1 (en) Silver powder and method for producing same
WO2019088508A1 (en) Method for producing silver powder, and conductive paste comprising silver powder
KR102178010B1 (en) The manufacturing method of silver for easy washing
WO2022097840A1 (en) Silver powder for conductive paste with excellent elasticity, and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918343

Country of ref document: EP

Kind code of ref document: A1