JP2002294311A - Method for producing metal grain powder - Google Patents

Method for producing metal grain powder

Info

Publication number
JP2002294311A
JP2002294311A JP2001096834A JP2001096834A JP2002294311A JP 2002294311 A JP2002294311 A JP 2002294311A JP 2001096834 A JP2001096834 A JP 2001096834A JP 2001096834 A JP2001096834 A JP 2001096834A JP 2002294311 A JP2002294311 A JP 2002294311A
Authority
JP
Japan
Prior art keywords
particle powder
nickel
solution
aqueous solution
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001096834A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hayashi
一之 林
Hiroko Morii
弘子 森井
Mineko Osugi
峰子 大杉
Kikuo Okuyama
喜久夫 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2001096834A priority Critical patent/JP2002294311A/en
Publication of JP2002294311A publication Critical patent/JP2002294311A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fine and dense metal grain powder which has excellent dispersibility and high purity with high productivity. SOLUTION: An aqueous solution of nickel acetate, or an aqueous solution of nickel formate, or an aqueous solution of copper acetate, or an aqueous solution of copper formate is used as an atomizing thermal decomposition solution, and spherical metal grain powder is obtained by an atomizing thermal decomposition method. In this production method, the atomizing is performed under the reduced pressure of the atomizing thermal decomposition solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微細で分散性に優れた
緻密で純度が高い球状金属粒子粉末を生産性よく得るこ
とができる金属粒子粉末の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal particle powder capable of obtaining a fine, high-dispersion spherical metal particle powder having excellent dispersibility with high productivity.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化、高性能化
及び軽量化に伴い、電子機器部品、例えば積層コンデン
サなどに対しても小型化、高容量化の要求が強まってい
る。
2. Description of the Related Art In recent years, with the miniaturization, high performance, and light weight of various electronic devices, there has been an increasing demand for miniaturization and high capacitance of electronic device components such as multilayer capacitors.

【0003】そして、前記積層コンデンサの主要部は、
複数の誘電体層と内部電極が交互に積層されたコンデン
サ本体と外部電極から構成されており、積層コンデンサ
の小型化及び高容量化を図るために、誘電体層と内部電
極を薄くして多層化する手法が知られている。
The main part of the multilayer capacitor is as follows:
It consists of a capacitor body and external electrodes in which a plurality of dielectric layers and internal electrodes are alternately stacked.To reduce the size and increase the capacitance of the multilayer capacitor, the dielectric layers and internal electrodes are thinned to form a multilayer. There is a known technique.

【0004】そして、前記積層コンデンサに供せられる
ニッケル粒子粉末や銅粒子粉末は、通常ペースト化して
用いられるため、薄く、均一な皮膜が形成できること、
デラミネーション(層間剥離現象)等の発生を抑制する
ために焼成時の収縮が小さいこと及び電気抵抗が小さい
こと等の理由から、凝集がなく分散性に優れ、しかも緻
密で純度が高いことが要求されている。
[0004] Since the nickel particle powder and copper particle powder to be provided to the multilayer capacitor are usually used in the form of a paste, a thin and uniform film can be formed.
In order to suppress the occurrence of delamination (delamination phenomenon) and the like, it is required that there is no coagulation, excellent dispersibility, denseness and high purity due to small shrinkage during firing and low electrical resistance. Have been.

【0005】また、従来の内部電極層は通常1〜2μm
程度であったため、これに用いられるニッケル粒子粉末
や銅粒子粉末の粒子サイズは、0.1〜1μm程度の粒
子サイズのものが用いられていたが、近時における積層
コンデンサの小型化及び高容量化の要求から、内部電極
の薄層化による積層コンデンサの多層化が進んでおり、
それに伴いニッケル粒子粉末や銅粒子粉末の粒子サイズ
の微粒子化が望まれている。
Further, the conventional internal electrode layer usually has a thickness of 1-2 μm.
Therefore, the particle size of the nickel particle powder and the copper particle powder used for this was about 0.1 to 1 μm, but recently the miniaturization and high capacity of the multilayer capacitor have been used. Demand for the use of multilayer capacitors has been increasing by increasing the thickness of the internal electrodes.
Accordingly, it is desired to reduce the particle size of the nickel particle powder and the copper particle powder.

【0006】上記のような特性を有する金属粒子粉末の
製造法としては、特開平5−105922号公報に開示
されている熱分解法又は特開平8−170112号公
報、特開平11−80818号公報及び特開平11−2
36607号公報に開示されている噴霧熱分解法が知ら
れている。
[0006] As a method for producing the metal particle powder having the above-mentioned characteristics, the thermal decomposition method disclosed in JP-A-5-105922 or JP-A-8-170112 and JP-A-11-80818 are disclosed. And JP-A-11-2
A spray pyrolysis method disclosed in 36607 is known.

【0007】[0007]

【発明が解決しようとする課題】前掲各公報記載の球状
ニッケル粒子粉末や球状銅粒子粉末を工業的に製造する
場合には、次のような問題点がある。
The following problems arise when the spherical nickel particle powder and the spherical copper particle powder described in the above-mentioned publications are manufactured industrially.

