JP2002368152A - Manufacturing method for wiring board - Google Patents

Manufacturing method for wiring board

Info

Publication number
JP2002368152A
JP2002368152A JP2001176687A JP2001176687A JP2002368152A JP 2002368152 A JP2002368152 A JP 2002368152A JP 2001176687 A JP2001176687 A JP 2001176687A JP 2001176687 A JP2001176687 A JP 2001176687A JP 2002368152 A JP2002368152 A JP 2002368152A
Authority
JP
Japan
Prior art keywords
gold
acid
substrate
copper
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001176687A
Other languages
Japanese (ja)
Other versions
JP3918462B2 (en
Inventor
Kiyotomo Nakamura
清智 中村
Ryuichi Nakamura
隆一 中村
Isato Ida
勇人 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2001176687A priority Critical patent/JP3918462B2/en
Publication of JP2002368152A publication Critical patent/JP2002368152A/en
Application granted granted Critical
Publication of JP3918462B2 publication Critical patent/JP3918462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a wiring board, on which a wiring layer containing a wiring pattern and a connection electrode for a semiconductor part is provided, where the surface of a plated layer is surface- treated after the plated layer, of which the uppermost surface is selected from among gold, silver, tin, and solder, is formed on the connection electrode, to assure reliability of connection to the semiconductor part through wet processing. SOLUTION: The surface treatment includes cleaning in a surface treating liquid containing at least among thiourea, tetraethylene pentamine, tetraethylene tetramine, mercaptoacetic acid, oxalia acid, ammonium oxalate, and aminocarboxylic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップ等の
半導体部品を搭載する配線基板の製造方法に関し、ボン
ディング性に優れる配線基板を製造することができる方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a wiring board on which semiconductor components such as semiconductor chips are mounted, and more particularly to a method for manufacturing a wiring board having excellent bonding properties.

【0002】[0002]

【従来の技術】半導体チップに代表される半導体部品の
高集積化に伴い、半導体部品を搭載する、チップキャリ
アあるいはプリント配線板等の配線基板の、半導体部品
との接続電極のピッチもますます狭くなってきている。
接続電極には、ボンディング性を高めるために、金、
銀、錫等がめっきされる。接続電極の狭ピッチ化に伴
い、従来電気めっき法で行われていためっき皮膜形成
は、無電解めっき法へ、まためっき厚も薄膜化の方向へ
移行してきている。すなわち、例えば無電解めっき法に
よる金めっきは置換反応型と還元反応型の組み合わせで
行われるが、このときの置換反応では下地を完全に被覆
することができないため、電気めっき法により得られる
金めっき皮膜よりもピンホールが多く存在する結果にな
りやすい。よって無電解めっき法により形成した金皮膜
は、電気めっき法で得られる金皮膜よりも、加熱による
下地金属の表面拡散の速度が速く、最表面の金属結合に
関与するべき金の露出面積が減少するため結果としてワ
イヤボンディングなどの接合の信頼性を損ないやすくな
る。まためっき厚の薄膜化についても同様なことが言
え、ピンホールの数が同じめっき条件であればめっき皮
膜が薄いほどピンホールが多いという報告は多数されて
おり、この点についても接合の信頼性にとって不利な環
境にあると言える。このような状況を改善するため、従
来はワイヤボンディング工程の直前にプラズマクリーニ
ングをおこなって、ボンディングパッドのごく浅い層を
ドライエッチングによって除去し、フレッシュな金を露
出させ、金ワイヤとの接合信頼性を確保している。
2. Description of the Related Art Along with the high integration of semiconductor components represented by semiconductor chips, the pitch of connection electrodes with semiconductor components on a wiring board such as a chip carrier or a printed wiring board on which the semiconductor components are mounted is becoming increasingly narrower. It has become to.
To improve bonding properties, gold,
Silver, tin, etc. are plated. With the narrowing of the pitch of the connection electrodes, the plating film formation conventionally performed by the electroplating method has been shifted to the electroless plating method, and the plating thickness has also been reduced to a thinner direction. That is, for example, gold plating by an electroless plating method is performed by a combination of a substitution reaction type and a reduction reaction type. However, since the substitution reaction at this time cannot completely cover the base, the gold plating obtained by the electroplating method is used. This tends to result in more pinholes than the coating. Therefore, the gold film formed by the electroless plating method has a higher rate of surface diffusion of the underlying metal due to heating than the gold film obtained by the electroplating method, and the exposed area of gold that should be involved in metal bonding on the outermost surface is reduced. As a result, the reliability of bonding such as wire bonding tends to be impaired. The same can be said of thinning the plating thickness, and there are many reports that the thinner the plating film, the more pinholes if the number of pinholes is the same and the plating conditions are the same. Can be said to be in a disadvantageous environment for In order to improve this situation, plasma cleaning is conventionally performed immediately before the wire bonding process to remove the very shallow layer of the bonding pad by dry etching, exposing fresh gold, and improving the bonding reliability with the gold wire. Is secured.

【0003】[0003]

【発明が解決しようとする課題】チップキャリアあるい
はプリント配線板等の配線基板の製造に用いられる装置
は設備費や製造費をおさえるため、ほとんど常圧下での
ウェット処理となっている。それに対しプラズマクリー
ニング装置は依然として設備投資額がメーカにとって非
常に負担になりかつ、高純度ガスを使用するため加工コ
ストが従来よりも増加するため、配線基板製造メーカー
がプラズマクリーニング装置を導入するのに障害となっ
ている。また高真空環境を必要とするプラズマクリーニ
ング処理装置は、従来よりの基板メーカにはなじみが薄
いため受け入れられにくく、管理運転上の不安がつきま
とう。プラズマクリーニングは、バッチ処理のため一度
に処理できる枚数に限界があり、大量生産には不適であ
る。
An apparatus used for manufacturing a wiring board such as a chip carrier or a printed wiring board is almost wet-processed under normal pressure in order to reduce equipment costs and manufacturing costs. On the other hand, since the cost of capital investment for the plasma cleaning device is still very burdensome for the manufacturer and the processing cost is higher than before due to the use of high-purity gas, it is difficult for wiring board manufacturers to introduce the plasma cleaning device. It is an obstacle. In addition, a plasma cleaning apparatus that requires a high vacuum environment is not easily accepted by conventional substrate manufacturers, and is thus unacceptable, and causes concerns about management operation. Plasma cleaning has a limit on the number of sheets that can be processed at one time due to batch processing, and is unsuitable for mass production.

【0004】本発明の課題とするところは、ウェット処
理により半導体部品との接合信頼性を確保できるような
配線基板の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a wiring board which can ensure the reliability of bonding to a semiconductor component by wet processing.

