KR100868756B1 - Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same - Google Patents

Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same Download PDF

Info

Publication number
KR100868756B1
KR100868756B1 KR1020070033362A KR20070033362A KR100868756B1 KR 100868756 B1 KR100868756 B1 KR 100868756B1 KR 1020070033362 A KR1020070033362 A KR 1020070033362A KR 20070033362 A KR20070033362 A KR 20070033362A KR 100868756 B1 KR100868756 B1 KR 100868756B1
Authority
KR
South Korea
Prior art keywords
catalyst
platinum
supported catalyst
ruthenium
carrier
Prior art date
Application number
KR1020070033362A
Other languages
Korean (ko)
Other versions
KR20080067554A (en
Inventor
박찬호
장혁
주상훈
선공콴
신퀸
얀시유
Original Assignee
삼성에스디아이 주식회사
달리안 인스티튜트 오브 케이컬 피직스, 차이니즈 아카데미 오브 사이언시즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사, 달리안 인스티튜트 오브 케이컬 피직스, 차이니즈 아카데미 오브 사이언시즈 filed Critical 삼성에스디아이 주식회사
Publication of KR20080067554A publication Critical patent/KR20080067554A/en
Application granted granted Critical
Publication of KR100868756B1 publication Critical patent/KR100868756B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • B01J35/40
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 (a) 백금 전구체와 루테늄 전구체를 준비하고, 각각을 제1용매에 용해시킨 후 혼합하여 금속염 용액을 제조하는 단계; (b) 상기 (a) 단계에 따라 얻은 금속염 용액의 pH를 조절하는 단계; (c) 상기 결과물을 열처리하여 촉매 콜로이드를 얻는 단계; (d) 촉매 담체와 용매를 혼합하여 담체 용액을 제조하는 단계; (e) 상기 (c)에 따라 얻은 촉매 콜로이드와 상기 (d)에 따라 얻은 담체 용액을 혼합하여 혼합 용액을 제조하는 단계; (f) 상기 (e) 단계에 따라 얻은 혼합 용액의 pH를 소정범위로 촉매 입자를 촉매 담체에 담지하여 담지 촉매를 얻는 단계; (g) 상기 담지 촉매를 분리 및 세척하는 단계; 및 (h) 상기 결과물을 수소 가스를 함유하는 환원성 혼합 가스 분위기하에서 열처리하는 단계를 포함하는 백금/루테늄 합금 촉매의 제조방법 및 그 방법에 따라 제조된 백금/루테늄 합금 담지 촉매를 제공한다. 본 발명의 백금/루테늄 합금 담지 촉매는 내 CO 피독성이 뛰어나고 메탄올 산화력이 우수하여 활성이 개선된다. 즉, 적은 양의 촉매를 사용하고도 수명이 더 긴 전극 및 이를 채용한 연료전지를 제조할 수 있도록 하는 효과가 있다. The present invention comprises the steps of (a) preparing a platinum precursor and ruthenium precursor, dissolving each in a first solvent and mixing to prepare a metal salt solution; (b) adjusting the pH of the metal salt solution obtained according to step (a); (c) heat treating the resultant to obtain a catalyst colloid; (d) mixing the catalyst carrier and the solvent to prepare a carrier solution; (e) mixing the catalyst colloid obtained according to (c) and the carrier solution obtained according to (d) to prepare a mixed solution; (f) obtaining a supported catalyst by supporting catalyst particles on a catalyst carrier in a predetermined range of pH of the mixed solution obtained according to step (e); (g) separating and washing the supported catalyst; And (h) heat treating the resultant under a reducing mixed gas atmosphere containing hydrogen gas, and a platinum / ruthenium alloy supported catalyst prepared according to the method. The platinum / ruthenium alloy supported catalyst of the present invention is excellent in CO poisoning resistance and excellent in methanol oxidation, thereby improving activity. In other words, it is possible to produce an electrode having a longer life and a fuel cell employing the same even though a small amount of catalyst is used.

Description

백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한 연료전지 {Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same}Platinum / ruthenium alloy supported catalyst, manufacturing method and fuel cell using the same {Pt / Ru alloy supported catalyst, manufacturing method according, and fuel cell using the same}

도 1은 도 2는 본 발명의 백금/루테늄 합금 담지 촉매의 제조방법을 나타낸 흐름도이고,1 is a flow chart showing a method for producing a platinum / ruthenium alloy supported catalyst of the present invention,

도 2는 백금/루테늄 합금 담지 촉매가 갖는 내 CO 피독성의 메카니즘을 보여주는 개념도이고,2 is a conceptual diagram showing a mechanism of CO toxicity in a platinum / ruthenium alloy supported catalyst.

도 3은 본 발명의 실시예 1 및 비교예 2에 따라 제조한 백금/루테늄 합금 담지 촉매의 X-선 회절 분석 (XRD 분석) 스펙트럼을 나타낸 것이다. Figure 3 shows the X-ray diffraction analysis (XRD analysis) spectra of the platinum / ruthenium alloy supported catalyst prepared according to Example 1 and Comparative Example 2 of the present invention.

본 발명은 백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한 연료전지에 관한 것으로, 더욱 구체적으로는 내CO피독성이 뛰어나고 메탄올 산화력이 우수하여 활성이 개선된 백금/루테늄 합금 담지 촉매의 제조방법 및 그 방법에 따라 얻은 백금/루테늄 합금 담지 촉매와 이를 이용한 연료전지에 관한 것이다.The present invention relates to a platinum / ruthenium alloy supported catalyst, a method for preparing the same, and a fuel cell using the same. More particularly, the present invention provides a method for preparing a platinum / ruthenium alloy supported catalyst having excellent CO resistance and improved methanol oxidation. And a platinum / ruthenium alloy supported catalyst obtained according to the method and a fuel cell using the same.

직접 메탄올 연료전지(DMFC)는 휴대용 기기의 차세대 에너지원으로 많은 연 구가 이루어지고 있다. 그런데 애노드(anode)에서의 낮은 메탄올 산화 능력 때문에 상품화가 지연되고 있다. 이러한 문제를 해결하기 위하여 메탄올 산화 활성이 우수한 촉매에 개발이 활발하게 이루어지고 있고, 특히 메탄올 산화반응에서는 CO가 발생되기 때문에 촉매독으로 작용되는 CO에 내성이 강한 촉매가 요구되고 있다. Direct methanol fuel cells (DMFCs) are the next generation of energy sources for portable devices. However, commercialization is delayed due to the low methanol oxidation ability at the anode. In order to solve this problem, development has been actively performed on a catalyst having excellent methanol oxidation activity, and in particular, a catalyst having a strong resistance to CO acting as a catalyst poison is required because CO is generated in the methanol oxidation reaction.

