JP2001254109A - Method of producing metallic particulate powder - Google Patents

Method of producing metallic particulate powder

Info

Publication number
JP2001254109A
JP2001254109A JP2000066723A JP2000066723A JP2001254109A JP 2001254109 A JP2001254109 A JP 2001254109A JP 2000066723 A JP2000066723 A JP 2000066723A JP 2000066723 A JP2000066723 A JP 2000066723A JP 2001254109 A JP2001254109 A JP 2001254109A
Authority
JP
Japan
Prior art keywords
aqueous solution
particle powder
nickel
spherical
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000066723A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hayashi
一之 林
Hiroko Morii
弘子 森井
Mineko Osugi
峰子 大杉
Kikuo Okuyama
喜久夫 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2000066723A priority Critical patent/JP2001254109A/en
Publication of JP2001254109A publication Critical patent/JP2001254109A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing metallic particulate powder by which dense, spherical metallic particulate powder excellent in dispersibility and high in purity can be obtained. SOLUTION: In this method for producing metallic particulate powder, an aqueous solution of nickel acetate or an aqueous solution of nickel formate or an aqueous solution of copper acetate or an aqueous solution of copper formate is used as atomizing thermal decomposition solution, and spherical metallic particulate powder is obtained by an atomizing thermal decomposition method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分散性に優れた緻密で
純度が高い球状金属粒子粉末を得ることができる金属粒
子粉末の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metal particle powder capable of obtaining a dense and high-purity spherical metal particle powder having excellent dispersibility.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化、高性能化
及び軽量化に伴い、電子機器部品、例えば積層コンデン
サなどの電極材料に用いられる金属粒子粉末についても
特性改善が要求されている。
2. Description of the Related Art In recent years, with the miniaturization, higher performance and lighter weight of various electronic devices, there has been a demand for improved characteristics of metal particle powders used for electrode materials of electronic device components, for example, multilayer capacitors.

【0003】特に、前記用途に供せられるニッケル粒子
粉末や銅粒子粉末としては、凝集がなく分散性に優れ、
しかも緻密で純度が高いことが要求されている。
[0003] In particular, nickel particle powder and copper particle powder used for the above applications are excellent in dispersibility without aggregation,
In addition, it is required to be dense and have high purity.

【0004】一方、周知の通り、球状金属粒子粉末の製
造方法の一つとして噴霧熱分解法が知られている。
[0004] On the other hand, as is well known, a spray pyrolysis method is known as one method of producing spherical metal particle powder.

【0005】噴霧熱分解法とは、原料溶液をノズルや超
音波によって噴霧して微小液滴とし該微小液滴の溶媒を
蒸発させて熱分解により目的の粒子粉末を得る方法であ
る。
[0005] The spray pyrolysis method is a method in which a raw material solution is sprayed with a nozzle or ultrasonic waves to form fine droplets, and the solvent of the fine droplets is evaporated to obtain target particle powder by thermal decomposition.

【0006】従来、噴霧熱分解法によってニッケル粒子
粉末などの金属粒子粉末を得る方法として、特開平8−
170112号公報、特開平11−80818号公報及
び特開平11−236607号公報に記載の各方法が知
られている。
Conventionally, a method of obtaining metal particle powder such as nickel particle powder by a spray pyrolysis method is disclosed in
Each method described in JP-A-170112, JP-A-11-80818, and JP-A-11-236607 is known.

【0007】[0007]

【発明が解決しようとする課題】前掲各公報記載の球状
ニッケル粒子粉末や球状銅粒子粉末を工業的に製造する
場合には、次のような問題点がある。
The following problems arise when the spherical nickel particle powder and the spherical copper particle powder described in the above-mentioned publications are manufactured industrially.