【0008】即ち、特開平5−105922号公報に
は、無水ギ酸ニッケルを非酸化性雰囲気下又は減圧下に
おいて160〜300℃で熱分解して0.05〜0.3
μmのニッケル微粒子粉末を得る方法が記載されている
が、得られるニッケル粒子は真球状を呈しておらず、ま
た、原料中に含まれる不純物を含んでいるため、純度が
要求される用途においては不利となる。
That is, Japanese Patent Application Laid-Open No. H05-105922 discloses that nickel formate anhydride is thermally decomposed at 160 to 300 ° C. in a non-oxidizing atmosphere or under reduced pressure to a temperature of 0.05 to 0.3.
Although a method of obtaining a nickel fine particle powder of μm is described, the obtained nickel particles do not exhibit a true spherical shape, and also contain impurities contained in the raw material, so that in applications where purity is required, Disadvantageous.

【0009】また、特開平8−170112号公報に
は、噴霧熱分解を特定の加熱温度領域で行う方法が記載
されているが、特定の加熱温度領域におけるキャリアガ
スの流速などの滞留時間が考慮されておらず、粒径の揃
った緻密な球状ニッケル粒子粉末や球状銅粒子粉末を工
業的に得ることは困難である。
Japanese Patent Application Laid-Open No. 8-170112 discloses a method in which spray pyrolysis is performed in a specific heating temperature range, but the residence time such as the flow rate of the carrier gas in the specific heating temperature range is taken into consideration. However, it is difficult to industrially obtain dense spherical nickel particle powder or spherical copper particle powder having a uniform particle diameter.

【0010】また、特開平11−80818号公報記載
の噴霧熱分解法は、還元性ガスを1〜35vol%(実
施例では16.7vol%)含ませたキャリアガスを用
いているので、工業的に不利である。
In the spray pyrolysis method described in Japanese Patent Application Laid-Open No. H11-80818, a carrier gas containing a reducing gas in an amount of 1 to 35 vol% (16.7 vol% in the embodiment) is used. Disadvantageous.

【0011】また、特開平11−236607号公報記
載の噴霧熱分解法では、添加剤としてアンモニア又は過
酸化水素溶液を用いて錯体化することにより、還元性ガ
スを用いることなく金属粒子粉末を製造しているが、錯
体を形成する必要があることから工業的とは言い難いも
のである。
In the spray pyrolysis method described in JP-A-11-236607, a metal particle powder is produced without using a reducing gas by complexing with an ammonia or hydrogen peroxide solution as an additive. However, it is difficult to say that it is industrial because it is necessary to form a complex.

【0012】また、特開平8−170112号公報、特
開平11−80818号公報及び特開平11−2366
07号公報には、噴霧熱分解における噴霧方法として、
二流体ノズルや超音波噴霧が記載されているが、各公報
の実施例に示されている通り、これらの方法で得られる
球状金属粒子粉末は、粒子サイズが0.6〜1.3μm
と大きいものである。そのため、粒子サイズの小さい金
属粒子粉末を得るためには原料溶液濃度を薄くする等の
製造条件を制御することが必要となるため生産性が悪
く、微細化にも限度がある。
Also, JP-A-8-170112, JP-A-11-80818 and JP-A-11-2366.
No. 07 discloses a spray method in spray pyrolysis.
Although two-fluid nozzles and ultrasonic spraying are described, the spherical metal particles obtained by these methods have a particle size of 0.6 to 1.3 μm, as shown in the examples of each publication.
It is a big one. Therefore, in order to obtain a metal particle powder having a small particle size, it is necessary to control production conditions such as reducing the concentration of a raw material solution, so that productivity is poor and miniaturization is limited.

【0013】なお、特開平3−131560号公報に
は、超伝導体を構成する各種金属粉体をそれぞれ噴霧熱
分解によって個々の金属酸化物粒子粉末を得た後、加熱
焼結して超伝導体を製造する方法が記載されているが、
銅化合物として酢酸銅(Cu(CHCOO))を用
いると共に酸素をキャリアガスとして用いて噴霧熱分解
法によって酸化銅(CuO)を得ており、還元雰囲気下
で金属粒子粉末を得ることについては考慮されていな
い。
Japanese Patent Application Laid-Open No. 3-131560 discloses that various metal powders constituting a superconductor are individually obtained by spray pyrolysis to obtain individual metal oxide particle powders, which are then sintered by heating and sintering. Although a method of manufacturing the body is described,
Copper oxide (CuO) is obtained by a spray pyrolysis method using copper acetate (Cu (CH 3 COO) 2 ) and oxygen as a carrier gas as a copper compound, and obtaining metal particle powder in a reducing atmosphere. Is not taken into account.

【0014】そこで、本発明は、分散性に優れた緻密で
純度が高い球状金属粒子粉末を噴霧熱分解法によって生
産性よく製造することを技術的課題とする。
Accordingly, it is a technical object of the present invention to produce dense and high-purity spherical metal particle powder having excellent dispersibility by spray pyrolysis with good productivity.

