JP2000191302A - Hydrogen occlusion body and production of hydrogen occlusion body - Google Patents

Hydrogen occlusion body and production of hydrogen occlusion body

Info

Publication number
JP2000191302A
JP2000191302A JP10372382A JP37238298A JP2000191302A JP 2000191302 A JP2000191302 A JP 2000191302A JP 10372382 A JP10372382 A JP 10372382A JP 37238298 A JP37238298 A JP 37238298A JP 2000191302 A JP2000191302 A JP 2000191302A
Authority
JP
Japan
Prior art keywords
carbon fibers
substrate
hydrogen
hydrogen storage
metallic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10372382A
Other languages
Japanese (ja)
Inventor
Miho Maruyama
美保 丸山
Yasuhiro Itsudo
康広 五戸
Fumio Ueno
文雄 上野
Hiroshi Tateishi
浩史 立石
Naoki Shudo
直樹 首藤
Kazuhiro Yasuda
一浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10372382A priority Critical patent/JP2000191302A/en
Publication of JP2000191302A publication Critical patent/JP2000191302A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To enhance an assembly characteristic and to facilitate production while maintaining hydrogen occludability by forming carbon fibers having the hydrogen occludability directly on a metallic substrate surface. SOLUTION: The carbon fibers having the hydrogen occludability are <=1 μm in the diameter of the fiber and has good crystallinity of <=5 wt.% in amorphous phase, exhibiting the form that graphenes line up in parallel or perpendicularly regularly. The hydrogen occlusion body is produced by three stages. The crystal bearings of the metallic substrate surface are unified (a first stage). The metallic substrate is subjected to any of cold rolling, a combination of cold rolling and heat treatment and hot rolling, by which the texture is formed. A recessed part 3 is formed on the metallic substrate 2 surface (a second stage). The metallic substrate 2 surface is etched to form micropits in such a manner that the crystal faces in the bearings where the carbon fibers glow preferentially are the surfaces of the pits. Gaseous raw material is supplied to the substrate 2 and the carbon fibers 1 having the hydrogen occludability are grown in a vapor phase in the recessed part 3 (a third stage). The graphenes line up regularly in parallel in the carbon fibers 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵能を有する
炭素繊維を備えた水素吸蔵体及び水素吸蔵体の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage having carbon fibers having hydrogen storage capacity and a method for producing the hydrogen storage.

【0002】[0002]

【従来の技術】Rodriguz等によって発表されたGNF(グ
ラファイト・ナノファイバー)は、従来の水素吸蔵合金
と比較して極めて高い水素吸収能・放出能を有するため
(J.Phys.Chem.B,102(1998)4253.)、容器に封入し水素貯
蔵容器としての用途や、CO2やトリクレンを吸着する活
性炭、また水素を吸蔵させた状態で燃料などの用途が期
待できる。
2. Description of the Related Art GNF (graphite nanofiber) disclosed by Rodriguz et al. Has extremely high hydrogen absorption and desorption ability as compared with conventional hydrogen storage alloys.
(J.Phys.Chem.B, 102 (1998) 4253.), used as a hydrogen storage container by enclosing it in a container, activated carbon that adsorbs CO 2 and trichlorene, and fuel used while storing hydrogen Can be expected.

【0003】GNFはナノメーターオーダーの金属触媒粒
子にC2H4などの原料ガスを供給することにより、触媒粒
子と同等寸法のナノメーターオーダーの直径を有する繊
維として合成される。しかし合成されたGNFは非常に微細
なためアセンブリ性が悪く、容器に容易には封入でき
ず、使用中にも容易に容器より排出されるなどの問題が
あった。またナノメーターオーダーの金属触媒粒子も高
価であり、GNFが高価になってしまうという問題があっ
た。
GNF is synthesized as a fiber having a diameter on the order of nanometers equivalent to that of the catalyst particles by supplying a raw material gas such as C 2 H 4 to metal catalyst particles on the order of nanometers. However, the synthesized GNF is very fine and has poor assembly properties, so that it cannot be easily enclosed in a container, and has a problem that it is easily discharged from the container during use. Also, metal catalyst particles of the order of nanometers are expensive, and there is a problem that GNF becomes expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高い水素吸
蔵能を維持しつつアセンブリ性が高く、また容易に製造
できる水素吸蔵体を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen storage body which has high assemblability while maintaining a high hydrogen storage capacity and can be easily manufactured.

