JP3643552B2 - Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst - Google Patents

Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst Download PDF

Info

Publication number
JP3643552B2
JP3643552B2 JP2001333877A JP2001333877A JP3643552B2 JP 3643552 B2 JP3643552 B2 JP 3643552B2 JP 2001333877 A JP2001333877 A JP 2001333877A JP 2001333877 A JP2001333877 A JP 2001333877A JP 3643552 B2 JP3643552 B2 JP 3643552B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
fuel cell
air electrode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001333877A
Other languages
Japanese (ja)
Other versions
JP2003142112A (en
Inventor
智之 多田
昌彦 井上
夕美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2001333877A priority Critical patent/JP3643552B2/en
Publication of JP2003142112A publication Critical patent/JP2003142112A/en
Application granted granted Critical
Publication of JP3643552B2 publication Critical patent/JP3643552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は高分子固体電解質形燃料電池用の触媒に関する。特に、高分子固体電解質形燃料電池の空気極に使用される触媒に関する。
【0002】
【従来の技術】
燃料電池は次世代の発電システムとして大いに期待されるものであり、その中で高分子固体電解質を電解質として用いる高分子固体電解質形燃料電池は、リン酸形燃料電池等の他形式の燃料電池と比較して動作温度が低く、かつコンパクトであることから、電気自動車用電源として有望視されている。
【0003】
高分子固体電解質形燃料電池は、水素極及び空気極の2つの電極と、これら電極に挟持される高分子固体電解質膜とからなる積層構造を有し、水素極には水素を含む燃料を供給し、空気極には酸素又は空気を供給することで、それぞれの電極で生じる酸化、還元反応により電力を取り出すようにしている。これらの両電極は、電気化学的反応を促進させるための触媒と固体電解質との混合体が一般に適用されている。そして、この電極を構成する触媒としては、触媒活性が良好な白金を担持させた白金触媒が広く用いられている。
【0004】
ところで、この高分子固体電解質形燃料電池電極用の触媒に要求される特性は水素極と空気極とでは異なるものがあると考えられる。即ち、水素極においては単に触媒活性が高いというだけではなく、耐久性特に耐一酸化炭素触媒被毒性が要求される。これは水素極へ燃料として供給される水素としては、その取り扱い性や、経済性等の観点から、メタノール等から得られる改質水素の適用が有力視されているが、この改質水素中には不純物として一酸化炭素が含まれており、これが触媒粒子に吸着し触媒を失活させるという問題があるからである。そのため、燃料極用の触媒については、触媒活性を維持しつつ耐一酸化炭素触媒被毒性を改善するために多くの研究がなされている。
【0005】
【発明が解決しようとする課題】
一方、空気極に関しては水素極とは燃料が異なり、燃料中に一酸化炭素が含まれていないこともあり、上記一酸化炭素による触媒被毒を考慮した触媒の設計は不要であり、触媒活性の向上が要求される。ここで従来の空気極用の触媒の活性改善の手法としては、担体の特性の改善や触媒粒子となる白金の微細化、分散性の向上等が行なわれている。
【0006】
しかしながら、担体の特性の改善や白金粒子の微細化等の物理的な特性の変更には限界があり、これらにより達成される触媒活性の向上も無制限に可能であるはずはない。本発明は、以上のような背景のもとになされたものであり、高分子固体電解質形燃料電池の空気極用の触媒について、従来の方法とは異なる観点から製造され高い触媒活性を有する触媒を明らかとし、これを提供することを目的とし、更に、かかる触媒の製造方法を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、触媒活性向上の手段として、補助金属の適用を検討した、補助金属とは、白金のような触媒金属以外の金属であり触媒金属の触媒活性や耐久性を向上させる機能を有するものをいう。かかる補助触媒金属の適用は、触媒の分野においては必ずしも新規のものではなく、燃料電池用触媒でもリン酸形燃料電池用の触媒については適用例もある。これに対し、本発明の対象である高分子固体電解質形燃料電池の空気極用触媒においては、このような補助金属を担持した触媒についての成功例は少ないことから純粋な白金触媒が一般に使用されている。これは、補助金属が触媒から脱離し、高分子膜に混入し高分子膜の特性を悪化させるおそれがあるからであり、その悪化の程度も無視できないものがあるからである。
【0008】
そこで、本発明者等は、高分子固体電解質形燃料電池の空気極用触媒に対して最適の補助触媒金属を見出すと共に、上記高分子膜への補助金属の混入を抑制する手段を検討した結果、触媒活性を向上させることのできる補助触媒金属としては鉄、コバルトを用いるのが適当であることを見出し、更に、白金とこれら補助金属とを合金化することで補助金属を拘束し、高分子膜への補助金属の混入を抑制することができることに想到し本発明を完成させるに至った。
【0009】
即ち、本発明は、炭素粉末担体上に白金と1の補助金属とを合金化してなる触媒粒子が担持された高分子固体電解質形燃料電池の空気極用の触媒であって、前記補助金属は、鉄又はコバルトであり、白金と補助金属との配合比は6:1〜3:2(モル比)であることを特徴とする高分子固体電解質形燃料電池の空気極用の触媒である。