【0008】即ち、特開平8−170112号公報に
は、噴霧熱分解を特定の加熱温度領域で行う方法が記載
されているが、特定の加熱温度領域におけるキャリアガ
スの流速などの滞留時間が考慮されておらず、粒径の揃
った緻密な球状ニッケル粒子粉末や球状銅粒子粉末を工
業的に得ることは困難である。
That is, Japanese Patent Application Laid-Open No. Hei 8-170112 discloses a method in which spray pyrolysis is performed in a specific heating temperature range, but the residence time such as the flow rate of the carrier gas in the specific heating temperature range is taken into consideration. However, it is difficult to industrially obtain dense spherical nickel particle powder or spherical copper particle powder having a uniform particle diameter.

【0009】また、特開平11−80818号公報記載
の噴霧熱分解法は、還元性ガスを1〜35vol%(実
施例では16.7vol%)含ませたキャリアガスを用
いているので、工業的に不利である。
The spray pyrolysis method described in JP-A-11-80818 uses a carrier gas containing a reducing gas in an amount of 1 to 35 vol% (16.7 vol% in the embodiment). Disadvantageous.

【0010】また、特開平11−236607号公報記
載の噴霧熱分解法では、添加剤としてアンモニア又は過
酸化水素溶液を用いて錯体化することにより、還元性ガ
スを用いることなく金属粒子粉末を製造しているが、錯
体を形成する必要があることから工業的とは言い難いも
のである。
In the spray pyrolysis method described in JP-A-11-236607, a metal particle powder is produced without using a reducing gas by complexing with ammonia or hydrogen peroxide solution as an additive. However, it is difficult to say that it is industrial because it is necessary to form a complex.

【0011】なお、特開平3−131560号公報に
は、超伝導体を構成する各種金属粉体をそれぞれ噴霧熱
分解によって個々の金属酸化物粒子粉末を得た後、加熱
焼結して超伝導体を製造する方法が記載されているが、
銅化合物として酢酸銅(Cu(CHCOO))を用
いると共に酸素をキャリアガスとして用いて噴霧熱分解
法によって酸化銅(CuO)を得ており、還元雰囲気下
で金属粒子粉末を得ることについては考慮されていな
い。
Japanese Unexamined Patent Publication (Kokai) No. 3-131560 discloses that various metal powders constituting a superconductor are individually obtained by spray pyrolysis to obtain individual metal oxide particle powders, which are then sintered by heating and superconducting. Although a method of manufacturing the body is described,
Copper oxide (CuO) is obtained by a spray pyrolysis method using copper acetate (Cu (CH 3 COO) 2 ) and oxygen as a carrier gas as a copper compound, and obtaining metal particle powder in a reducing atmosphere. Is not taken into account.

【0012】そこで、本発明は、分散性に優れた緻密で
純度が高い球状金属粒子粉末を噴霧熱分解法によって工
業的に製造することを技術的課題とする。
Accordingly, it is a technical object of the present invention to industrially produce dense and high-purity spherical metal particles having excellent dispersibility by a spray pyrolysis method.

【0013】[0013]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。
The above technical object can be achieved by the present invention as described below.

【0014】即ち、本発明は、酢酸ニッケル水溶液若し
くはギ酸ニッケル水溶液又は酢酸銅水溶液若しくはギ酸
銅水溶液を噴霧熱分解溶液として用いて噴霧熱分解法に
より球状金属粒子粉末を得ることを特徴とする金属粒子
粉末の製造法である。
That is, the present invention is characterized in that spherical metal particle powder is obtained by a spray pyrolysis method using an aqueous solution of nickel acetate or an aqueous solution of nickel formate, or an aqueous solution of copper acetate or an aqueous solution of copper formate as a spray pyrolysis solution. This is a method for producing powder.

【0015】本発明の構成を詳述すれば、次の通りであ
る。
The configuration of the present invention will be described below in detail.

【0016】本発明に用いる噴霧熱分解溶液は、酢酸ニ
ッケル水溶液若しくはギ酸ニッケル水溶液又は酢酸銅水
溶液若しくはギ酸銅水溶液であり、当該各水溶液を用い
て噴霧熱分解を行うことにより、目的とする球状金属粒
子粉末を得ることができると共に、キャリアガス中に含
有させる還元性ガスの使用量を低減することができる。
The spray pyrolysis solution used in the present invention is an aqueous solution of nickel acetate or nickel formate, or an aqueous solution of copper acetate or copper formate. Particle powder can be obtained, and the amount of reducing gas used in the carrier gas can be reduced.