【0015】[0015]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。
The above technical object can be achieved by the present invention as described below.

【0016】即ち、本発明は、酢酸ニッケル水溶液若し
くはギ酸ニッケル水溶液又は酢酸銅水溶液若しくはギ酸
銅水溶液を噴霧熱分解溶液として用いて噴霧熱分解法に
よって球状金属粒子粉末を得る金属粒子粉末の製造法に
おいて、前記噴霧熱分解溶液を減圧して噴霧することを
特徴とする金属粒子粉末の製造法である。
That is, the present invention relates to a method for producing metal particle powder by a spray pyrolysis method using an aqueous nickel acetate solution or an aqueous nickel nickel solution or an aqueous copper acetate solution or an aqueous copper formate solution as a spray pyrolysis solution. And spraying the spray pyrolysis solution under reduced pressure.

【0017】本発明の構成を詳述すれば、次の通りであ
る。
The structure of the present invention will be described below in detail.

【0018】本発明に用いる噴霧熱分解溶液は、酢酸ニ
ッケル水溶液若しくはギ酸ニッケル水溶液又は酢酸銅水
溶液若しくはギ酸銅水溶液であり、当該各水溶液を減圧
噴霧して噴霧熱分解を行うことにより、キャリアガス中
に含有させる還元性ガスの使用量を低減することができ
ると共に、目的とする球状金属粒子粉末を生産性よく得
ることができる。
The spray pyrolysis solution used in the present invention is an aqueous solution of nickel acetate or nickel nickel formate, or an aqueous solution of copper acetate or copper formate. In addition to reducing the amount of reducing gas to be contained, the desired spherical metal particle powder can be obtained with high productivity.

【0019】噴霧熱分解溶液の濃度は、目的とする金属
粒子粉末の粒子サイズとマイクロフィルターの細孔径に
応じて決めればよく、0.001mol/l以上が好ま
しく、より好ましくは0.005mol/l以上であ
る。0.001mol/l未満の場合には、得られる球
状金属粒子粉末の収量が低く、生産性が低下するため好
ましくない。得られる球状金属粒子粉末の粒度分布を考
慮すれば、噴霧熱分解溶液の濃度の上限値は好ましくは
0.5mol/lであり、より好ましくは0.4mol
/lである。
The concentration of the spray pyrolysis solution may be determined according to the particle size of the target metal particles and the pore size of the microfilter, and is preferably 0.001 mol / l or more, more preferably 0.005 mol / l. That is all. If the amount is less than 0.001 mol / l, the yield of the obtained spherical metal particles is low, and the productivity is undesirably reduced. Considering the particle size distribution of the obtained spherical metal particles, the upper limit of the concentration of the spray pyrolysis solution is preferably 0.5 mol / l, more preferably 0.4 mol / l.
/ L.

【0020】本発明における噴霧熱分解法では、噴霧熱
分解溶液を減圧雰囲気下、マイクロフィルターを通すこ
とによって噴霧する。マイクロフィルターの細孔径は、
目的とする金属粒子粉末の粒子径に応じて決めればよい
が、1〜100μmが好ましい。また、系内の圧力は、
常に一定になるようコントロールする必要があり、1.
33〜93.1kPaの間が好ましい。
In the spray pyrolysis method of the present invention, the spray pyrolysis solution is sprayed by passing through a microfilter under a reduced pressure atmosphere. The pore size of the microfilter is
It may be determined according to the particle size of the target metal particle powder, but it is preferably 1 to 100 μm. The pressure in the system is
It is necessary to control so that it is always constant.
It is preferably between 33 and 93.1 kPa.

【0021】マイクロフィルターを通して噴霧した液滴
は、還元性ガスを含有するキャリアガスによって加熱炉
中に導入される。還元性ガスとしては水素ガス、COガ
ス、アンモニアガス等を用いることができるが、工業的
には水素ガスが好ましい。キャリアガスとしては不活性
ガスであれば特に限定されるものではないが、好ましく
は窒素である。
The droplets sprayed through the microfilter are introduced into a heating furnace by a carrier gas containing a reducing gas. As the reducing gas, hydrogen gas, CO gas, ammonia gas and the like can be used, but hydrogen gas is preferable from an industrial viewpoint. The carrier gas is not particularly limited as long as it is an inert gas, but is preferably nitrogen.

【0022】本発明においては酢酸塩水溶液又はギ酸塩
水溶液を用いるため、還元性ガスを少なくすることがで
きる。還元性ガスの濃度は1.0vol%未満が好まし
く、より好ましくは0.9vol%以下である。
In the present invention, since an aqueous solution of acetate or aqueous solution of formate is used, the amount of reducing gas can be reduced. The concentration of the reducing gas is preferably less than 1.0 vol%, more preferably 0.9 vol% or less.

【0023】キャリアガスの流速は1.0〜10cm/
secが好ましい。
The flow rate of the carrier gas is 1.0 to 10 cm /
sec is preferred.

