JP2005255492A - Apparatus and method of manufacturing carbon nano-structure - Google Patents

Apparatus and method of manufacturing carbon nano-structure Download PDF

Info

Publication number
JP2005255492A
JP2005255492A JP2004071437A JP2004071437A JP2005255492A JP 2005255492 A JP2005255492 A JP 2005255492A JP 2004071437 A JP2004071437 A JP 2004071437A JP 2004071437 A JP2004071437 A JP 2004071437A JP 2005255492 A JP2005255492 A JP 2005255492A
Authority
JP
Japan
Prior art keywords
substrate
carbon
vacuum chamber
parallel plate
carbon nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071437A
Other languages
Japanese (ja)
Inventor
Takashi Hirao
孝 平尾
Kenjiro Oura
憲治郎 尾浦
Shinichi Honda
信一 本多
Mitsuhiro Katayama
光浩 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO GIKEN KK
Original Assignee
NANO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO GIKEN KK filed Critical NANO GIKEN KK
Priority to JP2004071437A priority Critical patent/JP2005255492A/en
Publication of JP2005255492A publication Critical patent/JP2005255492A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method of manufacturing a carbon nano-structure by which a vertically oriented and long carbon nanotube or a carbon nanofiber is formed on a substrate. <P>SOLUTION: The apparatus for manufacturing the carbon nano-structure is provided with a tube body 10 having a vacuum chamber 11 evacuated by an evacuating means 12 inside, a gas introducing means 13 provided in the tube body and for supplying a carbon-based gas into the vacuum chamber 11, an electric furnace 14 for heating the inside of the vacuum chamber 11 provided in the tube body 10, and parallel flat electrodes 15 and 16 provided in the vacuum chamber 11 and for plasma-discharging. The carbon nano-structure is formed on the substrate by arranging the substrate for forming the carbon nano-structure on one of the parallel flat electrodes 15 and 16 and applying pulse voltage between the electrodes 15 and 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属、半導体あるいはガラス等の絶縁物基板上に垂直配向で、かつ長尺のカーボンナノ構造、特にカーボンナノチューブやカーボンナノファイバーの製造装置およびその製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for carbon nanostructures, particularly carbon nanotubes and carbon nanofibers, which are vertically aligned and long on an insulating substrate such as metal, semiconductor or glass.

従来、カーボンナノ構造、特にカーボンナノチューブやカーボンナノファイバー等を、基板上に形成する方法として、熱CVD法、プラズマCVD(平行平板高周波P−CVD,平行平板直流P−CVD,電子サイクロトロン共鳴(ECR)P−CVD)法等がある(例えば、特許文献1参照)。   Conventionally, methods for forming carbon nanostructures, particularly carbon nanotubes and carbon nanofibers, on a substrate are thermal CVD, plasma CVD (parallel plate high frequency P-CVD, parallel plate direct current P-CVD, electron cyclotron resonance (ECR). ) P-CVD) method (see, for example, Patent Document 1).

熱CVD法においては、例えば、金属板や半導体あるいはガラス上に金属薄膜を形成した基板上に、Ni,Fe,Co等の微粒子触媒金属を形成し、約500〜800℃の温度範囲に基板を加熱し、メタン、エチレン等の炭素系ガスを供給することにより、一般的に、基板に垂直ではない多数のカーボンナノチューブあるいはカーボンナノファイバー等が形成される。このカーボンナノチューブあるいはカーボンナノファイバーに電界を印加することにより、高効率な電子放出を観測することができる。このように、熱CVD法においては、数μmのカーボンナノチューブあるいはカーボンナノファイバーを形成できるが、その配向制御は一般的には困難である。   In the thermal CVD method, for example, a fine catalyst metal such as Ni, Fe, Co or the like is formed on a metal plate, a semiconductor, or a substrate on which a metal thin film is formed, and the substrate is placed in a temperature range of about 500 to 800 ° C. By heating and supplying a carbon-based gas such as methane or ethylene, generally, a large number of carbon nanotubes or carbon nanofibers that are not perpendicular to the substrate are formed. By applying an electric field to the carbon nanotube or carbon nanofiber, highly efficient electron emission can be observed. As described above, in the thermal CVD method, carbon nanotubes or carbon nanofibers of several μm can be formed, but the orientation control is generally difficult.