【0017】噴霧熱分解溶液の濃度は、0.001〜
0.5mol/lが好ましい。0.001mol/l未
満の場合には、得られる球状金属粒子粉末の粒子サイズ
が小さくなりすぎるため好ましくない。0.5mol/
lを超える場合には、粒子サイズが大きくなり、粒度分
布が悪くなる傾向にあるので好ましくない。より好まし
くは0.005〜0.4mol/lである。
The concentration of the spray pyrolysis solution is from 0.001 to
0.5 mol / l is preferred. If it is less than 0.001 mol / l, the particle size of the obtained spherical metal particles is too small, which is not preferable. 0.5mol /
If it exceeds 1, the particle size tends to increase and the particle size distribution tends to worsen, which is not preferable. More preferably, it is 0.005 to 0.4 mol / l.

【0018】噴霧熱分解法では、噴霧した液滴径によっ
て得られる金属粒子粉末の粒子径が変化するため、液滴
の大きさが均一になるように噴霧する。具体的には、2
流体ノズル、超音波又は静電気等の方法によって液滴を
つくることができ、好ましくは超音波によって噴霧する
方法である。
In the spray pyrolysis method, since the particle diameter of the obtained metal particle powder changes depending on the diameter of the sprayed droplet, the spray is performed so that the droplet size becomes uniform. Specifically, 2
Droplets can be formed by a method such as a fluid nozzle, ultrasonic waves or static electricity, and are preferably sprayed by ultrasonic waves.

【0019】得られた液滴は、還元性ガスを含有するキ
ャリアガスによって加熱炉中に導入される。還元性ガス
としては水素ガス、COガス、アンモニアガス等を用い
ることができるが、工業的には水素ガスが好ましい。キ
ャリアガスとしては不活性ガスであれば特に限定される
ものではないが、好ましくは窒素である。
The obtained droplets are introduced into a heating furnace by a carrier gas containing a reducing gas. As the reducing gas, hydrogen gas, CO gas, ammonia gas and the like can be used, but hydrogen gas is preferable from an industrial viewpoint. The carrier gas is not particularly limited as long as it is an inert gas, but is preferably nitrogen.

【0020】本発明においては酢酸塩水溶液又はギ酸塩
水溶液を用いるため、還元性ガスを少なくすることがで
きる。還元性ガスの濃度は1.0vol%未満が好まし
く、より好ましくは0.9vol%以下である。
In the present invention, since an acetate aqueous solution or a formate aqueous solution is used, the amount of reducing gas can be reduced. The concentration of the reducing gas is preferably less than 1.0 vol%, more preferably 0.9 vol% or less.

【0021】キャリアガスの流速は1.0〜10cm/
secが好ましい。
The flow rate of the carrier gas is 1.0 to 10 cm /
sec is preferred.

【0022】加熱炉は、5段以上設けることが好まし
く、3段目以降で最高温度に達するように温度勾配を持
たせることが好ましい。1段目から高温で加熱した場合
には、急激な反応が生じるため緻密な球状金属粒子粉末
を得ることが困難となる。
The heating furnace is preferably provided in five or more stages, and preferably has a temperature gradient so as to reach the maximum temperature in the third and subsequent stages. When heating at a high temperature from the first stage, a rapid reaction occurs, so that it is difficult to obtain dense spherical metal particle powder.

【0023】加熱炉の温度は、具体的には1段目が20
0〜400℃であり、2段目が450〜650℃、3段
目以降が750〜1000℃とすることが好ましい。
The temperature of the heating furnace is, specifically, 20 at the first stage.
The temperature is preferably from 0 to 400 ° C, the second stage is preferably from 450 to 650 ° C, and the third and subsequent stages preferably from 750 to 1000 ° C.