【0010】
本発明において、鉄、コバルトを補助触媒金属とすることにより触媒活性が向上する理由については必ずしも明らかではないが、鉄又はコバルトを白金に合金化することで白金の原子間距離が変化し、酸素分子との結合力が増大するために酸素の還元力が増加する仮説や、合金化により白金の電子状態が酸素を還元しやすい状態に変化したとする仮説、更には合金化により触媒粒子表面の表面状態(ラフネス)が変化したためという仮説が挙げられ、本発明においてもこれらのいずれかが作用して触媒活性を向上させているものと考えられる。そして、本発明においては白金と補助金属とを合金化することにより補助金属が担体から脱離し高分子膜へ混入することを防止するものである。
【0011】
この触媒粒子を構成する白金と補助金属との配合比は、モル比で6:1〜3:2とする。6:1より補助金属の割合が低い場合、補助金属としての効果(活性の向上)が発揮されないからである。また、本発明においても主に触媒活性を発揮するのは白金であるから、補助金属の比率が高くなっても触媒活性が低下し、また、製造工程において合金化されずに単独で担持される補助金属の発生割合が増えるおそれがある。但し、補助金属の比率を上げることで白金の使用量を減少させ触媒コストを低下させることもできるというメリットもあることから、これらを勘案し補助金属の比率は最大で3:2とする。
【0012】
ここで、本発明に係る触媒は、電極(空気極)としたときの特性を考慮すれば、白金と補助金属とが合金化された触媒粒子の担持密度を40〜65%とするのが好ましい。担持密度とは、担体に担持させる触媒粒子質量(本発明においては、白金質量と補助金属質量との合計重量)の触媒全体の担体質量に対する比をいう。担持密度をこのような範囲とするのは、電極としたときの特性及び本発明のような合金触媒において合金化を有効に生じさせるためである。即ち、燃料電池電極の設計にあたっては、使用する触媒の量は触媒自体の量ではなく担持されている触媒粒子の量を基準とする。従って、担持密度の低い触媒を適用とすると、触媒の量を増大させる必要があるが、触媒の量を増大させると当然に電極の厚みも増大する。かかる厚みの大きい電極では物質移動に制約が生じ、酸素の拡散効率の低下、水の排出効率の低下の要因となり、その結果、電極特性が低下する。また、本発明のような合金触媒では、担持密度が低くなると(担持させる白金粒子、鉄粒子又はコバルト粒子の数が低下すると)金属粒子同士の距離が大きくなりそれらの合金化が困難となる。このような事情を勘案し、電極特性を確保し、合金化を生じさせるために担持密度の最小値を40%とするものである。一方、担持密度が高いと、担体に担持される触媒粒子の量が過大となり、合金化したときに合金触媒粒子が粗大化する。そこで、担持密度の最大値は65%とするものである。
【0013】
以上のように、本発明においては、従来の白金に補助触媒金属として鉄又はコバルトを所定比率で合金化しこれを担持させることで、優れた触媒活性を示すものである。ここで、本発明者らは、この触媒をより有効に機能させるため、この触媒粒子を担持させる担体について更に検討を行った。その結果、比表面積が600〜1200m/g の炭素粉末が担体として特に好ましいとの結論に至った。比表面積を600m/g以上とすることで、触媒が付着する面積を増加させることができるので触媒粒子を高い状態で分散させ有効表面積を高くすることができる一方、比表面積が1200m/gを超えると、電極を形成する際にイオン交換樹脂の浸入できない超微細細孔(約20Å未満)の存在割合が高くなり触媒粒子の利用効率が低くなるからである。そこで、比表面積を上記の範囲とすることで、貴金属粒子を高い状態で分散させ触媒単位質量あたりの活性を向上させる一方、触媒の利用効率を確保するものである。
【0014】
次に、本発明に係る高分子固体電解質形燃料電池空気極用の触媒の製造方法について述べる。本発明に係る触媒の製造方法は、担体に触媒粒子を構成する白金と補助金属である鉄又はコバルトを担持する工程と、担持された白金と鉄又はコバルトとを合金化させる工程とからなる。
【0015】
これらの工程について、まず担体に白金及び補助金属を担持する工程については特に限定はない。従って、従来のように白金塩溶液、補助金属となる金属塩溶液を担体に含浸させることで白金及び補助金属を担持させることができる。尚、白金の担持と補助金属の担時の順序については、いずれが先であっても又は同時であっても特に影響はない。
【0016】
そして、担持された白金と補助金属との合金化についてであるが、上記のように本発明において白金と補助金属とを合金化する目的は、触媒活性の向上もあるが同時に補助金属が触媒から脱離し高分子固体電解質膜を汚染しないようにするためである。従って、本発明においては十分な合金状態を実現することが必要である。本発明者等はこの合金化の条件として、担体を水素還元雰囲気下で800℃〜1200℃加熱するのが適正であるとする。ここで、反応雰囲気の水素濃度は略100%とするのが好ましい。
【0017】
上記製造方法により得られる本発明に係る触媒によれば、優れた触媒活性を有し、且つ、高分子固体電解質膜を汚染することのない空気極用の触媒とすることができる。ここで、空気極は、イオン交換樹脂と触媒とを混合することにより製造されるが、このイオン交換樹脂と触媒との混合比は、0.7〜1.6(重量比)とするのが好ましい。混合比が0.7未満ではイオン交換樹脂による触媒の被覆が十分に達成できず、触媒の利用効率が低下すること及びプロトン導電性を十分確保できなことにより触媒の反応効率が低下するからである。また、混合比が1.6を超えると、ガス拡散及び水の排出に貢献する細孔が減少してしまい、触媒の反応効率が低下するからである。
【0018】
【発明の実施の形態】
以下に本発明の好適な実施の形態を図面と共に説明する。
【0019】
第1実施形態:本実施形態では、白金/鉄合金触媒を製造した。この合金系触媒は、予め上記炭素粉末に白金を担持させた白金触媒を作製し、これを鉄化合物溶液に含浸させることで鉄を担持させ、そして担体を熱処理することにより製造した。以下に詳しく説明する。
【0020】
〔担体の選択〕 本実施形態で使用した担体は、炭素微粉末(商品名:ケッチェンブラックEC)である。このこの担体の比表面積は、BET1点法にて測定したところ、800m/gであった。
【0021】