プラズマCVD法においては、例えば、平行平板電極の一方に13.56MHzの高周波電力を印加し、プラズマを生成し、基板を600℃程度に加熱し、基板へのイオンエネルギーを制御することによって、基板に垂直なカーボンナノチューブあるいはカーボンナノファイバーを形成することができる。このとき、カーボンナノチューブあるいはカーボンナノファイバーの長さは通常は1〜2μm程度に過ぎない。すなわち、基板に垂直なカーボンナノチューブあるいはカーボンナノファイバーを形成するには、基板に垂直な電界成分が必要である。このように、プラズマCVD法においては、基板加熱温度を700〜800℃程度に設定することにより、基板上に垂直配向で、数μmのカーボンナノチューブあるいはカーボンナノファイバーを形成することができるが、より長尺のカーボンナノチューブ等を形成することは困難である。   In the plasma CVD method, for example, high frequency power of 13.56 MHz is applied to one of the parallel plate electrodes, plasma is generated, the substrate is heated to about 600 ° C., and the ion energy to the substrate is controlled, thereby controlling the substrate. Carbon nanotubes or carbon nanofibers perpendicular to the surface can be formed. At this time, the length of the carbon nanotube or carbon nanofiber is usually only about 1 to 2 μm. That is, to form carbon nanotubes or carbon nanofibers perpendicular to the substrate, an electric field component perpendicular to the substrate is required. Thus, in the plasma CVD method, by setting the substrate heating temperature to about 700 to 800 ° C., carbon nanotubes or carbon nanofibers of several μm can be formed on the substrate in a vertical orientation, It is difficult to form long carbon nanotubes.

上述の熱CVD法は高圧で、プラズマCVD法は低圧であることから、動作領域の異なる熱CVD法とプラズマCVD法を単純に組み合わせ、両者の長所をとって長尺で垂直配向のカーボンナノ構造を製造することはできなかった。   Since the above-mentioned thermal CVD method is high pressure and plasma CVD method is low pressure, the thermal CVD method and plasma CVD method with different operating regions are simply combined to take advantage of both, and have a long and vertically aligned carbon nanostructure Could not be manufactured.

従来の熱CVD法やプラズマCVD法により形成されたカーボンナノチューブあるいはカーボンナノファイバーでも、電子放出材料として有効なものとしてFED等への応用開発が進められているが、基板上に垂直配向で、より長尺のカーボンナノチューブあるいはカーボンナノファイバーを形成することができれば、電子放出材料に限らず、例えば水素吸蔵材料、電気キャパシタ等の他分野への応用展開が期待できる。
特開2001−48512号
Although carbon nanotubes or carbon nanofibers formed by conventional thermal CVD methods or plasma CVD methods are also being developed for application to FEDs and the like as effective as electron emission materials, they are more vertically aligned on the substrate. If long carbon nanotubes or carbon nanofibers can be formed, application development to other fields such as hydrogen storage materials and electric capacitors can be expected without being limited to electron emission materials.
JP 2001-48512 A

したがって、本発明においては、従来技術では困難であった基板上に垂直配向で、かつ長尺のカーボンナノチューブあるいはカーボンナノファイバーを形成するという課題を解決しようとするものである。   Therefore, the present invention is intended to solve the problem of forming long carbon nanotubes or carbon nanofibers that are vertically aligned on a substrate, which has been difficult with the prior art.

本発明のカーボンナノ構造の製造装置は、真空排気手段にて真空排気してなる真空室を内部に形成した管体と、前記管体に設けられ前記真空室内に炭素系ガスを供給するガス導入手段と、前記管体に設けられ前記真空室内を加熱する加熱手段と、前記真空室内に設けられプラズマ放電する平行平板電極とを備えたカーボンナノ構造の製造装置であって、前記平行平板電極の一方にカーボンナノ構造を形成する基板を配置して、両電極間にパルス電圧を印加することにより、前記基板上にカーボンナノ構造を形成することを特徴とするものである。   The apparatus for producing a carbon nanostructure of the present invention includes a tube body in which a vacuum chamber formed by evacuation by a vacuum evacuation means is formed, and a gas introduction that is provided in the tube body and supplies a carbon-based gas into the vacuum chamber Means for heating the inside of the vacuum chamber provided in the tube, and a parallel plate electrode for plasma discharge provided in the vacuum chamber, the carbon nanostructure manufacturing apparatus comprising: A carbon nanostructure is formed on the substrate by disposing a substrate on which carbon nanostructures are formed on one side and applying a pulse voltage between both electrodes.

前記加熱手段として、電気炉を用いる。   An electric furnace is used as the heating means.

動作圧力領域により絶縁体がなくてもよいが、前記平行平板電極の少なくとも一方の電極に絶縁体が形成され、電極間にパルス電圧を印加し誘電体バリア放電を生じさせる。   Depending on the operating pressure region, there may be no insulator, but an insulator is formed on at least one of the parallel plate electrodes, and a pulse voltage is applied between the electrodes to generate a dielectric barrier discharge.