【0024】また、加熱炉の1段の長さLと炉芯管の直
径Dの比L/Dは5以上であることが好ましい。L/D
が5未満の場合には、1つの加熱炉に滞留する時間が短
くなるため得られる球状金属粒子粉末の粒度分布が悪く
なる。工業的な生産性を考慮した場合、L/Dの上限値
は50である。
The ratio L / D of the length L of one stage of the heating furnace to the diameter D of the furnace tube is preferably 5 or more. L / D
Is less than 5, the residence time in one heating furnace is shortened, so that the particle size distribution of the obtained spherical metal particle powder deteriorates. In consideration of industrial productivity, the upper limit of L / D is 50.

【0025】熱分解が終了した金属粒子粉末は、常法に
従い電気集じん機などによって集める。
The thermally decomposed metal particle powder is collected by an electric precipitator or the like according to a conventional method.

【0026】本発明によって得られるニッケル粒子粉末
は、球状を呈し、平均粒子径が0.01〜1.0μmで
あり(必要に応じて0.05〜0.8μmにできる)、
幾何標準偏差値が2.0以下であり(必要に応じて1.
8以下にできる)、BET比表面積値が1〜100m
/gであり(必要に応じて1.5〜80m/gにでき
る)、密度比が0.75〜1.0であり(必要に応じて
0.8〜1.0にできる)、体積固有抵抗値が1.0〜
9.5×10Ω・cm(必要に応じて1.0〜5.0
×10Ω・cmにできる)である。また、結晶性は4
000以上である。
The nickel particle powder obtained by the present invention has a spherical shape, an average particle diameter of 0.01 to 1.0 μm (can be 0.05 to 0.8 μm if necessary),
The geometric standard deviation value is 2.0 or less (1.
8) and a BET specific surface area value of 1 to 100 m 2.
/ G (1.5-80 m 2 / g if necessary), the density ratio is 0.75-1.0 (0.8-1.0 if necessary), and the volume Specific resistance is 1.0 ~
9.5 × 10 3 Ω · cm (1.0 to 5.0 as needed)
× 10 3 Ω · cm). The crystallinity is 4
000 or more.

【0027】本発明によって得られる銅粒子粉末は、球
状を呈し、平均粒子径が0.01〜1.0μmであり
(必要に応じて0.05〜0.8μmにできる)、幾何
標準偏差値が2.0以下(必要に応じて1.8以下にで
きる)、BET比表面積値が1〜100m/gであり
(必要に応じて1.5〜80m/gにできる)、密度
比が0.75〜1.0であり(必要に応じて0.8〜
1.0にできる)、体積固有抵抗値が1.0〜9.5×
10Ω・cm(必要に応じて1.0〜5.0×10
Ω・cmにできる)である。また、結晶性は4000以
上である。
The copper particle powder obtained by the present invention has a spherical shape, an average particle diameter of 0.01 to 1.0 μm (can be 0.05 to 0.8 μm if necessary), and a geometric standard deviation value. Is 2.0 or less (1.8 or less if necessary), the BET specific surface area is 1 to 100 m 2 / g (1.5 to 80 m 2 / g if necessary), and the density ratio Is 0.75-1.0 (0.8-
1.0), and the volume resistivity is 1.0 to 9.5 ×
10 3 Ω · cm (1.0 to 5.0 × 10 3 as necessary
Ω · cm). The crystallinity is 4000 or more.

【0028】[0028]

【発明の実施の形態】本発明の代表的な実施の形態は、
次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.
It is as follows.

【0029】粒子粉末の平均粒子径は、電子顕微鏡写真
(×20,000)を縦方向及び横方向にそれぞれ4倍
に拡大した写真に示される粒子約350個について、粒
子径を測定し、その平均値で示した。
The average particle diameter of the particle powder was determined by measuring the particle diameter of about 350 particles shown in a photograph obtained by magnifying an electron micrograph (× 20,000) four times in the vertical and horizontal directions, respectively. The average value was shown.