【0005】また本発明は、高価な金属触媒粒子を使用
せず、また容易な方法で水素吸蔵能を維持しつつかつア
センブリ性の高い水素吸蔵体を製造することのできる水
素旧蔵体の製造方法を提供することを目的とする。
[0005] The present invention also provides a method of manufacturing a hydrogen storage material which does not use expensive metal catalyst particles and which can produce a hydrogen storage material having a high assemblability while maintaining the hydrogen storage capacity by an easy method. The aim is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明は、金属基板と、
金属基板表面に直接形成された水素吸蔵能を有する炭素
繊維を備えることを特徴とする水素吸蔵体である。
The present invention comprises a metal substrate,
A hydrogen storage body comprising a carbon fiber having a hydrogen storage ability directly formed on a surface of a metal substrate.

【0007】また、本発明は金属基板表面の結晶の方位
を揃える工程と、金属基板表面に凹部を形成する工程
と、原料ガスを基板に供給し凹部に水素吸蔵能を有する
炭素繊維を気相成長させる工程とを備えることを特徴と
する水素吸蔵体の製造方法である。
Further, the present invention provides a step of aligning the crystal orientation on the surface of the metal substrate, a step of forming a concave portion on the surface of the metal substrate, and a step of supplying a raw material gas to the substrate and depositing carbon fibers having hydrogen absorbing ability in the concave portion. And a step of growing.

【0008】すなわち、本発明の水素吸蔵体は、担持さ
せる金属基板に直接水素吸蔵能を有する炭素繊維を形成
することにより、水素吸蔵能を維持しつつアセンブリ性
が高く、かつ容易に製造することができる。
That is, the hydrogen storage body of the present invention has high assemblability while maintaining hydrogen storage ability and is easily manufactured by forming carbon fibers having hydrogen storage capacity directly on a metal substrate to be supported. Can be.

【0009】また、本発明の水素吸蔵体の製造方法によ
れば、炭素繊維形成時に高価な金属触媒粒子を使用せ
ず、容易な方法で水素吸蔵能を維持しつつかつアセンブ
リ性の高い水素吸蔵体を製造することができる。
Further, according to the method for producing a hydrogen storage material of the present invention, the hydrogen storage capability can be easily maintained without using expensive metal catalyst particles at the time of forming carbon fibers, and the hydrogen storage capability can be easily maintained. The body can be manufactured.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において水素吸蔵能を有する炭素繊維は繊維の直
径が1μm以下であり、非晶質相が5wt%以下と結晶性が
良く、グラフェンが平行または垂直に規則的に並ぶ形態
を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, the carbon fiber having a hydrogen storage capacity has a fiber diameter of 1 μm or less, an amorphous phase of 5 wt% or less, good crystallinity, and a form in which graphene is regularly arranged in parallel or vertically.

【0011】基板とは、金属を圧延し薄膜化した箔でも
よく、金属繊維を編み込んだシートでもよい。実用的な
アセンブリ性を有するためには、箔あるいはシートの表
面積が25mm2以上である必要がある。
The substrate may be a foil obtained by rolling a metal into a thin film, or a sheet woven with metal fibers. In order to have practical assembly properties, the surface area of the foil or sheet needs to be 25 mm 2 or more.

【0012】効率よく水素を吸蔵する、直径が1μm以
下の炭素繊維を作成するためには、この基板に、GNF
成長面となる0.3nm2〜1μm2の窪み、すなわちピットを
形成する必要がある。
In order to efficiently produce a carbon fiber having a diameter of 1 μm or less, which absorbs hydrogen, GNF must be provided on this substrate.
It is necessary to form a pit of 0.3 nm 2 to 1 μm 2 , that is, a pit, which becomes a growth surface.