[白金触媒の調整] 白金溶液として、白金濃度0.8wt%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:8g)に前記炭素粉末を12g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点(約95℃)で7時間、攪拌、混合し、白金を炭素粉末に担持させた。そして、濾過、乾燥後白金触媒とした。
【0022】
[鉄の担持] 鉄溶液として、鉄濃度0.63wt%の塩化鉄水溶液を60g(鉄含有量:0.38g)に、上記白金触媒10gを浸漬させた。そして、この溶液を1時間攪拌し、60℃で乾燥させた。
【0023】
[熱処理] 以上の工程により白金及び鉄を担持させた担体につき、白金と鉄との合金化熱処理を行なった。この合金化熱処理は、100%水素ガス中で、2時間、1000℃に保持することにより行った。
【0024】
以上の操作により製造される、白金/鉄合金触媒の各担持金属の比率は3:1である。また、白金及び鉄の担持密度は42%である。これらの値は、担体に含浸させる白金溶液中の白金含有量、白金触媒に含浸させる鉄塩溶液中の鉄含有量を変化させることにより容易に制御することができる。
【0025】
以上の製造方法により製造した白金/鉄合金触媒について、白金と鉄との担持比率を変化させたものを製造し、これらから空気極を製造した。空気極は、イオン交換樹脂(商品名:ナフィオン、Dupon社製)の5%溶液をスプレードライにより製造した樹脂粉末1.2gと触媒1gとを、1−プロパノールの水溶液24mLに入れ、これをボールミルにて100分間混合させて触媒ペーストを製造した。そして、カーボンペーパーにカーボンとPTFEとを表層へコーティングして製造したガス拡散層に前記触媒ペーストを白金量が0.25mg/cmとなるように塗布印刷した。更に、これを100℃で乾燥させた後、130℃、20kg/cmで1分間ホットプレスして電極とした。
【0026】
実験例1:そして、これらの空気極を用いて、酸素質量活量を測定すべく、高分子電解質膜としてナフィオン112(商品名:Dupon社製)を用いてシングルセルテストを行った。この酸素質量活量は、所定電位(0.9V)において酸素の還元により得られる電流値である。測定条件は、以下のようにした。
【0027】
電極面積:25cm
温度:80℃
圧力:大気圧
酸素:100%
【0028】
そして、本実施形態で製造した白金/鉄触媒により製造された空気極の酸素質量活量及び合金化していない従来の白金触媒の酸素活量の測定結果を表1に示す。
【0029】
【表1】

Figure 0003643552
【0030】
表1から、本実施形態で製造した触媒は、鉄の合金化をしない場合よりもいずれも酸素質量活量が高いが、白金:鉄=3:1の合金比率をピークとし、白金:鉄=3:2と鉄の合金比率が高くなると酸素質量活量が低下することが確認された。
【0031】
実験例2:次に、白金と鉄の担持比率を3:1に固定し、担持密度を変化させて空気極を製造し、実験例と同様の条件にて酸素活量を測定した。その結果を表2に示す。
【0032】
【表2】
Figure 0003643552
【0033】
この結果から、担持密度40〜65%の間においては、担持密度50%前後においてピークを示すが、補助触媒金属の添加のないものに比して高い酸素活性を有することが確認された。
【0034】
第2実施形態:本実施形態では、白金/コバルト合金触媒を製造した。但し、本実施形態における合金触媒で使用した担体、及び、白金の担持工程、及び、熱処理については、第1実施形態と同様である。従って、重複する記載は避け、特徴のあるコバルトの担持工程のみについて説明する。
【0035】
〔コバルトの担持〕 コバルト溶液として、コバルト濃度0.66wt%の塩化コバルト水溶液を60g(コバルト含有量:0.4g)に、上記白金触媒10gを浸漬させた。そして、この溶液を1時間攪拌し、60℃で乾燥させた。
【0036】
以上の操作により製造される、白金/コバルト合金触媒の各担持金属の比率は3:1である。この比率は、第1実施形態と同様、白金触媒に含浸させるコバルト塩溶液中のコバルト含有量を変化させることにより容易に制御することができる。
【0037】
実験例3:以上の製造方法により製造した白金/コバルト合金触媒について、第1実施形態と同様に白金とコバルトの合金比率を変化させた触媒を製造し、これらから空気極を製造した。そして、これらの空気極について、シングルセルテストにより酸素質量活量を測定した。測定条件は第1実施形態と同様である。この測定結果を表3に示す。
【0038】
【表3】
Figure 0003643552
【0039】
表3から、本実施形態で製造した触媒は、第1実施形態同様、コバルトの合金化をしない場合よりもいずれも酸素質量活量が高く、白金:コバルト=3:1の合金比率をピークとし、白金:コバルト=3:2において酸素質量活量が低下することが確認された。
【0040】
実験例4:上記酸素活量の測定に加え、実際の空気極の電池特性の検討を行った。このときの触媒の白金と補助触媒金属(鉄、コバルト)との担持比率は3:1とし、担持密度は42%のものを用いた。電池特性は、所定の電流密度におけるセル電圧を基に評価し、測定条件は以下の通りとした。
【0041】
電極面積:25cm
設定利用効率:40%
温度:80℃
圧力:大気圧
アノードガス:純水素
加湿条件:アノード 湿度100%
カソード 湿度80%
【0042】
この結果を図1に示すが、図1からわかるように、補助触媒として鉄、コバルトを適用した本実施形態に係る触媒は、白金単独担持触媒よりも実用領域において高い電極特性を有することが確認された。
【0043】
【発明の効果】
以上説明したように本発明は、従来、白金のみを担持した触媒が用いられていた高分子固体電解質形燃料電池の空気極用触媒に対し、補助触媒金属として鉄又はコバルトを用いるものである。これにより従来の空気極用触媒よりも高い触媒活性を発揮することができる。そして、本発明はこれら補助触媒金属を白金に合金化させることで補助触媒金属が触媒から脱離し高分子固体電解質膜に混入することを防止することができる。
【図面の簡単な説明】
【図1】 実験例4における空気極の電極特性の測定結果を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for a solid polymer electrolyte fuel cell. In particular, the present invention relates to a catalyst used for an air electrode of a polymer solid electrolyte fuel cell.