【0005】[0005]

【問題を解決するための手段】本発明は、係る課題を解
決するものであり、請求項1の発明は、絶縁基板上に、
配線パターン及び半導体部品との接続電極を含む配線層
を有し、前記接続電極上に最表面が金、銀、錫、はんだ
から選ばれるめっき層を形成した後に、前記めっき層表
面を表面処理する配線基板の製造方法において、前記表
面処理が、チオ尿素、テトラエチレンペンタミン、テト
ラエチレンテトラミン、メルカプト酢酸、シュウ酸、シ
ュウ酸アンモニウム、アミノカルボン酸類のうち少なく
とも1つを含む表面処理液で洗浄することを特徴とする
配線基板の製造方法としたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 has the following features.
After having a wiring layer including a wiring pattern and a connection electrode with a semiconductor component, and forming a plating layer having the outermost surface selected from gold, silver, tin, and solder on the connection electrode, the plating layer surface is subjected to a surface treatment. In the method for manufacturing a wiring board, the surface treatment is performed by washing with a surface treatment solution containing at least one of thiourea, tetraethylenepentamine, tetraethylenetetramine, mercaptoacetic acid, oxalic acid, ammonium oxalate, and aminocarboxylic acids. According to another aspect of the present invention, there is provided a method of manufacturing a wiring board.

【0006】本発明の請求項2の発明は、前記表面処理
液が、フッ化水素を含まないことを特徴とする請求項1
記載の配線基板の製造方法としたものである。
According to a second aspect of the present invention, the surface treatment liquid does not contain hydrogen fluoride.
This is a method for manufacturing the wiring board described above.

【0007】本発明の請求項3の発明は、前記表面処理
液が、シュウ酸アンモニウム及びテトラエチレンテトラ
ミンの少なくとも一方と、アミノカルボン酸類を含むこ
とを特徴とする請求項1または請求項2記載の配線基板
の製造方法としたものである。
According to a third aspect of the present invention, the surface treatment liquid contains at least one of ammonium oxalate and tetraethylenetetramine and an aminocarboxylic acid. This is a method for manufacturing a wiring board.

【0008】本発明者は上記課題を解決すべく鋭意研究
を重ねた結果、チオ尿素、テトラエチレンペンタミン、
テトラエチレンテトラミン、メルカプト酢酸、シュウ
酸、シュウ酸アンモニウム、アミノカルボン酸類のうち
の少なくとも一つを含む水溶液へ処理したい配線基板を
浸漬する事により、接続電極に形成されためっき皮膜上
に拡散している下地金属酸化物を取り除くことができる
ことを見いだした。
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that thiourea, tetraethylenepentamine,
By immersing the wiring board to be treated in an aqueous solution containing at least one of tetraethylenetetramine, mercaptoacetic acid, oxalic acid, ammonium oxalate, and aminocarboxylic acids, it is diffused on the plating film formed on the connection electrode. Found that the underlying metal oxide can be removed.

【0009】一般的なプリント配線板およびチップキャ
リア等の配線基板の接続電極に施されるめっきの下地金
属は、すなわちニッケルあるいは銅が多い。ニッケルあ
るいは銅の酸化物に対し水溶液中で速やかに反応し捕捉
し、しかも沈殿、再付着が起きないように、捕捉したま
まで水への高い溶解度を示す物質を考えてみると、分析
化学の分野で一般的に使用されるマスキング剤に相当す
る物質がふさわしいという結論に至った。
The base metal for plating applied to connection electrodes of general printed wiring boards and wiring boards such as chip carriers is generally nickel or copper. Considering a substance that shows high solubility in water as it is trapped so that it reacts and captures nickel or copper oxides promptly in an aqueous solution and does not precipitate or re-adhere, It has been concluded that substances corresponding to masking agents commonly used in the field are suitable.

【0010】銅およびニッケルのマスキング剤として
は、チオ尿素、テトラエチレンペンタミン、テトラエチ
レンテトラミン、メルカプト酢酸、シュウ酸、シュウ酸
アンモニウムおよびアミノカルボン酸類が一般的であ
る。さらにアミノカルボン酸としてはα−アラニン、グ
ルタミン酸、グリシン、イミジノ酢酸、ピコリン酸、シ
ステイン、1,2−ジアミノジクロヘキサンテトラ酢酸
(DCTA)、エチレンジアミンテトラ酢酸(EDT
A)、エチレングリコールビス(2−アミノエチルエー
テル)テトラ酢酸(EGTA)、トランス−1,2−シ
クロヘキサジアミンテトラ酢酸、2−ヒドロキシエチル
エチレンジアミントリ酢酸(HEDTA)ニトリロトリ
酢酸(NTA)、ジエチレントリアミンペンタ酢酸(D
TPA)、等の化合物及びそのアンモニウム塩が使用で
きる。
As masking agents for copper and nickel, thiourea, tetraethylenepentamine, tetraethylenetetramine, mercaptoacetic acid, oxalic acid, ammonium oxalate and aminocarboxylic acids are generally used. Further, as aminocarboxylic acids, α-alanine, glutamic acid, glycine, imidinoacetic acid, picolinic acid, cysteine, 1,2-diaminodichlorohexanetetraacetic acid (DCTA), ethylenediaminetetraacetic acid (EDT)
A), ethylene glycol bis (2-aminoethyl ether) tetraacetic acid (EGTA), trans-1,2-cyclohexadiaminetetraacetic acid, 2-hydroxyethylethylenediaminetriacetic acid (HEDTA) nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (D
TPA), and ammonium salts thereof.

【0011】本発明の表面処理液は、最表面に金皮膜を
有する配線基板に対し特に有効であり、さらに、下地に
銅或いはニッケル或いは銅とニッケルの両方を有する配
線基板について最も有効であるよう検討されているが、
処理液の性質上、最表面の金属が下地金属よりもイオン
化傾向の小さい場合は他の金属にも有効である。たとえ
ば、下地金属として銅を有し最表面に銀皮膜を有するチ
ップキャリアおよびプリント配線板、下地金属として銅
およびニッケルを有し最表面に銀皮膜を有するチップキ
ャリアおよびプリント配線板、下地金属として銅を有し
最表面に錫皮膜を有するチップキャリアおよびプリント
配線板、下地金属として銅およびニッケルを有し最表面
に錫皮膜を有するチップキャリアおよびプリント配線
板、下地金属として銅を有し最表面にパラジウム皮膜を
有するチップキャリアおよびプリント配線板、下地金属
として銅およびニッケルを有し最表面にパラジウム皮膜
を有するチップキャリアおよびプリント配線板などであ
る。
The surface treatment solution of the present invention is particularly effective for a wiring substrate having a gold film on the outermost surface, and is most effective for a wiring substrate having copper or nickel or both copper and nickel as an underlayer. Is being considered,
Due to the properties of the treatment liquid, when the metal on the outermost surface has a lower ionization tendency than the underlying metal, it is effective for other metals. For example, a chip carrier and printed wiring board having copper as a base metal and having a silver film on the outermost surface, a chip carrier and a printed wiring board having copper and nickel as a base metal and having a silver film on the uppermost surface, and copper as a base metal A chip carrier and a printed wiring board having a tin film on the outermost surface, a chip carrier and a printed wiring board having copper and nickel as a base metal and having a tin film on the outermost surface, and having copper as a base metal on the outermost surface Examples include a chip carrier and a printed wiring board having a palladium film, a chip carrier and a printed wiring board having copper and nickel as base metals and having a palladium film on the outermost surface.