【0013】以下本発明の水素吸蔵体の製造方法につい
て説明する。 <第1工程>まず、金属基板表面の結晶の方位を揃える
工程を行う。金属基板はGNFを作成するための触媒とし
て作用すると共に担持体としての役割も担う。よってPd,
Pt,Ni,La,Mg,Cu,Fe,Cu-Ni,Fe-Cu等の金属材料からなる
ことが好ましい。 金属基板は炭素結晶が同じ速度で成長し、炭素繊維が形
成されるように、少なくとも基板表面の結晶の結晶方位
を揃える必要がある。特に望ましくは、その結晶方位は
後述する第2工程のエッチングで炭素繊維が優先的に成
長する方位たとえば、Feであれば{111}の結晶面が出易
いように揃っていることが望ましい。 金属基板表面の結晶の方位を揃えるには、金属基板を
冷間圧延、冷間圧延と熱処理の組み合わせ、熱間圧
延、のいずれかで加工し集合組織を形成する。さらに
引き抜きや押し出し加工により、金属基板の形状を板
状、棒状、あるいは繊維状などの任意の形状としてもよ
い。
The method for producing a hydrogen storage material according to the present invention will be described below. <First Step> First, a step of aligning the crystal orientation on the metal substrate surface is performed. The metal substrate functions as a catalyst for producing GNF and also as a carrier. So Pd,
It is preferable to be made of a metal material such as Pt, Ni, La, Mg, Cu, Fe, Cu-Ni, and Fe-Cu. In the metal substrate, it is necessary to arrange at least the crystal orientation of the crystal on the substrate surface so that the carbon crystal grows at the same rate and the carbon fiber is formed. It is particularly desirable that the crystal orientations are aligned so that the carbon fibers grow preferentially in the etching in the second step described later, for example, if Fe, the crystal plane of {111} is likely to appear. In order to align the crystal orientation on the surface of the metal substrate, the metal substrate is processed by any one of cold rolling, a combination of cold rolling and heat treatment, and hot rolling to form a texture. Further, the shape of the metal substrate may be changed to an arbitrary shape such as a plate shape, a rod shape, or a fiber shape by drawing or extrusion.

【0014】後述する第3工程において炭素繊維形成の
ためのガスが供給される際に効率よく金属基板全体に供
給されるように、金属基板の形状が板状ならばメッシュ
状に打ち抜き加工をしてもよいし、繊維状ならばメッシ
ュ状に編み込んでも良い。 <第2工程>次に第2工程において、金属基板表面に凹部
を形成する工程を行う。金属基板表面に凹部を形成する
には、金属基板表面をエッチングし、炭素繊維が優先的
に成長する方位の結晶面がピットの表面となるように微
細なピットを形成する。ピットの1つの平面の面積は炭
素繊維が効率よく水素を吸蔵するように0.3nm2〜1μm 2
とする。好ましくは0.3nm2〜0.2μm2である。 <第3工程>次に第3工程において、原料ガスを金属基板
に供給し凹部に炭素繊維気相成長させる工程を行う。
In a third step described below, the formation of carbon fibers
Supply gas to the entire metal substrate efficiently.
If the shape of the metal substrate is plate-like,
It may be punched in the shape of
It may be knitted in the shape of a key. <Second step> Next, in the second step, a concave portion is formed on the surface of the metal substrate.
Is performed. Form recesses on metal substrate surface
, The metal substrate surface is etched and carbon fiber is preferred
So that the crystal plane of the orientation that grows
Form fine pits. The area of one plane of the pit is charcoal
0.3nm so that the elementary fiber absorbs hydrogen efficientlyTwo~ 1μm Two
And Preferably 0.3 nmTwo~ 0.2μmTwoIt is. <Third step> Next, in the third step, the raw material gas is
And a step of vapor-growing carbon fibers in the recesses.

