JP2000003712A - Catalyst for high molecular solid electrolyte fuel cell - Google Patents

Catalyst for high molecular solid electrolyte fuel cell

Info

Publication number
JP2000003712A
JP2000003712A JP10167982A JP16798298A JP2000003712A JP 2000003712 A JP2000003712 A JP 2000003712A JP 10167982 A JP10167982 A JP 10167982A JP 16798298 A JP16798298 A JP 16798298A JP 2000003712 A JP2000003712 A JP 2000003712A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
platinum
fuel cell
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10167982A
Other languages
Japanese (ja)
Inventor
Tomoyuki Tada
多田  智之
Masahiko Inoue
井上  昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP10167982A priority Critical patent/JP2000003712A/en
Priority to PCT/JP1999/002710 priority patent/WO1999066576A1/en
Priority to US09/462,477 priority patent/US6339038B1/en
Priority to EP99923853.8A priority patent/EP1022795B1/en
Publication of JP2000003712A publication Critical patent/JP2000003712A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for platinum/ruthenium high molecular solid electrolyte fuel cell having superior carbon monoxide catalyst poisoning resistance, while carrying the platinum particles or the ruthenium particles in the close condition without aggregating. SOLUTION: In this catalyst for high molecular solid electrolyte fuel cell carrying platinum and ruthenium, the ratio of the platinum to ruthenium to be carried is set at 2 to 4:8 to 6 (mol ratio). Especially, platinum : ruthenium = 4 : 6 is preferable. When both the noble metal particles are carried in the alloy condition while making them come approach close to each other, carbon monoxide catalyst poisoning resistance of the catalyst is further improved. As a carrier, carbon powder including pores having a diameter at 60 angstroms or less at 20% or more with respect to all the pores and having a specific surface area of 600-1,200 m2/g is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子固体電解質型
燃料電池用触媒、特に、耐一酸化炭素触媒被毒性に優れ
る白金とルテニウムが複合的に担持された高分子固体電
解質型燃料電池用触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for a solid polymer electrolyte fuel cell, and more particularly to a catalyst for a solid polymer electrolyte fuel cell in which platinum and ruthenium which are excellent in the poisoning of a carbon monoxide catalyst are supported in a complex manner. It is about.

【0002】[0002]

【従来の技術】高分子固体電解質型燃料電池は、リン酸
型燃料電池と比較してコンパクトで高い電流密度が取り
出せることから、電気自動車や宇宙船用の電源として注
目されている。
2. Description of the Related Art A solid polymer electrolyte fuel cell has attracted attention as a power source for electric vehicles and spacecraft because it has a compact and high current density as compared with a phosphoric acid fuel cell.

【0003】高分子固体電解質型燃料電池は、水素極
(アノード)と空気極(カソード)とが高分子固体電解
質を挟持する層構造を有する。また、この水素極、空気
極両電極は貴金属が担持された触媒と固体電解質との混
合体よりなる。この構成において、水素極に供給された
水素ガスは、電極中の細孔を通過して触媒に達し、触媒
により電子を放出して水素イオンとなる。水素イオンは
電極中の電解質及び両電極間の固体電解質を通じて空気
極に達し、空気極に供給された酸素と外部回路より流れ
込む電子と反応して水を生じる。一方、水素より放出さ
れた電子は電極中の触媒担体を通って外部回路へ導き出
され、外部回路より空気極へ流れ込む。この結果、外部
回路では水素極から空気極へ向かって電子が流れ電力が
取り出されることとなる。
A solid polymer electrolyte fuel cell has a layer structure in which a hydrogen electrode (anode) and an air electrode (cathode) sandwich a polymer solid electrolyte. The hydrogen electrode and the air electrode are both composed of a mixture of a catalyst carrying a noble metal and a solid electrolyte. In this configuration, the hydrogen gas supplied to the hydrogen electrode passes through the pores in the electrode, reaches the catalyst, and emits electrons by the catalyst to become hydrogen ions. The hydrogen ions reach the air electrode through the electrolyte in the electrode and the solid electrolyte between the electrodes, and react with oxygen supplied to the air electrode and electrons flowing from an external circuit to generate water. On the other hand, electrons released from hydrogen are led to an external circuit through the catalyst carrier in the electrode, and flow from the external circuit to the air electrode. As a result, in the external circuit, electrons flow from the hydrogen electrode to the air electrode, and power is extracted.