前記平行平板電極の一方の電極にプラズマ通過孔を形成し、当該プラズマ通過孔を形成した電極の外側に前記基板を配置してもよい。   A plasma passage hole may be formed in one of the parallel plate electrodes, and the substrate may be disposed outside the electrode in which the plasma passage hole is formed.

本発明のカーボンナノ構造の製造方法は、管体の内部の真空室に設けられた平行平板電極の一方に、カーボンナノ構造を形成する基板を配置する工程と、前記真空室内を真空にし、かつ、前記真空室内を加熱する工程と、前記真空室内に炭素系ガスを供給する工程と、前記平行平板電極間にパルス電圧を印加してプラズマ放電させ、前記基板上にカーボンナノ構造を形成する工程とを含むものである。   The method for producing a carbon nanostructure of the present invention includes a step of placing a substrate for forming a carbon nanostructure on one of parallel plate electrodes provided in a vacuum chamber inside a tube, and evacuating the vacuum chamber; A step of heating the vacuum chamber; a step of supplying a carbon-based gas into the vacuum chamber; and a step of applying a pulse voltage between the parallel plate electrodes to cause plasma discharge to form a carbon nanostructure on the substrate. Is included.

本発明のカーボンナノ構造の製造装置およびその製造方法によると、平行平板電極にパルス電圧を印加することで、広範な圧力範囲にて安定したプラズマ放電が可能となる。
また、電気炉を用いることで、真空室内を広範囲に渡って均一に、しかも高温にて加熱できる。
According to the carbon nanostructure manufacturing apparatus and the manufacturing method of the present invention, it is possible to perform stable plasma discharge in a wide pressure range by applying a pulse voltage to parallel plate electrodes.
In addition, by using an electric furnace, the vacuum chamber can be heated uniformly over a wide range and at a high temperature.

また、平行平板電極の少なくとも一方の電極に絶縁体が形成され、電極間に誘電体バリア放電を生じさせることで、数百Pa等の大気圧に近い領域で有効である。   Further, an insulator is formed on at least one of the parallel plate electrodes, and dielectric barrier discharge is generated between the electrodes, which is effective in a region close to atmospheric pressure such as several hundred Pa.

また、平行平板電極において、カーボンナノ構造を形成する基板に対向する側の電極をメッシュまたは多孔電極とすることで、両電極間に誘起したプラズマ中のイオンあるいはラジカルを基板に到達せしめてカーボンナノ構造を形成できる。   In addition, in the parallel plate electrode, the electrode on the side facing the substrate on which the carbon nanostructure is formed is a mesh or a porous electrode, so that ions or radicals in the plasma induced between the two electrodes can reach the substrate so that the carbon nanostructure is formed. A structure can be formed.

さらに、平行平板電極の一方の電極にプラズマ通過孔を形成し、当該プラズマ通過孔を形成した電極の外側に基板を配置することで、プラズマがプラズマ通過孔を通過して基板に達し、基板上に垂直配向のカーボンナノ構造を形成することができ、しかも平行平板電極間の電圧は一定のままで、基板に印加する電圧を変更することで、所望の長さのカーボンナノ構造を容易に形成することができる。これにより、プラズマ生成条件と基板へのイオンの運動エネルギーの制御を独立に行える。   Furthermore, by forming a plasma passage hole in one of the parallel plate electrodes and disposing the substrate outside the electrode having the plasma passage hole, the plasma passes through the plasma passage hole and reaches the substrate. It is possible to form carbon nanostructures that are vertically aligned with each other. Moreover, the voltage between the parallel plate electrodes remains constant, and by changing the voltage applied to the substrate, carbon nanostructures of the desired length can be easily formed. can do. Thereby, the plasma generation conditions and the kinetic energy of ions to the substrate can be controlled independently.

本発明によれば、基板上に垂直配向で、数十μm〜数mmオーダーの長尺カーボンナノチューブあるいはカーボンナノファイバーを形成できる。   According to the present invention, long carbon nanotubes or carbon nanofibers of the order of several tens of μm to several mm can be formed on a substrate in a vertical orientation.

本発明の最良の実施形態例を図1ないし図3に基づいて説明する。   A preferred embodiment of the present invention will be described with reference to FIGS.

図1はCVD装置の断面図を示している。   FIG. 1 shows a sectional view of a CVD apparatus.