[0002]
[Prior art]
A fuel cell is highly expected as a next-generation power generation system. Among them, a polymer solid electrolyte fuel cell using a polymer solid electrolyte as an electrolyte is different from other types of fuel cells such as a phosphoric acid fuel cell. Compared to its low operating temperature and compact size, it is considered promising as a power source for electric vehicles.
[0003]
A polymer electrolyte fuel cell has a laminated structure composed of two electrodes, a hydrogen electrode and an air electrode, and a polymer solid electrolyte membrane sandwiched between these electrodes, and a fuel containing hydrogen is supplied to the hydrogen electrode. In addition, by supplying oxygen or air to the air electrode, electric power is taken out by oxidation and reduction reaction generated at each electrode. A mixture of a catalyst and a solid electrolyte for promoting an electrochemical reaction is generally applied to both of these electrodes. And as a catalyst which comprises this electrode, the platinum catalyst which carry | supported platinum with favorable catalytic activity is widely used.
[0004]
By the way, it is considered that characteristics required for the catalyst for the polymer electrolyte fuel cell electrode are different between the hydrogen electrode and the air electrode. That is, the hydrogen electrode not only has high catalytic activity, but also requires durability, particularly carbon monoxide catalyst poisoning. As hydrogen supplied to the hydrogen electrode as a fuel, it is considered that reformed hydrogen obtained from methanol or the like is promising from the viewpoint of its handleability and economical efficiency. This is because carbon monoxide is contained as an impurity, which is adsorbed on the catalyst particles and deactivates the catalyst. For this reason, many studies have been conducted on fuel electrode catalysts in order to improve the poisoning of carbon monoxide catalyst while maintaining the catalytic activity.
[0005]
[Problems to be solved by the invention]
On the other hand, the air electrode is different from the hydrogen electrode in that the fuel does not contain carbon monoxide, so there is no need to design a catalyst that takes into account the above-mentioned catalyst poisoning by carbon monoxide. Improvement is required. Here, as a conventional method for improving the activity of the catalyst for the air electrode, improvement of the characteristics of the carrier, refinement of platinum serving as catalyst particles, improvement of dispersibility, and the like are performed.
[0006]
However, there is a limit to the change in physical properties such as improvement of the properties of the support and refinement of the platinum particles, and the improvement of the catalytic activity achieved by these cannot be unlimited. The present invention has been made based on the background as described above, and is a catalyst for air electrode of a polymer solid electrolyte fuel cell, which is produced from a viewpoint different from the conventional method and has high catalytic activity. It is an object of the present invention to provide such a catalyst and to provide a method for producing such a catalyst.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors examined the application of an auxiliary metal as a means for improving the catalytic activity. The auxiliary metal is a metal other than the catalytic metal such as platinum, and the catalytic activity of the catalytic metal It has a function to improve durability. The application of such an auxiliary catalyst metal is not necessarily new in the field of catalysts, and there are application examples for catalysts for fuel cells and phosphoric acid fuel cells. On the other hand, in the catalyst for the air electrode of a polymer electrolyte fuel cell that is the object of the present invention, pure platinum catalyst is generally used because there are few successful examples of such a catalyst supporting an auxiliary metal. ing. This is because the auxiliary metal may be detached from the catalyst and mixed into the polymer film to deteriorate the characteristics of the polymer film, and the degree of the deterioration cannot be ignored.
[0008]
Therefore, the present inventors have found an optimum auxiliary catalyst metal for the air electrode catalyst of the polymer solid electrolyte fuel cell, and have studied a means for suppressing the inclusion of the auxiliary metal into the polymer membrane. In addition, it has been found that it is appropriate to use iron or cobalt as an auxiliary catalyst metal capable of improving the catalytic activity, and further, the auxiliary metal is constrained by alloying platinum and these auxiliary metals, and a polymer is obtained. The inventors have conceived that the auxiliary metal can be prevented from being mixed into the film and have completed the present invention.
