FR2881734A1 - Preparation of carbon nanotubes comprises decomposition of a carbon source by contacting in a fluidized bed reactor with multivalent transition metals supported on inorganic substrate having a defined surface area - Google Patents

Preparation of carbon nanotubes comprises decomposition of a carbon source by contacting in a fluidized bed reactor with multivalent transition metals supported on inorganic substrate having a defined surface area Download PDF

Info

Publication number
FR2881734A1
FR2881734A1 FR0501197A FR0501197A FR2881734A1 FR 2881734 A1 FR2881734 A1 FR 2881734A1 FR 0501197 A FR0501197 A FR 0501197A FR 0501197 A FR0501197 A FR 0501197A FR 2881734 A1 FR2881734 A1 FR 2881734A1
Authority
FR
France
Prior art keywords
catalyst
cnts
iron
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0501197A
Other languages
French (fr)
Other versions
FR2881734B1 (en
Inventor
Serge Bordere
Daniel Cochard
Patrice Gaillard
Dominique Plee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema SA
Original Assignee
Arkema SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema SA filed Critical Arkema SA
Priority to FR0501197A priority Critical patent/FR2881734B1/en
Priority to FR0510699A priority patent/FR2881735B1/en
Priority to JP2007553659A priority patent/JP2008529941A/en
Priority to ES06709240.3T priority patent/ES2658069T3/en
Priority to KR1020147004442A priority patent/KR20140041864A/en
Priority to KR1020077017811A priority patent/KR101411708B1/en
Priority to CA002596558A priority patent/CA2596558A1/en
Priority to EP06709240.3A priority patent/EP1846157B1/en
Priority to US11/814,811 priority patent/US7799246B2/en
Priority to PCT/FR2006/000250 priority patent/WO2006082325A1/en
Priority to CN2006800040835A priority patent/CN101213020B/en
Publication of FR2881734A1 publication Critical patent/FR2881734A1/en
Application granted granted Critical
Publication of FR2881734B1 publication Critical patent/FR2881734B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/40
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • B01J35/615
    • B01J35/66
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Abstract

Preparation of carbon nanotubes (I) comprises decomposition of a carbon source by contacting in a fluidized bed reactor at 500-1500[deg]C with multivalent transition metals at a null oxidation state and/or in the form of oxides (positive oxidation states) and recovery of (I), where the transition metals and/or their oxides are supported on a substrate with a specific Brunauer, Emmett and Teller surface of 70-300 m 2>/g such as inorganic support : An independent claim is included for (I) obtained by the process.

Description

Procédé de synthèse de nanotubes de carboneProcess for the synthesis of carbon nanotubes

La présente invention a pour objet un procédé de synthèse de nanotubes de carbone (NTC) en phase gazeuse en présence d'un catalyseur métallique supporté par un substrat inorganique spécifique. The present invention relates to a process for the synthesis of carbon nanotubes (CNTs) in the gas phase in the presence of a metal catalyst supported by a specific inorganic substrate.

Technique antérieure Les nanotubes de carbone sont reconnus aujourd'hui comme des matériaux présentant de grands avantages, du fait de leurs propriétés mécaniques, de leurs rapports de forme (longueur/diamètre) très élevés ainsi que de leurs propriétés électriques. PRIOR ART Carbon nanotubes are recognized today as materials exhibiting great advantages, due to their mechanical properties, their very high aspect ratios (length / diameter) as well as their electrical properties.

Ils se composent de feuillets graphitiques enroulés terminés par des hémisphères constitués de pentagones et d'hexagones de structure proche des fullerènes. They are composed of coiled graphitic sheets terminated by hemispheres made up of pentagons and hexagons with a structure similar to fullerenes.

On connaît des nanotubes composés d'un seul feuillet: on parle alors de SWNT (acronyme anglais de Single Wall Nanotubes) ou de nanotubes composés de plusieurs feuillets concentriques appelés alors MWNT (acronyme anglais de Multi Wall Nanotubes). Les SWNT sont en général plus difficiles à fabriquer que les MWNT. Nanotubes composed of a single sheet are known: one then speaks of SWNT (English acronym for Single Wall Nanotubes) or of nanotubes composed of several concentric sheets then called MWNT (English acronym for Multi Wall Nanotubes). SWNTs are generally more difficult to manufacture than MWNTs.

La production des nanotubes de carbone peut être mise en oeuvre selon 20 différents procédés comme la décharge électrique, l'ablation laser ou la déposition chimique en phase vapeur (CVD) Parmi ces techniques, cette dernière semble être la seule susceptible de pouvoir assurer la fabrication en quantité importante de nanotubes de carbone, condition essentielle pour assurer un prix de revient permettant de déboucher massivement dans les applications polymères et résines. The production of carbon nanotubes can be carried out according to 20 different processes such as electric discharge, laser ablation or chemical vapor deposition (CVD) Among these techniques, the latter seems to be the only one capable of ensuring the manufacture. in large quantities of carbon nanotubes, an essential condition for ensuring a cost price allowing massive access to polymer and resin applications.