【0012】また、本発明の表面処理液は、フッ化水素
を含まないため、接続電極あるいはめっき層が腐食され
ることがなく、ボンディング性が低下することがない。
Further, since the surface treatment liquid of the present invention does not contain hydrogen fluoride, the connection electrode or the plating layer is not corroded and the bonding property is not deteriorated.

【0013】[0013]

【発明の実施の形態】本発明において、絶縁基板として
はエポキシ、ポリイミド等の有機材料やセラミック等の
無機材料があげられる。そして、その上に配線層が形成
されている。ここでいう配線層は、配線パターンと接続
電極を含む。接続電極は、配線パターンと同じ材料工程
で製造されることが一般的であり、材料は銅に代表され
る。接続電極上には各種めっきが施されるが、本発明
は、最表面が金、銀、錫、はんだのいずれかの材料の場
合に適用できるものである。これらのめっきは配線層が
銅で形成され、その上に直接めっきされる場合、即ち下
地が銅である、という場合もあるが、ニッケルめっきを
介して行われる場合もある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, examples of the insulating substrate include organic materials such as epoxy and polyimide and inorganic materials such as ceramic. Then, a wiring layer is formed thereon. The wiring layer here includes a wiring pattern and a connection electrode. The connection electrode is generally manufactured in the same material process as the wiring pattern, and the material is typically copper. Various platings are applied on the connection electrodes. The present invention is applicable when the outermost surface is made of any material of gold, silver, tin, and solder. These platings may be performed when the wiring layer is formed of copper and plated directly thereon, that is, the underlying layer is copper, or may be performed through nickel plating.

【0014】本発明の表面処理液は、処理液中のチオ尿
素、テトラエチレンペンタミン、テトラエチレンテトラ
ミン、メルカプト酢酸、シュウ酸、又はシュウ酸アンモ
ニウムの濃度が好ましくは0.1〜30wt%、さらに
好ましくは1.0〜10wt%である。これらの濃度が
低すぎては処理の効果が十分に得られず、また高濃度に
した場合、濃度に見合った効果が発揮されない恐れがあ
る。
The surface treating solution of the present invention preferably has a concentration of thiourea, tetraethylenepentamine, tetraethylenetetramine, mercaptoacetic acid, oxalic acid or ammonium oxalate in the treating solution of preferably 0.1 to 30% by weight. Preferably it is 1.0 to 10 wt%. If the concentration is too low, the effect of the treatment cannot be sufficiently obtained, and if the concentration is high, the effect corresponding to the concentration may not be exhibited.

【0015】またアミノカルボン酸類としては、α−ア
ラニン、グルタミン酸、グリシン、イミジノ酢酸、ピコ
リン酸、システイン、1,2−ジアミノジクロヘキサン
テトラ酢酸(DCTA)、エチレンジアミンテトラ酢酸
(EDTA)、エチレングリコールビス(2−アミノエ
チルエーテル)テトラ酢酸(EGTA)、トランス−
1,2−シクロヘキサジアミンテトラ酢酸、2−ヒドロ
キシエチルエチレンジアミントリ酢酸(HEDTA)、
ニトリロトリ酢酸(NTA)、ジエチレントリアミンペ
ンタ酢酸(DTPA)、等の化合物及びそのアンモニウ
ム塩が使用できる。
The aminocarboxylic acids include α-alanine, glutamic acid, glycine, imidinoacetic acid, picolinic acid, cysteine, 1,2-diaminodichlorohexanetetraacetic acid (DCTA), ethylenediaminetetraacetic acid (EDTA), ethylene glycol bis ( 2-aminoethyl ether) tetraacetic acid (EGTA), trans-
1,2-cyclohexadiaminetetraacetic acid, 2-hydroxyethylethylenediaminetriacetic acid (HEDTA),
Compounds such as nitrilotriacetic acid (NTA) and diethylenetriaminepentaacetic acid (DTPA) and ammonium salts thereof can be used.

【0016】アミノカルボン酸の濃度としてはその分子
量もよるが、好適な範囲は、0.0001〜10wt
%、さらに好ましくは0.001〜3wt%である。濃
度が低すぎる場合には、処理の効果が十分に得られない
だけでなく、処理液としての寿命が短くなってしまう。
また高濃度にした場合、濃度に見合った効果が発揮され
ない恐れがある。さらに、処理液として十分効果を発揮
させるため、pHは適正に設定することが好ましい。
Although the concentration of the aminocarboxylic acid depends on its molecular weight, a preferable range is from 0.0001 to 10 wt.
%, More preferably 0.001 to 3 wt%. When the concentration is too low, not only the effect of the treatment is not sufficiently obtained, but also the life of the treatment liquid is shortened.
When the concentration is high, the effect corresponding to the concentration may not be exhibited. Further, it is preferable that the pH is appropriately set in order to exert a sufficient effect as the treatment liquid.

【0017】[0017]

【実施例】<実施例1>松下電工製銅箔付ガラスエポキ
シ樹脂基板(FR−4グレード)総厚1.6mm、銅箔
厚36マイクロメートルの、まず銅箔表面をムラタ製酸
性クリーナPAC−200の10wt%水溶液に40
℃、2分間浸漬し脱脂処理をおこなったあと、ムラタ製
ソフトエッチング液MEOX10%と硫酸2vol%の
混合水溶液に30℃、30秒間浸漬し表面の活性化をお
こなった。そののちスルファミン酸ニッケルめっき液に
おいて、50℃、4A/dm2、3分間めっきをおこな
い、水洗、乾燥後、銅箔上に厚さ約1.5マイクロメー
トルのニッケル皮膜を得た。そののち金濃度1.0g/
lの日本高純度化学製ストライク金めっき液において、
30℃、2A/dm2、20秒間めっきをおこない金ス
トライク層を形成し、水洗後、さらにその基板を金濃度
8.0g/lの日本高純度化学製金めっき液において、
70℃、0.4A/dm2、48秒間めっきをおこな
い、水洗、乾燥後、厚さ約0.2マイクロメートルの金
皮膜を形成して基板の作製が完了した。
<Example 1> A glass epoxy resin substrate with copper foil (FR-4 grade, manufactured by Matsushita Electric Works) (FR-4 grade) having a total thickness of 1.6 mm and a copper foil thickness of 36 μm. 40 in 200 wt% aqueous solution of 200
After degreased by immersion at 2 ° C. for 2 minutes, the surface was activated by immersion at 30 ° C. for 30 seconds in a mixed aqueous solution of Murata soft etching solution MEOX 10% and sulfuric acid 2 vol%. Thereafter, plating was performed in a nickel sulfamate plating solution at 50 ° C., 4 A / dm 2 for 3 minutes, washed with water and dried to obtain a nickel film having a thickness of about 1.5 μm on a copper foil. Then gold concentration 1.0g /
1) Strike gold plating solution manufactured by Japan High Purity Chemical Co., Ltd.
A gold strike layer is formed by plating at 30 ° C., 2 A / dm 2 , for 20 seconds, and after washing with water, the substrate is further plated with a gold plating solution of Japan High Purity Chemical Co., Ltd. having a gold concentration of 8.0 g / l.
Plating was performed at 70 ° C., 0.4 A / dm 2 , for 48 seconds, washed with water, dried, and a gold film having a thickness of about 0.2 μm was formed to complete the production of the substrate.