図1において、10は石英管もしくは他の絶縁管からなり内部に真空室11を形成した管体である。管体10には、真空室11内を真空排気する真空ポンプ等からなる真空排気手段12、真空室11内にメタン、エチレン等の炭素系ガスを流量を制御しつつ供給するガス導入手段13、真空室11内を加熱する加熱手段となる電気炉14が設けられている。   In FIG. 1, reference numeral 10 denotes a tube body made of a quartz tube or other insulating tube and having a vacuum chamber 11 formed therein. The tube 10 includes a vacuum evacuation unit 12 including a vacuum pump that evacuates the vacuum chamber 11, a gas introduction unit 13 that supplies a carbon-based gas such as methane and ethylene to the vacuum chamber 11 while controlling the flow rate, An electric furnace 14 serving as a heating means for heating the inside of the vacuum chamber 11 is provided.

真空室11内にはプラズマ放電するモリブデン等の平行平板電極15,16が設けられている。基板を載せる一方の電極(陰極と称する)15はパルス電源17に接続され、他方の電極(カソード電極と称する)16は接地されている。もちろん接地以外の電位が与えられていてもよい。陰極15とカソード電極16間に高出力パルス電圧が印加される。
しかも、陰極15の表面には図2に示すように絶縁体18が形成され、高出力パルス電圧の印加により、陰極15とカソード電極16間に誘電体バリア放電が生じる。
In the vacuum chamber 11, parallel plate electrodes 15 and 16 such as molybdenum for plasma discharge are provided. One electrode (referred to as a cathode) 15 on which the substrate is placed is connected to a pulse power source 17, and the other electrode (referred to as a cathode electrode) 16 is grounded. Of course, a potential other than ground may be applied. A high output pulse voltage is applied between the cathode 15 and the cathode electrode 16.
Moreover, an insulator 18 is formed on the surface of the cathode 15 as shown in FIG. 2, and a dielectric barrier discharge is generated between the cathode 15 and the cathode electrode 16 by application of a high output pulse voltage.

次に、カーボンナノ構造の製造方法について説明する。   Next, a method for producing a carbon nanostructure will be described.

基板20を陰極15上に載置する。基板20は、タンタル(Ta)基板を用い、カーボンナノ構造を形成する上面に、Alの中間層(厚さ100Å)を介してFeの触媒(厚さ100Å)を設けてなる。次に、真空排気手段12にて真空室11内を真空にする。次いで、成膜温度が700℃となるように電気炉14にて真空室11内を加熱し、ガス導入手段13にて真空室11内に炭素系ガスを導入する。陰極15とカソード電極16間に、例えば高出力パルス電圧(750W)を印加し、両電極15,16間に誘電体バリア放電を生じさせ、基板20上にカーボンナノチューブが形成される。   The substrate 20 is placed on the cathode 15. The substrate 20 is a tantalum (Ta) substrate, and an Fe catalyst (thickness: 100 mm) is provided on the upper surface on which the carbon nanostructure is formed via an Al intermediate layer (thickness: 100 mm). Next, the vacuum chamber 11 is evacuated by the evacuation means 12. Next, the inside of the vacuum chamber 11 is heated by the electric furnace 14 so that the film forming temperature becomes 700 ° C., and the carbon-based gas is introduced into the vacuum chamber 11 by the gas introducing means 13. For example, a high output pulse voltage (750 W) is applied between the cathode 15 and the cathode electrode 16 to cause dielectric barrier discharge between the electrodes 15 and 16, and carbon nanotubes are formed on the substrate 20.

図3に、基板20上に形成されたカーボンナノチューブ21を示す。   FIG. 3 shows the carbon nanotube 21 formed on the substrate 20.

基板20上に垂直に、所望の数十μm〜数mmオーダーの長尺のカーボンナノチューブ(カーボンナノ構造)21が形成される。   A desired long carbon nanotube (carbon nanostructure) 21 on the order of several tens of μm to several mm is formed vertically on the substrate 20.

このように構成されたカーボンナノ構造の製造装置およびその製造方法によると、陰極15にパルス電圧を印加することで、広範な圧力範囲にて安定したプラズマ放電が可能となる。   According to the carbon nanostructure manufacturing apparatus and the manufacturing method configured as described above, by applying a pulse voltage to the cathode 15, stable plasma discharge is possible in a wide pressure range.

また、電気炉14を用いることで、真空室11内を広範囲に渡って均一に、しかも高温にて加熱できる。   Moreover, by using the electric furnace 14, the inside of the vacuum chamber 11 can be heated uniformly over a wide range and at a high temperature.