【0030】粒子粉末の粒子径の幾何標準偏差値は次の
方法により求めた値で示した。即ち、前記拡大写真に示
される粒子の粒子径を測定した値を、その測定値から計
算して求めた粒子の実際の粒子径と個数から、統計学的
手法に従って、対数正規確率紙上の横軸に粒子径を、縦
軸に所定の粒子径区間のそれぞれに属する粒子の累積個
数(積算フルイ下)を百分率でプロットした。そしてこ
のグラフから粒子の累積個数が50%及び84.13%
のそれぞれに相当する粒子径の値を読み取り、幾何標準
偏差値=(積算フルイ下84.13%における粒子径)
/(積算フルイ下50%における粒子径(幾何平均
径))に従って算出した値で示した。幾何標準偏差値が
1に近いほど、粒子の粒子径の粒度が優れていることを
意味する。
The geometric standard deviation of the particle diameter of the particle powder was shown by the value obtained by the following method. In other words, the value obtained by measuring the particle diameter of the particles shown in the enlarged photograph, the actual particle diameter and the number of particles calculated from the measured values, according to a statistical method, the horizontal axis on the lognormal probability paper , And the vertical axis plots the cumulative number of particles belonging to each of the predetermined particle diameter sections (under the integrated screen) in percentage. From this graph, the cumulative number of particles is 50% and 84.13%.
Is read, and the geometric standard deviation value = (particle size at 84.13% under the integrated screen)
/ (Particle diameter (geometric mean diameter) at 50% under the integrated screen). The closer the geometric standard deviation value is to 1, the better the particle size of the particles is.

【0031】比表面積値はBET法により測定した値で
示した。
The specific surface area was indicated by a value measured by the BET method.

【0032】粉体の密度比は、「マルチボリューム 密
度計 1305型」(マイクロメリティクス社製)を用
いて各粉体の密度を測定し、各金属粉体の真密度(Ni
=8.845g/cm、Cu=8.92g/cm
との比によって求めた。
The density ratio of the powder was determined by measuring the density of each powder using a “Multi Volume Densitometer Model 1305” (manufactured by Micromeritics) and determining the true density (Ni
= 8.845 g / cm 3 , Cu = 8.92 g / cm 3 )
And the ratio was determined.

【0033】金属粒子粉末の結晶性は、「X線回折装置
RAD−IIA」(理学電機工業(株)製)(管球:
Fe)を使用し、2θが3〜105°の範囲で測定し、
得られた最強線のピーク強度で示した。
The crystallinity of the metal particle powder is measured by using an "X-ray diffractometer RAD-IIA" (manufactured by Rigaku Corporation) (tube:
Fe), 2θ is measured in the range of 3 to 105 °,
The peak intensity of the obtained strongest line was shown.

【0034】金属粒子粉末の体積固有抵抗値は、先ず、
試料粒子粉末0.5gを秤り取り、KBr錠剤成形器
(株式会社島津製作所製)を用いて、1.372×10
Pa(140Kg/cm)の圧力で加圧成形を行
い、円柱状の被測定試料を作製した。
First, the volume resistivity value of the metal particle powder is as follows:
0.5 g of the sample particle powder was weighed out, and using a KBr tablet press (manufactured by Shimadzu Corporation), 1.372 × 10
Pressure molding was performed at a pressure of 7 Pa (140 kg / cm 2 ) to produce a cylindrical sample to be measured.

【0035】次に、被測定試料(円柱状)を25℃、相
対湿度60%の環境下に12時間以上曝露した後、この
被測定試料をステンレス電極の間にセットし、ホイート
ストンブリッジ(TYPE2768、横河北辰電機株式
会社製)で15Vの電圧を印加して抵抗値R(Ω)を測
定する。
Next, the sample to be measured (cylindrical) was exposed to an environment of 25 ° C. and a relative humidity of 60% for 12 hours or more. Then, the sample to be measured was set between stainless steel electrodes, and a Wheatstone bridge (TYPE 2768, A voltage of 15 V is applied by Yokogawa Hokushin Electric Co., Ltd.) to measure the resistance value R (Ω).