【0024】加熱炉は、5段以上設けることが好まし
く、3段目以降で最高温度に達するように温度勾配を持
たせることが好ましい。1段目から高温で加熱した場合
には、急激な反応が生じるため緻密な球状金属粒子粉末
を得ることが困難となる。
The heating furnace is preferably provided in five or more stages, and preferably has a temperature gradient so as to reach the maximum temperature in the third and subsequent stages. When heating at a high temperature from the first stage, a rapid reaction occurs, so that it is difficult to obtain dense spherical metal particle powder.

【0025】加熱炉の温度は、具体的には1段目が20
0〜400℃であり、2段目が450〜650℃、3段
目以降が750〜1000℃とすることが好ましい。
The temperature of the heating furnace is, specifically, 20 at the first stage.
The temperature is preferably from 0 to 400 ° C, the second stage is preferably from 450 to 650 ° C, and the third and subsequent stages preferably from 750 to 1000 ° C.

【0026】また、加熱炉の1段の長さLと炉芯管の直
径Dの比L/Dは5以上であることが好ましい。L/D
が5未満の場合には、1つの加熱炉に滞留する時間が短
くなるため得られる球状金属粒子粉末の粒度分布が悪く
なる。工業的な生産性を考慮した場合、L/Dの上限値
は50である。
The ratio L / D of the length L of one stage of the heating furnace to the diameter D of the furnace core tube is preferably 5 or more. L / D
Is less than 5, the residence time in one heating furnace is shortened, so that the particle size distribution of the obtained spherical metal particle powder deteriorates. In consideration of industrial productivity, the upper limit of L / D is 50.

【0027】熱分解が終了した金属粒子粉末は、常法に
従い、バグフィルター、電気集じん機などによって集め
る。
The thermally decomposed metal particle powder is collected by a bag filter, an electric precipitator or the like according to a conventional method.

【0028】本発明によって得られるニッケル粒子粉末
は、球状を呈しており、平均粒子径が0.001〜0.
1μmであり(必要に応じて0.005〜0.08μm
にできる)、幾何標準偏差値が2.0以下であり(必要
に応じて1.8以下にできる)、BET比表面積値が1
〜100m/gであり(必要に応じて1.5〜80m
/gにできる)、密度比が0.75〜1.0であり
(必要に応じて0.8〜1.0にできる)、体積固有抵
抗値が1.0〜9.5×10Ω・cm(必要に応じて
1.0〜5.0×10Ω・cmにできる)である。ま
た、結晶性は4000以上である。
The nickel particle powder obtained by the present invention has a spherical shape and an average particle diameter of 0.001 to 0.5.
1 μm (0.005 to 0.08 μm if necessary
), The geometric standard deviation value is 2.0 or less (it can be 1.8 or less if necessary), and the BET specific surface area value is 1
100100 m 2 / g (1.5 to 80 m if necessary)
2 / g), the density ratio is 0.75 to 1.0 (can be 0.8 to 1.0 if necessary), and the volume resistivity is 1.0 to 9.5 × 10 3. Ω · cm (can be set to 1.0 to 5.0 × 10 3 Ω · cm if necessary). The crystallinity is 4000 or more.

【0029】本発明によって得られる銅粒子粉末は、球
状を呈し、平均粒子径が0.001〜0.1μmであり
(必要に応じて0.005〜0.08μmにできる)、
幾何標準偏差値が2.0以下(必要に応じて1.8以下
にできる)、BET比表面積値が1〜100m/gで
あり(必要に応じて1.5〜80m/gにできる)、
密度比が0.75〜1.0であり(必要に応じて0.8
〜1.0にできる)、体積固有抵抗値が1.0〜9.5
×10Ω・cm(必要に応じて1.0〜5.0×10
Ω・cmにできる)である。また、結晶性は4000
以上である。
The copper particle powder obtained by the present invention has a spherical shape, an average particle diameter of 0.001 to 0.1 μm (can be 0.005 to 0.08 μm if necessary),
The geometric standard deviation value is 2.0 or less (can be 1.8 or less if necessary), and the BET specific surface area value is 1 to 100 m 2 / g (if necessary, it can be 1.5 to 80 m 2 / g). ),
The density ratio is 0.75 to 1.0 (0.8 if necessary)
To 1.0), and the volume resistivity is 1.0 to 9.5.
× 10 3 Ω · cm (1.0 to 5.0 × 10 if necessary
3 Ω · cm). The crystallinity is 4000
That is all.

【0030】[0030]

【発明の実施の形態】本発明の代表的な実施の形態は、
次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.
It is as follows.

【0031】粒子粉末の平均粒子径は、電子顕微鏡写真
を縦方向及び横方向にそれぞれ4倍に拡大した写真に示
される粒子約350個について、粒子径を測定し、その
平均値で示した。
The average particle diameter of the particle powder was obtained by measuring the particle diameter of about 350 particles shown in a photograph obtained by enlarging the electron micrograph four times in the vertical and horizontal directions, and indicating the average value.