また、陰極15に絶縁体18が形成され、両電極15,16間に誘電体バリア放電を生じさせることで、数百Pa等の大気圧に近い領域で有効である。   Further, an insulator 18 is formed on the cathode 15 and dielectric barrier discharge is generated between the electrodes 15 and 16, which is effective in a region close to atmospheric pressure such as several hundred Pa.

なお、カソード電極16は接地するものに限らず、陰極15とカソード電極16間にパルス電源17を接続したものであってもよい。また、カソード電極16に絶縁体18を形成したり、両電極15,16に絶縁体18を形成したものであってもよい。さらに、両電極15,16に絶縁体18を形成せず、両電極15,16間にプラズマ放電するものであってもよい。   The cathode electrode 16 is not limited to being grounded, but may be a cathode power supply 17 connected between the cathode 15 and the cathode electrode 16. Further, the insulator 18 may be formed on the cathode electrode 16 or the insulator 18 may be formed on both the electrodes 15 and 16. Furthermore, the insulator 18 may not be formed on both the electrodes 15 and 16, and plasma discharge may be performed between the both electrodes 15 and 16.

上記実施例は、基板20上にカーボンナノチューブあるいはカーボンナノファイバー等のカーボンナノ構造21を直接形成するものであるが、板上に形成されたカーボンナノ構造を一旦かきとる等して、カーボンナノ構造のみを製造し、それをその他の目的に加工利用してもよい。   In the above embodiment, the carbon nanostructures 21 such as carbon nanotubes or carbon nanofibers are directly formed on the substrate 20, but the carbon nanostructures formed on the plate are scraped once to obtain the carbon nanostructures. May be manufactured and used for other purposes.

本発明の変形例を図4に基づいて説明する。   A modification of the present invention will be described with reference to FIG.

図4はCVD装置の断面図を示している。なお、図1に示した例と同一部分には同一符号を付してその説明を省略する。   FIG. 4 shows a sectional view of the CVD apparatus. In addition, the same code | symbol is attached | subjected to the same part as the example shown in FIG. 1, and the description is abbreviate | omitted.

この例は、カソード電極30を、メッシュあるいは多孔電極等の複数の貫通孔31を有した電極としたものである。   In this example, the cathode electrode 30 is an electrode having a plurality of through holes 31 such as a mesh or a porous electrode.

このように、平行平板電極において、カーボンナノ構造を形成する基板20に対向する側のカソード電極30をメッシュまたは多孔電極とすることで、炭素系ガスの通りが向上し、両電極15,30間に誘起したプラズマ中のイオンあるいはラジカルを基板20に到達せしめてカーボンナノ構造を形成できる。   As described above, in the parallel plate electrode, the cathode electrode 30 on the side facing the substrate 20 forming the carbon nanostructure is a mesh or a porous electrode, so that the flow of the carbon-based gas is improved and the space between the electrodes 15 and 30 is improved. The carbon nanostructure can be formed by causing ions or radicals in the plasma induced in the plasma to reach the substrate 20.

本発明の他の変形例を図5に基づいて説明する。   Another modification of the present invention will be described with reference to FIG.

図5はCVD装置の断面図を示している。なお、図1に示した例と同一部分には同一符号を付してその説明を省略する。   FIG. 5 shows a sectional view of the CVD apparatus. In addition, the same code | symbol is attached | subjected to the same part as the example shown in FIG. 1, and the description is abbreviate | omitted.

この例の平行平板電極は、両端を巻回軸42に巻回され、モーター等にて上下に移動自在に設けられた長尺の帯状の陰極40と、陰極40に対向配置されたカソード電極41とからなり、陰極40はパルス電源17に接続され、カソード電極41は接地されている。   The parallel plate electrode of this example has a long strip-shaped cathode 40 wound at both ends on a winding shaft 42 and movably moved up and down by a motor or the like, and a cathode electrode 41 disposed to face the cathode 40. The cathode 40 is connected to the pulse power source 17 and the cathode electrode 41 is grounded.

帯状の陰極40上に形成されたカーボンナノチューブ21は、陰極40を上下に移動させることで、かきとり棒43にて陰極40からかきとられて集められ、それをその他の目的に加工利用される。   The carbon nanotubes 21 formed on the strip-shaped cathode 40 are collected by being scraped from the cathode 40 by the scraping bar 43 by moving the cathode 40 up and down, and used for other purposes.

このように、上下に移動自在に設けられた長尺の帯状の陰極40上にカーボンナノチューブ21を形成し、かきとり棒43にてかきとることで、カーボンナノチューブ21の量産が図れる。   Thus, mass production of the carbon nanotubes 21 can be achieved by forming the carbon nanotubes 21 on the long belt-like cathodes 40 that are provided so as to be movable up and down and scraping with the scraping rod 43.