【0036】次に、被測定試料の上面の面積A(c
)と厚みt(cm)を測定し、数1にそれぞれの
測定値を代入して、体積固有抵抗値(Ω・cm)を求め
た。
Next, the area A (c) of the upper surface of the sample to be measured
m 2 ) and thickness t 0 (cm) were measured, and the respective measured values were substituted into Equation 1 to determine a volume specific resistance value (Ω · cm).

【0037】[0037]

【数1】 体積固有抵抗値(Ω・cm)=R×(A/t) 但し、Rは実測の抵抗値である。[Formula 1] Volume specific resistance (Ω · cm) = R × (A / t 0 ) where R is an actually measured resistance.

【0038】<球状金属粒子粉末の製造>濃度が0.1
5mol/lのギ酸ニッケル水溶液500mlを超音波
型噴霧器に入れた。超音波強度を50mWとし、ギ酸ニ
ッケル水溶液の液面から、エアロゾルが発生しているこ
とを確認した後、水素ガスを0.5vol%含有する窒
素ガスをキャリアガスとして使用し、管内の流速が5c
m/secになるように、セラミック製加熱炉に導入し
た。なお、用いた加熱炉のL/Dは30であった。
<Production of spherical metal particle powder>
500 ml of a 5 mol / l nickel formate aqueous solution was put into an ultrasonic atomizer. After confirming that aerosol was generated from the liquid surface of the nickel formate aqueous solution at an ultrasonic intensity of 50 mW, a nitrogen gas containing 0.5 vol% of hydrogen gas was used as a carrier gas, and the flow rate in the pipe was 5 c.
It was introduced into a ceramic heating furnace so as to have a m / sec. The L / D of the heating furnace used was 30.

【0039】加熱炉の一段目から五段目までの加熱温度
をそれぞれ300℃、600℃、800℃、800℃、
800℃とし、エアロゾル中の溶剤を徐々に蒸発させた
後、熱処理を行って、エアロゾル中で熱分解反応を生じ
させた。加熱炉出口に電気集塵器を設置して粒子を捕集
した。このとき集塵機入口のエアロゾルに対し、直流5
000Vの電圧によるコロナ放電処理を行い、強制的に
荷電させて、電気集塵器での捕集効率を高めた。
The heating temperature from the first stage to the fifth stage of the heating furnace is 300 ° C., 600 ° C., 800 ° C., 800 ° C., respectively.
After setting the temperature to 800 ° C. and gradually evaporating the solvent in the aerosol, a heat treatment was performed to cause a thermal decomposition reaction in the aerosol. An electric precipitator was installed at the outlet of the heating furnace to collect particles. At this time, DC 5
Corona discharge treatment was performed with a voltage of 000 V to force charging, thereby increasing the collection efficiency of the electrostatic precipitator.

【0040】得られたニッケル粒子粉末は球状を呈して
おり、平均粒子径が0.25μm、幾何標準偏差値が
1.44、BET比表面積値が9.8m/g、密度比
が0.88、体積固有抵抗値が2.3×10Ω・c
m、結晶性が8700であった。
The obtained nickel particle powder has a spherical shape, an average particle diameter of 0.25 μm, a geometric standard deviation of 1.44, a BET specific surface area of 9.8 m 2 / g, and a density ratio of 0.4. 88, the volume resistivity is 2.3 × 10 2 Ω · c
m, and the crystallinity was 8,700.

【0041】図1は、上記で得られた球状ニッケル粒子
粉末の電子顕微鏡写真(100,000倍)を示す。該
写真により真球状粒子が得られていることが確認でき
る。
FIG. 1 shows an electron micrograph (× 100,000) of the spherical nickel particles obtained above. The photograph confirms that true spherical particles have been obtained.

【0042】[0042]

【作用】本発明において最も重要な点は、酢酸ニッケル
水溶液若しくはギ酸ニッケル水溶液又は酢酸銅水溶液若
しくはギ酸銅水溶液を噴霧熱分解溶液として用いたこと
によって、還元性ガスの使用量を低減でき、しかも、分
散性に優れた緻密で純度が高い球状金属粒子粉末を得る
ことができるという事実である。
The most important point in the present invention is that the amount of reducing gas used can be reduced by using an aqueous solution of nickel acetate or nickel formate or an aqueous solution of copper acetate or copper formate as a spray pyrolysis solution. This is a fact that a dense and high-purity spherical metal particle powder excellent in dispersibility can be obtained.