【0032】粒子粉末の粒子径の幾何標準偏差値は次の
方法により求めた値で示した。即ち、前記拡大写真に示
される粒子の粒子径を測定した値を、その測定値から計
算して求めた粒子の実際の粒子径と個数から、統計学的
手法に従って、対数正規確率紙上の横軸に粒子径を、縦
軸に所定の粒子径区間のそれぞれに属する粒子の累積個
数(積算フルイ下)を百分率でプロットした。そしてこ
のグラフから粒子の累積個数が50%及び84.13%
のそれぞれに相当する粒子径の値を読み取り、幾何標準
偏差値=(積算フルイ下84.13%における粒子径)
/(積算フルイ下50%における粒子径(幾何平均
径))に従って算出した値で示した。幾何標準偏差値が
1に近いほど、粒子の粒子径の粒度が優れていることを
意味する。
The geometric standard deviation of the particle diameter of the particle powder was shown by the value obtained by the following method. In other words, the value obtained by measuring the particle diameter of the particles shown in the enlarged photograph, the actual particle diameter and the number of particles calculated from the measured values, according to a statistical method, the horizontal axis on the lognormal probability paper , And the vertical axis plots the cumulative number of particles belonging to each of the predetermined particle diameter sections (under the integrated screen) in percentage. From this graph, the cumulative number of particles is 50% and 84.13%.
Is read, and the geometric standard deviation value = (particle size at 84.13% under the integrated screen)
/ (Particle diameter (geometric mean diameter) at 50% under the integrated screen). The closer the geometric standard deviation value is to 1, the better the particle size of the particles is.

【0033】比表面積値はBET法により測定した値で
示した。
The specific surface area was indicated by a value measured by the BET method.

【0034】粉体の密度比は、「マルチボリューム 密
度計 1305型」(マイクロメリティクス社製)を用
いて各粉体の密度を測定し、各金属粉体の真密度(Ni
=8.845g/cm、Cu=8.92g/cm
との比によって求めた。
The density ratio of the powder is determined by measuring the density of each powder using a “multi-volume densitometer 1305 type” (manufactured by Micromeritics) and determining the true density (Ni
= 8.845 g / cm 3 , Cu = 8.92 g / cm 3 )
And the ratio was determined.

【0035】金属粒子粉末の結晶性は、「X線回折装置
RAD−IIA」(理学電機工業株式会社製)(管
球:Fe)を使用し、2θが3〜105°の範囲で測定
し、得られた最強線のピーク強度で示した。
The crystallinity of the metal particle powder was measured using an “X-ray diffractometer RAD-IIA” (manufactured by Rigaku Denki Kogyo Co., Ltd.) (tube: Fe) in a range of 2θ of 3 to 105 °. The peak intensity of the obtained strongest line was shown.

【0036】金属粒子粉末の体積固有抵抗値は、先ず、
試料粒子粉末0.5gを秤り取り、KBr錠剤成形器
(株式会社島津製作所製)を用いて、1.372×10
Pa(140Kg/cm)の圧力で加圧成形を行
い、円柱状の被測定試料を作製した。
First, the volume resistivity value of the metal particle powder is as follows:
0.5 g of the sample particle powder was weighed out, and using a KBr tablet press (manufactured by Shimadzu Corporation), 1.372 × 10
Pressure molding was performed at a pressure of 7 Pa (140 kg / cm 2 ) to produce a cylindrical sample to be measured.

【0037】次に、被測定試料(円柱状)を25℃、相
対湿度60%の環境下に12時間以上曝露した後、この
被測定試料をステンレス電極の間にセットし、ホイート
ストンブリッジ(TYPE2768、横河北辰電機株式
会社製)で15Vの電圧を印加して抵抗値R(Ω)を測
定する。
Next, after the sample to be measured (columnar shape) was exposed to an environment of 25 ° C. and a relative humidity of 60% for 12 hours or more, the sample to be measured was set between stainless steel electrodes, and a Wheatstone bridge (TYPE 2768, A voltage of 15 V is applied by Yokogawa Hokushin Electric Co., Ltd.) to measure the resistance value R (Ω).

【0038】次に、被測定試料の上面の面積A(c
)と厚みt(cm)を測定し、数1にそれぞれの
測定値を代入して、体積固有抵抗値(Ω・cm)を求め
た。
Next, the area A (c) of the upper surface of the sample to be measured
m 2 ) and thickness t 0 (cm) were measured, and the respective measured values were substituted into Equation 1 to determine a volume specific resistance value (Ω · cm).

【0039】[0039]

【数1】 体積固有抵抗値(Ω・cm)=R×(A/t) 但し、Rは実測の抵抗値である。[Formula 1] Volume specific resistance (Ω · cm) = R × (A / t 0 ) where R is an actually measured resistance.