【0015】上記の如く凹部を形成した金属基板を反応
容器に導入し、300〜1200℃に基板を加熱しながら、C2H
4/H2,CO/H2などの炭素繊維の原料ガスを基板に補給す
る。原料ガスは基板に到達した後基板上で解離し、基板
中を拡散し、凹部より黒鉛のC面の揃った炭素繊維が形
成される。凹部を設けた金属基板上に炭素繊維が形成さ
れた本発明に係る水素吸蔵体の模式図を図1に示す。金
属基板1表面に形成された凹部2上に炭素繊維3が形成
されている。炭素繊維3はグラフェンが平行に規則的に
並ぶ構造である。原料ガスは平板の背面のみから補給し
てもよく、凹部を形成した表面から補給しても良い。 金属基板の結晶方位を炭素繊維の形成に有利な結晶方位
に配向することが出来なかったり、 炭素繊維の形成に不
利な結晶方位に配向してしまう場合には、凹部以外から
の炭素繊維の成長を抑制する目的で凹部以外の部分にコ
ーティング層を形成する。凹部以外の部分にコーティン
グ層を形成した金属基板上に炭素繊維が形成された本発
明に係る水素吸蔵体の模式図を図2に示す。金属基板1
表面に凹部2が設けられ、さらに金属基板1の凹部以外
部分にコーティング層4が形成され形成されている。炭
素繊維3は凹部に形成されている。コーティング層はC
拡散速度が基板金属よりも低い金属や酸化物などのセラ
ミックス等で形成する。
The metal substrate having the concave portion formed as described above is introduced into a reaction vessel, and while the substrate is heated to 300 to 1200 ° C., C 2 H
Supply raw material gas of carbon fiber such as 4 / H 2 and CO / H 2 to the substrate. After reaching the substrate, the source gas is dissociated on the substrate, diffuses through the substrate, and carbon fibers having a uniform C-plane of graphite are formed from the concave portions. FIG. 1 shows a schematic view of a hydrogen storage body according to the present invention in which carbon fibers are formed on a metal substrate provided with a concave portion. The carbon fibers 3 are formed on the concave portions 2 formed on the surface of the metal substrate 1. The carbon fiber 3 has a structure in which graphene is regularly arranged in parallel. The source gas may be supplied only from the back surface of the flat plate, or may be supplied from the surface on which the concave portion is formed. If the crystal orientation of the metal substrate cannot be oriented to a crystal orientation that is advantageous for the formation of carbon fibers, or if it is oriented to a crystal orientation that is unfavorable for the formation of carbon fibers, the growth of the carbon fibers from portions other than the recesses A coating layer is formed on a portion other than the concave portion for the purpose of suppressing the formation of the coating. FIG. 2 is a schematic view of a hydrogen storage body according to the present invention in which carbon fibers are formed on a metal substrate having a coating layer formed on a portion other than the concave portions. Metal substrate 1
A concave portion 2 is provided on the surface, and a coating layer 4 is formed on a portion of the metal substrate 1 other than the concave portion. The carbon fibers 3 are formed in the concave portions. Coating layer is C
It is formed of ceramics such as metals and oxides whose diffusion rate is lower than that of the substrate metal.

【0016】[0016]