【0018】この基板の金皮膜表面をX線光電子分光分
析装置によりごく表面層の構成元素比率を調べたとこ
ろ、金57.4%、タリウム0.9%、塩素2.5%、
炭素33.4%、酸素5.5%、ニッケル0%、銅0.
3%それぞれ検出された。この基板に対し、直径25マ
イクロメートルの金ワイヤを使用してワイヤボンディン
グをおこない、そのプル強度を測定したところ標本数3
0個の平均値が7.65gでその時の標準偏差は0.5
3であった。
When the surface of the gold film on the substrate was examined for the ratio of the constituent elements of the surface layer by an X-ray photoelectron spectrometer, 57.4% of gold, 0.9% of thallium, 2.5% of chlorine,
33.4% carbon, 5.5% oxygen, 0% nickel, 0% copper.
3% were detected respectively. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured.
The average value of 0 pieces is 7.65 g and the standard deviation at that time is 0.5
It was 3.

【0019】その後の実装工程を想定し、ホットプレー
ト上で180℃、6時間大気圧下で加熱処理をおこな
い、自然放冷後、もう一度X線光電子分光分析装置によ
りごく表面層の構成元素比率を調べたところ、金29.
7%、タリウム0.8%、塩素4.1%、炭素38.6
%、酸素21.8%、ニッケル3.9%、銅1.1%で
あり、金の構成比率が下がり、酸素、ニッケル、銅の構
成比率が上昇していることが確認された。この基板に対
し、直径25マイクロメートルの金ワイヤを使用してワ
イヤボンディングをおこない、そのプル強度を測定した
ところ標本数30個の平均値が6.28gでその時の標
準偏差は0.49であった。
Assuming a subsequent mounting process, heat treatment is performed on a hot plate at 180 ° C. for 6 hours under atmospheric pressure, and after natural cooling, the element ratio of the surface layer is determined again by an X-ray photoelectron spectrometer. Investigation revealed that gold was 29.
7%, thallium 0.8%, chlorine 4.1%, carbon 38.6
%, Oxygen 21.8%, nickel 3.9%, and copper 1.1%, and it was confirmed that the composition ratio of gold decreased and the composition ratio of oxygen, nickel, and copper increased. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured. The average value of 30 samples was 6.28 g, and the standard deviation at that time was 0.49. Was.

【0020】さらにこの基板をシュウ酸アンモニウム5
wt%とEDTA1wt%の混合水溶液に40℃、20
分間浸漬処理し、水洗乾燥後、再びX線光電子分光分析
装置によりごく表面層の構成元素比率を調べたところ、
金54.4%、タリウム0%、塩素0%、炭素34.6
%、酸素10.2%、ニッケル0.4%、銅0.3%で
あり、金比率が加熱前の数値近くまで回復し、酸素、ニ
ッケル、銅の比率も加熱前の状態近くまで回復している
ことを確認した。この基板に対し、直径25マイクロメ
ートルの金ワイヤを使用してワイヤボンディングをおこ
ない、そのプル強度を測定したところ標本数30個の平
均値が8.81gでその時の標準偏差は0.43であっ
た。
Further, this substrate is treated with ammonium oxalate 5
40 ° C, 20%
After immersion treatment for minutes, washing with water and drying, the composition ratio of the very surface layer was examined again by X-ray photoelectron spectroscopy.
54.4% gold, 0% thallium, 0% chlorine, 34.6% carbon
%, Oxygen 10.2%, nickel 0.4%, copper 0.3%, the gold ratio recovers to near the value before heating, and the oxygen, nickel, copper ratio also recovers to near the state before heating. Confirmed that. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and the pull strength was measured. The average value of 30 samples was 8.81 g, and the standard deviation at that time was 0.43. Was.

【0021】<実施例2>実施例1と同じ工程で厚さ約
1.5マイクロメートルのニッケル皮膜を形成した銅箔
付きガラスエポキシ樹脂基板に対し、金ストライク層を
形成せずに金濃度8.0g/lの日本高純度化学製金め
っき液において、70℃、0.4A/dm2、48秒間
めっきをおこない、水洗、乾燥後、厚さ約0.2マイク
ロメートルの金皮膜を形成し基板の作製が完了した。
<Embodiment 2> A gold concentration of 8 was applied to a glass epoxy resin substrate with a copper foil on which a nickel film having a thickness of about 1.5 μm was formed in the same process as in Embodiment 1 without forming a gold strike layer. In a 0.0 g / l gold plating solution manufactured by Japan High Purity Chemical Co., plating was performed at 70 ° C., 0.4 A / dm 2 for 48 seconds, washed with water, dried, and a gold film having a thickness of about 0.2 μm was formed. Was completed.

【0022】この基板の金皮膜表面をX線光電子分光分
析装置によりごく表面層の構成元素比率を調べたとこ
ろ、金61.0%、タリウム1.1%、塩素0.2%、
炭素31.1%、酸素5.9%、ニッケル0%、銅0.
7%それぞれ検出された。この基板に対し、直径25マ
イクロメートルの金ワイヤを使用してワイヤボンディン
グをおこない、そのプル強度を測定したところ標本数3
0個の平均値が8.31gでその時の標準偏差は0.3
2であった。
The surface of the gold film on the substrate was examined by X-ray photoelectron spectroscopy to determine the ratio of the constituent elements of the surface layer. As a result, 61.0% of gold, 1.1% of thallium, 0.2% of chlorine,
Carbon 31.1%, oxygen 5.9%, nickel 0%, copper 0.
7% were detected respectively. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured.
The average value of 0 pieces is 8.31 g and the standard deviation at that time is 0.3
It was 2.