CO에 내성을 가진 촉매로는 백금(Pt)와 루테늄(Ru), 이리듐(Ir), 로듐(Rh) 등과 비슷한 금속과의 합금에 대한 보고 (D. W. McKee and A. J. Scapellio Jr., J. Electrochem. Tech., 6 (1969) p.101)가 알려져 있고, PtRu 합금의 경우 원자비가 1:1이면서 탄소 담체에 분산되어 있는 촉매가 독성에 강한다는 것이 일본 특허공개 평6-260207 및 일본 특허공개 평 9-35723에 공개되어 있다. 특히 직접 메탄올 연료전지의 경우에는 합금형태가 아닌 Pt와 Ru이 각각 금속입자의 형태로 탄소 담체에 담지되어 있는 경우(WO 97/21256)와 탄소 담체에 산화물 형태와 각각 금속의 형태로 담지되어 있는 경우가 일반적인 PtRu 합금보다 우수한 경우도 보고되고 있다 (일본특허공개 평 3-22361). Catalysts resistant to CO are reported for alloys of metals similar to platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), etc. (DW McKee and AJ Scapellio Jr., J. Electrochem.Tech , 6 (1969) p.101), and in the case of PtRu alloys, the catalyst dispersed in the carbon carrier with an atomic ratio of 1: 1 is resistant to toxicity. Published at -35723. In particular, in the case of direct methanol fuel cells, Pt and Ru, which are not alloys, are supported on the carbon carrier in the form of metal particles (WO 97/21256) and in the form of oxides and metals on the carbon carrier, respectively. It is also reported that the case is superior to the general PtRu alloy (Japanese Patent Laid-Open No. 3-22361).

그러나 일반적인 PtRu 이원(binary) 합금 촉매의 경우는 성능 면에서 아직 부족하고 활성을 개선되어야 한다. 특히 애노드의 전기화학 촉매의 활성이 낮아서 애노드 분극(anode polarization)이 높게 나타나고 있다. 따라서 낮은 애노드 분극(anode polarization)을 가진 촉매의 개발이 요구된다.However, conventional PtRu binary alloy catalysts are still lacking in performance and have to be improved in activity. In particular, since the activity of the anode electrochemical catalyst is low, the anode polarization (anode polarization) is high. Therefore, there is a need for the development of a catalyst with low anode polarization.

본 발명이 이루고자 하는 첫번째 기술적 과제는, 상기 문제점을 해결하여 CO에 대한 내성이 강하면서 메탄올 산화 능력이 우수한 백금/루테늄 합금 담지 촉매 및 그 제조방법을 제공하는 것이다.The first technical problem to be achieved by the present invention is to solve the above problems, to provide a platinum / ruthenium alloy supported catalyst having a strong resistance to CO and excellent methanol oxidation ability and a method for producing the same.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 백금/루테늄 합금 담지 촉매를 포함하여 성능이 개선된 연료전지용 전극 및 이를 채용한 연료전지를 제공하는 것이다.Another object of the present invention is to provide an electrode for a fuel cell having improved performance, including the platinum / ruthenium alloy supported catalyst, and a fuel cell employing the same.

상기 기술적 과제를 달성하기 위해 본 발명에서는, In the present invention to achieve the above technical problem,

(a) 백금 전구체와 루테늄 전구체를 준비하고, 각각을 제1용매에 용해시킨 후 혼합하여 금속염 용액을 제조하는 단계;(a) preparing a platinum precursor and a ruthenium precursor, dissolving each of them in a first solvent, and then mixing them to prepare a metal salt solution;

(b) 상기 (a) 단계에 따라 얻은 금속염 용액의 pH를 소정범위로 조절하는 단계;(b) adjusting the pH of the metal salt solution obtained in step (a) to a predetermined range;

(c) 상기 결과물을 열처리하여 촉매 콜로이드를 얻는 단계;(c) heat treating the resultant to obtain a catalyst colloid;

(d) 촉매 담체와 용매를 혼합하여 담체 용액을 제조하는 단계;(d) mixing the catalyst carrier and the solvent to prepare a carrier solution;

(e) 상기 (c)에 따라 얻은 촉매 콜로이드와 상기 (d)에 따라 얻은 담체 용액을 혼합하여 혼합 용액을 제조하는 단계;(e) mixing the catalyst colloid obtained according to (c) and the carrier solution obtained according to (d) to prepare a mixed solution;

(f) 상기 (e) 단계에 따라 얻은 혼합 용액의 pH를 소정범위로 조절하여 촉매 입자를 촉매 담체에 담지하여 담지 촉매를 얻는 단계;(f) adjusting the pH of the mixed solution obtained according to step (e) to a predetermined range to obtain a supported catalyst by supporting the catalyst particles on a catalyst carrier;

(g) 상기 담지 촉매를 분리 및 세척하는 단계; 및(g) separating and washing the supported catalyst; And

(h) 상기 결과물을 수소 가스를 함유하는 환원성 혼합 가스 분위기하에서 열처리하는 단계를 포함하는 백금/루테늄 합금 담지 촉매의 제조방법을 제공한다.(h) providing a method for preparing a platinum / ruthenium alloy supported catalyst comprising the step of heat treating the resultant under a reducing mixed gas atmosphere containing hydrogen gas.

본 발명의 다른 기술적 과제는 상술한 제조방법에 따라 형성되어 백금과 루테 늄의 몰 비가 8: 2 내지 3 : 7인 백금(Pt)/루테늄(Ru) 합금 촉매에 의하여 이루어진다.Another technical problem of the present invention is formed by the above-described manufacturing method is made by a platinum (Pt) / ruthenium (Ru) alloy catalyst having a molar ratio of 8: 2 to 3: 7: platinum and ruthenium.

상기 촉매는 3.856 내지 3.885 Å의 격자상수 값을 갖고, 입경이 2 내지 5 nm이고, 상기 백금과 루테늄의 총중량이, 담체를 포함한 전체 촉매의 중량 100 중량부를 기준으로 하여 50 내지 90 중량부이다.The catalyst has a lattice constant value of 3.856 to 3.885 mm 3, a particle diameter of 2 to 5 nm, and a total weight of the platinum and ruthenium is 50 to 90 parts by weight based on 100 parts by weight of the total catalyst including the carrier.

본 발명은 다른 기술적 과제는 백금(Pt)/루테늄(Ru) 합금 담지 촉매를 포함하는 연료전지용 전극에 의하여 이루어진다.Another object of the present invention is to provide a fuel cell electrode comprising a platinum (Pt) / ruthenium (Ru) alloy supported catalyst.

본 발명의 또 다른 기술적 과제는 캐소드; 애노드; 및 상기 캐소드와 상기 애노드의 사이에 개재된 전해질막을 포함하는 연료전지로서, 상기 애노드가, 상술한 백금/루테늄 합금 담지 촉매를 포함하는 것을 특징으로 하는 연료전지에 의하여 이루어진다.Another technical problem of the present invention is a cathode; Anode; And an electrolyte membrane interposed between the cathode and the anode, wherein the anode comprises the platinum / ruthenium alloy supported catalyst described above.

이하, 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

이하, 도 1을 참조하여 본 발명의 백금/루테늄 합금 담지 촉매의 제조방법을 설명하기로 한다.Hereinafter, a method of preparing a platinum / ruthenium alloy supported catalyst of the present invention will be described with reference to FIG. 1.

먼저, 백금 전구체와 루테늄 전구체를 각각 제1용매에 용해한다. 백금 전구체와 루테늄 전구체는 몰 비가 8:2 내지 3:7이 되도록 정량하는 것이 바람직하다. 백금 전구체와 루테늄 전구체의 몰 비가 상기 범위를 벗어나게 되면, 생성되는 백금/루테늄 합금 담지 촉매의 백금 원자에 대한 루테늄 원자의 몰 비가 상기 범위를 벗어나면 CO에 대한 내성이 감소하여 바람직하지 않다. 또한 상기 제1용매로는 물 또는 폴리올을 사용하고, 물로는 탈이온수(deionized water)를 사용하는 것이 바람 직하며, 상기 폴리올로는 에틸렌글리콜, 트리에틸렌글리콜 등을 사용한다. 본 발명의 일 실시예에 의하면 백금 전구체 및 루테늄 전구체는 각각 폴리올을 이용하여 용해한다.First, the platinum precursor and the ruthenium precursor are dissolved in the first solvent, respectively. The platinum precursor and ruthenium precursor are preferably quantified in a molar ratio of 8: 2 to 3: 7. When the molar ratio of the platinum precursor and the ruthenium precursor is out of the above range, the molar ratio of the ruthenium atom to the platinum atom of the platinum / ruthenium alloy supported catalyst to be produced is not preferable because the resistance to CO decreases. In addition, water or polyol is used as the first solvent, deionized water is preferably used as water, and ethylene glycol, triethylene glycol, and the like are used as the polyol. According to one embodiment of the present invention, the platinum precursor and the ruthenium precursor are dissolved using a polyol, respectively.

상기 제1용매의 함량은 백금 전구체를 용해하는 경우, 백금 전구체 100 중량부를 기준으로 하여 3000 내지 9000 중량부를 사용한다. 루테늄 전구체를 용해하는 경우, 제1용매의 함량은 루테늄 전구체 100 중량부를 기준으로 하여 7000 내지 26000 중량부를 사용하는 것이 바람직하다.When the content of the first solvent dissolves the platinum precursor, 3000 to 9000 parts by weight is used based on 100 parts by weight of the platinum precursor. When dissolving the ruthenium precursor, the content of the first solvent is preferably used 7000 to 26000 parts by weight based on 100 parts by weight of ruthenium precursor.

상기 백금 전구체와 루테늄 전구체는 각각 백금 또는 루테늄의 클로라이드,백금 또는 루테늄의 설파이트, 또는 백금 또는 루테늄의 나이트레이트 형태 등 물에서 잘 해리되는 염의 형태이면 가능하다.The platinum precursor and ruthenium precursor may be in the form of salts that dissociate well in water, such as chloride of platinum or ruthenium, sulfite of platinum or ruthenium, or nitrate of platinum or ruthenium, respectively.

상기와 같이 각각 제1용매에 녹인 백금 전구체와 루테늄 전구체의 용액을 혼합하여 금속염 용액을 제조한다.As described above, a metal salt solution is prepared by mixing a solution of a platinum precursor and a ruthenium precursor dissolved in a first solvent, respectively.

상기 과정에 따라 얻은 금속염 용액의 pH를 10 내지 14로 조절한다. 이 때pH를 조절하는 pH 조절제로는 NaOH, NH4OH, KOH, Ca(OH)2 등과 같은 알칼리 용액이면 가능하다.The pH of the metal salt solution obtained according to the above procedure is adjusted to 10-14. At this time, the pH adjusting agent for controlling pH may be an alkaline solution such as NaOH, NH 4 OH, KOH, Ca (OH) 2 and the like.

혼합 용액의 pH가 상기 범위를 벗어나서 너무 낮게 되면, 환원과정에서 환원양이 적어져 담지되는 촉매의 양이 줄어들 뿐 아니라 담지되는 촉매들이 서로 뭉쳐지게 되고, 혼합 용액의 pH가 상기 범위를 벗어나서 너무 높게 되면 입경이 커진다는 문제점이 생긴다.If the pH of the mixed solution is too low out of the above range, the amount of the reduced catalyst is reduced in the reduction process, and the supported catalysts are agglomerated with each other, and the pH of the mixed solution is too high beyond the above range. The problem arises that the particle size increases.

상기와 같이 pH를 조절한 혼합용액을 열처리하여 촉매 콜로이드를 형성한다. 여기에서 열처리온도는 110 내지 190 ℃인 것이 바람직하다.As described above, the mixed solution whose pH is adjusted is heat-treated to form a catalyst colloid. Here, the heat treatment temperature is preferably 110 to 190 ℃.

이와 별도로 활성성분 원자를 지지할 촉매 담체를 제2용매에 분산하여 담체 용액을 제조한다. 담체로는 앞서 설명한 바와 같이, 탄소계 담체 또는 제올라이트, 실리카/알루미나 등이 가능하고, 특히 탄소계 담체 또는 제올라이트가 바람직하다. Separately, a catalyst carrier for supporting the active ingredient atoms is dispersed in a second solvent to prepare a carrier solution. As the carrier, as described above, a carbon-based carrier or zeolite, silica / alumina or the like can be used, and a carbon-based carrier or zeolite is particularly preferable.

상기 탄소계 담체로는 역시 흑연, 탄소 분말, 아세틸렌 블랙, 카본 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 등이 바람직하다.The carbon-based carrier is also graphite, carbon powder, acetylene black, carbon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon nanohorn, carbon nano ring, carbon nanowires, fullerene (C 60 ) Etc. are preferable.

상기 촉매 담체를 분산시키는 제2용매로는 에틸렌 글리콜(ethylene glycol), 물, 트리에틸렌글리콜 등을 사용하는 것이 바람직하다.As the second solvent for dispersing the catalyst carrier, ethylene glycol, water, triethylene glycol, or the like is preferably used.

상기 과정에 따라 얻은 촉매 콜로이드와 촉매 담체 용액을 혼합하고, 이 혼합물의 pH를 1 내지 5로 조절한다. 만약 혼합물의 pH가 1 미만이면 생성된 합금 입자가 높은 산도로 인하여 용해될 수 있고, 5를 초과하면 입자와 담체와의 상호작용력이 감소하여 충분하게 담체에 담지되지 않고 용액 내에 존재하게 되어 바람직하지 못하다.The catalyst colloid and catalyst carrier solution obtained according to the above procedure are mixed and the pH of the mixture is adjusted to 1-5. If the pH of the mixture is less than 1, the resulting alloy particles may dissolve due to high acidity. If the pH is above 5, the interaction force between the particles and the carrier decreases and is present in the solution without being sufficiently supported by the carrier. Can not do it.

상기 결과물을 여과, 원심분리 등 통상의 방법으로 분리한 후 세척하고 이를 수소 가스를 함유한 환원성 혼합 가스 분위기하에서 열처리를 실시한다.The resultant is separated by a conventional method such as filtration and centrifugation, followed by washing and heat treatment in a reducing mixed gas atmosphere containing hydrogen gas.

상기 수소 가스를 함유한 환원성 혼합 가스 분위기에서 수소 가스의 함량은 5 내지 50부피%, 특히 8 내지 10부피%인 것이 바람직하다. 만약 수소 가스의 함량 이 5부피% 미만이면 수소량이 적어서 충분한 환원효과를 나타내지 못하고, 50 부피%를 초과하면 환원속도가 너무 빨라져서 활성이 감소하여 바람직하지 못하다. The content of hydrogen gas in the reducing mixed gas atmosphere containing hydrogen gas is preferably 5 to 50% by volume, in particular 8 to 10% by volume. If the content of hydrogen gas is less than 5% by volume, the amount of hydrogen does not show a sufficient reducing effect, and if it exceeds 50% by volume, the reduction rate is too fast and the activity decreases, which is not preferable.

상기 환원성 혼합 가스는 수소 가스 이외에 아르곤, 질소 및 헬륨으로 이루어진 군으로부터 선택된 하나 이상을 포함한다.The reducing mixed gas includes at least one selected from the group consisting of argon, nitrogen and helium in addition to hydrogen gas.

상기 열처리온도는 100 내지 500℃인 것이 바람직하고, 열처리 시간은 제조하는 촉매의 양, 열처리온도 등에 따라 20분 내지 3시간 동안 할 수 있다. Preferably, the heat treatment temperature is 100 to 500 ° C., and the heat treatment time may be 20 minutes to 3 hours depending on the amount of catalyst to be prepared, the heat treatment temperature, and the like.

만약 상기 열처리 온도가 상기 범위를 벗어나 너무 낮으면, 루테늄의 합금 정도가 떨어져 상기한 바이펑셔널 메카니즘이 활발하게 일어나지 못해 내 CO 피독성이 떨어지게 된다. 또한, 열처리 온도가 상기 범위를 벗어나 너무 높게 되면, 입자크기가 커져 촉매의 활용효율이 떨어지게 된다.If the heat treatment temperature is too low out of the range, the alloy of ruthenium is lowered so that the bifunctional mechanism does not occur actively, thereby reducing the CO toxicity. In addition, when the heat treatment temperature is too high out of the above range, the particle size becomes large, the utilization efficiency of the catalyst is lowered.

상술한 폴리올 공정과 수소 가스를 함유한 환원성 혼합 가스 분위기하에서 열처리를 통하여 PtRu 촉매의 결정성이 증대되고 폴리올 공정을 통하여 발생된 금속 입자 표면에 흡착된 종(species)이 후처리 공정 즉, 환원성 혼합 가스 분위기하에서 열처리를 통하여 효과적으로 제거되어 상술한 메탄올 산화반응을 촉진하는 활성이 증대되어 그 결과 CO에 대한 내성이 개선된다.Crystallinity of the PtRu catalyst is increased through heat treatment in the above-described polyol process and a reducing mixed gas atmosphere containing hydrogen gas, and species adsorbed on the surface of metal particles generated through the polyol process are post-treatment process, that is, reducing mixing. Effectively removed through heat treatment in a gas atmosphere to promote the above-mentioned methanol oxidation reaction is increased to improve the resistance to CO as a result.

백금과 루테늄의 합금 담지 촉매의 내 CO 피독성의 메카니즘으로 이른바 바이펑셔널 메카니즘(bifunctional mechanism)이 알려져 있다. 바이펑셔널 메카니즘이란 백금원자에 흡착된 CO 분자와 상기 백금원자에 인접한 루테늄 원자에 흡착된 히드록시기(hydroxy group)가 반응하여 일산화탄소를 이산화탄소로 전화되고, 이를 통해 일산화탄소로 인한 촉매의 피독이 완화된다는 것이다 (도 2 참조).The so-called bifunctional mechanism is known as a mechanism of CO poisoning in an alloy supported catalyst of platinum and ruthenium. The bifunctional mechanism is that a CO molecule adsorbed on a platinum atom and a hydroxy group adsorbed on a ruthenium atom adjacent to the platinum atom react to convert carbon monoxide to carbon dioxide, thereby alleviating poisoning of the catalyst due to carbon monoxide. (See Figure 2 ).

상기와 같은 바이펑셔널 메카니즘이 극대화되기 위해서는 백금 원자와 루테늄 원자가 1 : 1로 서로 대응되는 것이 바람직하다. 따라서, 백금/루테늄 합금 담지 촉매를 구성하는 백금 원자와 루테늄 원자의 몰비가 1 : 1로 되거나 여기에 가깝고, 이들의 분포가 균일하여 서로 1 : 1로 대응되는 백금-루테늄 쌍의 수를 극대화하는 것이 촉매의 전체적인 활성을 높이는 데 중요하다.In order to maximize the bifunctional mechanism as described above, it is preferable that the platinum atom and the ruthenium atom correspond to 1: 1. Therefore, the molar ratio of the platinum atoms and ruthenium atoms constituting the platinum / ruthenium alloy supported catalyst is 1: 1 or close to them, and their distribution is uniform to maximize the number of platinum-ruthenium pairs corresponding to 1: 1. It is important to increase the overall activity of the catalyst.

본 발명의 백금/루테늄 합금 담지 촉매는 3.856 내지 3.885 Å의 격자상수 값을 갖는다. 격자상수 값이 상기 범위를 벗어나는 백금/루테늄 합금 담지 촉매는 상기 바이펑셔널 메카니즘이 일어나기에 상대적으로 불리하여 활성이 떨어지기 때문에 바람직하지 않다. 또한, 본 발명의 백금/루테늄 합금 담지 촉매는 1.5 내지 5 nm의 입자크기를 갖는 것이 바람직하다. 만일 입자 직경이 5 nm보다 크면 비표면적이 줄어들어 촉매효율이 떨어지고, 입자 직경이 1.5nm보다 작은 촉매는 뭉침(agglomeration) 현상 없이 합성되기 어렵다.The platinum / ruthenium alloy supported catalyst of the present invention has a lattice constant value of 3.856 to 3.885 kPa. Platinum / ruthenium alloy supported catalysts whose lattice constant values are out of the above range are not preferable because the bifunctional mechanism is relatively disadvantageous and inferior in activity. In addition, the platinum / ruthenium alloy supported catalyst of the present invention preferably has a particle size of 1.5 to 5 nm. If the particle diameter is larger than 5 nm, the specific surface area is reduced to reduce the catalytic efficiency, and catalysts having a particle diameter smaller than 1.5 nm are difficult to synthesize without agglomeration.

또한, 백금과 루테늄의 총중량은 합금 담지 촉매 총중량 100 중량부를 기준으로 하여 50 내지 90 중량부를 차지하는 것이 바람직하다. 백금과 루테늄의 총중량이 50 중량부 미만이면 애노드 촉매 층의 두께가 두꺼워지게 되어 전기저항이 지나치게 높아지며, 90 중량부를 초과하면 촉매 입경이 5nm 이상 만들어지거나 뭉침(agglomeration) 현상으로 비표면적이 감소하여 촉매의 활용이 불리하게 된다.In addition, the total weight of platinum and ruthenium preferably accounts for 50 to 90 parts by weight based on 100 parts by weight of the total weight of the alloy supported catalyst. If the total weight of platinum and ruthenium is less than 50 parts by weight, the thickness of the anode catalyst layer becomes too high and the electrical resistance becomes too high. If it exceeds 90 parts by weight, the catalyst particle size is made 5 nm or more, or the specific surface area decreases due to agglomeration. The use of is disadvantageous.

본 발명의 백금/루테늄 합금 담지 촉매는 셀 전위가 0.6V에서의 질량 활성(mass activity)이 48 내지 60 A/(gPtRu)이다. 이보다 질량 활성이 낮은 것은 상기 합금 담지 촉매를 이용하여 제조되는 전지의 성능이 미흡하게 되고, 반대로 질량 활성이 이보다 높은 것은 제조하기 어려운 단점이 있다.The platinum / ruthenium alloy supported catalyst of the present invention has a mass activity of 48 to 60 A / (g PtRu ) at a cell potential of 0.6V. Lower mass activity results in insufficient performance of the battery produced using the alloy supported catalyst, and conversely, higher mass activity is difficult to manufacture.

상기 백금 원자와 루테늄 원자를 지지하는 담체로는 탄소계 담체 또는 제올라이트, 실리카/알루미나 등이 가능하지만, 특히 탄소계 담체 또는 제올라이트가 바람직하다. 탄소계 담체로는 흑연, 탄소 분말, 아세틸렌 블랙, 카본 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 등이 바람직하다.As the carrier supporting the platinum atom and the ruthenium atom, a carbon-based carrier or zeolite, silica / alumina or the like can be used, but a carbon-based carrier or zeolite is particularly preferable. Carbon-based carriers include graphite, carbon powder, acetylene black, carbon black, activated carbon, mesoporous carbon, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon nano rings, carbon nanowires, and fullerenes (C 60 ). desirable.

한편, 상술한 본 발명에 따른 제조공정에 따라 얻은 백금/루테늄 합금 담지 촉매는 연료전지의 전극에 애노드 전극의 메탄올이나 CO가 함유된 수소의 산화반응을 촉진하는 활성성분으로 사용될 수 있으며, 통상적인 방법에 의해 연료전지용 전극을 제조할 수 있다.On the other hand, the platinum / ruthenium alloy supported catalyst obtained according to the manufacturing process according to the present invention described above can be used as an active ingredient for promoting the oxidation reaction of hydrogen containing methanol or CO of the anode electrode on the electrode of the fuel cell, A fuel cell electrode can be manufactured by the method.

상기 백금/루테늄 합금 담지 촉매를 이소프로필알콜, 테트라부틸아세테이트, 노말부틸아세테이트 등의 분산매에 나피온 등과 같은 이오노머와 함께 분산시켜 슬러리를 제조하고, 상기 슬러리를 가스 확산층 위에 도포한다.The platinum / ruthenium alloy supported catalyst is dispersed with an ionomer such as Nafion in a dispersion medium such as isopropyl alcohol, tetrabutyl acetate, normal butyl acetate, and the like, and the slurry is applied on the gas diffusion layer.

가스확산층으로서는, 지지기판과 카본 층으로 구성되어 있다. The gas diffusion layer is composed of a supporting substrate and a carbon layer.

카본 층은 카본 블랙을 이소프로필알콜과 같은 용매 및 폴리테트라플루오로에틸렌(PTFE)와 같은 바인더와 혼합하여 지지기판의 상부에 도포한다. 이어서 건조 후에 상기 결과물을 열처리한다.The carbon layer is applied on top of the support substrate by mixing carbon black with a solvent such as isopropyl alcohol and a binder such as polytetrafluoroethylene (PTFE). The resultant is then heat treated after drying.

지지기판의 경우 카본페이퍼, 더욱 바람직하게는 발수처리된 카본페이퍼, 더 더욱 바람직하게는 발수처리된 카본블랙층이 도포된 발수처리된 카본페이퍼 또는 카본 클로스(carbon cloth)일 수 있다.The support substrate may be a carbon paper, more preferably a water repellent treated carbon paper, even more preferably a water repellent treated carbon paper or carbon cloth coated with a water repellent treated carbon black layer.

발수처리된 카본페이퍼는, PTFE 등과 같은 소수성 고분자를 약 5 내지 약 50 중량% 정도 포함하고 있으며, 상기 소수성 고분자는 소결될 수 있다. 가스확산층의 발수처리는 극성액체반응물과 기체반응물에 대한 출입통로를 동시에 확보하기 위한 것이다.The water repellent treated carbon paper contains about 5 to about 50 wt% of a hydrophobic polymer such as PTFE, and the hydrophobic polymer may be sintered. The water repellent treatment of the gas diffusion layer is to secure access passages for the polar liquid reactant and the gas reactant at the same time.

발수처리된 카본블랙층을 갖는 발수처리된 카본페이퍼에 있어서, 발수처리된 카본블랙층은 카본블랙 및 소수성 바인더로서 PTFE 등과 같은 소수성 고분자를 약 20 내지 50 중량% 정도 포함하고 있으며, 앞에서 설명한 바와 같은 발수처리된 카본페이퍼의 일면에 부착되어 있다. 발수처리된 카본블랙층의 상기 소수성 고분자는 소결되어 있다.In the water-repellent carbon paper having the water-repellent carbon black layer, the water-repellent carbon black layer contains about 20 to 50% by weight of hydrophobic polymer such as PTFE as the carbon black and the hydrophobic binder. It is attached to one surface of the water repellent treated carbon paper. The hydrophobic polymer of the water repellent treated carbon black layer is sintered.

또한, 본 발명은 촉매층과 확산층을 포함하는 캐소드; 촉매층과 확산층을 포함하는 애노드; 및 상기 캐소드와 상기 애노드 사이에 위치하는 전해질막을 포함하는 연료전지에 있어서, 상기 애노드에 사용된 촉매가 본 발명에 따른 백금/루테늄 합금 담지 촉매인 것을 특징으로 하는 연료전지를 제공한다.The present invention also provides a cathode comprising a catalyst layer and a diffusion layer; An anode comprising a catalyst layer and a diffusion layer; And an electrolyte membrane positioned between the cathode and the anode, wherein the catalyst used in the anode is a platinum / ruthenium alloy supported catalyst according to the present invention.

본 발명의 연료전지는, 예를 들면, PAFC, PEMFC, DMFC 등에 적용될 수 있으며, 특히 DMFC에 더욱 유리하게 적용될 수 있다.The fuel cell of the present invention can be applied to, for example, PAFC, PEMFC, DMFC, and the like, and particularly, can be applied to DMFC more advantageously.

이러한 연료전지의 제조는, 각종 문헌에 공지되어 있는 통상적인 방법을 이용할 수 있으므로, 본 명세서에서는 그에 대한 상세한 설명을 생략한다.In the production of such a fuel cell, since a conventional method known in various documents can be used, detailed description thereof is omitted here.

이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the structure and effects of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention and are not intended to limit the scope of the present invention.

실시예 및 비교예에서 결정 입경은 백금/루테늄 피크와 폭을 측정하여 하기 수학식 1과 같은 쉐러 식(Scherrer's equation)을 이용함으로써 계산하였다.In Example and Comparative Examples, the crystal grain size was calculated by measuring the platinum / ruthenium peak and width and using the Scherrer's equation shown in Equation 1 below.

[수학식 1][Equation 1]

Figure 112007026163098-pat00001
Figure 112007026163098-pat00001

여기서, λ는 엑스레이의 파장이고, k는 쉐러 상수(Scherrer constant)이고, θ는 브래그 각도(Bragg's angle)이고, Bd는 입자 크기 확장(particle size broadening)에 대한 보정선폭(corrected line width) 값이다.Where λ is the wavelength of the x-ray, k is the Scherrer constant, θ is the Bragg's angle, and B d is the value of the corrected line width for particle size broadening to be.

실시예 1Example 1

H2PtCl6·xH2O 1g과 RuCl3·H2O 0.5g을 에틸렌글리콜 50 ml에 넣어 교반시켜 완전히 용해시켜 금속염 용액을 제조하였다.1 g of H 2 PtCl 6 .xH 2 O and 0.5 g of RuCl 3 · H 2 O were added to 50 ml of ethylene glycol, stirred, and completely dissolved to prepare a metal salt solution.

이와 별도로 0.370 g 의 카본 블랙 담체를 100 ml의 에틸렌 글리콜에 넣고 교반하여 균일한 분산액으로 제조하여 촉매 담체 용액을 제조하였다. Separately, 0.370 g of a carbon black carrier was added to 100 ml of ethylene glycol and stirred to prepare a uniform dispersion to prepare a catalyst carrier solution.

상기 금속염 용액의 pH를 NaOH 용액을 용하여 13으로 조절하고, 이 용액을 Adjust the pH of the metal salt solution to 13 using NaOH solution, and adjust the solution

오일 배쓰를 이용하여 180℃까지 온도를 올린 후에 30분 유지한 후, 170℃에서 3시 간동안 유지하였다. 용액의 색이 검은색으로 변하면서 환원된 PtRu 합금 콜로이드를 형성하였다.After the temperature was raised to 180 ° C. using an oil bath and maintained for 30 minutes, the temperature was maintained at 170 ° C. for 3 hours. The color of the solution turned black to form a reduced PtRu alloy colloid.

상기 과정에 따라 얻은 촉매 담체 용액을 상기 콜로이드 용액에 부가하고, HCl 용액을 이용하여 혼합물의 pH 3으로 조절하여 전기화학 촉매 입자들이 담체상에 담지되도록 하였다. 이렇게 형성된 전기화학 촉매를 여과하고 세척한 후에 80℃의 진공 오븐에서 건조하였다.The catalyst carrier solution obtained according to the above procedure was added to the colloidal solution, and adjusted to pH 3 of the mixture using HCl solution so that the electrochemical catalyst particles were supported on the carrier. The electrochemical catalyst thus formed was filtered, washed and dried in a vacuum oven at 80 ° C.

건조된 촉매를 전기로에 넣고 수소가 10부피%와 아르곤 가스 90부피%의 환원성 혼합 가스 분위기에서 200℃에서 2시간동안 열처리를 하여 최종적인 PtRu 담지 촉매를 얻었다.The dried catalyst was placed in an electric furnace, and hydrogen was heat-treated at 200 ° C. for 2 hours in a reducing gas atmosphere of 10% by volume and 90% by volume of argon gas to obtain a final PtRu supported catalyst.

실시예Example 2 2

수소가 10부피%와 아르곤 가스 90부피%의 환원성 혼합 가스 분위기에서 200℃에서 30분동안 열처리한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 PtRu 담지 촉매를 얻었다.A PtRu supported catalyst was obtained in the same manner as in Example 1 except that hydrogen was heat-treated at 200 ° C. for 30 minutes in a reducing gas atmosphere of 10% by volume and 90% by volume of argon gas.

실시예Example 3 3

환원성 혼합 가스가 수소가 8부피%와 아르곤 가스 92부피%로 이루어진 점을 제외하고는, 실시예 1과 동일하게 실시하여 PtRu 담지 촉매를 얻었다.A PtRu supported catalyst was obtained in the same manner as in Example 1 except that the reducing mixed gas was composed of 8% by volume of hydrogen and 92% by volume of argon gas.

실시예Example 4 4

환원성 혼합 가스가 수소가 40부피%와 아르곤 가스 60부피%로 이루어진 점을 제외하고는, 실시예 1과 동일하게 실시하여 PtRu 담지 촉매를 얻었다.A PtRu supported catalyst was obtained in the same manner as in Example 1 except that the reducing mixed gas consisted of 40 vol% of hydrogen and 60 vol% of argon gas.

실시예Example 5 5

환원성 혼합 가스가 수소가 50부피%와 아르곤 가스 50부피%로 이루어진 점을 제외하고는, 실시예 1과 동일하게 실시하여 PtRu 담지 촉매를 얻었다.A PtRu supported catalyst was obtained in the same manner as in Example 1 except that the reducing mixed gas was composed of 50 vol% of hydrogen and 50 vol% of argon gas.

비교예Comparative example 1 One

수소가 100부피% 가스 분위기하에서 200℃에서 30분동안 열처리한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 PtRu 담지 촉매를 얻었다A PtRu supported catalyst was obtained in the same manner as in Example 1 except that hydrogen was heat-treated at 200 ° C. for 30 minutes in a 100 vol.% Gas atmosphere.

비교예 2Comparative Example 2

수소가 10부피%와 아르곤 가스 90부피%의 환원성 혼합 가스 분위기에서 200℃에서 30분동안 열처리를 실시하지 않은 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 PtRu 담지 촉매를 얻었다.A PtRu supported catalyst was obtained in the same manner as in Example 1 except that hydrogen was not heat treated at 200 ° C. for 30 minutes in a reducing gas atmosphere of 10% by volume and 90% by volume of argon gas.

상기 실시예 1및 비교예 2에 따라 얻은 백금/루테늄 합금 촉매의 결정 입경은 약 2.0nm이었고, 이의 XRD 분석을 행하였고, 도 3에 나타난 바와 같다. The crystal grain diameters of the platinum / ruthenium alloy catalysts obtained according to Example 1 and Comparative Example 2 were about 2.0 nm, and XRD analysis thereof was performed, as shown in FIG. 3.

도 3을 참조하면, 열처리를 통하여 결정성이 증가하는 것을 알 수 있었다.Referring to Figure 3, it can be seen that the crystallinity is increased through the heat treatment.

상기 실시예 1-5 및 비교예 1-2에 따라 얻은 PtRu 담지 촉매에 있어서, 질량 활성(mass activity)를 측정하여 하기 표 1에 나타내었다. In the PtRu supported catalyst obtained according to Example 1-5 and Comparative Example 1-2, mass activity was measured and shown in Table 1 below.

질량 활성은 상기 실시예 1-5 및 비교예 1-2에 따라 얻은 백금/루테늄 합금 담지 촉매를 이용하여 반쪽전지를 제조한 다음, 이와 같이 제조된 반쪽 전지에 생성되는 전류를 상기 반쪽 전지의 제조에 사용된 촉매의 질량으로 나눈 값이다.Mass activity of the half cell was prepared using the platinum / ruthenium alloy supported catalyst obtained according to Example 1-5 and Comparative Example 1-2, and then the current generated in the half cell thus prepared was produced in the half cell. Divided by the mass of the catalyst used in.

반쪽 전지를 제조하기 위해 카본 페이퍼에 본 발명의 백금/루테늄 합금 담지 촉매와 이소프로필알콜 및 나피온 이오노머 용액을 혼합하여 만든 슬러리를 도포하여 건조시켰다. 또한, 반쪽전지를 이용한 활성 측정시 사용한 용액은 0.5 M 황산 용액과 2.0 M 메탄올의 혼합용액이었고, 기준전극은 은/포화 염화은 전극이었다. 그리고 선형 스윕 볼타모그램 (linear sweep voltammogram)은 5 mV/s의 스캔속도로 측정되었다.To prepare the half cell, a slurry prepared by mixing the platinum / ruthenium alloy supported catalyst of the present invention with isopropyl alcohol and Nafion ionomer solution was applied to carbon paper and dried. In addition, the solution used for the activity measurement using the half cell was a mixed solution of 0.5 M sulfuric acid solution and 2.0 M methanol, the reference electrode was a silver / saturated silver chloride electrode. The linear sweep voltammogram was measured at a scan rate of 5 mV / s.

질량활성의 측정시 반쪽 전지에 사용된 상기 메탄올이 산화되는 과정에서 CO가 생성되게 되는데, 그럼에도 불구하고 질량 활성이 높게 나오는 것은 그만큼 내 CO 피독성이 우수함을 의미한다.When the mass activity is measured, CO is generated during the oxidation of the methanol used in the half cell. Nevertheless, the high mass activity means that the CO toxicity is excellent.

[표 1]TABLE 1

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 비교예 1Comparative Example 1 비교예 2Comparative Example 2 수소 함량 (부피%)Hydrogen content (% by volume) 1010 1010 88 4040 5050 100100 1010 열처리온도 (℃)Heat treatment temperature (℃) 200200 200200 200200 200200 200200 200200 열처리 하지 않음Not heat treated 질량활성 (A/gPt Ru )Mass activity (A / g Pt Ru ) 5959 5454 4848 4242 3737 3535 3535

상기 표 1로부터, 실시예 1-6에 따라 얻어진 백금/루테늄 합금 담지 촉매는 비교예 1-2의 경우와 비교하여 질량 활성이 개선됨을 알 수 있었다. From Table 1, the platinum / ruthenium alloy supported catalyst obtained according to Example 1-6 it can be seen that the mass activity is improved compared to the case of Comparative Example 1-2.

따라서, 실시예 1-3에 따른 백금/루테늄 합금 담지 촉매가 비교예 1-2에 따른 백금/루테늄 합금 담지 촉매보다 더 우수한 내 CO피독성을 보임을 알 수 있다.Therefore, it can be seen that the platinum / ruthenium alloy supported catalyst according to Example 1-3 shows better CO toxic resistance than the platinum / ruthenium alloy supported catalyst according to Comparative Example 1-2.

제조예 1Preparation Example 1

상기 실시예 1에서 제조한 백금/루테늄 합금 담지 촉매를 이용하여 연료전지용 전극을 제조하였다. 담지촉매에서 백금/루테늄의 중량은 담지촉매 총중량 100 중량부 기준으로 하여 70 중량부였다. 애노드 전극에의 촉매 로딩 양은 3.8 mg/cm2 이었고, 캐소드 전극에는 백금 블랙 촉매가 6.3 mg/cm2 로딩되어 있었다.An electrode for a fuel cell was manufactured using the platinum / ruthenium alloy supported catalyst prepared in Example 1. The weight of platinum / ruthenium in the supported catalyst was 70 parts by weight based on 100 parts by weight of the total weight of the supported catalyst. The amount of catalyst loading on the anode electrode was 3.8 mg / cm 2 , and the cathode electrode was loaded with 6.3 mg / cm 2 platinum black catalyst.

전해질막으로는 나피온 115를 사용하였고, 전지 온도는 50℃였다. 연료로 캐소드에는 공기, 애노드에는 1 M 농도의 메탄올 수용액을 사용하였다.Nafion 115 was used as the electrolyte membrane, and the battery temperature was 50 ° C. As a fuel, air was used for the cathode and a 1 M aqueous methanol solution was used for the anode.

비교예Comparative example 3 3

비교예 1에 따라 제조된 백금/루테늄 합금 담지 촉매를 사용하여 애노드를 제조한 것을 제외하고는, 실시예 4와 동일한 방법에 따라 실시하여 연료전지를 제조하였다.A fuel cell was manufactured in the same manner as in Example 4, except that the anode was manufactured using the platinum / ruthenium alloy supported catalyst prepared according to Comparative Example 1.

비교예Comparative example 4 4

비교예 2에 따라 제조된 백금/루테늄 합금 담지 촉매를 사용하여 애노드를 제조한 것을 제외하고는, 실시예 4와 동일한 방법에 따라 실시하여 연료전지를 제조하였다.A fuel cell was prepared in the same manner as in Example 4 except that the anode was manufactured using the platinum / ruthenium alloy supported catalyst prepared according to Comparative Example 2.

상기 제조예 1 및 비교예 3-4에 따라 제조된 연료전지를 이용하여 효율 평가 테스트를 실시하였고, 그 결과 실시예 4에 따른 연료전지가 비교예 3-4의 경우와 비교하여 효율 특성이 개선됨을 확인할 수 있었다.An efficiency evaluation test was performed using the fuel cells manufactured according to Preparation Example 1 and Comparative Example 3-4, and as a result, the fuel cell according to Example 4 has improved efficiency characteristics compared to that of Comparative Example 3-4. Could confirm.

이상에서 살펴본 바와 같이 본 발명의 바람직한 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to preferred embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, changes in the future embodiments of the present invention will not be able to escape the technology of the present invention.

본 발명의 백금/루테늄 합금 담지 촉매는 내 CO 피독성이 뛰어나고 메탄올 산화력이 우수하여 활성이 개선된다. 즉, 적은 양의 촉매를 사용하고도 수명이 더 긴 전극 및 이를 채용한 연료전지를 제조할 수 있도록 하는 효과가 있다. The platinum / ruthenium alloy supported catalyst of the present invention is excellent in CO poisoning resistance and excellent in methanol oxidation, thereby improving activity. In other words, it is possible to produce an electrode having a longer life and a fuel cell employing the same even though a small amount of catalyst is used.

Claims (13)

(a) 백금 전구체와 루테늄 전구체를 준비하고, 각각을 제1용매에 용해시킨 후 혼합하여 금속염 용액을 제조하는 단계;(a) preparing a platinum precursor and a ruthenium precursor, dissolving each of them in a first solvent, and then mixing them to prepare a metal salt solution; (b) 상기 (a) 단계에 따라 얻은 금속염 용액의 pH를 소정범위로 조절하는 단계;(b) adjusting the pH of the metal salt solution obtained in step (a) to a predetermined range; (c) 상기 결과물을 열처리하여 촉매 콜로이드를 얻는 단계;(c) heat treating the resultant to obtain a catalyst colloid; (d) 촉매 담체와 용매를 혼합하여 담체 용액을 제조하는 단계;(d) mixing the catalyst carrier and the solvent to prepare a carrier solution; (e) 상기 (c)에 따라 얻은 촉매 콜로이드와 상기 (d)에 따라 얻은 담체 용액을 혼합하여 혼합 용액을 제조하는 단계;(e) mixing the catalyst colloid obtained according to (c) and the carrier solution obtained according to (d) to prepare a mixed solution; (f) 상기 (e) 단계에 따라 얻은 혼합 용액의 pH를 1 내지 5 범위로 조절하여 촉매 입자를 촉매 담체에 담지하여 담지촉매를 얻는 단계;(f) adjusting the pH of the mixed solution obtained in step (e) to a range of 1 to 5 to support the catalyst particles on the catalyst carrier to obtain a supported catalyst; (g) 상기 담지 촉매를 분리 및 세척하는 단계; 및(g) separating and washing the supported catalyst; And (h) 상기 결과물을 5 내지 50 부피%의 수소 가스를 함유하는 환원성 혼합 가스 분위기하에서 열처리하는 단계를 포함하며,(h) heat treating the resultant under a reducing mixed gas atmosphere containing 5 to 50% by volume of hydrogen gas, 상기 환원성 혼합 가스가,The reducing mixed gas, 수소 가스와,With hydrogen gas, 질소, 아르곤 및 헬륨으로 이루어진 군으로부터 선택된 하나 이상을 포함하는 백금/루테늄 합금 담지 촉매의 제조방법.A method for preparing a platinum / ruthenium alloy supported catalyst comprising at least one selected from the group consisting of nitrogen, argon and helium. 삭제delete 삭제delete 제1항에 있어서, 상기 (h) 단계의 열처리가 100 내지 500 ℃에서 이루어지는 것을 특징으로 하는 백금/루테늄 합금 담지 촉매의 제조방법.The method of claim 1, wherein the heat treatment in the step (h) is carried out at 100 to 500 ℃. 제1항에 있어서, 상기 (h) 단계의 열처리 시간이 20분 내지 3시간인 것을 특징으로 하는 백금/루테늄 합금 담지 촉매의 제조방법.The method of claim 1, wherein the heat treatment time of the step (h) is 20 minutes to 3 hours. 제1항에 있어서, 상기 (a) 단계에서 백금 전구체의 백금과 루테늄 전구체의 루테늄의 몰비가 8 : 2 내지 3 : 7인 것을 특징으로 하는 백금/루테늄 합금 담지 촉매의 제조방법.The method of claim 1, wherein the molar ratio of the platinum of the platinum precursor and the ruthenium of the ruthenium precursor in step (a) is 8: 2 to 3: 7. 제1항에 있어서, 상기 (b) 단계에서 pH를 10-14로 조절하는 것을 특징으로 하는 백금/루테늄 합금 담지 촉매의 제조방법.The method of claim 1, wherein in step (b), the pH is adjusted to 10-14. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070033362A 2007-01-16 2007-04-04 Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same KR100868756B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710001280.8 2007-01-16
CNA2007100012808A CN101224435A (en) 2007-01-16 2007-01-16 Supported PtRu alloy catalyst and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20080067554A KR20080067554A (en) 2008-07-21
KR100868756B1 true KR100868756B1 (en) 2008-11-17