【実施例】以下、本発明の具体的な実施例について説明
する。 (実施例1)、炭素繊維を成長させる金属基板として、
Fe平板を厚さ0.5mmまで冷間圧延したのち5cm×5cmの箔
を切り出した。ついでこの基板の表面にエタノール+硝
酸の腐食液を用いて凹部を形成した。凹部の表面の結晶
方位は{111}にそろっており、面積は約30nm2であった。
この基板をCVD装置の反応容器に導入し、CO/H2を600℃で
フローし、金属基板の凹部上に炭素繊維を作成した。炭
素繊維を形成した基板を反応容器から取り出しても炭素
繊維は基板から剥離することはなく、アセンブリ性のよ
い状態であることが確認された。また、水素吸蔵能も確
認できた。 (実施例2)炭素繊維を成長させる金属基板としてNi平
板を厚さ0.3mmまで冷間圧延したのち、5cm×5cmの箔を
切り出した。ついでこの金属基板の表面に蒸留水+エタ
ノール+塩酸+硫酸銅の腐食液を用いてエッチングし凹
部を形成した。凹部の表面は{100}にそろっている。面
積は約10nm2であった。この基板をCVD装置の反応容器に
導入し、 C2H4/H2を600℃でフローし、基板上に炭素繊維
を作成した。炭素繊維を形成した基板を反応容器から取
り出しても炭素繊維は基板から剥離することはなく、ア
センブリ性のよい状態であることが確認された。また、
水素吸蔵能も確認できた。 (実施例3)Ni5wt%-Cu線を引き抜き加工により直径0.5
mmの細線とした。この細線に蒸留水+塩酸の腐食液を用
いてエッチピットを形成させた。ついでこの細線を編み
込みCu繊維のシートを作成した。このシートをCVD装置
の反応容器に導入し、 C2H4/H2を600℃でフローし、シー
トにしたこのCu細線の表面にGNFを作成した。GNFを形成
した基板を反応容器から取り出してもGNFは基板から剥
離することはなく、アセンブリ性のよい状態であること
が確認された。また、水素吸蔵能も確認できた。 (実施例4)炭素繊維を成長させる金属基板としてNi30w
t%-Cu平板を厚さ0.1mmまで冷間圧延したのち、3cm×3cm
の箔を切り出した。 この基板に蒸留水+塩酸の腐食液を
用いてエッチピットを形成させた。ついでこの基板表面
に有機膜を形成し、膜が乾燥した後、表面研磨を行なっ
た。この工程により、エッチピット部分には有機膜が残
留し、ピット以外には有機膜が存在しない状態となっ
た。更にこの基板表面にスミセラムを塗布した。スミセ
ラムを硬化させた後、有機溶剤に基板を入れ、超音波洗
浄を行なった。この工程により、エッチピットは基板で
あるNi30wt%-Cuが剥き出しとなり、ピット以外はスミセ
ラムが表面を覆う形態となった。この基板をCVD装置の
反応容器に導入し、 C2H4/H2を500℃でフローし、基板の
表面にGNFを作成した。GNFを形成した基板を反応容器か
ら取り出してもGNFは基板から剥離することはなく、ア
センブリ性のよい状態であることが確認された。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. (Example 1) As a metal substrate for growing carbon fibers,
After the Fe flat plate was cold-rolled to a thickness of 0.5 mm, a 5 cm × 5 cm foil was cut out. Then, a concave portion was formed on the surface of the substrate using a corrosive solution of ethanol and nitric acid. The crystal orientation of the surface of the recess was aligned with {111}, and the area was about 30 nm 2 .
This substrate was introduced into a reaction vessel of a CVD apparatus, and CO / H 2 was flowed at 600 ° C. to form carbon fibers on the concave portion of the metal substrate. Even when the substrate on which the carbon fiber was formed was taken out of the reaction vessel, the carbon fiber did not peel off from the substrate, and it was confirmed that the assembly was in a good state of assembly. In addition, the hydrogen storage ability was also confirmed. (Example 2) As a metal substrate for growing carbon fibers, a Ni flat plate was cold-rolled to a thickness of 0.3 mm, and a 5 cm x 5 cm foil was cut out. Then, a concave portion was formed on the surface of the metal substrate by etching using a corrosion solution of distilled water + ethanol + hydrochloric acid + copper sulfate. The surface of the recess is aligned with {100}. The area was about 10 nm 2 . This substrate was introduced into a reaction vessel of a CVD apparatus, and C 2 H 4 / H 2 was flowed at 600 ° C. to form a carbon fiber on the substrate. Even when the substrate on which the carbon fiber was formed was taken out of the reaction vessel, the carbon fiber did not peel off from the substrate, and it was confirmed that the assembly was in a good state of assembly. Also,
The hydrogen storage capacity was also confirmed. (Example 3) Ni5wt% -Cu wire was drawn to a diameter of 0.5
mm. Etch pits were formed on the fine wire using a corrosion solution of distilled water and hydrochloric acid. Next, a sheet of Cu fiber was formed by weaving the fine wire. The sheet was introduced into a reaction vessel of a CVD apparatus, and C 2 H 4 / H 2 was flowed at 600 ° C. to form a GNF on the surface of the sheet of Cu fine wire. Even when the substrate on which the GNF was formed was taken out of the reaction vessel, the GNF did not peel off from the substrate, confirming that the assembly was in a state of good assembly. In addition, the hydrogen storage ability was also confirmed. (Example 4) Ni30w as a metal substrate for growing carbon fibers
After cold rolling t% -Cu plate to 0.1mm thickness, 3cm × 3cm
Was cut out. Etch pits were formed on the substrate using a corrosion solution of distilled water and hydrochloric acid. Next, an organic film was formed on the surface of the substrate, and after the film was dried, the surface was polished. As a result of this step, the organic film remained in the etch pit portion, and no organic film was present except for the pit. Further, Sumiceram was applied to the surface of the substrate. After curing the sumiceram, the substrate was placed in an organic solvent and subjected to ultrasonic cleaning. As a result of this step, the etch pits were exposed such that the substrate, Ni30 wt% -Cu, was exposed, and the surface of the etch pits other than the pits was covered with Sumiceram. This substrate was introduced into a reaction vessel of a CVD apparatus, and C 2 H 4 / H 2 was flowed at 500 ° C. to form GNF on the surface of the substrate. Even when the substrate on which the GNF was formed was taken out of the reaction vessel, the GNF did not peel off from the substrate, confirming that the assembly was in a state of good assembly.

【0017】[0017]

【発明の効果】本発明の水素吸蔵体によれば、水素吸蔵
能を維持しつつアセンブリ性が高く、また容易に製造で
きる水素吸蔵体を提供することができる。
According to the hydrogen storage body of the present invention, it is possible to provide a hydrogen storage body which has high assemblability while maintaining the hydrogen storage capacity and can be easily manufactured.

【0018】また本発明の水素吸蔵体の製造方法によれ
ば、高価な金属触媒粒子を使用せず、また容易な方法で
水素吸蔵能を維持しつつかつアセンブリ性の高い水素吸
蔵体を製造することができる。
Further, according to the method for producing a hydrogen storage material of the present invention, a hydrogen storage material having a high assemblability while maintaining the hydrogen storage capacity can be produced by an easy method without using expensive metal catalyst particles. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水素吸蔵体の模式図。FIG. 1 is a schematic view of a hydrogen storage body according to the present invention.

【図2】本発明に係る水素吸蔵体の模式図。FIG. 2 is a schematic view of a hydrogen storage body according to the present invention.

【符号の説明】[Explanation of symbols]

1…炭素繊維 2…金属基板 3…凹部 4…表面コーティング層 DESCRIPTION OF SYMBOLS 1 ... Carbon fiber 2 ... Metal substrate 3 ... Depression 4 ... Surface coating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 立石 浩史 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 首藤 直樹 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 安田 一浩 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 4G040 AA33 AA34 AA42 4L037 CS03 CS04 FA03 FA05 PA01 PA03 PA05 PA06 PA10 PA12 UA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Fumio Ueno 1st, Toshiba, Komukai Toshiba-cho, Saitama-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Hiroshi Tateishi Toshiba Komukai, Kochi-ku, Kawasaki-shi, Kanagawa No. 1 in the Toshiba R & D Center (72) Inventor Naoki Shuto 1 in Komukai Toshiba, Koyuki-ku, Kawasaki-shi, Kanagawa Prefecture In-Toshiba R & D Center (72) Inventor Kazuhiro Yasuda Kawasaki-shi, Kanagawa 1F, Komukai Toshiba-cho, Toshiba R & D Center F-term (reference) 4G040 AA33 AA34 AA42 4L037 CS03 CS04 FA03 FA05 PA01 PA03 PA05 PA06 PA10 PA12 UA20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属基板と、金属基板表面に直接形成さ
れた水素吸蔵能を有する炭素繊維を備えることを特徴と
する水素吸蔵体。
1. A hydrogen storage body comprising: a metal substrate; and carbon fibers having a hydrogen storage ability directly formed on the surface of the metal substrate.
【請求項2】 金属基板表面の結晶の方位を揃える工程
と、金属基板表面に凹部を形成する工程と、原料ガスを
基板に供給し凹部に水素吸蔵能を有する炭素繊維を気相
成長させる工程とを備えることを特徴とする水素吸蔵体
の製造方法。
2. A step of aligning the crystal orientation on the surface of the metal substrate, a step of forming a recess in the surface of the metal substrate, and a step of supplying a raw material gas to the substrate and vapor-growing carbon fibers having hydrogen storage capacity in the recess. And a method for producing a hydrogen storage body.
JP10372382A 1998-12-28 1998-12-28 Hydrogen occlusion body and production of hydrogen occlusion body Pending JP2000191302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372382A JP2000191302A (en) 1998-12-28 1998-12-28 Hydrogen occlusion body and production of hydrogen occlusion body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372382A JP2000191302A (en) 1998-12-28 1998-12-28 Hydrogen occlusion body and production of hydrogen occlusion body

Publications (1)

Publication Number Publication Date
JP2000191302A true JP2000191302A (en) 2000-07-11

Family

ID=18500353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372382A Pending JP2000191302A (en) 1998-12-28 1998-12-28 Hydrogen occlusion body and production of hydrogen occlusion body

Country Status (1)