【0023】その後の実装工程を想定し、ホットプレー
ト上で180℃、6時間大気圧下で加熱処理をおこな
い、自然放冷後、もう一度X線光電子分光分析装置によ
りごく表面層の構成元素比率を調べたところ、金27.
5%、タリウム0.5%、塩素6.6%、炭素41.7
%、酸素19.9%、ニッケル3.5%、銅0.4%で
あり、金の構成比率が下がり、酸素、ニッケル、銅の構
成比率が上昇していることが確認された。この基板に対
し、直径25マイクロメートルの金ワイヤを使用してワ
イヤボンディングをおこない、そのプル強度を測定した
ところ標本数30個の平均値が5.52gでその時の標
準偏差は0.29であった。
Assuming a subsequent mounting process, heat treatment is performed on a hot plate at 180 ° C. for 6 hours under atmospheric pressure, and after natural cooling, the element ratio of the surface layer is determined again by an X-ray photoelectron spectrometer. Investigation revealed that gold was 27.
5%, thallium 0.5%, chlorine 6.6%, carbon 41.7
%, Oxygen 19.9%, nickel 3.5%, and copper 0.4%. It was confirmed that the composition ratio of gold decreased and the composition ratio of oxygen, nickel, and copper increased. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and the pull strength was measured. The average value of 30 samples was 5.52 g, and the standard deviation at that time was 0.29. Was.

【0024】さらにこの基板をシュウ酸アンモニウム5
wt%とEDTA1wt%の混合水溶液に40℃、20
分間浸漬処理し、水洗乾燥後、再びX線光電子分光分析
装置によりごく表面層の構成元素比率を調べたところ、
金51.5%、タリウム0%、塩素0%、炭素37.9
%、酸素10.1%、ニッケル0%、銅0.5%であ
り、金比率が加熱前の数値近くまで上昇し、酸素、ニッ
ケル、銅の比率も加熱前の状態近くまで低下しているこ
とを確認した。この基板に対し、直径25マイクロメー
トルの金ワイヤを使用してワイヤボンディングをおこな
い、そのプル強度を測定したところ標本数30個の平均
値が8.33gでその時の標準偏差は0.36であっ
た。
Further, this substrate was treated with ammonium oxalate 5
40 ° C, 20%
After immersion treatment for minutes, washing with water and drying, the composition ratio of the very surface layer was examined again by X-ray photoelectron spectroscopy.
51.5% gold, 0% thallium, 0% chlorine, 37.9% carbon
%, Oxygen 10.1%, nickel 0%, copper 0.5%, the gold ratio has increased to near the value before heating, and the oxygen, nickel and copper ratio has also decreased to near the state before heating. It was confirmed. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured. The average value of 30 samples was 8.33 g, and the standard deviation at that time was 0.36. Was.

【0025】<実施例3>実施例1と同じ工程で基板を
作製し、同じ条件で加熱処理をおこなった基板に対しE
DTA0.0002wt%の混合水溶液に40℃、20
分間浸漬処理し、水洗乾燥後、再びX線光電子分光分析
装置によりごく表面層の構成元素比率を調べたところ、
金45.9%、タリウム0%、塩素0%、炭素43.3
%、酸素10.5%、ニッケル0%、銅0.3%それぞ
れ検出された。この基板に対し、直径25マイクロメー
トルの金ワイヤを使用してワイヤボンディングをおこな
い、そのプル強度を測定したところ標本数30個の平均
値が7.44gでその時の標準偏差は0.60であっ
た。
<Embodiment 3> A substrate was manufactured in the same steps as in Embodiment 1 and subjected to heat treatment under the same conditions.
DTA 0.0002 wt% mixed aqueous solution at 40 ° C, 20
After immersion treatment for minutes, washing with water and drying, the composition ratio of the very surface layer was examined again by X-ray photoelectron spectroscopy.
45.9% gold, 0% thallium, 0% chlorine, 43.3% carbon
%, Oxygen 10.5%, nickel 0%, and copper 0.3%, respectively. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured. The average value of 30 samples was 7.44 g, and the standard deviation at that time was 0.60. Was.

【0026】<実施例4>実施例2と同じ工程で基板を
作製し、同じ条件で加熱処理をおこなった基板に対しE
DTA0.0002wt%の混合水溶液に40℃、20
分間浸漬処理し、水洗乾燥後、再びX線光電子分光分析
装置によりごく表面層の構成元素比率を調べたところ、
金28.5%、タリウム0%、塩素0%、炭素55.3
%、酸素15.6%、ニッケル0%、銅0.6%それぞ
れ検出された。この基板に対し、直径25マイクロメー
トルの金ワイヤを使用してワイヤボンディングをおこな
い、そのプル強度を測定したところ標本数30個の平均
値が7.22gでその時の標準偏差は0.66であっ
た。
<Embodiment 4> A substrate was manufactured in the same process as in Embodiment 2 and subjected to heat treatment under the same conditions.
DTA 0.0002 wt% mixed aqueous solution at 40 ° C, 20
After immersion treatment for minutes, washing with water and drying, the composition ratio of the very surface layer was examined again by X-ray photoelectron spectroscopy.
Gold 28.5%, thallium 0%, chlorine 0%, carbon 55.3
%, Oxygen 15.6%, nickel 0%, and copper 0.6%. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and the pull strength was measured. The average value of 30 samples was 7.22 g, and the standard deviation at that time was 0.66. Was.