Selon cette méthode, on injecte une source de carbone à température relativement élevée sur un catalyseur, ledit catalyseur pouvant être constitué d'un métal supporté sur un solide inorganique. Parmi les métaux, sont cités de manière préférentielle fer, cobalt, nickel, molybdène et parmi les supports, on retrouve souvent alumine, silice ou magnésie. According to this method, a source of carbon is injected at a relatively high temperature onto a catalyst, said catalyst possibly consisting of a metal supported on an inorganic solid. Among the metals, are preferably mentioned iron, cobalt, nickel, molybdenum and among the supports, one often finds alumina, silica or magnesia.

Les sources de carbone envisageables sont le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, l'acétone, voire le gaz de synthèse CO + H2 (procédé HIPCO). The possible sources of carbon are methane, ethane, ethylene, acetylene, ethanol, methanol, acetone, or even CO + H2 synthesis gas (HIPCO process).

Parmi les documents présentant la synthèse de nanotubes de carbone, on peut citer WO 86/03455A1 d'Hyperion Catalysis International Inc. correspondant à EP 225.556 B1 que l'on peut considérer comme l'un des brevets de base sur la synthèse des NTC qui revendique des fibrilles de carbone (ancienne dénomination des NTC) quasi cylindriques dont le diamètre est compris entre 3,5 et 70 nm, le rapport de forme supérieur ou égal à 100 ainsi que leur procédé de préparation La synthèse se fait par mise en contact d'un catalyseur contenant du fer (par exemple Fe3O4, Fe sur un support de charbon, Fe sur un support d'alumine ou Fe sur un support en fibrille carbonée) avec un composé gazeux contenant du carbone (de préférence CO ou hydrocarbure(s)), avantageusement en présence d'un composé capable de réagir avec du carbone pour produire des produits gazeux, (par exemple CO, H2 ou H2O). Dans les exemples, les catalyseurs sont préparés par imprégnation à sec, par précipitation ou par imprégnation en voie humide. Among the documents presenting the synthesis of carbon nanotubes, mention may be made of WO 86 / 03455A1 from Hyperion Catalysis International Inc. corresponding to EP 225,556 B1 which can be considered as one of the basic patents on the synthesis of CNTs which claims quasi-cylindrical carbon fibrils (former name of CNTs) whose diameter is between 3.5 and 70 nm, the aspect ratio greater than or equal to 100 as well as their preparation process The synthesis is carried out by contacting d '' an iron-containing catalyst (for example Fe3O4, Fe on a carbon support, Fe on an alumina support or Fe on a carbonaceous fibril support) with a gaseous compound containing carbon (preferably CO or hydrocarbon (s) ), advantageously in the presence of a compound capable of reacting with carbon to produce gaseous products, (for example CO, H2 or H2O). In the examples, the catalysts are prepared by dry impregnation, by precipitation or by wet impregnation.

WO 87/07559 correspondant à EP 270.666 B1 du même déposant revendique un procédé pour fabriquer des fibrilles de diamètre compris entre 3,5 et 70 nm mais de rapport de forme UD compris entre 5 et 100, à partir des mêmes réactifs et catalyseurs. WO 87/07559 corresponding to EP 270.666 B1 by the same applicant claims a process for manufacturing fibrils with a diameter of between 3.5 and 70 nm but with an UD aspect ratio of between 5 and 100, from the same reagents and catalysts.

Aucune information sur la productivité (qui serait exprimée comme la masse de fibrilles formées par gramme de catalyseur et par unité de temps) n'est donnée hormis le fait qu'il faut travailler, dans le cas où le composé gazeux contenant du carbone est le benzène, à plus de 800 C. No information on the productivity (which would be expressed as the mass of fibrils formed per gram of catalyst and per unit of time) is given apart from the fact that it is necessary to work, in the case where the gaseous compound containing carbon is the benzene, over 800 C.

D'autres documents revendiquent des améliorations de procédé, telles que le lit fluidisé continu qui permet de contrôler l'état d'agrégation du catalyseur et des matériaux carbonés formés (voir par exemple WO 02/94713A1 au nom de l'Université de Tsinghua) ou des améliorations de produits tels WO 02/095097 Al au nom de Trustees Of Boston College qui prépare des nanotubes de morphologie variée et non alignés, en jouant sur la nature du catalyseur et les conditions de réaction. Other documents claim process improvements, such as the continuous fluidized bed which makes it possible to control the state of aggregation of the catalyst and the carbonaceous materials formed (see for example WO 02 / 94713A1 in the name of Tsinghua University) or improvements to products such as WO 02/095097 A1 in the name of Trustees Of Boston College which prepares nanotubes of varied morphology and not aligned, by varying the nature of the catalyst and the reaction conditions.