Family

ID=39821788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070033362A KR100868756B1 (en) 2007-01-16 2007-04-04 Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same

Country Status (2)

Country Link
KR (1) KR100868756B1 (en)
CN (1) CN101224435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10854886B2 (en) 2018-05-02 2020-12-01 Korea Institute Of Science And Technology Method for preparing a carbon-supported, platinum-cobalt alloy, nanoparticle catalyst

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817088B (en) * 2009-02-27 2011-12-28 天津商业大学 Preparation method of Pt-Ni alloy nano particle and colloidal dispersion system thereof
KR101241429B1 (en) * 2011-06-07 2013-03-11 오덱(주) Manufacturing method of electrocatalysts for fuel cell enabling mass production
CN103933975A (en) * 2014-02-24 2014-07-23 北京化工大学 Preparation method of Pt-Ru alloy catalyst with high catalytic activity
KR101575463B1 (en) 2014-03-26 2015-12-07 현대자동차주식회사 A method for manufacturing alloy catalyst for a fuel cell
CN107123818B (en) * 2017-04-28 2020-04-21 武汉理工大学 Petal-shaped Cu-doped PtRu alloy catalyst and preparation method thereof
CN112825357B (en) * 2019-11-21 2022-05-06 中国科学院大连化学物理研究所 Pt-based multi-component transition metal alloy nano electro-catalyst, preparation and application
KR102323270B1 (en) * 2019-11-29 2021-11-08 충남대학교산학협력단 Preparation Method for Platinum Based Catalyst for Hydrogen Oxidation Reaction and Catalyst thereby
KR20230089613A (en) * 2021-12-13 2023-06-21 희성촉매 주식회사 Catalyst for fuel cell and method for preparing the same
CN114373944A (en) * 2021-12-15 2022-04-19 青岛创启新能催化科技有限公司 Preparation method of anti-reversal alloy catalyst for fuel cell
CN114497583A (en) * 2022-01-12 2022-05-13 青岛创启新能催化科技有限公司 Preparation method of PtRu/CN catalyst for fuel cell
CN114447352A (en) * 2022-01-25 2022-05-06 江苏擎动新能源科技有限公司 PtRu/C catalyst and preparation method thereof
CN115986141A (en) * 2023-01-17 2023-04-18 福州大学 Anode anti-poisoning catalyst and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100334925B1 (en) * 1996-07-16 2002-10-19 에릭슨 인코포레이티드 Method and apparatus for transmitting multi-resolution image data in radio frequency communication system
JP2003017075A (en) 2001-05-23 2003-01-17 Omg Ag & Co Kg Process for preparing anode catalyst for fuel cell and anode catalyst prepared by its process
US6686308B2 (en) 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
KR20060080727A (en) * 2005-01-06 2006-07-11 삼성에스디아이 주식회사 Pt/ru alloy catalyst for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100334925B1 (en) * 1996-07-16 2002-10-19 에릭슨 인코포레이티드 Method and apparatus for transmitting multi-resolution image data in radio frequency communication system
JP2003017075A (en) 2001-05-23 2003-01-17 Omg Ag & Co Kg Process for preparing anode catalyst for fuel cell and anode catalyst prepared by its process
US6686308B2 (en) 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
KR20060080727A (en) * 2005-01-06 2006-07-11 삼성에스디아이 주식회사 Pt/ru alloy catalyst for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10854886B2 (en) 2018-05-02 2020-12-01 Korea Institute Of Science And Technology Method for preparing a carbon-supported, platinum-cobalt alloy, nanoparticle catalyst

Also Published As

Publication number Publication date
KR20080067554A (en) 2008-07-21
CN101224435A (en) 2008-07-23

Similar Documents

Publication Publication Date Title
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
KR100670267B1 (en) Pt/Ru alloy catalyst for fuel cell
JP4571098B2 (en) Supported catalyst, method for producing supported catalyst, electrode and fuel cell using supported catalyst
KR100696463B1 (en) High concentration carbon impregnated catalyst, method for preparing the same, catalyst electrode using the same and fuel cell having the catalyst electrode
JP5329405B2 (en) catalyst
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
US8748334B2 (en) Process for producing electrode catalyst for fuel cell
EP2634850B1 (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
EP1786053B1 (en) Cathode catalyst for fuel cell, method of preparing same, and uses thereof
KR101229400B1 (en) Platinum/ruthenium catalyst for direct methanol fuel cells
KR20050046102A (en) Metal oxide-carbon composite catalyst support and fuel cell comprising the same
KR101494432B1 (en) Electrode catalyst for fuel cell, manufacturing method thereof, and fuel cell using the same
JP2008041253A (en) Electrocatalyst and power generation system using the same
KR100823502B1 (en) Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR20140070246A (en) Electrode catalyst for fuel cell, method for preparing the same, electrode for fuel cell including the electrode catalyst, and fuel cell including the same
EP2413407B1 (en) Electrode catalyst and method of preparing electrode catalyst for fuel cell, and membrane electrode assembly and fuel cell including same
US9105936B2 (en) Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same
WO2022196404A1 (en) Electrode catalyst, electrode catalyst layer using said electrode catalyst, membrane/electrode assembly, and electrochemical device
KR20210067176A (en) Preparation Method for Platinum Based Catalyst for Hydrogen Oxidation Reaction and Catalyst thereby
KR102517850B1 (en) Composite particle comprising a core of metal oxide particle and a shell of platinum group metal, and an electrode material for electrochemical reactions comprising the same
CN112490452B (en) Fuel cell anode catalyst and preparation method and application thereof
CN116031416A (en) Metal heterojunction catalyst with carbon layer semi-finite stable and preparation method thereof
JP2022142887A (en) Electrode catalyst, manufacturing method thereof, electrode for fuel cell, and fuel cell
JP2010282855A (en) Method of manufacturing electrode catalyst for fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141023

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151020

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171019

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 11