【0040】<球状金属粒子粉末の製造>濃度が0.1
5mol/lのギ酸ニッケル水溶液を細孔径3.0μm
のマイクロフィルターを通して、系内圧力が66.5k
Paの雰囲気下の加熱炉中に噴霧し、系内の圧力を6
6.5kPaで一定に制御して水素ガスを0.5vol
%含有する窒素ガスをキャリアガスとして流速5.0c
m/secで系内に導入した。なお、用いた加熱炉のL
/Dは30であった。
<Production of spherical metal particle powder>
5 mol / l aqueous solution of nickel formate with a pore diameter of 3.0 μm
66.5k through the micro filter
Spray into a heating furnace in an atmosphere of Pa, and set the pressure in the system to 6
Control the hydrogen gas constant at 6.5 kPa and supply 0.5 vol of hydrogen gas.
% Nitrogen gas as a carrier gas at a flow rate of 5.0 c
It was introduced into the system at m / sec. In addition, L of the heating furnace used
/ D was 30.

【0041】加熱炉の一段目から五段目までの加熱温度
をそれぞれ300℃、600℃、800℃、800℃、
800℃とし、エアロゾル中の溶剤を徐々に蒸発させた
後、熱処理を行って、エアロゾル中で熱分解反応を生じ
させた。加熱炉出口にバグフィルターを設置して粒子を
捕集した。
The heating temperature from the first stage to the fifth stage of the heating furnace is 300 ° C., 600 ° C., 800 ° C., 800 ° C., respectively.
After setting the temperature to 800 ° C. and gradually evaporating the solvent in the aerosol, a heat treatment was performed to cause a thermal decomposition reaction in the aerosol. A bag filter was installed at the heating furnace outlet to collect particles.

【0042】得られたニッケル粒子粉末は球状を呈して
おり、平均粒子径が0.025μm、幾何標準偏差値が
1.48、BET比表面積値が41.2m/g、密度
比が0.80、体積固有抵抗値が4.1×10Ω・c
m、結晶性が8100であった。得られた球状ニッケル
粒子粉末の電子顕微鏡観察の結果、ほぼ真球状粒子が得
られていることが確認できた。
The obtained nickel particle powder has a spherical shape, an average particle size of 0.025 μm, a geometric standard deviation of 1.48, a BET specific surface area of 41.2 m 2 / g, and a density ratio of 0. 80, the volume resistivity is 4.1 × 10 2 Ω · c
m and crystallinity were 8100. As a result of electron microscopic observation of the obtained spherical nickel particle powder, it was confirmed that substantially spherical particles were obtained.

【0043】[0043]

【作用】本発明において最も重要な点は、噴霧熱分解の
噴霧方法として減圧噴霧法を用いることにより、従来の
二流体ノズルや超音波噴霧方法では非常に生産性の悪か
った0.1μm以下の微細な球状金属粒子粉末を生産性
よく得ることができること及び酢酸ニッケル水溶液若し
くはギ酸ニッケル水溶液又は酢酸銅水溶液若しくはギ酸
銅水溶液を噴霧熱分解溶液として用いたことによって、
還元性ガスの使用量を低減でき、しかも、分散性に優れ
た緻密で純度が高い球状金属粒子粉末を得ることができ
るという事実である。
The most important point in the present invention is that the use of a reduced pressure spraying method as a spraying method for spray pyrolysis makes it possible to reduce the productivity to 0.1 μm or less, which was extremely poor in the conventional two-fluid nozzle or ultrasonic spraying method. By being able to obtain fine spherical metal particle powder with good productivity and by using an aqueous solution of nickel acetate or an aqueous solution of nickel formate or an aqueous solution of copper acetate or copper formate as a spray pyrolysis solution,
This is a fact that the amount of the reducing gas used can be reduced, and moreover, a dense and high-purity spherical metal particle powder excellent in dispersibility can be obtained.

【0044】減圧噴霧法を用いることによって0.1μ
m以下の微細な球状金属粒子粉末を生産性よく得ること
が可能となった理由について、本発明者は、従来の超音
波噴霧法等では、噴霧する液滴の大きさをコントロール
することができないため、液滴に含まれる原料成分の濃
度を低く抑えることによって微細な球状金属粒子粉末を
生成しているため、単位時間当たりの収量を上げること
が困難であったが、本発明においては、マイクロフィル
ターの細孔径を選択し、系内の圧力を一定にコントロー
ルすることによって、0.001〜0.1μmの微細な
球状金属粒子粉末を得ることができるため、原料溶液の
濃度を低く抑える必要がなく、そのため、単位時間当た
りの収量を上げることができたものと考えている。
By using the reduced pressure spray method, 0.1 μm
The present inventors cannot control the size of droplets to be sprayed by a conventional ultrasonic spraying method or the like, because it is possible to obtain fine spherical metal particles having a particle size of m or less with good productivity. Therefore, it is difficult to increase the yield per unit time because the fine spherical metal particle powder is generated by suppressing the concentration of the raw material components contained in the droplet to be low. By selecting the pore size of the filter and controlling the pressure in the system to be constant, fine spherical metal particles of 0.001 to 0.1 μm can be obtained, so that it is necessary to keep the concentration of the raw material solution low. Therefore, we believe that the yield per unit time could be increased.