[0009]
That is, the present invention is a catalyst for an air electrode of a solid polymer electrolyte fuel cell in which catalyst particles formed by alloying platinum and one auxiliary metal are supported on a carbon powder support, wherein the auxiliary metal is The catalyst for the air electrode of a solid polymer electrolyte fuel cell, characterized in that the compounding ratio of platinum and auxiliary metal is 6: 1 to 3: 2 (molar ratio).
[0010]
In the present invention, the reason why the catalytic activity is improved by using iron or cobalt as the auxiliary catalyst metal is not necessarily clear, but the interatomic distance of platinum changes by alloying iron or cobalt with platinum, and oxygen The hypothesis that the reducing power of oxygen increases due to the increased binding force with the molecule, the hypothesis that the electronic state of platinum has changed to a state where oxygen can be easily reduced by alloying, and further the alloying of the catalyst particle surface There is a hypothesis that the surface state (roughness) has changed, and it is considered that any of these acts in the present invention to improve the catalytic activity. In the present invention, platinum and an auxiliary metal are alloyed to prevent the auxiliary metal from being detached from the carrier and mixed into the polymer film.
[0011]
The compounding ratio of platinum and auxiliary metal constituting the catalyst particles is 6: 1 to 3: 2 in molar ratio. This is because when the ratio of the auxiliary metal is lower than 6: 1, the effect as the auxiliary metal (improvement of activity) is not exhibited. Also, in the present invention, it is platinum that mainly exerts the catalytic activity, so that the catalytic activity decreases even when the ratio of the auxiliary metal is increased, and it is supported alone without being alloyed in the manufacturing process. There is a risk that the generation rate of auxiliary metals will increase. However, since there is a merit that the amount of platinum used can be reduced and the catalyst cost can be reduced by increasing the ratio of the auxiliary metal, the ratio of the auxiliary metal is set to 3: 2 in consideration of these.
[0012]
Here, considering the characteristics when the catalyst according to the present invention is an electrode (air electrode), it is preferable that the loading density of the catalyst particles in which platinum and the auxiliary metal are alloyed is 40 to 65%. . The supported density refers to the ratio of the mass of catalyst particles supported on the support (in the present invention, the total weight of the platinum mass and the auxiliary metal mass) to the overall support mass of the catalyst. The reason why the loading density is in such a range is to effectively cause alloying in the characteristics of the electrode and the alloy catalyst as in the present invention. That is, in designing the fuel cell electrode, the amount of catalyst used is based on the amount of supported catalyst particles, not the amount of the catalyst itself. Therefore, when a catalyst having a low loading density is applied, the amount of the catalyst needs to be increased. However, when the amount of the catalyst is increased, the thickness of the electrode naturally increases. With such a thick electrode, mass transfer is restricted, which causes a reduction in oxygen diffusion efficiency and a reduction in water discharge efficiency. As a result, electrode characteristics are deteriorated. In addition, in the alloy catalyst as in the present invention, when the loading density is low (when the number of platinum particles, iron particles, or cobalt particles to be carried is reduced), the distance between the metal particles becomes large and it becomes difficult to alloy them. In consideration of such circumstances, the minimum value of the support density is set to 40% in order to ensure electrode characteristics and cause alloying. On the other hand, if the loading density is high, the amount of catalyst particles carried on the carrier becomes excessive, and the alloy catalyst particles become coarse when alloyed. Therefore, the maximum value of the carrying density is 65%.
[0013]
As described above, in the present invention, iron or cobalt as an auxiliary catalyst metal is alloyed at a predetermined ratio and supported on conventional platinum, thereby exhibiting excellent catalytic activity. Here, in order to make this catalyst function more effectively, the present inventors have further investigated a carrier for supporting the catalyst particles. As a result, it was concluded that carbon powder having a specific surface area of 600 to 1200 m 2 / g is particularly preferable as a support. By setting the specific surface area to 600 m 2 / g or more, the area to which the catalyst adheres can be increased, so that the catalyst particles can be dispersed in a high state to increase the effective surface area, while the specific surface area is 1200 m 2 / g. This is because when the electrode is formed, the existence ratio of ultrafine pores (less than about 20 mm) into which the ion exchange resin cannot enter when forming the electrode is increased, and the utilization efficiency of the catalyst particles is decreased. Therefore, by setting the specific surface area within the above range, the precious metal particles are dispersed in a high state to improve the activity per unit mass of the catalyst, while ensuring the utilization efficiency of the catalyst.
[0014]
Next, a method for producing a catalyst for a polymer electrolyte membrane fuel cell air electrode according to the present invention will be described. The method for producing a catalyst according to the present invention comprises a step of supporting platinum constituting catalyst particles and iron or cobalt as an auxiliary metal on a support, and a step of alloying the supported platinum and iron or cobalt.
[0015]
Regarding these steps, there is no particular limitation on the step of supporting platinum and auxiliary metals on the carrier. Therefore, platinum and the auxiliary metal can be supported by impregnating the carrier with a platinum salt solution and a metal salt solution serving as an auxiliary metal as in the prior art. Note that there is no particular effect on the order of loading platinum and supporting metal, whichever comes first or at the same time.
[0016]
And as for the alloying of the supported platinum and the auxiliary metal, as described above, the purpose of alloying the platinum and the auxiliary metal in the present invention is to improve the catalytic activity, but at the same time, the auxiliary metal is removed from the catalyst. This is to prevent the polymer solid electrolyte membrane from being detached and contaminated. Therefore, in the present invention, it is necessary to realize a sufficient alloy state. The inventors of the present invention assume that it is appropriate to heat the support at 800 ° C. to 1200 ° C. in a hydrogen reducing atmosphere as the alloying conditions. Here, the hydrogen concentration in the reaction atmosphere is preferably about 100%.