【0027】<実施例5>ニッカン工業製フレキシブル
基板(商品名:パイララックス)基材厚50マイクロメ
ートル、接着剤厚13マイクロメートル、銅箔厚18マ
イクロメートルの、銅箔表面をムラタ製酸性クリーナP
AC200の10wt%水溶液に40℃、2分間浸漬し
脱脂処理をおこなったあと、ムラタ製ソフトエッチング
液MEOX10vol%と硫酸2vol%の混合水溶液
に30℃、30秒間浸漬し、塩化パラジウムの塩酸溶液
に10秒浸漬して触媒の活性化をおこなった。そして上
村工業製無電解ニッケルめっき液ニムデンNPR−4に
おいて、80℃、10分間めっきをおこない、水洗、乾
燥後、銅箔上に厚さ約2.5マイクロメートルのニッケ
ル皮膜を得た。そののち金濃度1.0g/lの小島化学
薬品製置換型ストライク無電解金めっき液オーエル2に
おいて、90℃、5分間めっきをおこない金ストライク
層を形成し、水洗後、さらにその基板を金濃度8.0g
/lの小島化学薬品製自己触媒型無電解金めっき液オー
レットにおいて、65℃、5分間めっきをおこない、水
洗、乾燥後、厚さ約0.5マイクロメートルの金皮膜を
形成し基板の作製が完了した。
Example 5 A flexible substrate (trade name: Pyralux) manufactured by Nickan Kogyo Co., Ltd. A substrate thickness of 50 μm, an adhesive thickness of 13 μm, and a copper foil thickness of 18 μm. P
After immersion in a 10 wt% aqueous solution of AC200 at 40 ° C. for 2 minutes to perform a degreasing treatment, the resultant was immersed in a mixed aqueous solution of 10 vol% of Murata's soft etching solution MEOX and 2 vol% of sulfuric acid at 30 ° C. for 30 seconds, and 10% in a hydrochloric acid solution of palladium chloride. The catalyst was activated by immersion for 2 seconds. Then, plating was performed at 80 ° C. for 10 minutes in an electroless nickel plating solution Nimden NPR-4 manufactured by Uemura Kogyo Co., Ltd., and after washing with water and drying, a nickel film having a thickness of about 2.5 μm was obtained on the copper foil. Then, a gold strike layer was formed by plating at 90 ° C. for 5 minutes in a substitution type electroless gold plating solution OEL 2 made by Kojima Chemical Co., Ltd. having a gold concentration of 1.0 g / l, and after washing with water, the substrate was further subjected to gold concentration. 8.0g
/ L of Kojima Chemical's self-catalytic electroless gold plating solution oulet, plated at 65 ° C for 5 minutes, washed with water, dried, and formed a gold film with a thickness of about 0.5 micrometer. Completed.

【0028】この基板の金皮膜表面をX線光電子分光分
析装置によりごく表面層の構成元素比率を調べたとこ
ろ、金55.3%、タリウム0.2%、塩素1.2%、
炭素34.2%、酸素7.8%、ニッケル0.3%、銅
0.8%それぞれ検出された。この基板に対し、直径2
5マイクロメートルの金ワイヤを使用してワイヤボンデ
ィングをおこない、そのプル強度を測定したところ標本
数30個の平均値が8.96gでその時の標準偏差は
0.37であった。
When the surface of the gold film on the substrate was examined for the ratio of the constituent elements of the surface layer by an X-ray photoelectron spectrometer, 55.3% of gold, 0.2% of thallium, 1.2% of chlorine,
34.2% of carbon, 7.8% of oxygen, 0.3% of nickel, and 0.8% of copper were detected. This substrate has a diameter of 2
Wire bonding was performed using a gold wire of 5 micrometers, and the pull strength was measured. The average value of 30 samples was 8.96 g, and the standard deviation at that time was 0.37.

【0029】その後の実装工程を想定し、ホットプレー
ト上で180℃、6時間大気圧下で加熱処理をおこな
い、自然放冷後、もう一度X線光電子分光分析装置によ
りごく表面層の構成元素比率を調べたところ、金27.
1%、タリウム0.3%、塩素4.8%、炭素37.6
%、酸素20.5%、ニッケル3.4%、銅6.3%で
あり、金の構成比率が下がり、酸素、銅の構成比率が上
昇していることが確認された。この基板に対し、直径2
5マイクロメートルの金ワイヤを使用してワイヤボンデ
ィングを試みたが、ボンディング条件を種々変えてみた
が安定してボンディングをすることができなかった。
Assuming the subsequent mounting process, heat treatment is performed on a hot plate at 180 ° C. for 6 hours under atmospheric pressure, and after natural cooling, the element ratio of the surface layer is determined again by an X-ray photoelectron spectrometer. Investigation revealed that gold was 27.
1%, thallium 0.3%, chlorine 4.8%, carbon 37.6
%, Oxygen 20.5%, nickel 3.4%, and copper 6.3%, and it was confirmed that the composition ratio of gold decreased and the composition ratio of oxygen and copper increased. This substrate has a diameter of 2
Although wire bonding was attempted using a gold wire of 5 micrometers, the bonding conditions were variously changed, but stable bonding could not be performed.

【0030】さらにこの基板をテトラエチレンテトラミ
ン5wt%とEDTA1wt%の混合水溶液に40℃、
20分間浸漬処理し、水洗乾燥後、再びX線光電子分光
分析装置によりごく表面層の構成元素比率を調べたとこ
ろ、金52.9%、タリウム0%、塩素0%、炭素3
6.7%、酸素9.8%、ニッケル0%、銅0.6%で
あり、金比率が加熱前の数値近くまで回復し、酸素、銅
の比率も加熱前の状態近くまで回復していることを確認
した。この基板に対し、直径25マイクロメートルの金
ワイヤを使用してワイヤボンディングをおこない、その
プル強度を測定したところ標本数30個の平均値が9.
42gでその時の標準偏差は0.33であった。
Further, the substrate was placed in a mixed aqueous solution of 5 wt% of tetraethylenetetramine and 1 wt% of EDTA at 40 ° C.
After immersion treatment for 20 minutes, washing with water and drying, the composition ratio of the very surface layer was examined again by an X-ray photoelectron spectroscopy apparatus. As a result, 52.9% of gold, 0% of thallium, 0% of chlorine, and 3% of carbon
6.7%, Oxygen 9.8%, Nickel 0%, Copper 0.6%, the gold ratio recovered to near the value before heating, and the oxygen and copper ratio also recovered to near the state before heating. I confirmed that. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured.
At 42 g, the standard deviation at that time was 0.33.

【0031】<実施例6>実施例5と同じ工程で厚さ約
2.5マイクロメートルのニッケル皮膜を形成したフレ
キシブル基板に対し、上村工業製置換型ストライク無電
解金めっき液TKK−51において、85℃、10分間
めっきをおこない金ストライク層を形成し、水洗後、さ
らにその基板を上村工業製置換型厚づけ無電解金めっき
液TSK−25において、85℃、20分間めっきをお
こない、水洗、乾燥後、厚さ約0.5マイクロメートル
の金皮膜を形成し基板の作製が完了した。
Example 6 A flexible substrate on which a nickel film having a thickness of about 2.5 μm was formed in the same process as in Example 5 was subjected to a substitutional strike electroless gold plating solution TKK-51 manufactured by Uemura Kogyo Co., Ltd. After plating at 85 ° C. for 10 minutes to form a gold strike layer and washing with water, the substrate is further plated at 85 ° C. for 20 minutes with a substitution type thickening electroless gold plating solution TSK-25 manufactured by Uemura Kogyo, After drying, a gold film having a thickness of about 0.5 μm was formed, and the production of the substrate was completed.