本発明のさらに他の変形例を図6に基づいて説明する。   Still another modification of the present invention will be described with reference to FIG.

図6はCVD装置の断面図を示している。なお、図1に示した例と同一部分には同一符号を付してその説明を省略する。   FIG. 6 shows a sectional view of the CVD apparatus. In addition, the same code | symbol is attached | subjected to the same part as the example shown in FIG. 1, and the description is abbreviate | omitted.

この例は、陰極50とカソード電極51間にパルス電源17を接続し、両極50,51間に発生したプラズマ19が通過可能なプラズマ通過孔52を陰極50に形成し、当該プラズマ通過孔52を形成した陰極50の外側に基板20を配置したものである。   In this example, the pulse power source 17 is connected between the cathode 50 and the cathode electrode 51, and a plasma passage hole 52 through which the plasma 19 generated between the two electrodes 50 and 51 can pass is formed in the cathode 50. The substrate 20 is disposed outside the formed cathode 50.

このように、プラズマ通過孔52を形成した陰極50の外側に基板20を配置することで、プラズマ53がプラズマ通過孔を通過して基板20に達し、基板20上に垂直配向のカーボンナノ構造を形成することができ、しかも陰極50とカソード電極51間の電圧は一定のままで、基板20に印加する電圧を変更することで、所望の長さのカーボンナノ構造を容易に形成することができる。   In this way, by disposing the substrate 20 outside the cathode 50 in which the plasma passage hole 52 is formed, the plasma 53 passes through the plasma passage hole and reaches the substrate 20, and a vertically aligned carbon nanostructure is formed on the substrate 20. The carbon nanostructure having a desired length can be easily formed by changing the voltage applied to the substrate 20 while the voltage between the cathode 50 and the cathode electrode 51 remains constant. .

なお、提案例として、図1ないし図6に示した各実施例において、電気炉内に設けた平行平板電極にDC電源を接続し、プラズマ放電により基板上にカーボンナノ構造を形成するCVD装置が挙げられる。すなわち、図1ないし図6に示した各実施例において、パルス電源17に代えてDC電源を設ける以外は、図1ないし図6に示した構成と同様とする。   As a proposal example, in each of the embodiments shown in FIGS. 1 to 6, there is a CVD apparatus in which a DC power source is connected to parallel plate electrodes provided in an electric furnace and a carbon nanostructure is formed on a substrate by plasma discharge. Can be mentioned. That is, each embodiment shown in FIGS. 1 to 6 has the same configuration as that shown in FIGS. 1 to 6 except that a DC power supply is provided instead of the pulse power supply 17.

本発明は、キャパシタの他、電子機器の放熱基板、スポーツ用品や車等の素材等として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a heat dissipation board for electronic devices, materials for sports equipment, cars and the like in addition to capacitors.

本発明の実施の形態におけるCVD装置の断面図Sectional drawing of CVD apparatus in embodiment of this invention 本発明の実施の形態におけるCVD装置の概略図Schematic of a CVD apparatus in an embodiment of the present invention 本発明の実施の形態におけるCVD装置により製造されたカーボンナノチューブの正面図The front view of the carbon nanotube manufactured by the CVD apparatus in embodiment of this invention 本発明の変形例におけるCVD装置の断面図Sectional drawing of CVD apparatus in the modification of this invention 本発明の他の変形例におけるCVD装置の断面図Sectional drawing of the CVD apparatus in the other modification of this invention 本発明のさらに他の変形例におけるCVD装置の断面図Sectional drawing of the CVD apparatus in the further another modification of this invention.

符号の説明Explanation of symbols

10 管体
11 真空室
12 真空排気手段
13 ガス導入手段
14 電気炉(加熱手段)
15,40,50 陰極(平行平板電極)
16,30,41,51 カソード電極(平行平板電極)
17 パルス電源
18 絶縁体
19,53 プラズマ
21 カーボンナノチューブ(カーボンナノ構造)
52 プラズマ通過孔
DESCRIPTION OF SYMBOLS 10 Tube 11 Vacuum chamber 12 Vacuum exhaust means 13 Gas introduction means 14 Electric furnace (heating means)
15, 40, 50 Cathode (parallel plate electrode)
16, 30, 41, 51 Cathode electrode (parallel plate electrode)
17 Pulse power supply 18 Insulator 19, 53 Plasma 21 Carbon nanotube (carbon nanostructure)
52 Plasma passage hole

Claims (6)