【0004】ところで、水素極へ供給される水素として
は、その取り扱い性や、エネルギー密度の観点から、メ
タノール等の液体燃料を改質して得られる水素が有望視
されている。しかし、この改質によって得られる水素ガ
ス中には微量の一酸化炭素が含まれており、これにより
触媒被毒が生じるという問題がある。そして、この触媒
被毒による失活が燃料電池の特性に悪影響を及ぼすこと
となる。
[0004] By the way, as hydrogen supplied to the hydrogen electrode, hydrogen obtained by reforming liquid fuel such as methanol is considered promising from the viewpoints of handleability and energy density. However, the hydrogen gas obtained by this reforming contains a trace amount of carbon monoxide, which causes a problem that catalyst poisoning occurs. The deactivation due to the poisoning of the catalyst adversely affects the characteristics of the fuel cell.

【0005】白金とルテニウムが複合的に担持された触
媒は、この触媒被毒の問題に対し優れた耐一酸化炭素触
媒被毒性を有する触媒として従来から知られている。こ
の複合的な触媒の耐一酸化炭素触媒被毒性については、
ルテニウムが親水性を有する物質であり、このルテニウ
ムと結合したOH-が白金上に吸着した一酸化炭素を酸
化、除去させることにより達成されるものと考えられて
いる。従って、この複合的触媒において、ルテニウムの
作用による耐一酸化炭素触媒被毒性を有効に発揮させる
ためには白金粒子とルテニウム粒子が可能な限り近接し
た状態で担持されていることが好ましい。
[0005] A catalyst in which platinum and ruthenium are supported in combination is conventionally known as a catalyst having excellent poisoning resistance to carbon monoxide catalyst against the problem of catalyst poisoning. Regarding the carbon monoxide catalyst poisoning of this composite catalyst,
Ruthenium is a substance having a hydrophilic, OH bound to the ruthenium - are believed to have achieved by the adsorbed carbon monoxide oxidation, it is removed on platinum. Therefore, in this composite catalyst, it is preferable that platinum particles and ruthenium particles are supported as close as possible in order to effectively exhibit the poisoning of the carbon monoxide catalyst by the action of ruthenium.

【0006】この白金/ルテニウム触媒について、特開
平2−111440号公報は、還元剤としてメタノール
を、反応促進剤として過酸化水素を用いて、白金化合物
とルテニウム化合物の混合溶液からこれら貴金属イオン
を還元させて、炭素粉体上に白金とルテニウムが1:1
(モル比)の割合で担持されたメタノール燃料電池用触
媒を開示する。
Japanese Patent Application Laid-Open No. 2-111440 discloses a method for reducing these noble metal ions from a mixed solution of a platinum compound and a ruthenium compound using methanol as a reducing agent and hydrogen peroxide as a reaction accelerator. Then, 1: 1 platinum and ruthenium on the carbon powder
Disclosed is a methanol fuel cell catalyst supported at a (molar ratio) ratio.

【0007】しかし、貴金属粒子は粒径がオングストロ
ームオーダーの微小粒子であり、担体表面全域において
白金及びルテニウム粒子が近接した状態で規則正しく配
置させるのは極めて困難である。特に、白金とルテニウ
ムとを同じ比率で触媒に担持させた場合、ルテニウムの
偏析が局部的に生じ、担体上に白金粒子とルテニウム粒
子が近接していない部分が生じることが予想される。そ
して、かかる場合、ルテニウム粒子が欠乏した領域で
は、耐一酸化炭素触媒被毒性が十分に発揮されることな
く触媒の失活の問題が生じることとなり、高分子固体電
解質型燃料電池用電極触媒として十分な特性を発揮でき
ない。
However, the noble metal particles are minute particles having a particle size on the order of angstroms, and it is extremely difficult to regularly arrange platinum and ruthenium particles in a close proximity over the entire surface of the carrier. In particular, when platinum and ruthenium are supported on the catalyst at the same ratio, it is expected that segregation of ruthenium occurs locally and a portion where the platinum particles and the ruthenium particles are not close to each other is formed on the carrier. In such a case, in the region where the ruthenium particles are deficient, a problem of deactivation of the catalyst occurs without sufficiently exhibiting the poisoning resistance of the carbon monoxide catalyst, and as an electrode catalyst for a solid polymer electrolyte fuel cell. Sufficient characteristics cannot be exhibited.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、白金
粒子及びルテニウム粒子とが凝集することなく近接した
状態で担持され、耐一酸化炭素触媒被毒性に優れる白金
/ルテニウム高分子固体電解質型燃料電池用触媒を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a platinum / ruthenium polymer solid electrolyte type in which platinum particles and ruthenium particles are supported in close proximity without agglomeration and are excellent in poisoning with a carbon monoxide catalyst. An object of the present invention is to provide a catalyst for a fuel cell.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、白金とルテニウムとを担持した高分子
固体電解質型燃料電池用触媒において、担持する白金と
ルテニウムの比率を2〜4:8〜6(モル比)とした。
In order to achieve the above object, the present invention provides a catalyst for a solid polymer electrolyte fuel cell supporting platinum and ruthenium, in which the ratio of platinum to ruthenium to be supported is 2-4. : 8 to 6 (molar ratio).