【0045】還元性ガスの使用量が低減できる理由とし
て、本発明者は、酢酸ニッケル若しくはギ酸ニッケル又
は酢酸銅若しくはギ酸銅の熱分解時に還元性のCOガス
が発生することによるものと考えている。
The present inventor believes that the amount of the reducing gas used can be reduced because the reducing CO gas is generated during the thermal decomposition of nickel acetate or nickel formate, or copper acetate or copper formate. .

【0046】また、本発明においては、加熱炉の段数を
多くして温度調節をより厳密に行い、更に、加熱炉の3
段以降で最高温度になるように温度調節することによっ
て、球状粒子で粒度分布が優れ、しかも、中空粒子を含
まない緻密な粒子粉末を得ることができたものと考えて
いる。
Further, in the present invention, the number of stages of the heating furnace is increased to more strictly control the temperature.
It is believed that by adjusting the temperature to the highest temperature after the step, it was possible to obtain a fine particle powder having excellent particle size distribution with spherical particles and containing no hollow particles.

【0047】[0047]

【実施例】次に、実施例並びに比較例を挙げる。Next, examples and comparative examples will be described.

【0048】実施例1〜4、比較例1〜4、参考例1:
出発原料の種類、原料溶液の濃度、マイクロフィルター
の細孔径、系内の圧力、キャリアガスの種類及び流速、
還元性ガスの種類及び濃度、加熱炉の温度及びL/Dを
種々変化させた以外は、前記発明の実施の形態と同様に
して球状金属粒子粉末を得た。
Examples 1-4, Comparative Examples 1-4, Reference Example 1:
Type of starting material, concentration of material solution, pore size of micro filter, pressure in system, type and flow rate of carrier gas,
Spherical metal particles were obtained in the same manner as in the embodiment of the invention except that the type and concentration of the reducing gas, the temperature of the heating furnace, and the L / D were variously changed.

【0049】このときの製造条件を表1に、得られた球
状金属粒子粉末の諸特性を表2に示す。
The production conditions at this time are shown in Table 1, and various properties of the obtained spherical metal particles are shown in Table 2.

【0050】参考例1 濃度が0.01mol/lの酢酸ニッケル水溶液500
mlを超音波型噴霧器に入れた。超音波強度を50mW
とし、酢酸ニッケル水溶液の液面から、エアロゾルが発
生していることを確認した後、水素ガスを0.1vol
%含有する窒素ガスをキャリアガスとして使用し、管内
の流速が2cm/secになるように、セラミック製加
熱炉に導入した。なお、用いた加熱炉のL/Dは50で
あった。
Reference Example 1 An aqueous nickel acetate solution having a concentration of 0.01 mol / l 500
ml was placed in an ultrasonic nebulizer. Ultrasonic strength of 50mW
After confirming that aerosol was generated from the liquid surface of the nickel acetate aqueous solution, 0.1 vol of hydrogen gas was supplied.
% Nitrogen gas was used as a carrier gas and introduced into a ceramic heating furnace such that the flow rate in the tube was 2 cm / sec. The L / D of the heating furnace used was 50.

【0051】加熱炉の一段目から五段目までの加熱温度
をそれぞれ250℃、500℃、800℃、850℃、
850℃とし、エアロゾル中の溶剤を徐々に蒸発させた
後、熱処理を行って、エアロゾル中で熱分解反応を生じ
させた。加熱炉出口に電気集塵器を設置して粒子を捕集
した。このとき集塵機入口のエアロゾルに対し、直流5
000Vの電圧によるコロナ放電処理を行い、強制的に
荷電させて、電気集塵器での捕集効率を高めた。
The heating temperature from the first stage to the fifth stage of the heating furnace is 250 ° C., 500 ° C., 800 ° C., 850 ° C., respectively.
After setting the temperature to 850 ° C. and gradually evaporating the solvent in the aerosol, a heat treatment was performed to cause a thermal decomposition reaction in the aerosol. An electric precipitator was installed at the outlet of the heating furnace to collect particles. At this time, DC 5
Corona discharge treatment was performed with a voltage of 000 V to force charging, thereby increasing the collection efficiency of the electrostatic precipitator.

【0052】このときの製造条件を表1に、得られた球
状金属粒子粉末の諸特性を表2に示す。
The production conditions at this time are shown in Table 1, and various characteristics of the obtained spherical metal particles are shown in Table 2.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】本発明によれば、分散性に優れた緻密で
純度の高い球状金属粒子粉末を生産性よく得ることがで
きる。
According to the present invention, dense and high-purity spherical metal particles having excellent dispersibility can be obtained with high productivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山 喜久夫 広島県東広島市鏡山1丁目4番1号広島大 学工学部内 Fターム(参考) 4K017 AA03 BA03 BA05 CA01 DA01 DA08 EJ02 EK05 FA02 FB06 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kikuo Okuyama 1-4-1 Kagamiyama, Higashihiroshima City, Hiroshima Pref. Hiroshima University Faculty of Engineering F-term (reference)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酢酸ニッケル水溶液若しくはギ酸ニッケ
ル水溶液又は酢酸銅水溶液若しくはギ酸銅水溶液を噴霧
熱分解溶液として用いて噴霧熱分解法によって球状金属
粒子粉末を得る金属粒子粉末の製造法において、前記噴
霧熱分解溶液を減圧して噴霧することを特徴とする金属
粒子粉末の製造法。
1. A method for producing spherical metal particle powder by a spray pyrolysis method using a nickel acetate aqueous solution, a nickel nickel formate aqueous solution, a copper acetate aqueous solution or a copper formate aqueous solution as a spray pyrolysis solution. A method for producing metal particle powder, comprising spraying a decomposition solution under reduced pressure.
JP2001096834A 2001-03-29 2001-03-29 Method for producing metal grain powder Withdrawn JP2002294311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096834A JP2002294311A (en) 2001-03-29 2001-03-29 Method for producing metal grain powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096834A JP2002294311A (en) 2001-03-29 2001-03-29 Method for producing metal grain powder