【0043】還元性ガスの使用量が低減できる理由とし
て、本発明者は、酢酸ニッケル若しくはギ酸ニッケル又
は酢酸銅若しくはギ酸銅の熱分解時に還元性のCOガス
が発生することによるものと考えている。
The present inventor believes that the amount of the reducing gas used can be reduced because the reducing CO gas is generated during the thermal decomposition of nickel acetate or nickel formate, or copper acetate or copper formate. .

【0044】また、本発明においては、加熱炉の段数を
多くして温度調節をより厳密に行い、更に、加熱炉の3
段以降で最高温度になるように温度調節することによっ
て、球状粒子で粒度分布が優れ、しかも、中空粒子を含
まない緻密な粒子粉末を得ることができたものと考えて
いる。
Further, in the present invention, the number of stages of the heating furnace is increased to more strictly control the temperature.
It is believed that by controlling the temperature to the highest temperature after the step, it was possible to obtain a fine particle powder having excellent particle size distribution with spherical particles and no hollow particles.

【0045】[0045]

【実施例】次に、実施例並びに比較例を挙げる。Next, examples and comparative examples will be described.

【0046】実施例1〜4、比較例1〜5:出発原料の
種類、原料溶液の濃度、キャリアガスの種類及び流速、
還元性ガスの種類及び濃度、加熱炉の温度及びL/Dを
種々変化させた以外は、前記発明の実施の形態と同様に
して球状金属粒子粉末を得た。
Examples 1-4, Comparative Examples 1-5: Type of starting material, concentration of raw material solution, type and flow rate of carrier gas,
Spherical metal particles were obtained in the same manner as in the embodiment of the invention except that the type and concentration of the reducing gas, the temperature of the heating furnace, and the L / D were variously changed.

【0047】このときの製造条件を表1に、得られた球
状金属粒子粉末の諸特性を表2に示す。
The production conditions at this time are shown in Table 1, and various characteristics of the obtained spherical metal particles are shown in Table 2.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明によれば、分散性に優れた緻密で
純度の高い高い球状金属粒子粉末を工業的に容易に得る
ことができる。
According to the present invention, dense, high-purity spherical metal particles having excellent dispersibility can be industrially easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施の形態で得られたニッケル粒子粉末
の粒子形状を示す透過型電子顕微鏡写真(100,00
0倍)
FIG. 1 is a transmission electron micrograph (100,00) showing the particle shape of a nickel particle powder obtained in an embodiment of the invention.
0 times)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山 喜久夫 広島県東広島市鏡山1丁目4番1号広島大 学工学部内 Fターム(参考) 4K017 AA03 BA03 BA05 CA07 DA01 DA08 EJ02 FA15 FB03 FB06 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kikuo Okuyama 1-4-1 Kagamiyama, Higashihiroshima City, Hiroshima Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酢酸ニッケル水溶液若しくはギ酸ニッケ
ル水溶液又は酢酸銅水溶液若しくはギ酸銅水溶液を噴霧
熱分解溶液として用いて噴霧熱分解法により球状金属粒
子粉末を得ることを特徴とする金属粒子粉末の製造法。
1. A method for producing metal particle powder, comprising obtaining a spherical metal particle powder by a spray pyrolysis method using an aqueous solution of nickel acetate, an aqueous solution of nickel formate, an aqueous solution of copper acetate or an aqueous solution of copper formate as a spray pyrolysis solution. .
JP2000066723A 2000-03-10 2000-03-10 Method of producing metallic particulate powder Pending JP2001254109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066723A JP2001254109A (en) 2000-03-10 2000-03-10 Method of producing metallic particulate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066723A JP2001254109A (en) 2000-03-10 2000-03-10 Method of producing metallic particulate powder

Publications (1)