[0017]
According to the catalyst of the present invention obtained by the above production method, it is possible to obtain an air electrode catalyst that has excellent catalytic activity and does not contaminate the solid polymer electrolyte membrane. Here, the air electrode is manufactured by mixing the ion exchange resin and the catalyst, and the mixing ratio of the ion exchange resin and the catalyst is 0.7 to 1.6 (weight ratio). preferable. If the mixing ratio is less than 0.7, coating of the catalyst with the ion exchange resin cannot be sufficiently achieved, and the catalyst utilization efficiency is lowered and the proton conductivity cannot be sufficiently secured, thereby reducing the reaction efficiency of the catalyst. is there. On the other hand, if the mixing ratio exceeds 1.6, pores contributing to gas diffusion and water discharge decrease, and the reaction efficiency of the catalyst decreases.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings.
[0019]
First Embodiment : In this embodiment, a platinum / iron alloy catalyst was manufactured. This alloy catalyst was produced by preparing a platinum catalyst in which platinum was supported on the carbon powder in advance, impregnating the platinum catalyst in an iron compound solution to support iron, and heat-treating the support. This will be described in detail below.
[0020]
[Selection of Carrier] The carrier used in this embodiment is carbon fine powder (trade name: Ketjen Black EC). The specific surface area of this carrier was 800 m 2 / g as measured by the BET 1-point method.
[0021]
[Preparation of platinum catalyst] As a platinum solution, 12 g of the carbon powder was immersed in 1000 g (platinum content: 8 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 0.8 wt%, and then 100 ml of 100% ethanol as a reducing agent was stirred. Added. This solution was stirred and mixed at the boiling point (about 95 ° C.) for 7 hours, and platinum was supported on the carbon powder. And after filtering and drying, it was set as the platinum catalyst.
[0022]
[Iron loading] As an iron solution, 10 g of the platinum catalyst was immersed in 60 g of iron chloride aqueous solution having an iron concentration of 0.63 wt% (iron content: 0.38 g). The solution was stirred for 1 hour and dried at 60 ° C.
[0023]
[Heat Treatment] An alloying heat treatment of platinum and iron was performed on the carrier carrying platinum and iron by the above steps. This alloying heat treatment was performed by holding at 1000 ° C. for 2 hours in 100% hydrogen gas.
[0024]
The ratio of each supported metal of the platinum / iron alloy catalyst produced by the above operation is 3: 1. The supported density of platinum and iron is 42%. These values can be easily controlled by changing the platinum content in the platinum solution impregnated in the support and the iron content in the iron salt solution impregnated in the platinum catalyst.
[0025]
About the platinum / iron alloy catalyst manufactured by the above manufacturing method, what changed the supporting ratio of platinum and iron was manufactured, and the air electrode was manufactured from these. For the air electrode, 1.2 g of a resin powder produced by spray drying a 5% solution of an ion exchange resin (trade name: Nafion, manufactured by Dupon) and 1 g of a catalyst are put in 24 mL of an aqueous solution of 1-propanol, and this is ball milled. Was mixed for 100 minutes to prepare a catalyst paste. And the said catalyst paste was apply | coated and printed so that the amount of platinum might be set to 0.25 mg / cm < 2 > on the gas diffusion layer manufactured by coating carbon and PTFE on the surface layer to carbon paper. Furthermore, after drying this at 100 degreeC, it hot-pressed for 1 minute at 130 degreeC and 20 kg / cm < 2 >, and was set as the electrode.
[0026]
Experimental Example 1 : Using these air electrodes, a single cell test was performed using Nafion 112 (trade name: manufactured by Dupon Co.) as a polymer electrolyte membrane in order to measure the oxygen mass activity. This oxygen mass activity is a current value obtained by reduction of oxygen at a predetermined potential (0.9 V). Measurement conditions were as follows.
[0027]
Electrode area: 25 cm 2
Temperature: 80 ° C
Pressure: Atmospheric pressure Oxygen: 100%
[0028]
Table 1 shows the measurement results of the oxygen mass activity of the air electrode produced by the platinum / iron catalyst produced in the present embodiment and the oxygen activity of the conventional platinum catalyst not alloyed.
[0029]
[Table 1]
Figure 0003643552
[0030]
From Table 1, the catalyst produced in this embodiment has a higher oxygen mass activity than when no alloying of iron is performed, but the peak is an alloy ratio of platinum: iron = 3: 1, and platinum: iron = It was confirmed that the oxygen mass activity decreased as the alloy ratio of 3: 2 and iron increased.
[0031]
Experimental Example 2 : Next, the support ratio of platinum and iron was fixed at 3: 1, the support density was changed to produce an air electrode, and the oxygen activity was measured under the same conditions as in the experimental example. The results are shown in Table 2.
[0032]
[Table 2]
Figure 0003643552
[0033]
From this result, it was confirmed that when the loading density was 40 to 65%, a peak was observed at around 50% loading density, but the oxygen activity was higher than that without the addition of the auxiliary catalyst metal.
[0034]
Second Embodiment : In this embodiment, a platinum / cobalt alloy catalyst was manufactured. However, the carrier used in the alloy catalyst in the present embodiment, the platinum supporting step, and the heat treatment are the same as in the first embodiment. Therefore, only the characteristic cobalt loading process will be described while avoiding repeated description.