Publications (1)

Publication Number Publication Date
JP2002294311A true JP2002294311A (en) 2002-10-09

Family

ID=18950705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096834A Withdrawn JP2002294311A (en) 2001-03-29 2001-03-29 Method for producing metal grain powder

Country Status (1)

Country Link
JP (1) JP2002294311A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041427A1 (en) * 2002-11-08 2004-05-21 Dai-Ichi Kogyo Seiyaku Co., Ltd. Inorganic fine particles, inorganic raw material powder, and method for production thereof
EP1484430A2 (en) * 2003-06-03 2004-12-08 Basf Aktiengesellschaft Deposition of copper layers on substrates
JP2006327889A (en) * 2005-05-27 2006-12-07 Kyocera Corp Method for producing barium titanate powder and barium titanate powder
JP2008111093A (en) * 2006-10-03 2008-05-15 Shinko Electric Ind Co Ltd Method for producing copper membrane
JP2013112889A (en) * 2011-11-30 2013-06-10 Toda Kogyo Corp Method of manufacturing nickel fine particle powder and nickel fine particle powder obtained by the same manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041427A1 (en) * 2002-11-08 2004-05-21 Dai-Ichi Kogyo Seiyaku Co., Ltd. Inorganic fine particles, inorganic raw material powder, and method for production thereof
KR100890585B1 (en) * 2002-11-08 2009-03-25 다이이치 고교 세이야쿠 가부시키가이샤 Inorganic fine particles, inorganic raw material powder, and method for production thereof
EP1484430A2 (en) * 2003-06-03 2004-12-08 Basf Aktiengesellschaft Deposition of copper layers on substrates
EP1484430A3 (en) * 2003-06-03 2008-03-19 Basf Se Deposition of copper layers on substrates
JP2006327889A (en) * 2005-05-27 2006-12-07 Kyocera Corp Method for producing barium titanate powder and barium titanate powder
JP4711744B2 (en) * 2005-05-27 2011-06-29 京セラ株式会社 Method for producing barium titanate powder and barium titanate powder
JP2008111093A (en) * 2006-10-03 2008-05-15 Shinko Electric Ind Co Ltd Method for producing copper membrane
JP2013112889A (en) * 2011-11-30 2013-06-10 Toda Kogyo Corp Method of manufacturing nickel fine particle powder and nickel fine particle powder obtained by the same manufacturing method

Similar Documents

Publication Publication Date Title
JP2650838B2 (en) Production method of palladium and palladium oxide powder by aerosol decomposition
KR100545821B1 (en) Highly crystalline metal powder, manufacturing method thereof, ceramic paste containing the metal powder and ceramic laminated electronic component using conductor paste
JP3197454B2 (en) Ultra fine nickel powder for multilayer ceramic capacitors
WO1998018741A9 (en) Passive electronic components prepared from suspensions of nanoscale ceramic powders
WO1998018741A2 (en) Passive electronic components prepared from suspensions of nanoscale ceramic powders
EP1543902A1 (en) Metallic nickel powder and method for production thereof
US20120153238A1 (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
CA2345804C (en) Method for preparing metal powder
JP7090511B2 (en) Silver powder and its manufacturing method
WO2017122689A1 (en) Nickel powder
JP2010251757A (en) Highly dense and nano crystal grained spinel negative temperature coefficient thermistor thick film and method for preparing the same
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP3042224B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2002294311A (en) Method for producing metal grain powder
JP3812359B2 (en) Method for producing metal powder
TW201343926A (en) Nickel alloy powder and its manufacturing method
JP2001254109A (en) Method of producing metallic particulate powder
JP2015083714A (en) Method for producing composite powder and conductive thick film paste and multilayer ceramic electronic component using composite powder obtained by the production method
JP2002294312A (en) Method for manufacturing metal particle powder
TW201936935A (en) Copper fine particles
JPH08246010A (en) Production of metal powder
JP4578428B2 (en) Barium titanate powder and production method thereof
JP3798994B2 (en) Metal powder, method for producing the same, and conductive paste containing the metal powder
EP1114684A1 (en) Method for preparing ultra fine nickel powder
JP4483389B2 (en) Method for producing glass particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090828