Publication Number Publication Date
JP2001254109A true JP2001254109A (en) 2001-09-18

Family

ID=18586036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066723A Pending JP2001254109A (en) 2000-03-10 2000-03-10 Method of producing metallic particulate powder

Country Status (1)

Country Link
JP (1) JP2001254109A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048019A1 (en) * 2002-11-26 2004-06-10 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
WO2004048018A1 (en) * 2002-11-26 2004-06-10 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
KR100503132B1 (en) * 2002-11-08 2005-07-22 한국화학연구원 Method for producing fine spherical particles of nickel metal
US7214361B2 (en) 2002-11-26 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of carbon nanotubes
US7981396B2 (en) 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
US8163263B2 (en) 2006-01-30 2012-04-24 Honda Motor Co., Ltd. Catalyst for the growth of carbon single-walled nanotubes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503132B1 (en) * 2002-11-08 2005-07-22 한국화학연구원 Method for producing fine spherical particles of nickel metal
US7214361B2 (en) 2002-11-26 2007-05-08 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of carbon nanotubes
WO2004048018A1 (en) * 2002-11-26 2004-06-10 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US6974493B2 (en) 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
JP2006507408A (en) * 2002-11-26 2006-03-02 本田技研工業株式会社 Method for synthesizing metal nanoparticles
JP2006507409A (en) * 2002-11-26 2006-03-02 本田技研工業株式会社 Method for the synthesis of metal nanoparticles
WO2004048019A1 (en) * 2002-11-26 2004-06-10 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
JP4748989B2 (en) * 2002-11-26 2011-08-17 本田技研工業株式会社 Method for the synthesis of metal nanoparticles
JP4774214B2 (en) * 2002-11-26 2011-09-14 本田技研工業株式会社 Method for synthesizing metal nanoparticles
US8088485B2 (en) 2002-11-26 2012-01-03 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
US8088488B2 (en) 2002-11-26 2012-01-03 Honda Giken Kogyo Kabushiki Kaisha Method for synthesis of metal nanoparticles
US7981396B2 (en) 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
US8163263B2 (en) 2006-01-30 2012-04-24 Honda Motor Co., Ltd. Catalyst for the growth of carbon single-walled nanotubes

Similar Documents

Publication Publication Date Title
JP2650838B2 (en) Production method of palladium and palladium oxide powder by aerosol decomposition
US7658995B2 (en) Nickel powder comprising sulfur and carbon, and production method therefor
JP2650837B2 (en) Production method of silver powder by aerosol decomposition
US7261761B2 (en) Metallic nickel powder and process for production thereof
JP4396811B2 (en) Method for producing composite particles, method for producing spherical composite particles
KR100545821B1 (en) Highly crystalline metal powder, manufacturing method thereof, ceramic paste containing the metal powder and ceramic laminated electronic component using conductor paste
WO1998018741A9 (en) Passive electronic components prepared from suspensions of nanoscale ceramic powders
WO1998018741A2 (en) Passive electronic components prepared from suspensions of nanoscale ceramic powders
JPH08246001A (en) Nickel superfine powder for multilayer ceramic capacitor
US20120153238A1 (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
TWI716526B (en) Nickel powder
JP7090511B2 (en) Silver powder and its manufacturing method
US6530972B2 (en) Method for preparing metal powder
KR20160021775A (en) Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film
JP2554213B2 (en) Method for producing spherical nickel ultrafine powder
JP2001254109A (en) Method of producing metallic particulate powder
JP3812359B2 (en) Method for producing metal powder
JP2002294311A (en) Method for producing metal grain powder
JP2002294312A (en) Method for manufacturing metal particle powder
TW201936935A (en) Copper fine particles
CA2336863C (en) Method for preparing ultra fine nickel powder
JP2001254110A (en) Method of producing metallic particulate powder
JP4483389B2 (en) Method for producing glass particles
TW200424028A (en) Metal powder, process for producing metal powder and conductive paste
Okuyama et al. Size-dependence of properties of superconducting Bi-Ca-Sr-Cu-O fine particles prepared by a spray-pyrolysis method