【0010】本発明はルテニウムを従来法より高い比率
で添加することで、ルテニウムが白金に近接する確率を
向上させ、その結果として、白金粒子とルテニウム粒子
とが近接した状態で担持されることを意図している。
The present invention improves the probability that ruthenium comes close to platinum by adding ruthenium at a higher ratio than in the conventional method. As a result, it is confirmed that platinum particles and ruthenium particles are supported in close proximity. Intended.

【0011】そして、この白金とルテニウムの比率は、
白金:ルテニウム=4:6とするのが好ましい。白金粒
子とルテニウム粒子とが近接した状態を容易に実現する
とともに、燃料ガスの電極反応に対し活性を有する白金
を減りすぎるのを避けるためである。そして、この比率
で製造された白金/ルテニウム触媒は従来の白金とルテ
ニウムを同じ比率で担持させた触媒と同等の触媒活性を
有する。
The ratio of platinum to ruthenium is
It is preferable that platinum: ruthenium = 4: 6. This is because the platinum particles and the ruthenium particles can be easily brought into close proximity, and the amount of platinum that is active in the electrode reaction of the fuel gas can be prevented from being excessively reduced. The platinum / ruthenium catalyst produced at this ratio has the same catalytic activity as a conventional catalyst having platinum and ruthenium supported at the same ratio.

【0012】また、高分子固体電解質型燃料電池用触媒
としての適用を考慮したとき、上記組成で白金及びルテ
ニウムを担持する担体としては、請求項2記載のよう
に、直径60オングストローム以下の細孔を全細孔に対
して20%以下の割合で有し、比表面積が600〜12
00m2/gの炭素粉末であることが好ましい。
In consideration of application as a catalyst for a solid polymer electrolyte fuel cell, the carrier supporting platinum and ruthenium with the above composition may be a fine pore having a diameter of 60 Å or less. At a ratio of 20% or less to all the pores, and the specific surface area is 600 to 12
It is preferably a carbon powder of 00 m 2 / g.

【0013】細孔分布について、直径60オングストロ
ーム以下の細孔の全細孔に対する割合を20%以下に制
限するのは、直径60オングストローム以下の細孔には
固体電解質が侵入することができないので、白金をこの
ような細孔に担持しても電極反応により発生した水素イ
オンが電極中の固体電解質に伝達されず、水素イオンが
空気極に到達できないこととなるからである。即ち、担
体の細孔分布をこのように制限することで、触媒の利用
効率を確保することができる。
Regarding the pore distribution, the ratio of the pores having a diameter of 60 Å or less to the total pores is limited to 20% or less because the solid electrolyte cannot enter the pores having a diameter of 60 Å or less. This is because even if platinum is supported on such pores, hydrogen ions generated by the electrode reaction are not transmitted to the solid electrolyte in the electrode, and the hydrogen ions cannot reach the air electrode. That is, by restricting the pore distribution of the support in this way, the utilization efficiency of the catalyst can be ensured.

【0014】また、比表面積を600〜1200m2/g
の範囲とするのは、比表面積600m2/g以上の炭素
粉末を用いると、貴金属粒子がより高い状態で分散する
ことができる一方、比表面積1200m2/g以上の炭
素粉末では60オングストローム以下の細孔が全細孔の
20%以上を占めることとなるからである。即ち、比表
面積を上記の範囲とすることで、触媒単位質量あたりの
活性を向上させる一方、触媒の利用効率を確保すること
ができる。
Further, the specific surface area is 600 to 1200 m 2 / g
When the carbon powder having a specific surface area of 600 m 2 / g or more is used, the noble metal particles can be dispersed in a higher state, while the carbon powder having a specific surface area of 1200 m 2 / g or more has a carbon powder of 60 Å or less. This is because the pores occupy 20% or more of all the pores. That is, by setting the specific surface area within the above range, the activity per unit mass of the catalyst can be improved, and the utilization efficiency of the catalyst can be secured.

【0015】本発明に係る、白金とルテニウムの2種の
金属を複合的に担持させた高分子固体電解質型燃料電池
用触媒は、請求項3記載のように、両貴金属が合金化し
た状態である方が耐一酸化炭素触媒被毒性に優れる。
According to a third aspect of the present invention, there is provided a catalyst for a solid polymer electrolyte fuel cell in which two kinds of metals, platinum and ruthenium, are supported in a complex form. One is more excellent in carbon monoxide catalyst poisoning.

【0016】この白金とルテニウムとが合金化した触媒
は、触媒に熱処理を施すことで製造することができる。
そして、この熱処理による合金化は600℃〜900℃
の範囲で行うのが好ましい。600℃以下では貴金属粒
子の合金化が不完全である一方、900℃以上では触媒
粒子の凝集が進んで粒径が過大となり、触媒の活性に影
響を与えるからである。
The catalyst in which platinum and ruthenium are alloyed can be produced by subjecting the catalyst to heat treatment.
And alloying by this heat treatment is 600 ° C to 900 ° C.
It is preferable to carry out within the range. At a temperature of 600 ° C. or less, the alloying of the noble metal particles is incomplete, while at a temperature of 900 ° C. or more, the agglomeration of the catalyst particles progresses and the particle size becomes excessive, which affects the activity of the catalyst.

【0017】[0017]

【発明の実施の形態】以下に本発明の好適な実施例を比
較例と共に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below together with comparative examples.

【0018】担体には、比較例を含めて、細孔分布、比
表面積の異なる種々の炭素粉末中から表1に示す5種類
の炭素粉末を用いた。表1ではこれらの担体の比表面積
及び後述する方法にて触媒としたときの粒子径を示し
た。これらの担体の特性については、細孔径はガス吸着
法により、また、比表面積は、BET1点法にて測定し
た。
As the carrier, five kinds of carbon powders shown in Table 1 were used from among various carbon powders having different pore distributions and specific surface areas including a comparative example. Table 1 shows the specific surface area of these carriers and the particle size when the catalyst was used in the method described below. Regarding the characteristics of these carriers, the pore diameter was measured by a gas adsorption method, and the specific surface area was measured by a BET one-point method.

【0019】[0019]

【表1】 [Table 1]

【0020】また、これらの細孔分布を図1に示す。こ
の図で示されるように請求項2に記載した本発明に係る
触媒の担体となる炭素粉末Aは、他の炭素粉末と比して
数十オングストロームオーダーの微小径細孔の全細孔に
対する比率が低い。
FIG. 1 shows the distribution of these pores. As shown in this figure, the carbon powder A serving as the carrier of the catalyst according to the present invention described in claim 2 has a ratio of the fine pores of the order of tens of angstroms to the total pores as compared with other carbon powders. Is low.

【0021】本実施形態では、触媒の製造は、予め上記
炭素粉末に白金を担持させた白金触媒を作製し、これを
ルテニウム化合物水溶液に浸漬し、さらに還元剤を添加
して、ルテニウムイオンを還元、担持させた触媒を含む
溶液を濾過後、乾燥させることにより行った。その詳細
は以下の通りである。
In this embodiment, the catalyst is manufactured by preparing a platinum catalyst in which platinum is supported on the carbon powder in advance, immersing the catalyst in an aqueous ruthenium compound solution, and further adding a reducing agent to reduce the ruthenium ions. The solution containing the supported catalyst was filtered and dried. The details are as follows.

【0022】[白金触媒の調整] 1.5%の白金を含有
するジニトロジアミン白金硝酸溶液4500gにA〜E
の炭素粉末を100g混合させ攪拌後、還元剤として9
8%エタノール550ml添加した。この溶液を沸点
(約95℃)で6時間、攪拌、混合し、白金を炭素粉末
に担持させた。
[Preparation of Platinum Catalyst] A to E were added to 4500 g of a dinitrodiamine platinum nitrate solution containing 1.5% of platinum.
After mixing and stirring 100 g of carbon powder of
550 ml of 8% ethanol was added. This solution was stirred and mixed at the boiling point (about 95 ° C.) for 6 hours to carry platinum on the carbon powder.

【0023】[ルテニウムの析出] 8.232%のルテ
ニウムを含有する塩化ルテニウム溶液35.96g(ル
テニウム:2.96g)に水710mlを添加し、混合、
攪拌した後、上記白金触媒9.5g(白金:3.8g)
を浸漬させた。さらに95%エタノール65mlを添加
し、この混合溶液を沸点(約95℃)で6時間、攪拌さ
せて反応させた。反応終了後、ろ過、洗浄して60℃で
乾燥させて触媒を得た。
[Precipitation of ruthenium] 710 ml of water was added to 35.96 g (ruthenium: 2.96 g) of a ruthenium chloride solution containing 8.232% of ruthenium, and mixed.
After stirring, 9.5 g of the above platinum catalyst (platinum: 3.8 g)
Was immersed. Further, 65 ml of 95% ethanol was added, and the mixed solution was stirred and reacted at the boiling point (about 95 ° C.) for 6 hours. After completion of the reaction, the mixture was filtered, washed and dried at 60 ° C. to obtain a catalyst.