【0032】この基板の金皮膜表面をX線光電子分光分
析装置によりごく表面層の構成元素比率を調べたとこ
ろ、金62.1%、タリウム1.3%、塩素2.1%、
炭素30.1%、酸素3.6%、ニッケル0.8%、銅
0%それぞれ検出された。この基板に対し、直径25マ
イクロメートルの金ワイヤを使用してワイヤボンディン
グをおこない、そのプル強度を測定したところ標本数3
0個の平均値が9.08gでその時の標準偏差は0.4
7であった。
The surface of the gold film on the substrate was examined by X-ray photoelectron spectroscopy to determine the ratio of the constituent elements of the surface layer. The ratio was 62.1% for gold, 1.3% for thallium, 2.1% for chlorine,
30.1% of carbon, 3.6% of oxygen, 0.8% of nickel, and 0% of copper were detected. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured.
The average value of 0 pieces is 9.08 g and the standard deviation at that time is 0.4
It was 7.

【0033】その後の実装工程を想定し、ホットプレー
ト上で180℃、6時間大気圧下で加熱処理をおこな
い、自然放冷後、もう一度X線光電子分光分析装置によ
りごく表面層の構成元素比率を調べたところ、金23.
7%、タリウム0.7%、塩素6.1%、炭素36.6
%、酸素20.7%、ニッケル2.7%、銅9.6%で
あり、金の構成比率が下がり、酸素、銅の構成比率が上
昇していることが確認された。この基板に対し、直径2
5マイクロメートルの金ワイヤを使用してワイヤボンデ
ィングを試みたが、ボンディング条件を種々変えてみた
が安定してボンディングをすることができなかった。
Assuming the subsequent mounting process, a heat treatment is performed on a hot plate at 180 ° C. for 6 hours under atmospheric pressure, and after natural cooling, the element ratio of the surface layer is determined again by an X-ray photoelectron spectrometer. Investigation revealed that 23.
7%, thallium 0.7%, chlorine 6.1%, carbon 36.6
%, Oxygen 20.7%, nickel 2.7%, and copper 9.6%, and it was confirmed that the composition ratio of gold decreased and the composition ratio of oxygen and copper increased. This substrate has a diameter of 2
Although wire bonding was attempted using a gold wire of 5 micrometers, the bonding conditions were variously changed, but stable bonding could not be performed.

【0034】さらにこの基板をテトラエチレンテトラミ
ン5wt%とEDTA1wt%の混合水溶液に40℃、
20分間浸漬処理し、水洗乾燥後、再びX線光電子分光
分析装置によりごく表面層の構成元素比率を調べたとこ
ろ、金49.3%、タリウム0%、塩素0%、炭素4
1.7%、酸素8.8%、ニッケル0%、銅0.3%で
あり、金比率が加熱前の数値近くまで上昇し、酸素、銅
の比率も加熱前の状態近くまで低下していることを確認
した。この基板に対し、直径25マイクロメートルの金
ワイヤを使用してワイヤボンディングをおこない、その
プル強度を測定したところ標本数30個の平均値が9.
14gでその時の標準偏差は0.42であった。
Further, this substrate was placed in a mixed aqueous solution of 5 wt% of tetraethylenetetramine and 1 wt% of EDTA at 40 ° C.
After immersion treatment for 20 minutes, washing with water, and drying, the composition ratio of the very surface layer was examined again by an X-ray photoelectron spectroscopy apparatus. As a result, 49.3% of gold, 0% of thallium, 0% of chlorine, and 4% of carbon
1.7%, oxygen 8.8%, nickel 0%, copper 0.3%, gold ratio rises to near the value before heating, oxygen and copper ratio also drops to near the state before heating. I confirmed that. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured.
At 14 g, the standard deviation at that time was 0.42.

【0035】<実施例7>実施例5と同じ工程で基板を
作製し、同じ条件で加熱処理をおこなった基板に対しN
TA0.0002wt%の混合水溶液に40℃、20分
間浸漬処理し、水洗乾燥後、再びX線光電子分光分析装
置によりごく表面層の構成元素比率を調べたところ、金
47.9%、タリウム0%、塩素0%、炭素38.9
%、酸素12.4%、ニッケル0%、銅0.8%それぞ
れ検出された。この基板に対し、直径25マイクロメー
トルの金ワイヤを使用してワイヤボンディングをおこな
い、そのプル強度を測定したところ標本数30個の平均
値が8.23gでその時の標準偏差は0.42であっ
た。
<Embodiment 7> A substrate was manufactured in the same process as in Embodiment 5 and subjected to a heat treatment under the same conditions.
After immersion treatment in a mixed aqueous solution of TA 0.0002 wt% at 40 ° C. for 20 minutes, washing with water and drying, the compositional ratio of the very surface layer was examined again by means of an X-ray photoelectron spectroscopy. The result was 47.9% gold and 0% thallium. , 0% chlorine, 38.9 carbon
%, Oxygen 12.4%, nickel 0%, and copper 0.8%, respectively. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured. The average value of 30 samples was 8.23 g, and the standard deviation at that time was 0.42. Was.

【0036】<実施例8>実施例6と同じ工程で基板を
作製し、同じ条件で加熱処理をおこなった基板に対しN
TA0.0002wt%の混合水溶液に40℃、20分
間浸漬処理し、水洗乾燥後、再びX線光電子分光分析装
置によりごく表面層の構成元素比率を調べたところ、金
49.3%、タリウム0%、塩素0%、炭素41.7
%、酸素8.8%、ニッケル0%、銅0.3%それぞれ
検出された。この基板に対し、直径25マイクロメート
ルの金ワイヤを使用してワイヤボンディングをおこな
い、そのプル強度を測定したところ標本数30個の平均
値が7.63gでその時の標準偏差は0.57であっ
た。
<Embodiment 8> A substrate was manufactured in the same process as in Embodiment 6, and subjected to heat treatment under the same conditions.
After immersion treatment in a mixed aqueous solution of TA 0.0002 wt% at 40 ° C. for 20 minutes, washing with water, and drying, the compositional ratio of the very surface layer was examined again by X-ray photoelectron spectroscopy. , 0% chlorine, 41.7 carbon
%, Oxygen 8.8%, nickel 0%, and copper 0.3%. The substrate was subjected to wire bonding using a gold wire having a diameter of 25 micrometers, and its pull strength was measured. The average value of 30 samples was 7.63 g, and the standard deviation at that time was 0.57. Was.

【0037】以上のように本願発明の方法によれば、ワ
イヤボンディングの強度が向上し、接合信頼性が確保で
きた。
As described above, according to the method of the present invention, the strength of wire bonding was improved, and the bonding reliability was secured.