真空排気手段にて真空排気してなる真空室を内部に形成した管体と、前記管体に設けられ前記真空室内に炭素系ガスを供給するガス導入手段と、前記管体に設けられ前記真空室内を加熱する加熱手段と、前記真空室内に設けられプラズマ放電する平行平板電極とを備えたカーボンナノ構造の製造装置であって、
前記平行平板電極の一方にカーボンナノ構造を形成する基板を配置して、両電極間にパルス電圧を印加することにより、前記基板上にカーボンナノ構造を形成することを特徴とするカーボンナノ構造の製造装置。
A tube body in which a vacuum chamber formed by evacuation by a vacuum evacuation unit is formed; a gas introduction unit that is provided in the tube body and supplies a carbon-based gas into the vacuum chamber; An apparatus for producing a carbon nanostructure comprising heating means for heating a chamber and parallel plate electrodes provided in the vacuum chamber for plasma discharge,
A carbon nanostructure is formed on the substrate by disposing a substrate for forming a carbon nanostructure on one of the parallel plate electrodes and applying a pulse voltage between the electrodes. manufacturing device.
前記加熱手段が電気炉である、ことを特徴とする請求項1に記載のカーボンナノ構造の製造装置。   The apparatus for producing a carbon nanostructure according to claim 1, wherein the heating means is an electric furnace. 前記平行平板電極の少なくとも一方の電極に絶縁体が形成され、電極間に誘電体バリア放電を生じさせる、ことを特徴とする請求項1または請求項2に記載のカーボンナノ構造の製造装置。   The carbon nanostructure manufacturing apparatus according to claim 1 or 2, wherein an insulator is formed on at least one of the parallel plate electrodes, and dielectric barrier discharge is generated between the electrodes. 前記平行平板電極において、前記基板に対向する側の電極をメッシュまたは多孔電極とした、ことを特徴とする請求項1ないし請求項3のいずれかに記載のカーボンナノ構造の製造装置。   4. The carbon nanostructure manufacturing apparatus according to claim 1, wherein in the parallel plate electrode, an electrode on a side facing the substrate is a mesh or a porous electrode. 5. 前記平行平板電極の一方の電極にプラズマ通過孔を形成し、当該プラズマ通過孔を形成した電極の外側に前記基板を配置した、ことを特徴とする請求項1に記載のカーボンナノ構造の製造装置。   The apparatus for producing a carbon nanostructure according to claim 1, wherein a plasma passage hole is formed in one of the parallel plate electrodes, and the substrate is disposed outside the electrode in which the plasma passage hole is formed. . 管体の内部の真空室に設けられた平行平板電極の一方に、カーボンナノ構造を形成する基板を配置する工程と、
前記真空室内を真空にし、かつ、前記真空室内を加熱する工程と、
前記真空室内に炭素系ガスを供給する工程と、
前記平行平板電極間にパルス電圧を印加してプラズマ放電させ、前記基板上にカーボンナノ構造を形成する工程と、を含むカーボンナノ構造の製造方法。
Placing a substrate for forming a carbon nanostructure on one of parallel plate electrodes provided in a vacuum chamber inside the tube; and
Vacuuming the vacuum chamber and heating the vacuum chamber;
Supplying a carbon-based gas into the vacuum chamber;
Applying a pulse voltage between the parallel plate electrodes to cause plasma discharge to form a carbon nanostructure on the substrate.
JP2004071437A 2004-03-12 2004-03-12 Apparatus and method of manufacturing carbon nano-structure Pending JP2005255492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071437A JP2005255492A (en) 2004-03-12 2004-03-12 Apparatus and method of manufacturing carbon nano-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071437A JP2005255492A (en) 2004-03-12 2004-03-12 Apparatus and method of manufacturing carbon nano-structure

Publications (1)

Publication Number Publication Date
JP2005255492A true JP2005255492A (en) 2005-09-22

Family

ID=35081587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071437A Pending JP2005255492A (en) 2004-03-12 2004-03-12 Apparatus and method of manufacturing carbon nano-structure

Country Status (1)