[0035]
[Supporting cobalt] As a cobalt solution, 10 g of the platinum catalyst was immersed in 60 g of cobalt chloride aqueous solution having a cobalt concentration of 0.66 wt% (cobalt content: 0.4 g). The solution was stirred for 1 hour and dried at 60 ° C.
[0036]
The ratio of each supported metal of the platinum / cobalt alloy catalyst produced by the above operation is 3: 1. Similar to the first embodiment, this ratio can be easily controlled by changing the cobalt content in the cobalt salt solution impregnated in the platinum catalyst.
[0037]
Experimental example 3 : About the platinum / cobalt alloy catalyst manufactured by the above manufacturing method, the catalyst which changed the alloy ratio of platinum and cobalt was manufactured similarly to 1st Embodiment, and the air electrode was manufactured from these. And about these air electrodes, the oxygen mass activity was measured by the single cell test. The measurement conditions are the same as in the first embodiment. The measurement results are shown in Table 3.
[0038]
[Table 3]
Figure 0003643552
[0039]
From Table 3, the catalyst manufactured in this embodiment has a higher oxygen mass activity than the case where no alloying of cobalt is performed, and the alloy ratio of platinum: cobalt = 3: 1 is a peak as in the first embodiment. It was confirmed that the oxygen mass activity was decreased at platinum: cobalt = 3: 2.
[0040]
Experimental Example 4 : In addition to the measurement of the oxygen activity, the battery characteristics of the actual air electrode were examined. At this time, the supporting ratio of platinum and auxiliary catalyst metals (iron, cobalt) of the catalyst was 3: 1, and the supporting density was 42%. The battery characteristics were evaluated based on the cell voltage at a predetermined current density, and the measurement conditions were as follows.
[0041]
Electrode area: 25 cm 2
Setting utilization efficiency: 40%
Temperature: 80 ° C
Pressure: Atmospheric pressure Anode gas: Pure hydrogen humidification condition: Anode Humidity 100%
Cathode humidity 80%
[0042]
The results are shown in FIG. 1. As can be seen from FIG. 1, it is confirmed that the catalyst according to the present embodiment, in which iron and cobalt are applied as auxiliary catalysts, has higher electrode characteristics in the practical range than the platinum-supported catalyst. It was done.
[0043]
【The invention's effect】
As described above, the present invention uses iron or cobalt as an auxiliary catalyst metal for a catalyst for an air electrode of a solid polymer electrolyte fuel cell that conventionally uses a catalyst supporting only platinum. Thereby, higher catalytic activity than the conventional catalyst for air electrodes can be exhibited. The present invention can prevent the auxiliary catalyst metal from being detached from the catalyst and mixed into the polymer solid electrolyte membrane by alloying these auxiliary catalyst metals with platinum.
[Brief description of the drawings]
1 is a graph showing measurement results of electrode characteristics of an air electrode in Experimental Example 4. FIG.

Claims (3)

炭素粉末担体上に白金と1の補助金属とを合金化してなる触媒粒子が担持された高分子固体電解質形燃料電池の空気極用の触媒であって、
前記補助金属は、コバルトであり、白金とコバルトとの配合比は6:1〜3:1(モル比)とし、
比表面積600〜1200m/gの炭素粉末からなる担体に、触媒粒子を担持密度40〜65%で担持してなる高分子固体電解質形燃料電池の空気極用の触媒。
A catalyst for an air electrode of a solid polymer electrolyte fuel cell in which catalyst particles formed by alloying platinum and one auxiliary metal are supported on a carbon powder support,
The auxiliary metal is cobalt, and the blending ratio of platinum and cobalt is 6: 1 to 3: 1 (molar ratio).
A catalyst for an air electrode of a solid polymer electrolyte fuel cell in which catalyst particles are supported at a support density of 40 to 65% on a support made of carbon powder having a specific surface area of 600 to 1200 m 2 / g.
請求項1記載の高分子固体電解質形燃料電池の空気極用の触媒を製造する方法であって、
担体に白金と鉄又はコバルトと6:1〜3:1(モル比)の配合比で担持させた後、担体を水素還元雰囲気下で800℃〜1200℃で加熱する方法。
A method for producing a catalyst for an air electrode of a solid polymer electrolyte fuel cell according to claim 1,
A method of heating a support at 800 ° C. to 1200 ° C. in a hydrogen reduction atmosphere after supporting the support at a blending ratio of 6: 1 to 3: 1 (molar ratio) with platinum and iron or cobalt.
請求項1記載の高分子固体電解質形燃料電池用触媒を含んでなる空気極を備える高分子固体電解質形燃料電池。A solid polymer electrolyte fuel cell comprising an air electrode comprising the solid polymer electrolyte fuel cell catalyst according to claim 1.