【0038】[0038]

【発明の効果】本発明の請求項1記載の発明によれば、
絶縁基板上に、配線パターン及び半導体部品との接続電
極を含む配線層を有し、前記接続電極上に最表面が金、
銀、錫、はんだから選ばれるめっき層を形成した後に、
前記めっき層表面を表面処理する配線基板の製造方法に
おいて、前記表面処理を、チオ尿素、テトラエチレンペ
ンタミン、テトラエチレンテトラミン、メルカプト酢
酸、シュウ酸、シュウ酸アンモニウム、アミノカルボン
酸類のうち少なくとも1つを含む表面処理液で洗浄する
ため、接続電極のボンディング性が高い配線基板を製造
することができる。
According to the first aspect of the present invention,
On the insulating substrate, has a wiring layer including a wiring pattern and a connection electrode with a semiconductor component, the outermost surface is gold on the connection electrode,
After forming a plating layer selected from silver, tin and solder,
In the method for manufacturing a wiring board, wherein the plating layer surface is surface-treated, at least one of thiourea, tetraethylenepentamine, tetraethylenetetramine, mercaptoacetic acid, oxalic acid, ammonium oxalate, and aminocarboxylic acids Since the substrate is washed with a surface treatment solution containing, a wiring substrate having high connection electrode bonding properties can be manufactured.

【0039】本発明の請求項2記載の発明によれば、請
求項1記載の発明において、前記表面処理液が、フッ化
水素を含まないため、接続電極あるいはめっき層が腐食
され、ボンディング性が低下することがない。
According to the second aspect of the present invention, in the first aspect of the invention, since the surface treatment liquid does not contain hydrogen fluoride, the connection electrode or the plating layer is corroded, and the bonding property is reduced. It does not drop.

【0040】本発明の請求項3記載の発明によれば、請
求項1または請求項3記載の発明において、前記表面処
理液が、シュウ酸アンモニウム及びテトラエチレンテト
ラミンの少なくとも一方と、アミノカルボン酸類を含む
ため、特に接続電極のボンディング性が高い配線基板を
製造することができる。
According to a third aspect of the present invention, in the first or the third aspect, the surface treatment solution comprises at least one of ammonium oxalate and tetraethylenetetramine and an aminocarboxylic acid. Therefore, it is possible to manufacture a wiring board having particularly high connection electrode bonding properties.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に、配線パターン及び半導体部
品との接続電極を含む配線層を有し、前記接続電極上に
最表面が金、銀、錫、はんだから選ばれるめっき層を形
成した後に、前記めっき層表面を表面処理する配線基板
の製造方法において、前記表面処理が、チオ尿素、テト
ラエチレンペンタミン、テトラエチレンテトラミン、メ
ルカプト酢酸、シュウ酸、シュウ酸アンモニウム、アミ
ノカルボン酸類のうち少なくとも1つを含む表面処理液
で洗浄することを特徴とする配線基板の製造方法。
1. A wiring layer including a wiring pattern and a connection electrode with a semiconductor component is formed on an insulating substrate, and a plating layer whose outermost surface is selected from gold, silver, tin and solder is formed on the connection electrode. Later, in the method of manufacturing a wiring board surface treatment of the plating layer surface, the surface treatment is at least thiourea, tetraethylenepentamine, tetraethylenetetramine, mercaptoacetic acid, oxalic acid, ammonium oxalate, aminocarboxylic acids A method for manufacturing a wiring board, comprising washing with a surface treatment solution containing at least one of the above.
【請求項2】前記表面処理液が、フッ化水素を含まない
ことを特徴とする請求項1記載の配線基板の製造方法。
2. The method according to claim 1, wherein the surface treatment liquid does not contain hydrogen fluoride.
【請求項3】前記表面処理液が、シュウ酸アンモニウム
及びテトラエチレンテトラミンの少なくとも一方と、ア
ミノカルボン酸類を含むことを特徴とする請求項1また
は請求項2記載の配線基板の製造方法。
3. The method according to claim 1, wherein the surface treatment liquid contains at least one of ammonium oxalate and tetraethylenetetramine and an aminocarboxylic acid.
JP2001176687A 2001-06-12 2001-06-12 Wiring board manufacturing method Expired - Fee Related JP3918462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176687A JP3918462B2 (en) 2001-06-12 2001-06-12 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176687A JP3918462B2 (en) 2001-06-12 2001-06-12 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2002368152A true JP2002368152A (en) 2002-12-20
JP3918462B2 JP3918462B2 (en) 2007-05-23

Family

ID=19017638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176687A Expired - Fee Related JP3918462B2 (en) 2001-06-12 2001-06-12 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3918462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066998A (en) * 2005-08-29 2007-03-15 Kyocera Corp Wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066998A (en) * 2005-08-29 2007-03-15 Kyocera Corp Wiring board
JP4721827B2 (en) * 2005-08-29 2011-07-13 京セラ株式会社 Wiring board manufacturing method

Also Published As

Publication number Publication date
JP3918462B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
KR100688833B1 (en) Method for plating on printed circuit board and printed circuit board produced therefrom
US6869637B2 (en) Bath and method of electroless plating of silver on metal surfaces
WO2011027884A1 (en) Substrate for mounting semiconductor chip and method for producing same
JP3662010B2 (en) Alloy plating solution for surface treatment of modular printed circuit boards
US20130058062A1 (en) Method for manufacturing base material having gold-plated metal fine pattern, base material having gold-plated metal fine pattern, printed wiring board, interposer, and semiconductor device
EP0497925A1 (en) Method for printed circuit board pattern making using selectively etchable metal layers.
JP2012511105A (en) Electroless palladium plating solution and usage
US6503343B1 (en) Controlled plating on reactive metals
KR100933243B1 (en) Electroless Gold Plating Process and Gold Layer Forming Process
JPS6227393A (en) Formation of copper film on ceramic substrate
JP2004019003A (en) Printed circuit board and plating method thereon
CN1639385A (en) Immersion plating of silver
JP5978587B2 (en) Semiconductor package and manufacturing method thereof
JP2622016B2 (en) Copper polyimide substrate and method for manufacturing printed wiring board using the same
JP3918462B2 (en) Wiring board manufacturing method
WO2003040432A1 (en) Nickel-based surface treatment films excellent in heat-resistant adhesion to resin
JP2018040030A (en) Surface treatment method of copper component and production method of semiconductor packaging substrate
KR100619345B1 (en) Method for plating on printed circuit board for semi-conductor package and printed circuit board produced therefrom
JP3299370B2 (en) Non-cyanide silver plating method and non-cyanide solution used therefor
JP2008147495A (en) Connecting terminal, substrate for mounting semiconductor chip using same, semiconductor package, its manufacturing method, wiring board, and its manufacturing method
JP3567539B2 (en) Electronic component substrate and method of manufacturing the same
JP2005317729A (en) Connection terminal, semiconductor package using the same, and method for manufacturing semiconductor package
TWI820379B (en) Electroless plating process and double-layer coating
JPH07326848A (en) Washing method for gold-plated molded substrate
JP3765709B2 (en) Manufacturing method of plated metal plates and strips for heat sinks of electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees