JP2000000467A - Production of catalyst for high molecular solid electrolyte type fuel cell - Google Patents

Production of catalyst for high molecular solid electrolyte type fuel cell

Info

Publication number
JP2000000467A
JP2000000467A JP10167983A JP16798398A JP2000000467A JP 2000000467 A JP2000000467 A JP 2000000467A JP 10167983 A JP10167983 A JP 10167983A JP 16798398 A JP16798398 A JP 16798398A JP 2000000467 A JP2000000467 A JP 2000000467A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
platinum
alcohol
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10167983A
Other languages
Japanese (ja)
Other versions
JP3839961B2 (en
Inventor
Tomoyuki Tada
多田  智之
Yumi Yamamoto
夕美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP16798398A priority Critical patent/JP3839961B2/en
Priority to PCT/JP1999/002710 priority patent/WO1999066576A1/en
Priority to US09/462,477 priority patent/US6339038B1/en
Priority to EP99923853.8A priority patent/EP1022795B1/en
Publication of JP2000000467A publication Critical patent/JP2000000467A/en
Application granted granted Critical
Publication of JP3839961B2 publication Critical patent/JP3839961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a catalyst for platinum/ruthenium high molecular electrolyte type fuel cell, which supports platinum particles or ruthenium particles in a contact state without aggregating and has excellent carbon monoxide catalyst poisoning resistance. SOLUTION: This catalyst producing method is constituted so that alcohol is added into a mixed solution of a ruthenium compound aq. solution with a platinum catalyst and ruthenium is reduced at a reaction temp. from >=60 deg.C to equal to or below the b.p. of the alcohol to be deposited. In such a case, as the alcohol, ethanol is added so as to be 5-15 vol.% concentration to total volume of the mixed solution and when the reaction is carried out at a temp. near the b.p. of the mixed solution, into which ethanol is added, the catalyst supporting both particles in a close contact state without aggregating and particularly excellent in carbon monoxide catalyst poisoning resistance is obtained. Further the both noble metal particles are alloyed by heating the catalyst to be more closely arranged. Then, the carbon monoxide catalyst poisoning resistance of the catalyst is improved further by the alloying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
型燃料電池用触媒の製造方法に関するものであり、特
に、耐一酸化炭素触媒被毒性を有する白金とルテニウム
が複合的に担持された高分子固体電解質型燃料電池用触
媒の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst for a solid polymer electrolyte fuel cell, and more particularly to a method for supporting a composite catalyst of platinum and ruthenium, which is poisoned by a carbon monoxide resistant catalyst. The present invention relates to a method for producing a catalyst for a molecular solid oxide fuel cell.

【0002】[0002]

【従来の技術】高分子固体電解質型燃料電池は、リン酸
型燃料電池と比較してコンパクトで高い電流密度が取り
出せることから、電気自動車や宇宙船用の電源として注
目されている。そして、この燃料電池の電極反応促進の
一策として触媒の適用は従来から広く用いられている手
段である。しかし、ここで問題となるのが、供給燃料で
ある水素ガス中に微量含まれる一酸化炭素による触媒被
毒である。
2. Description of the Related Art A solid polymer electrolyte fuel cell has attracted attention as a power source for electric vehicles and spacecraft because it has a compact and high current density as compared with a phosphoric acid fuel cell. The application of a catalyst as a measure for promoting the electrode reaction of this fuel cell has been widely used in the past. However, a problem here is catalyst poisoning due to carbon monoxide contained in a trace amount in hydrogen gas as a supplied fuel.

【0003】白金とルテニウムが複合的に担持された触
媒は、優れた耐一酸化炭素触媒被毒性を有することが従
来から知られている。この複合的な触媒の耐一酸化炭素
触媒被毒性については、ルテニウムが親水性を有する物
質であり、このルテニウムと結合したOH-が白金上に
吸着した一酸化炭素を酸化させることにより達成される
ものと考えられている。
[0003] It has been known that a catalyst in which platinum and ruthenium are supported in combination has excellent resistance to poisoning of the carbon monoxide catalyst. This For complex catalyst resistant carbon monoxide catalyst poisoning of ruthenium is a substance having a hydrophilic, OH bound to the ruthenium - is achieved by oxidizing the carbon monoxide adsorbed on the platinum Is believed to be something.

【0004】従って、この触媒の耐一酸化炭素触媒被毒
性を向上させるためには、白金粒子とルテニウム粒子と
を凝集させることなく高度に分散させること、および両
貴金属粒子を可能な限り近接した状態で担持させること
が重要となる。
Therefore, in order to improve the poisoning of the catalyst by carbon monoxide, the platinum particles and the ruthenium particles must be highly dispersed without agglomeration, and the two noble metal particles must be placed as close as possible. It is important to support them.

【0005】従来、この金属白金粒子と金属ルテニウム
粒子とを触媒担体に担持させる方法としては、白金化合
物の水溶液とルテニウム化合物の水溶液とを混合し、担
体である炭素粉末とエチルアルコール等の還元剤を添加
し、白金イオンとルテニウムイオンを還元させて炭素粉
末上に白金及びルテニウム粒子を析出させるものがあ
る。
[0005] Conventionally, as a method of supporting metal platinum particles and metal ruthenium particles on a catalyst carrier, an aqueous solution of a platinum compound and an aqueous solution of a ruthenium compound are mixed, and carbon powder as a carrier and a reducing agent such as ethyl alcohol are mixed. Is added to reduce platinum ions and ruthenium ions to precipitate platinum and ruthenium particles on carbon powder.

【0006】また、特開平9−153366号公報で開
示された製造方法によれば、白金とルテニウムの担持を
別工程とし、導電性物質表面に予め含浸法にて白金を析
出させ、次いで、この導電性物質の表面に含浸法にてル
テニウムを析出させることで複合的触媒の成形体が得る
ことができる。そして、白金、ルテニウムの順序にて別
工程で析出させた方が両貴金属を同時に析出させた場合
よりも優れた触媒能を発揮することが明らかにされてい
る。
According to the production method disclosed in Japanese Patent Application Laid-Open No. 9-153366, the loading of platinum and ruthenium is carried out in a separate step, and platinum is previously deposited on the surface of the conductive material by an impregnation method. By depositing ruthenium on the surface of the conductive material by the impregnation method, a composite catalyst molded body can be obtained. It has been clarified that precipitation in a separate step in the order of platinum and ruthenium exerts a superior catalytic activity than the case where both noble metals are precipitated simultaneously.

【0007】しかし、貴金属粒子はオングストロームオ
ーダーの微小粒子ゆえに、白金粒子とルテニウム粒子と
を両者が常に近接した状態で担持させることは困難であ
る。特に、含浸法や従来の還元法においては、ルテニウ
ム粒子の凝集が生じることがあり、一酸化炭素触媒被毒
性の観点から最適の特性を有する触媒を得がたい。
However, since the noble metal particles are minute particles on the order of angstroms, it is difficult to carry platinum particles and ruthenium particles in a state where both are always close to each other. In particular, in the impregnation method and the conventional reduction method, ruthenium particles may aggregate, and it is difficult to obtain a catalyst having optimum characteristics from the viewpoint of poisoning of the carbon monoxide catalyst.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、白金
粒子またはルテニウム粒子が凝集することなく近接した
状態で担持された耐一酸化炭素触媒被毒性に優れた高分
子固体電解質型燃料電池用触媒の製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a solid polymer electrolyte fuel cell having excellent resistance to poisoning of a carbon monoxide catalyst in which platinum particles or ruthenium particles are supported in close proximity without agglomeration. An object of the present invention is to provide a method for producing a catalyst.

【0009】[0009]

【課題を解決するための手段】この課題を解決するた
め、本発明者らは従来の高分子固体電解質型燃料電池用
触媒の製造方法を基本として鋭意研究の結果、次のよう
な知見を得た。
Means for Solving the Problems In order to solve this problem, the present inventors have made intensive studies based on a conventional method for producing a catalyst for a solid polymer electrolyte fuel cell and obtained the following findings. Was.

【0010】水溶液中のルテニウムイオンを還元剤によ
って還元させるとき、還元剤濃度とルテニウムイオン濃
度との濃度積が小さすぎると、還元剤の酸化反応が起こ
らず、ルテニウムの析出は生じない。しかし、還元剤濃
度が低い場合であっても、溶液中に白金触媒を共存させ
た場合、白金粒子近傍においては白金の酸化作用による
還元剤の酸化が起こり電子の放出が生じる。そして、こ
の放出電子がルテニウムイオンに関与して、ルテニウム
イオンは金属ルテニウムに還元され、担体上に析出する
こととなる。このとき、電子供与反応は、白金粒子近傍
の酸化力の及ぶ範囲でのみ生じることから、金属ルテニ
ウムが白金粒子と近接した状態で析出することとなる。
When ruthenium ions in an aqueous solution are reduced by a reducing agent, if the concentration product of the reducing agent concentration and the ruthenium ion concentration is too small, the oxidation reaction of the reducing agent does not occur and ruthenium does not precipitate. However, even when the concentration of the reducing agent is low, when a platinum catalyst is allowed to coexist in the solution, the oxidation of the reducing agent is caused by the oxidizing action of platinum in the vicinity of the platinum particles, and electrons are emitted. Then, the emitted electrons are involved in the ruthenium ions, and the ruthenium ions are reduced to metal ruthenium and deposited on the carrier. At this time, since the electron donating reaction occurs only within the range of the oxidizing power near the platinum particles, the metal ruthenium precipitates in a state close to the platinum particles.

【0011】本発明は、上記知見に基づいたものであ
り、炭素粉末担体に白金を担持させた触媒とルテニウム
化合物の水溶液とを混合させて混合溶液を製造し、混合
溶液の全容量に対して5〜15vol%のアルコールを
添加し加熱することにより、ルテニウムを還元させて担
体上に白金とルテニウムとを複合的に担持させることに
より高分子固体電解質型燃料電池用触媒を製造するもの
とした。
[0011] The present invention is based on the above findings, and a mixed solution is produced by mixing a catalyst in which platinum is supported on a carbon powder carrier and an aqueous solution of a ruthenium compound, and the mixed solution is prepared based on the total volume of the mixed solution. By adding 5 to 15 vol% of alcohol and heating, ruthenium is reduced and platinum and ruthenium are supported on a carrier in a complex manner to produce a polymer solid oxide fuel cell catalyst.

【0012】即ち、本発明は、適当な還元剤濃度の下、
上記のような白金が仲介する還元剤とルテニウムの間の
電子供与反応を優先的に利用することをその基本的な原
理としている。そして、これにより従来法よりも両貴金
属が高い状態で分散、担持された複合触媒を得ることが
できる。
[0012] That is, the present invention provides a method in which
The basic principle is to preferentially utilize the electron donating reaction between ruthenium and the reducing agent mediated by platinum as described above. Thus, a composite catalyst in which both noble metals are dispersed and supported in a higher state than in the conventional method can be obtained.

【0013】本発明に係る高分子固体電解質型燃料電池
用触媒の製造方法においては、まず、担体に白金微粒子
を担持させ、白金触媒を製造する。この白金触媒の製造
方法としては、例えば、白金化合物水溶液に炭素粉末担
体を加えて混合し、これに還元剤を添加、混合させて白
金微粒子を還元させる方法が挙げられる。ここで、白金
化合物水溶液としては、ジニトロジアミン白金硝酸水溶
液、塩化白金酸水溶液等が適用できる。また、還元剤と
しては、水素化ホウ素ナトリウム、アルコール、水素ガ
ス等が適用できるが、アルコール特にエチルアルコール
が好ましい。
In the method for producing a catalyst for a solid polymer electrolyte fuel cell according to the present invention, first, platinum particles are supported on a carrier to produce a platinum catalyst. As a method for producing the platinum catalyst, for example, there is a method in which a carbon powder carrier is added to and mixed with an aqueous solution of a platinum compound, and a reducing agent is added thereto and mixed to reduce platinum fine particles. Here, as the platinum compound aqueous solution, dinitrodiamine platinum nitric acid aqueous solution, chloroplatinic acid aqueous solution, or the like can be used. Further, as the reducing agent, sodium borohydride, alcohol, hydrogen gas and the like can be applied, but alcohol, particularly ethyl alcohol is preferable.

【0014】次に、この白金触媒をルテニウム化合物の
水溶液中に混合する。ここで、ルテニウム化合物水溶液
の種類としては、ルテニウム塩化物、ルテニウム硝酸
物、ルテニウム錯体の水溶液等があるが、塩化ルテニウ
ム(RuCl3)の水溶液が好ましい。
Next, this platinum catalyst is mixed into an aqueous solution of a ruthenium compound. Here, examples of the type of the ruthenium compound aqueous solution include an aqueous solution of ruthenium chloride, ruthenium nitrate, and ruthenium complex, and an aqueous solution of ruthenium chloride (RuCl 3 ) is preferable.

【0015】そして、この混合溶液にルテニウムイオン
の還元剤としてアルコールを添加するが、本発明の最大
の特徴は上記のように、還元剤を白金触媒の酸化力によ
り酸化させて、放出される電子によってルテニウムイオ
ンを還元させる点にある。本発明においてはこの作用
を、アルコールの種類、アルコール濃度、反応温度、及
び反応時間を操作することにより生じさせている。
Then, alcohol is added to the mixed solution as a reducing agent for ruthenium ions. The most important feature of the present invention is that, as described above, the reducing agent is oxidized by the oxidizing power of the platinum catalyst, and the emitted electrons are emitted. Is to reduce ruthenium ions. In the present invention, this effect is produced by manipulating the type of alcohol, the alcohol concentration, the reaction temperature, and the reaction time.

【0016】ここで、アルコールの濃度としては、混合
溶液の全容量に対して5〜15vol%とするのが好ま
しい。この濃度以下においては、白金触媒の酸化力をも
ってもルテニウムが還元されにくく、また、この濃度以
上ではアルコール自体の還元力によりルテニウムの還元
反応が白金粒子近傍以外でも生ずることとなり、ルテニ
ウム粒子の凝集が生ずることとなるからである。
Here, the concentration of the alcohol is preferably 5 to 15 vol% with respect to the total volume of the mixed solution. Below this concentration, ruthenium is difficult to be reduced even by the oxidizing power of the platinum catalyst, and at above this concentration, the reducing power of the alcohol itself causes the reduction reaction of ruthenium to occur even outside of the vicinity of the platinum particles, and the aggregation of the ruthenium particles is reduced. Because it will happen.

【0017】また、アルコールの種類としては、メチル
アルコール、エチルアルコール、プロピルアルコール、
及びブチルアルコール等が適用可能であるが、還元力の
観点からメチルアルコール及びエチルアルコールが特に
好ましい。
The types of alcohol include methyl alcohol, ethyl alcohol, propyl alcohol,
And butyl alcohol and the like can be applied, but methyl alcohol and ethyl alcohol are particularly preferable from the viewpoint of reducing power.

【0018】反応温度について、本発明は、50℃程度
の比較的低い温度でも実施可能である。しかし、反応時
間の短縮という観点から、アルコールを添加した後の混
合溶液の沸点に近いを反応温度とするのが好ましい。一
般的に、前記温度は90〜100℃とすることになる。
Regarding the reaction temperature, the present invention can be carried out at a relatively low temperature of about 50 ° C. However, from the viewpoint of shortening the reaction time, it is preferable to set the reaction temperature close to the boiling point of the mixed solution after adding the alcohol. Generally, the temperature will be between 90 and 100C.

【0019】さらに、反応時間は2時間以上で行うのが
好ましい。反応時間を2時間以内とした場合、ルテニウ
ム粒子の還元が不完全となり、その後の熱処理合金化工
程において凝集が生じることがあるからである。尚、こ
の反応時間を2時間以上としてもルテニウムの分散状態
に大きな差異はない。
Further, the reaction time is preferably 2 hours or more. If the reaction time is within 2 hours, the reduction of the ruthenium particles becomes incomplete, and aggregation may occur in the subsequent heat treatment alloying step. Even if the reaction time is set to 2 hours or more, there is no significant difference in the state of dispersion of ruthenium.

【0020】また、この白金とルテニウムの2種の金属
を複合的に担持させた触媒は、熱処理を施すことで両貴
金属粒子を更に近接させて合金とすることができる。そ
して、この合金化により触媒の耐一酸化炭素触媒被毒性
は更に向上することとなる。
The catalyst in which two kinds of metals, platinum and ruthenium, are supported in a complex form can be alloyed by heat treatment so that the two noble metal particles are brought closer to each other. This alloying further improves the resistance of the catalyst to carbon monoxide resistance.

【0021】この熱処理による合金化は、600℃〜9
00℃の範囲で行うのが好ましい。600℃以下では貴
金属粒子の合金化が不完全である一方、900℃以上で
は触媒粒子の凝集が進んで粒径が過大となり、触媒の活
性に影響を与えるからである。
The alloying by this heat treatment is performed at 600 ° C. to 9 ° C.
It is preferable to carry out in the range of 00 ° C. At a temperature of 600 ° C. or less, the alloying of the noble metal particles is incomplete, while at a temperature of 900 ° C. or more, the agglomeration of the catalyst particles progresses and the particle size becomes excessive, which affects the activity of the catalyst.

【0022】[0022]

【発明の実施の形態】以下に本発明の好適と思われる実
施形態を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0023】第1実施形態 15wt%の白金を含有す
るジニトロジアミン白金硝酸溶液4500gに炭素粉末
(商品名Vulcan XC72)を100g混合させ攪拌混合
後、還元剤として98%エチルアルコール550ml添
加した。この溶液を約95℃で6時間、攪拌、混合し白
金を炭素粉末に担持させることで白金触媒を得た。
First Embodiment 100 g of carbon powder (trade name: Vulcan XC72) was mixed with 4500 g of a dinitrodiamineplatinum nitric acid solution containing 15% by weight of platinum, mixed with stirring, and 550 ml of 98% ethyl alcohol was added as a reducing agent. This solution was stirred and mixed at about 95 ° C. for 6 hours, and platinum was supported on carbon powder to obtain a platinum catalyst.

【0024】次に、8.232wt%のルテニウムを含
有する塩化ルテニウム溶液35.47g(ルテニウム:
2.92g)に水720mlを添加し、混合、攪拌した
後、上記白金触媒25g(白金:5.64g)を浸漬さ
せた。そしてこの混合溶液の全容量に対して濃度が10
vol%となるように、95%エチルアルコール80ml
を添加し、このアルコール添加後の混合溶液を沸点近傍
(約95℃)で6時間、攪拌させて反応させた。反応終
了後の溶液は、ろ過して60℃で乾燥させて白金/ルテ
ニウム触媒を得た。
Next, 35.47 g of a ruthenium chloride solution containing 8.232 wt% of ruthenium (ruthenium:
After adding 720 ml of water to 2.92 g), mixing and stirring, 25 g of the above platinum catalyst (platinum: 5.64 g) was immersed. The concentration is 10% with respect to the total volume of the mixed solution.
80% of 95% ethyl alcohol so that it becomes vol%
Was added thereto, and the mixed solution after the addition of the alcohol was stirred and reacted at a temperature near the boiling point (about 95 ° C.) for 6 hours. The solution after completion of the reaction was filtered and dried at 60 ° C. to obtain a platinum / ruthenium catalyst.

【0025】白金とルテニウムの合金化熱処理は、50
%水素ガス(バランス:窒素ガス)中で、0.5〜1時
間、900℃に保持することにより行った。
The heat treatment for alloying platinum and ruthenium is 50
% Hydrogen gas (balance: nitrogen gas) was maintained at 900 ° C. for 0.5 to 1 hour.

【0026】第2実施形態 本実施形態では、還元剤と
してエチルアルコールに変えてメチルアルコールを用い
て触媒の製造を行った。従って、基本的な実施形態は第
1実施形態と変わりはない。従って、重複する記載は避
け、ルテニウムの析出工程における形態の違いのみを述
べることとする。
Second Embodiment In this embodiment, a catalyst was produced using methyl alcohol instead of ethyl alcohol as a reducing agent. Therefore, the basic embodiment is the same as the first embodiment. Therefore, duplicate description will be avoided, and only the difference in the form in the ruthenium deposition step will be described.

【0027】ここでのルテニウムの析出工程は、第1実
施形態と同様に白金触媒を調整し、8.232wt%の
ルテニウムを含有する塩化ルテニウム溶液35.47g
(ルテニウム:2.92g)に水450mlを添加し、
混合、攪拌した後、白金触媒25g(白金:5.64
g)を浸漬させた。そしてこの混合溶液の全容量に対し
て濃度が10vol%となるように、95%メチルアル
コールを50mlを添加し、このアルコール添加後の混合
溶液を沸点近傍(約95℃)で6時間、攪拌させて反応
させた。反応終了後の溶液は、第1実施形態と同様、ろ
過、乾燥させて白金/ルテニウム触媒を得た。
In the ruthenium deposition step, a platinum catalyst was prepared in the same manner as in the first embodiment, and 35.47 g of a ruthenium chloride solution containing 8.232 wt% of ruthenium was used.
(Ruthenium: 2.92 g) was added with 450 ml of water,
After mixing and stirring, 25 g of a platinum catalyst (platinum: 5.64)
g) was soaked. Then, 50 ml of 95% methyl alcohol was added so that the concentration became 10 vol% with respect to the total volume of the mixed solution, and the mixed solution after the addition of the alcohol was stirred at around the boiling point (about 95 ° C.) for 6 hours. And reacted. The solution after the completion of the reaction was filtered and dried as in the first embodiment to obtain a platinum / ruthenium catalyst.

【0028】[0028]

【比較例】本発明に係る方法と比較するため、比較例と
して従来法によって触媒を製造した。塩化ルテニウム溶
液35.47g(ルテニウム:2.92g)に水100m
lを添加し、混合、攪拌した後、第1実施形態と同様の
方法で予め炭素粉末に白金を担持させた白金触媒25.
0g(白金:5.64g)を添加した。この混合溶液を室
温で1時間攪拌しルテニウム溶液を含浸させた。その
後、溶液を60℃で乾燥させ、乾燥物を水素還流下で、
250℃で0.5時間さらに900℃で0.5時間還元
させて触媒を得た。
Comparative Example For comparison with a method according to the present invention, a catalyst was produced by a conventional method as a comparative example. Ruthenium chloride solution 35.47 g (ruthenium: 2.92 g) and water 100 m
After adding, mixing and stirring, a platinum catalyst in which platinum was previously supported on carbon powder in the same manner as in the first embodiment.
0 g (platinum: 5.64 g) were added. This mixed solution was stirred at room temperature for 1 hour to impregnate the ruthenium solution. Thereafter, the solution was dried at 60 ° C., and the dried product was refluxed under hydrogen.
Reduction was performed at 250 ° C. for 0.5 hour and further at 900 ° C. for 0.5 hour to obtain a catalyst.

【0029】[0029]

【実験例1】以上の製造方法により製造した白金/ルテ
ニウム複合触媒について、水素極側ハーフセルの電池性
能の評価を行った。測定は、100ppmの一酸化炭素
を混合した水素ガス中で行っている。電流密度500m
A/cm2における測定結果を表1に示す。表1より、
第1実施形態及び第2実施形態の触媒はいずれも比較例
に比して分極値が約30%低く、高い耐一酸化炭素触媒
被毒性を有することがわかった。
EXPERIMENTAL EXAMPLE 1 The battery performance of the hydrogen electrode side half cell was evaluated for the platinum / ruthenium composite catalyst produced by the above production method. The measurement is performed in a hydrogen gas mixed with 100 ppm of carbon monoxide. Current density 500m
Table 1 shows the measurement results at A / cm 2 . From Table 1,
It was found that the catalysts of the first embodiment and the second embodiment both had a polarization value about 30% lower than that of the comparative example, and had high carbon monoxide catalyst poisoning resistance.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【実験例2】次に、熱処理による合金化の影響について
検討した。まず、第1実施形態において900℃で0.
5時間合金化熱処理を行った触媒と、合金化熱処理を省
略した触媒とについて水素極ハーフセル電池性能の評価
を行った。測定は上記と同様、100ppmの一酸化炭
素を混合した水素ガス中で行っている。その測定結果を
図1に示す。図1では、縦軸に分極値を、横軸には電流
密度値をとり各電流密度における分極値をプロットし
た。
[Experimental example 2] Next, the influence of alloying due to heat treatment was examined. First, in the first embodiment, at 900 ° C.
The performance of the hydrogen electrode half-cell battery was evaluated for the catalyst subjected to the alloying heat treatment for 5 hours and the catalyst omitted for the alloying heat treatment. The measurement is performed in a hydrogen gas mixed with 100 ppm of carbon monoxide in the same manner as described above. FIG. 1 shows the measurement results. In FIG. 1, the polarization value at each current density is plotted with the vertical axis representing the polarization value and the horizontal axis representing the current density value.

【0032】図1で示されるように、熱処理を行った触
媒はいずれの電流密度においても分極値が低く、本発明
に係る触媒は、熱処理を行うことで更に優れた耐一酸化
炭素触媒被毒性を発揮することがわかった。
As shown in FIG. 1, the heat-treated catalyst had a low polarization value at any current density, and the catalyst according to the present invention exhibited a more excellent carbon monoxide-resistant catalyst poisoning by heat treatment. It turned out to exert.

【0033】[0033]

【実験例3】次に、熱処理温度の影響について検討し
た。測定条件は上記と同様である。その測定結果を図2
に示す。図2では、縦軸に電流密度500mA/cm2
における水素極の分極値を、横軸には熱処理温度をとり
各温度で作製された電極触媒の分極値をプロットした。
また、熱処理温度の影響の比較は、白金とルテニウムと
の担持量を変化させた触媒について行い、30%担持し
た触媒と50%担持した触媒とについて行った。
Experimental Example 3 Next, the effect of the heat treatment temperature was examined. The measurement conditions are the same as above. Figure 2 shows the measurement results.
Shown in In FIG. 2, the vertical axis indicates a current density of 500 mA / cm 2.
, And the heat treatment temperature was plotted on the horizontal axis, and the polarization values of the electrode catalysts produced at each temperature were plotted.
The effect of the heat treatment temperature was compared for the catalysts in which the supported amounts of platinum and ruthenium were changed, and for the catalysts supported 30% and 50%.

【0034】図2から、30%担持した触媒の場合は、
熱処理温度の上昇と共に分極値の減少が見られ、処理温
度の増加に伴い触媒性能が向上していることがわかっ
た。即ち、処理温度の上昇と共に白金とルテニウムの合
金化が進んでいることがわかった。しかし、50%担持
した触媒の場合は、分極値は700℃近傍で極小となる
が、その後熱処理温度の上昇と共に電極値が増大、性能
の低下が見られた。これは、担持率が大きい場合、高温
で熱処理すると貴金属粒子の凝集が生じ性能が低下した
ためと考えられる。
From FIG. 2, in the case of a catalyst loaded at 30%,
A decrease in the polarization value was observed with an increase in the heat treatment temperature, and it was found that the catalyst performance was improved with an increase in the treatment temperature. That is, it was found that the alloying of platinum and ruthenium progressed with an increase in the processing temperature. However, in the case of the catalyst supporting 50%, the polarization value becomes a minimum at around 700 ° C., but the electrode value increases and the performance decreases as the heat treatment temperature increases. This is presumably because when the loading ratio is large, heat treatment at a high temperature causes agglomeration of the noble metal particles, resulting in reduced performance.

【0035】[0035]

【発明の効果】本発明によれば、白金とルテニウム粒子
が互いに近接した状態で高度に分散した複合的な触媒が
得られる。その結果、耐一酸化炭素触媒被毒性に優れた
燃料電池用触媒を得ることができる。さらに、この触媒
に熱処理を施すことで白金粒子とルテニウム粒子をより
近接させ合金化することができ、これによりさらに耐一
酸化炭素触媒被毒性を向上させることができる。
According to the present invention, there can be obtained a composite catalyst in which platinum and ruthenium particles are highly dispersed in a state of being close to each other. As a result, it is possible to obtain a fuel cell catalyst excellent in poisoning of the carbon monoxide catalyst. Further, by subjecting the catalyst to a heat treatment, the platinum particles and the ruthenium particles can be brought closer to each other and alloyed, whereby the poisoning resistance of the carbon monoxide catalyst can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱処理の有無による電極特性の違いを比較して
示すグラフ。
FIG. 1 is a graph showing a comparison of differences in electrode characteristics depending on the presence or absence of heat treatment.

【図2】各熱処理温度における電極特性の違いを比較し
て示すグラフ。
FIG. 2 is a graph showing a comparison of differences in electrode characteristics at each heat treatment temperature.

フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BB08C BC70A BC70B BC70C BC75A BC75B BE06C CC32 EA01Y EC28 ED07 FA02 FA08 FB06 FB08 FB29 FB46 FC02 FC04 FC07 FC08 5H018 AA06 BB01 BB12 BB17 EE03 EE11 HH05 HH08 Continued on front page F-term (reference) 4G069 AA03 AA08 BA08A BA08B BB08C BC70A BC70B BC70C BC75A BC75B BE06C CC32 EA01Y EC28 ED07 FA02 FA08 FB06 FB08 FB29 FB46 FC02 FC04 FC07 FC08 5H018 AA06 BB01 BB12 BB01 BB12 BB01 BB12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭素粉末担体に白金を担持させた触媒と
ルテニウム化合物の水溶液とを混合させて混合溶液を製
造し、該混合溶液の全容量に対して5〜15vol%の
アルコールを添加し加熱することにより、ルテニウムを
還元させて、担体上に白金とルテニウムとを複合的に担
持させる高分子固体電解質型燃料電池用触媒の製造方
法。
1. A mixed solution is prepared by mixing a catalyst in which platinum is supported on a carbon powder carrier and an aqueous solution of a ruthenium compound, and 5 to 15 vol% of alcohol is added to the total volume of the mixed solution, followed by heating. Thereby reducing the ruthenium to support platinum and ruthenium in a composite manner on a support, thereby producing a catalyst for a solid polymer electrolyte fuel cell.
【請求項2】 アルコールは、メチルアルコール又はエ
チルアルコールである請求項1記載の高分子固体電解質
型燃料電池用触媒の製造方法
2. The method for producing a catalyst for a solid polymer electrolyte fuel cell according to claim 1, wherein the alcohol is methyl alcohol or ethyl alcohol.
【請求項3】 加熱温度は、アルコール添加がなされた
混合溶液の沸点近傍である請求項1又は請求項2記載の
高分子固体電解質型燃料電池用触媒の製造方法。
3. The method for producing a catalyst for a polymer solid oxide fuel cell according to claim 1, wherein the heating temperature is near the boiling point of the mixed solution to which the alcohol has been added.
【請求項4】 ルテニウム化合物は、塩化ルテニウムで
ある請求項1から請求項3のいずれか1項に記載の高分
子固体電解質型燃料電池用触媒の製造方法。
4. The method for producing a catalyst for a solid polymer electrolyte fuel cell according to claim 1, wherein the ruthenium compound is ruthenium chloride.
【請求項5】 請求項1から請求項4のいずれかに記載
の方法により製造される触媒を熱処理し、白金とルテニ
ウムとを合金化させる高分子固体電解質型燃料電池用合
金触媒の製造方法。
5. A method for producing an alloy catalyst for a solid polymer electrolyte fuel cell, wherein the catalyst produced by the method according to claim 1 is heat-treated to alloy platinum and ruthenium.
【請求項6】 熱処理温度は、600℃〜900℃であ
る請求項5記載の高分子固体電解質型燃料電池用触媒の
製造方法。
6. The method for producing a catalyst for a solid polymer electrolyte fuel cell according to claim 5, wherein the heat treatment temperature is from 600 ° C. to 900 ° C.
JP16798398A 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell Expired - Lifetime JP3839961B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16798398A JP3839961B2 (en) 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell
PCT/JP1999/002710 WO1999066576A1 (en) 1998-06-16 1999-05-24 Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
US09/462,477 US6339038B1 (en) 1998-06-16 1999-05-24 Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof
EP99923853.8A EP1022795B1 (en) 1998-06-16 1999-05-24 Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16798398A JP3839961B2 (en) 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000000467A true JP2000000467A (en) 2000-01-07
JP3839961B2 JP3839961B2 (en) 2006-11-01

Family

ID=15859641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16798398A Expired - Lifetime JP3839961B2 (en) 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3839961B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231255A (en) * 2001-01-30 2002-08-16 Tanaka Kikinzoku Kogyo Kk Method of manufacturing catalyst for high molecular solid electrolyte fuel cell
JP2005327721A (en) * 2004-05-11 2005-11-24 Samsung Sdi Co Ltd Catalyst for fuel cell and fuel cell including this
WO2007029607A1 (en) * 2005-09-08 2007-03-15 Nippon Sheet Glass Company, Limited Noble metal microparticle and method for production thereof
JP2007075811A (en) * 2005-09-14 2007-03-29 Samsung Sdi Co Ltd Supported catalyst, process for producing supported catalyst, and electrode and fuel battery using supported catalyst
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2007307554A (en) * 2006-05-16 2007-11-29 Samsung Sdi Co Ltd Supported catalyst, its manufacturing method, electrode using this, and fuel cell
US7608358B2 (en) 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
US9123965B2 (en) 2009-10-29 2015-09-01 Hyundai Motor Company Method of preparing nano-sized catalyst on carbon support

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471252B2 (en) * 2009-09-30 2014-04-16 国立大学法人北海道大学 PtRu / C catalyst with controlled degree of alloying and dispersibility and method for producing the same
EP2690692B1 (en) 2011-03-25 2018-05-23 National University Corporation Hokkaido University Fuel cell anode catalyst and manufacturing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7455703B2 (en) 2000-08-04 2008-11-25 Panasonic Corporation Method for manufacturing polymer electrolyte fuel cell
JP2002231255A (en) * 2001-01-30 2002-08-16 Tanaka Kikinzoku Kogyo Kk Method of manufacturing catalyst for high molecular solid electrolyte fuel cell
JP2005327721A (en) * 2004-05-11 2005-11-24 Samsung Sdi Co Ltd Catalyst for fuel cell and fuel cell including this
US7931998B2 (en) 2004-05-11 2011-04-26 Samsung Sdi Co., Ltd. Catalyst for fuel cell and fuel cell comprising the same
US7754644B2 (en) 2005-09-08 2010-07-13 Nippon Sheet Glass Company, Limited Noble metal particle and process of producing the same
WO2007029607A1 (en) * 2005-09-08 2007-03-15 Nippon Sheet Glass Company, Limited Noble metal microparticle and method for production thereof
JP5058805B2 (en) * 2005-09-08 2012-10-24 日本板硝子株式会社 Method for producing noble metal fine particles
US7919426B2 (en) 2005-09-14 2011-04-05 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
JP4571098B2 (en) * 2005-09-14 2010-10-27 三星エスディアイ株式会社 Supported catalyst, method for producing supported catalyst, electrode and fuel cell using supported catalyst
US7589043B2 (en) 2005-09-14 2009-09-15 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
JP2007075811A (en) * 2005-09-14 2007-03-29 Samsung Sdi Co Ltd Supported catalyst, process for producing supported catalyst, and electrode and fuel battery using supported catalyst
JP4629699B2 (en) * 2006-05-16 2011-02-09 三星エスディアイ株式会社 Supported catalyst and production method thereof, electrode and fuel cell using the same
JP2007307554A (en) * 2006-05-16 2007-11-29 Samsung Sdi Co Ltd Supported catalyst, its manufacturing method, electrode using this, and fuel cell
US7608358B2 (en) 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
US9123965B2 (en) 2009-10-29 2015-09-01 Hyundai Motor Company Method of preparing nano-sized catalyst on carbon support

Also Published As

Publication number Publication date
JP3839961B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
KR100879121B1 (en) A process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
JP2879649B2 (en) Method for producing platinum-based catalyst
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JPH11250918A (en) Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
KR20200001064A (en) The platinum-transition metal composite supported on carbon and method for preparing the same
JP3839961B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
CN109792059B (en) Catalyst for solid polymer fuel cell and method for producing same
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
US4373014A (en) Process using noble metal-chromium alloy catalysts in an electrochemical cell
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
JP2002001095A (en) Colloidal solution and method for producing colloidal solution
JP2005246380A (en) Platinum based catalyst and methanol fuel cell using it
JP4773622B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JPH08509094A (en) Electrocatalyst material containing platinum alloy or conductive carrier
JP2005224800A (en) Pt-BASED CATALYST AND METHANOL FUEL CELL USING THE SAME
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
EP1260269B1 (en) A process for preparing an anode catalyst for fuel cells
JP4082800B2 (en) Catalyst production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term