JP2001333877A 2001-10-31 2001-10-31 Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst Expired - Lifetime JP3643552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333877A JP3643552B2 (en) 2001-10-31 2001-10-31 Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333877A JP3643552B2 (en) 2001-10-31 2001-10-31 Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst

Publications (2)

Publication Number Publication Date
JP2003142112A JP2003142112A (en) 2003-05-16
JP3643552B2 true JP3643552B2 (en) 2005-04-27

Family

ID=19149089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333877A Expired - Lifetime JP3643552B2 (en) 2001-10-31 2001-10-31 Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst

Country Status (1)

Country Link
JP (1) JP3643552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105936B2 (en) 2006-11-20 2015-08-11 Samsung Sdi Co., Ltd. Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same
EP3107139A1 (en) 2015-06-16 2016-12-21 Panasonic Corporation Supported platinum catalyst and manufacturing method of the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335328A (en) * 2003-05-09 2004-11-25 Cataler Corp Electrode catalyst for solid polymer type fuel cell
JP2005235688A (en) 2004-02-23 2005-09-02 Cataler Corp Carrying catalyst for fuel cell, its manufacturing method and fuel cell
KR20050102452A (en) * 2004-04-22 2005-10-26 삼성에스디아이 주식회사 Catalyst for fuel cell and fuel cell comprising same
JP4271127B2 (en) * 2004-11-04 2009-06-03 本田技研工業株式会社 Electrode structure of polymer electrolyte fuel cell
JP4429142B2 (en) 2004-11-10 2010-03-10 本田技研工業株式会社 Electrode structure of polymer electrolyte fuel cell
JP2006318707A (en) * 2005-05-11 2006-11-24 Honda Motor Co Ltd Electrode structure of solid polymer fuel cell
WO2007119640A1 (en) * 2006-03-31 2007-10-25 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell and method for producing the same
RU2331144C1 (en) * 2007-02-21 2008-08-10 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" Cathode catalyst with lowered content of platinum for electrode of fuel cell
KR101397020B1 (en) * 2007-11-20 2014-05-21 삼성에스디아이 주식회사 Electrocatalyst for fuel cell, method for preparing the same and fuel cell including the electrode comprising the electrocatalyst
JP5759695B2 (en) 2010-09-24 2015-08-05 株式会社キャタラー Method for producing supported catalyst for fuel cell
CN105163849B (en) * 2013-04-25 2018-10-26 日产自动车株式会社 Catalyst and electrode catalyst layer containing the catalyst
JP2015032468A (en) 2013-08-02 2015-02-16 スズキ株式会社 Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
JP2015065016A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Method for manufacturing electrode catalyst for fuel batteries
WO2016063968A1 (en) 2014-10-24 2016-04-28 株式会社キャタラー Fuel cell electrode catalyst and manufacturing method thereof
JP5948452B2 (en) * 2015-03-02 2016-07-06 株式会社キャタラー Method for producing supported catalyst for fuel cell
JP6635976B2 (en) 2017-04-28 2020-01-29 株式会社キャタラー Electrode catalyst for fuel cell and method for producing the same
CN112889166A (en) * 2019-09-27 2021-06-01 松下知识产权经营株式会社 Catalyst, catalyst layer, membrane electrode assembly, electrochemical device, and method for producing catalyst
JP7072040B1 (en) 2020-12-10 2022-05-19 株式会社キャタラー Fuel cell catalyst and its manufacturing method
JP7093860B1 (en) 2021-01-19 2022-06-30 株式会社キャタラー Fuel cell electrode catalyst
JP2023061148A (en) 2021-10-19 2023-05-01 株式会社キャタラー Electrode catalyst for hydrogen fuel cell anode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068161A (en) * 1990-03-30 1991-11-26 Johnson Matthey Public Limited Company Catalyst material
JPH07256107A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Production of noble metal alloy catalyst
JP3389393B2 (en) * 1995-12-04 2003-03-24 田中貴金属工業株式会社 Anode catalyst for polymer electrolyte fuel cell and method for producing the same
JP3874380B2 (en) * 1996-08-26 2007-01-31 エヌ・イーケムキャット株式会社 Carbon-supported platinum skeleton alloy electrocatalyst with vacancy-type lattice defects
DE50013678D1 (en) * 1999-08-27 2006-12-14 Umicore Ag & Co Kg Electrocatalyst for fuel cells
JP2001357857A (en) * 2000-06-12 2001-12-26 Asahi Glass Co Ltd Solid high polymer type fuel cell and its manufacturing method
JP5281221B2 (en) * 2001-08-03 2013-09-04 トヨタ自動車株式会社 Precious metal-base metal alloy catalyst, its evaluation and production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105936B2 (en) 2006-11-20 2015-08-11 Samsung Sdi Co., Ltd. Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same
EP3107139A1 (en) 2015-06-16 2016-12-21 Panasonic Corporation Supported platinum catalyst and manufacturing method of the same
US9929412B2 (en) 2015-06-16 2018-03-27 Panasonic Corporation Supported platinum catalyst and manufacturing method of the same

Also Published As

Publication number Publication date
JP2003142112A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JP2001325964A (en) Electrode catalyst for solid polymer electrolyte fuel cell
JP2009532830A (en) Compositions of nanoparticles and platinum particles containing metals or alloys for use in fuel cells.
JPWO2007119640A1 (en) Fuel cell electrode catalyst and method for producing the same
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2003308849A (en) Catalyst for fuel electrode of high polymer solid electrolyte fuel cell
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2002015745A (en) Solid polymer fuel cell
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
EP3855544A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
EP3005452B1 (en) Metal alloy catalysts for fuel cell anodes
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP4087651B2 (en) Electrocatalyst for solid polymer electrolyte fuel cell
US7825057B2 (en) Method for preparing the mixed electrode catalyst materials for a PEM fuel cell
JP2005135671A (en) Electrode for fuel cell
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP2005190712A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell
JP2002222655A (en) Cathode catalyst for fuel cell
JP2006127980A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2020047431A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Ref document number: 3643552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term