Country Link
JP (1) JP2005255492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350342A (en) * 2004-05-10 2005-12-22 Ulvac Japan Ltd Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
JP2006143496A (en) * 2004-11-17 2006-06-08 Sharp Corp Method of producing carbon nanotube and apparatus for producing carbon nanotube
JP2006306704A (en) * 2005-03-30 2006-11-09 Sonac Kk Method of forming carbon film and carbon film
KR100666359B1 (en) 2006-01-09 2007-01-11 세메스 주식회사 Apparatus for collection carbon nano tube
KR100841341B1 (en) * 2007-02-08 2008-06-26 세메스 주식회사 Equipment for producting carbon nano tube
JP2009184906A (en) * 2008-02-01 2009-08-20 Qinghua Univ Carbon nanotube structure and manufacturing method thereof
JP2013145904A (en) * 2013-03-04 2013-07-25 Fujitsu Ltd Method of manufacturing field-effect transistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132219A (en) * 1990-09-24 1992-05-06 Sony Corp Plasma treatment apparatus and manufacture of semiconductor device using same
JP2000026975A (en) * 1998-07-09 2000-01-25 Komatsu Ltd Surface treating device
JP2001048512A (en) * 1999-08-04 2001-02-20 Ulvac Japan Ltd Preparation of perpendicularly oriented carbon nanotube
JP2004060130A (en) * 2002-07-31 2004-02-26 Futaba Corp Carbon fiber, method for producing the same, and electron emission element
JP2004057913A (en) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd Method and apparatus for plasma treatment
JP2005015870A (en) * 2003-06-27 2005-01-20 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing carbon nanotube film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132219A (en) * 1990-09-24 1992-05-06 Sony Corp Plasma treatment apparatus and manufacture of semiconductor device using same
JP2000026975A (en) * 1998-07-09 2000-01-25 Komatsu Ltd Surface treating device
JP2001048512A (en) * 1999-08-04 2001-02-20 Ulvac Japan Ltd Preparation of perpendicularly oriented carbon nanotube
JP2004057913A (en) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd Method and apparatus for plasma treatment
JP2004060130A (en) * 2002-07-31 2004-02-26 Futaba Corp Carbon fiber, method for producing the same, and electron emission element
JP2005015870A (en) * 2003-06-27 2005-01-20 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing carbon nanotube film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350342A (en) * 2004-05-10 2005-12-22 Ulvac Japan Ltd Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
JP2006143496A (en) * 2004-11-17 2006-06-08 Sharp Corp Method of producing carbon nanotube and apparatus for producing carbon nanotube
JP2006306704A (en) * 2005-03-30 2006-11-09 Sonac Kk Method of forming carbon film and carbon film
KR100666359B1 (en) 2006-01-09 2007-01-11 세메스 주식회사 Apparatus for collection carbon nano tube
KR100841341B1 (en) * 2007-02-08 2008-06-26 세메스 주식회사 Equipment for producting carbon nano tube
JP2009184906A (en) * 2008-02-01 2009-08-20 Qinghua Univ Carbon nanotube structure and manufacturing method thereof
JP2013145904A (en) * 2013-03-04 2013-07-25 Fujitsu Ltd Method of manufacturing field-effect transistor

Similar Documents

Publication Publication Date Title
JP4963539B2 (en) Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method
US20040256975A1 (en) Electrode and associated devices and methods
JP2008507096A (en) Microdischarge device assisted by field emission
JP2008166257A (en) Carbon nanotube field emission emitter, and its manufacturing method
US7306503B2 (en) Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
JP2010212619A (en) Graphene manufacturing method, graphene, graphene manufacturing device, and semiconductor device
JP2014500593A (en) Field emission display device and manufacturing method thereof
JP5420835B2 (en) Plasma generator and film forming method using the same
JP3792977B2 (en) Electron emission film and field emission cold cathode device
JP2003282298A (en) Doping device
JP2006111517A (en) Apparatus and method for manufacturing carbon nanotube
JP2005255492A (en) Apparatus and method of manufacturing carbon nano-structure
JP3837451B2 (en) Method for producing carbon nanotube
JP2006306704A (en) Method of forming carbon film and carbon film
JP2004353066A (en) Plasma source and plasma treatment system
Zheng et al. Nitrogen-doped few-layer graphene grown vertically on a Cu substrate via C60/nitrogen microwave plasma and its field emission properties
JP4919272B2 (en) Carbon nanotube forming apparatus and carbon nanotube forming method
JP2013177284A (en) Plasma cvd apparatus and substrate heating and holding base, and method for producing carbon nanotube
WO2009116579A1 (en) Plasma processing method and plasma processing apparatus
JP2008293967A (en) Electron source and method of manufacturing electron source
US20050266764A1 (en) Method of stabilizing field emitter
JP2006305554A (en) Method of forming catalyst and method of manufacturing carbon film using the same
JP4076890B2 (en) A plasma generation apparatus, an etching apparatus, a sputtering apparatus, and a film formation apparatus.
JP4536456B2 (en) Plasma chemical vapor deposition method
JP4965373B2 (en) Method for producing carbon nanotube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019