Country Link
JP (1) JP2000191302A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017900A1 (en) * 1999-09-09 2001-03-15 Sony Corporation Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
WO2001093292A1 (en) * 2000-05-26 2001-12-06 E.I. Dupont De Nemours And Company Catalytically grown carbon fiber field emitters and field emitter cathodes made therefrom
EP1187161A2 (en) 2000-09-01 2002-03-13 Canon Kabushiki Kaisha Electron-emitting device, electron-emitting apparatus, image display apparatus, and light-emitting apparatus
JP2002348741A (en) * 2001-03-21 2002-12-04 Morinobu Endo Carbon fiber by vapor-phase growth and composite material using the same
JP2002348742A (en) * 2001-03-21 2002-12-04 Morinobu Endo Fluorinated carbon fiber, active material for battery using the same, and solid lubricant
JP2003342839A (en) * 2002-05-23 2003-12-03 Mitsubishi Heavy Ind Ltd Carbon nano fibrin
JP2004003092A (en) * 2002-04-17 2004-01-08 Jfe Chemical Corp Method for producing vapor-deposition carbon fiber and vapor-deposition carbon fiber
JP2004068187A (en) * 2002-08-05 2004-03-04 Jfe Chemical Corp Method for producing vapor-phase growth carbon fiber
US9431345B2 (en) 2013-03-25 2016-08-30 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017900A1 (en) * 1999-09-09 2001-03-15 Sony Corporation Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
WO2001093292A1 (en) * 2000-05-26 2001-12-06 E.I. Dupont De Nemours And Company Catalytically grown carbon fiber field emitters and field emitter cathodes made therefrom
EP1187161A2 (en) 2000-09-01 2002-03-13 Canon Kabushiki Kaisha Electron-emitting device, electron-emitting apparatus, image display apparatus, and light-emitting apparatus
CN100428392C (en) * 2000-09-01 2008-10-22 佳能株式会社 Electron-emitting device, electron-emitting apparatus, image display apparatus, and light-emitting apparatus
JP2002348741A (en) * 2001-03-21 2002-12-04 Morinobu Endo Carbon fiber by vapor-phase growth and composite material using the same
JP2002348742A (en) * 2001-03-21 2002-12-04 Morinobu Endo Fluorinated carbon fiber, active material for battery using the same, and solid lubricant
JP2004003092A (en) * 2002-04-17 2004-01-08 Jfe Chemical Corp Method for producing vapor-deposition carbon fiber and vapor-deposition carbon fiber
JP2003342839A (en) * 2002-05-23 2003-12-03 Mitsubishi Heavy Ind Ltd Carbon nano fibrin
JP2004068187A (en) * 2002-08-05 2004-03-04 Jfe Chemical Corp Method for producing vapor-phase growth carbon fiber
US9431345B2 (en) 2013-03-25 2016-08-30 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US11407637B2 (en) Direct graphene growing method
US9536735B2 (en) Method for preparing graphene
US9845243B2 (en) Composite catalyst and method for manufacturing carbon nanostructured materials
US10836132B2 (en) Graphene reinforced materials and related methods of manufacture
JP3877302B2 (en) Method for forming carbon nanotube
EP1655266B1 (en) Method of preparing a carbon nanosphere having at least one opening, impregnated catalyst comprising the carbon nanosphere and fuel cell using this catalyst
JP3484441B2 (en) Method for producing carbon nanotube
US20050238810A1 (en) Nanotube/metal substrate composites and methods for producing such composites
JP2004250306A (en) Method of growing matrix of carbon nanotube
TWI466823B (en) Snowflake-like graphene and a method of synthesizing the same
TW201022142A (en) Graphene and hexagonal boron nitride planes and associated methods
JP2002348741A (en) Carbon fiber by vapor-phase growth and composite material using the same
Vignes et al. Ultraporous monoliths of alumina prepared at room temperature by aluminium oxidation
JP6546680B2 (en) Three-dimensional porous composite material
JP2000191302A (en) Hydrogen occlusion body and production of hydrogen occlusion body
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
JP2007091479A (en) Method for production of carbon fiber
JP2007091484A (en) Method for production of carbon fiber, and substrate unit
JP3443646B1 (en) Carbon nanotube growth method
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
JP4953356B2 (en) Porous diamond film and method for producing the same
JP5154801B2 (en) Method for producing a material layer on a support
CN1275851C (en) Preparation method of carbon nano-pipe
CN103172059A (en) Method for preparing graphene
JP2007254167A (en) Method for production of carbon nanotube