【0024】本実施形態は、白金とルテニウムを4:6
の比率で担持させた場合であるが、この比率は、混合溶
液中のルテニウム含有量、即ち、塩化ルテニウム水溶液
の量により容易に制御することができる。
In this embodiment, platinum and ruthenium are mixed in a ratio of 4: 6.
This ratio can be easily controlled by the ruthenium content in the mixed solution, that is, the amount of the ruthenium chloride aqueous solution.

【0025】[熱処理] 白金とルテニウムの合金化熱処
理は、50%水素ガス(窒素バランス)中で、0.5〜
1時間900℃に保持することにより行った。
[Heat treatment] The alloying heat treatment of platinum and ruthenium is carried out in a 50% hydrogen gas (nitrogen balance) in an amount of 0.5 to 0.5%.
This was performed by maintaining the temperature at 900 ° C. for 1 hour.

【0026】[0026]

【実験例1】以上の製造方法により製造した白金/ルテ
ニウム触媒について、水素極側ハーフセルの電池性能の
評価を行った。測定は、100ppmの一酸化炭素を混
合した水素ガス中で行っている。その測定結果を図2に
示す。図2では、縦軸に電流密度500mA/cm2
おける分極値を、横軸には白金とルテニウムの比率をと
り各比率で作製された電極触媒の分極値をプロットし
た。
[Experimental Example 1] With respect to the platinum / ruthenium catalyst produced by the above production method, the battery performance of the hydrogen electrode side half cell was evaluated. The measurement is performed in a hydrogen gas mixed with 100 ppm of carbon monoxide. FIG. 2 shows the measurement results. In FIG. 2, the vertical axis represents the polarization value at a current density of 500 mA / cm 2 , and the horizontal axis represents the ratio of platinum to ruthenium, and plots the polarization values of the electrode catalysts produced at each ratio.

【0027】図2で示されるように、本発明である白金
とルテニウムの比率が2〜4:8〜6(モル比)で作製
された電極触媒は、白金:ルテニウム=1:1の触媒と
ほぼ同等の性能を有することがわかった。即ち、白金の
比率を減少させても電極性能に大きな影響を及ぼさない
ことがわかった。
As shown in FIG. 2, the electrode catalyst prepared according to the present invention in which the ratio of platinum to ruthenium is 2 to 4: 8 to 6 (molar ratio) is the same as the catalyst of platinum: ruthenium = 1: 1. It turned out to have almost the same performance. That is, it was found that reducing the ratio of platinum did not significantly affect the electrode performance.

【0028】[0028]

【実験例2】上記A〜Eの担体を基に作製した触媒の耐
一酸化炭素触媒被毒性を検討した。各触媒を用いてシン
グルセル燃料電池を作製し、燃料ガスを100%水素か
ら一酸化炭素混合ガス(75%水素+25%二酸化炭素
+100ppm一酸化炭素)に切り替えたときの電位の
落ち込みを比較することにより行った。その結果を表2
に示す。表2から本発明に係る担体Aより製造した触媒
は低下電位が最も低く、優れた耐一酸化炭素触媒被毒性
を有することがわかった。
EXPERIMENTAL EXAMPLE 2 The carbon monoxide resistant poisoning of the catalysts prepared on the basis of the carriers A to E was examined. Making a single-cell fuel cell using each catalyst and comparing the drop in potential when fuel gas is switched from 100% hydrogen to a carbon monoxide mixed gas (75% hydrogen + 25% carbon dioxide + 100 ppm carbon monoxide) Was performed. Table 2 shows the results.
Shown in From Table 2, it was found that the catalyst produced from the carrier A according to the present invention had the lowest reduction potential and had excellent carbon monoxide resistant poisoning.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【実験例3】次に、熱処理による合金化の影響について
検討した。まず、乾燥後の熱処理を行わない触媒と、9
00℃で熱処理を行った触媒について水素極側ハーフセ
ル電池性能の評価を行った。評価は前記と同様、100
ppmの一酸化炭素を混合した水素ガス中における水素
極の分極値の測定により行った。その測定結果を図3に
示す。図3では、縦軸に分極値を、横軸には電流密度値
をとり各電流密度における分極値をプロットした。
Experimental Example 3 Next, the effect of alloying due to heat treatment was examined. First, a catalyst not subjected to heat treatment after drying,
The performance of the heat treatment at 00 ° C. was evaluated for the performance of the half-cell battery on the hydrogen electrode side. The evaluation was 100 as described above.
The measurement was performed by measuring the polarization value of the hydrogen electrode in a hydrogen gas mixed with ppm of carbon monoxide. FIG. 3 shows the measurement results. In FIG. 3, the polarization value is plotted on each of the current densities, with the polarization value on the vertical axis and the current density value on the horizontal axis.

【0031】図3で示されるように、熱処理を行った触
媒ではいずれの電流密度においても分極値は低く、本発
明にかかる触媒は、熱処理を行うことで未処理のものに
比べ、更に優れた耐一酸化炭素触媒被毒性を発揮するこ
とがわかった。
As shown in FIG. 3, the heat-treated catalyst has a low polarization value at any current density, and the catalyst according to the present invention is more excellent than the untreated catalyst by heat treatment. It was found that the catalyst exhibited carbon monoxide resistant poisoning.

【0032】[0032]

【実験例4】そこで、熱処理温度の影響について検討し
た。その測定結果を図4に示す。図4では、縦軸に分極
値を、横軸には熱処理温度をとり各温度で作製された電
極触媒の、電流密度500mA/cm2における水素極
の分極値をプロットした。また、比較は30%担持した
場合と50%担持した場合の2種類について行った。
[Experimental Example 4] The effect of the heat treatment temperature was examined. FIG. 4 shows the measurement results. In FIG. 4, the polarization value is plotted on the vertical axis and the heat treatment temperature is plotted on the horizontal axis, and the polarization value of the hydrogen electrode at a current density of 500 mA / cm 2 of the electrode catalyst prepared at each temperature is plotted. The comparison was made for two types, 30% and 50%.

【0033】図4から30%担持の場合は、熱処理温度
の上昇と共に分極値の減少が見られ触媒性能の向上が見
られる。即ち、熱処理温度の上昇と共に合金化が進んで
いることがわかった。しかし、50%担持の場合は、分
極値は700℃近傍で極小となるが、その後熱処理温度
の上昇と共に分極値が増大、性能の低下が見られた。こ
れは、担持率が大きい場合、熱処理温度が高温となると
貴金属粒子の凝集が生じたためと考えられる。以上の結
果から、本発明の複合触媒においては、600℃〜90
0℃の熱処理が適当であることがわかった。
From FIG. 4, in the case of 30% loading, the polarization value decreases with an increase in the heat treatment temperature, and the catalyst performance is improved. That is, it was found that alloying progressed with an increase in the heat treatment temperature. However, in the case of 50% loading, the polarization value was minimized at around 700 ° C., but the polarization value increased and the performance decreased with an increase in the heat treatment temperature thereafter. This is considered to be because noble metal particles aggregated when the heat treatment temperature was high when the loading rate was large. From the above results, in the composite catalyst of the present invention, 600 ° C. to 90 ° C.
A heat treatment at 0 ° C. was found to be appropriate.

【0034】[0034]

【発明の効果】以上のように、白金とルテニウムの担持
比率を2〜4:8〜6(モル比)とすることで、担体上
で白金とルテニウムとが近接した状態を容易に実現する
ことが可能となる。そして、これにより、耐一酸化炭素
触媒被毒性に優れた高分子固体電解質型燃料電池用触媒
を得ることができる。また、本発明の触媒は熱処理を施
すことで、担持された複合金属を合金化させることがで
き、更に高い耐一酸化炭素触媒被毒性を有する触媒を製
造することができる。
As described above, by setting the supporting ratio of platinum and ruthenium to 2 to 4: 8 to 6 (molar ratio), it is possible to easily realize a state in which platinum and ruthenium are close to each other on the carrier. Becomes possible. Thus, a catalyst for a solid polymer electrolyte fuel cell excellent in carbon monoxide catalyst poisoning can be obtained. The catalyst of the present invention can be alloyed with the supported composite metal by performing a heat treatment, and a catalyst having a higher poisoning resistance to carbon monoxide catalyst can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態で用いた炭素粉末の細孔分布を示すグ
ラフである。
FIG. 1 is a graph showing a pore distribution of a carbon powder used in an embodiment.

【図2】異なる白金/ルテニウム比で担持させた複合触
媒の水素極ハーフセル電池性能の比較を示すグラフであ
る。
FIG. 2 is a graph showing a comparison of hydrogen electrode half-cell battery performance of composite catalysts supported at different platinum / ruthenium ratios.

【図3】熱処理の有無による電池性能の違いを比較して
示すグラフ。
FIG. 3 is a graph showing a comparison of differences in battery performance depending on the presence or absence of heat treatment.

【図4】合金化熱処理温度の電池性能の違いを比較して
示すグラフ。
FIG. 4 is a graph showing a comparison of differences in battery performance at different alloying heat treatment temperatures.

フロントページの続き Fターム(参考) 4G069 AA03 AA08 AA12 BA08A BA08B BB02A BB02B BC70A BC70B BC75A BC75B CC32 DA05 EA01Y EB18Y EC04X EC05X EC11X EC12X EC13X EC14X EC18X EC18Y EC19 EC28 ED07 FA01 FB30 FC08 5H018 AA06 AS02 AS03 BB01 EE03 EE05 HH01 HH02 HH05 Continued on front page F-term (reference) 4G069 AA03 AA08 AA12 BA08A BA08B BB02A BB02B BC70A BC70B BC75A BC75B CC32 DA05 EA01Y EB18Y EC04X EC05X EC11X EC12X EC13X EC14X EC18X EC18Y EC19 EC28 ED07 FA01H03 A03 EB07 AS

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 担体に白金とルテニウムとが担持された
高分子固体電解質型燃料電池用触媒において、白金とル
テニウムとが2〜4:8〜6(モル比)の比率で担持さ
れていることを特徴とする高分子固体電解質型燃料電池
用触媒。
1. A solid polymer electrolyte fuel cell catalyst in which platinum and ruthenium are supported on a carrier, wherein platinum and ruthenium are supported in a ratio of 2 to 4: 8 to 6 (molar ratio). A catalyst for a solid polymer electrolyte fuel cell, comprising:
【請求項2】 担体は、直径60オングストローム以下
の細孔を全細孔に対して20%以下の割合で有し、比表
面積が600〜1200m2/gの炭素粉末である請求
項1記載の高分子固体電解質型燃料電池用触媒。
2. The carbon powder according to claim 1, wherein the carrier has pores having a diameter of 60 Å or less at a ratio of 20% or less to all the pores, and has a specific surface area of 600 to 1200 m 2 / g. Catalyst for solid polymer electrolyte fuel cells.
【請求項3】 担体上の白金とルテニウムとが合金化し
た状態で担持されている請求項1または請求項2記載の
高分子固体電解質型燃料電池用触媒。
3. The catalyst for a solid polymer electrolyte fuel cell according to claim 1, wherein platinum and ruthenium on the carrier are supported in an alloyed state.
JP10167982A 1998-06-16 1998-06-16 Catalyst for high molecular solid electrolyte fuel cell Pending JP2000003712A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10167982A JP2000003712A (en) 1998-06-16 1998-06-16 Catalyst for high molecular solid electrolyte fuel cell
PCT/JP1999/002710 WO1999066576A1 (en) 1998-06-16 1999-05-24 Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
US09/462,477 US6339038B1 (en) 1998-06-16 1999-05-24 Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof
EP99923853.8A EP1022795B1 (en) 1998-06-16 1999-05-24 Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10167982A JP2000003712A (en) 1998-06-16 1998-06-16 Catalyst for high molecular solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2000003712A true JP2000003712A (en) 2000-01-07

Family

ID=15859623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10167982A Pending JP2000003712A (en) 1998-06-16 1998-06-16 Catalyst for high molecular solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2000003712A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250564A (en) * 2000-03-03 2001-09-14 Mitsubishi Heavy Ind Ltd Cell for solid polymer fuel cell and manufacturing method
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
JP2002134119A (en) * 2000-10-19 2002-05-10 Japan Storage Battery Co Ltd Fuel cell and electrode for fuel cell
JP2002358971A (en) * 2001-05-31 2002-12-13 Japan Storage Battery Co Ltd Fuel cell electrode and its manufacturing method and fuel cell using the same
WO2003088387A1 (en) * 2002-04-12 2003-10-23 Tanaka Kikinzoku Kogyo K.K. Catalyst for fuel electrode of polymer solid electrolyte fuel cell
KR100706450B1 (en) * 2005-12-08 2007-04-10 현대자동차주식회사 Method for preparing the mixed electrode catalyst materials for a solid electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7608358B2 (en) 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
US7642295B2 (en) 2003-06-10 2010-01-05 Canon Kabushiki Kaisha Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same
US7846610B2 (en) 2006-10-23 2010-12-07 Canon Kabushiki Kaisha Electrolyte membrane, production method thereof, and fuel cell
US7862953B2 (en) 2005-12-27 2011-01-04 Canon Kabushiki Kaisha Compound, solid polymer electrolyte membrane, electrolyte membrane-electrode assembly, and solid polymer fuel cell
US7910237B2 (en) 2006-11-13 2011-03-22 Canon Kabushiki Kaisha Polymer electrolyte membrane and method for producing polymer electrolyte membrane
JP2012005969A (en) * 2010-06-25 2012-01-12 Toyota Motor Corp Method for manufacturing catalyst supporting carrier, and method for manufacturing electrode catalyst
JP2012109072A (en) * 2010-11-16 2012-06-07 Toshiba Fuel Cell Power Systems Corp Fuel battery, fuel battery system, and method for operation thereof
JP2014006970A (en) * 2012-06-21 2014-01-16 Nippon Steel & Sumitomo Metal Anode catalyst for fuel cell and fuel cell
WO2014175106A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Electrode and fuel cell electrode catalyst layer containing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519246B2 (en) * 2000-03-03 2010-08-04 三菱重工業株式会社 Method for producing solid polymer fuel cell
JP2001250564A (en) * 2000-03-03 2001-09-14 Mitsubishi Heavy Ind Ltd Cell for solid polymer fuel cell and manufacturing method
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2002134119A (en) * 2000-10-19 2002-05-10 Japan Storage Battery Co Ltd Fuel cell and electrode for fuel cell
JP2002358971A (en) * 2001-05-31 2002-12-13 Japan Storage Battery Co Ltd Fuel cell electrode and its manufacturing method and fuel cell using the same
US7001865B2 (en) 2002-04-12 2006-02-21 Tanaka Kikinzoku Kogyo K.K. Catalyst for use in fuel electrode of polymer solid electrolyte type fuel cell
WO2003088387A1 (en) * 2002-04-12 2003-10-23 Tanaka Kikinzoku Kogyo K.K. Catalyst for fuel electrode of polymer solid electrolyte fuel cell
US7642295B2 (en) 2003-06-10 2010-01-05 Canon Kabushiki Kaisha Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same
KR100706450B1 (en) * 2005-12-08 2007-04-10 현대자동차주식회사 Method for preparing the mixed electrode catalyst materials for a solid electrolyte fuel cell
US8039667B2 (en) 2005-12-27 2011-10-18 Canon Kabushiki Kaisha Compound for solid polymer electrolyte membrane
US7862953B2 (en) 2005-12-27 2011-01-04 Canon Kabushiki Kaisha Compound, solid polymer electrolyte membrane, electrolyte membrane-electrode assembly, and solid polymer fuel cell
US7608358B2 (en) 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
US7846610B2 (en) 2006-10-23 2010-12-07 Canon Kabushiki Kaisha Electrolyte membrane, production method thereof, and fuel cell
US7910237B2 (en) 2006-11-13 2011-03-22 Canon Kabushiki Kaisha Polymer electrolyte membrane and method for producing polymer electrolyte membrane
JP2012005969A (en) * 2010-06-25 2012-01-12 Toyota Motor Corp Method for manufacturing catalyst supporting carrier, and method for manufacturing electrode catalyst
JP2012109072A (en) * 2010-11-16 2012-06-07 Toshiba Fuel Cell Power Systems Corp Fuel battery, fuel battery system, and method for operation thereof
JP2014006970A (en) * 2012-06-21 2014-01-16 Nippon Steel & Sumitomo Metal Anode catalyst for fuel cell and fuel cell
WO2014175106A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Electrode and fuel cell electrode catalyst layer containing same
CN105163849A (en) * 2013-04-25 2015-12-16 日产自动车株式会社 Electrode and fuel cell electrode catalyst layer containing same
CN105163849B (en) * 2013-04-25 2018-10-26 日产自动车株式会社 Catalyst and electrode catalyst layer containing the catalyst

Similar Documents

Publication Publication Date Title
US6797667B2 (en) Process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
EP1922777B1 (en) Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
JP5152942B1 (en) Catalyst for polymer electrolyte fuel cell and method for producing the same
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JPH11250918A (en) Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
CN109792059B (en) Catalyst for solid polymer fuel cell and method for producing same
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
JPH1074523A (en) Anode catalyst for fuel cell, its manufacture, anode for fuel cell, and fuel cell
JP2000000467A (en) Production of catalyst for high molecular solid electrolyte type fuel cell
US11239473B2 (en) Catalyst for solid polymer fuel cells and method for manufacturing the same
EP1260269B1 (en) A process for preparing an anode catalyst for fuel cells
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP2001015121A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2005251455A (en) Catalyst for fuel cell, manufacturing method of the same, electrode, and direct methanol type fuel cell
JPH11111305A (en) Fuel cell
JP2002358971A (en) Fuel cell electrode and its manufacturing method and fuel cell using the same
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
JP2001015122A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2001205086A (en) Method for manufacturing platinum/ruthenium alloy- bearing catalyst
CN112490452B (en) Fuel cell anode catalyst and preparation method and application thereof
JP2005203147A (en) Electrode catalyst, manufacturing method of the same, and fuel cell