US 2001/0036549 Al d'Hyperion Catalysis International Inc. décrit un procédé amélioré de préparation de NTC par décomposition d'une source de carbone en contact avec un métal de transition multivalent, ou de préférence un mélange de métaux (tel que Fe et Mo, Cr, Mn et/ou Ce), dont l'amélioration consiste en ce que le métal de transition, formant une multiplicité de sites catalytiques de taille comprise entre 3,5 et 70 nm, est supporté par un substrat inorganique de taille inférieure à 400 m. US 2001/0036549 A1 from Hyperion Catalysis International Inc. describes an improved process for preparing CNTs by decomposing a carbon source in contact with a multivalent transition metal, or preferably a mixture of metals (such as Fe and Mo , Cr, Mn and / or Ce), the improvement of which consists in that the transition metal, forming a multiplicity of catalytic sites of size between 3.5 and 70 nm, is supported by an inorganic substrate of size less than 400 m.

Dans les exemples, la source de carbone est un mélange hydrogène/éthylène dont les pressions partielles respectives sont de 0,66 et 0,33, le temps de réaction à 650 C est de 30 minutes et le catalyseur est préparé par imprégnation d'une alumine de pyrolyse (taux de fer non donné, estimé à 15 %) avec du nitrate de fer en présence de méthanol en quantité suffisante pour obtenir une pâte; la productivité est de 6,9 g/g en 30 minutes tandis qu'elle atteint entre 10,9 et 11,8 lorsque du sel de molybdène est ajouté, pour des taux de fer de l'ordre de 9 à 10% et de molybdène de 1 à 2 %. Quand le co-métal est le cérium, le chrome, le manganèse, la productivité en nanotubes est respectivement de 8,3, 9,7 et 11. In the examples, the carbon source is a hydrogen / ethylene mixture whose respective partial pressures are 0.66 and 0.33, the reaction time at 650 C is 30 minutes and the catalyst is prepared by impregnation of a pyrolysis alumina (iron content not given, estimated at 15%) with iron nitrate in the presence of methanol in sufficient quantity to obtain a paste; the productivity is 6.9 g / g in 30 minutes while it reaches between 10.9 and 11.8 when molybdenum salt is added, for iron levels of the order of 9 to 10% and molybdenum from 1 to 2%. When the co-metal is cerium, chromium, manganese, the productivity in nanotubes is respectively 8.3, 9.7 and 11.

On constate aussi que l'acétylacétonate de fer est moins efficace que le nitrate de fer. It is also found that iron acetylacetonate is less effective than iron nitrate.

Dans l'exemple 16, l'imprégnation est faite en voie aqueuse par précipitation à pH sensiblement égal à 6 par ajout simultané de solutions de nitrate de fer et de bicarbonate de sodium. Le catalyseur conduit à une sélectivité de 10,5 pour un taux de fer de 15 % et une introduction en semi-continu dans le réacteur. In Example 16, the impregnation is carried out in the aqueous route by precipitation at pH substantially equal to 6 by simultaneous addition of solutions of iron nitrate and sodium bicarbonate. The catalyst leads to a selectivity of 10.5 for an iron content of 15% and a semi-continuous introduction into the reactor.

Un autre exemple par imprégnation en voie aqueuse de fer et de molybdène conduit à des résultats aussi bons que la voie méthanol. Another example by aqueous impregnation of iron and molybdenum leads to results as good as the methanol route.

Ce document montre aussi que le remplacement du fer par le molybdène à des teneurs supérieures à 2,5 % en Mo est plutôt défavorable puisqu'une productivité de 8,8 est atteinte en 30 minutes pour un mélange à proportions égales de Fe et Mo (total = 16,7%). This document also shows that the replacement of iron by molybdenum at contents greater than 2.5% in Mo is rather unfavorable since a productivity of 8.8 is reached in 30 minutes for a mixture of equal proportions of Fe and Mo ( total = 16.7%).

Lorsqu'on utilise un support non poreux tel que l'alumine de pyrolyse Degussa utilisée par Hyperion de surface spécifique = 100 m2/g, on constate qu'il est difficile d'imprégner de grandes quantités de fer car seule la couche externe est accessible au gaz et les couches inférieures n'auront pas d'action catalytique suffisante. When using a non-porous support such as Degussa pyrolysis alumina used by Hyperion with a specific surface area = 100 m2 / g, it is found that it is difficult to impregnate large quantities of iron because only the outer layer is accessible. gas and the lower layers will not have sufficient catalytic action.

De plus, la technique utilisant ce genre de support est compliquée puisque la taille des particules est de 20 nm et la densité en vrac est de 0,06, ce qui augmente la difficulté de mise en oeuvre industrielle. In addition, the technique using this type of support is complicated since the size of the particles is 20 nm and the bulk density is 0.06, which increases the difficulty of industrial implementation.

La présente invention a pour objet un procédé de synthèse de NTC par décomposition d'une source de carbone qui est mise en contact dans un réacteur, de préférence à lit fluidisé, à une température comprise entre 500 et 1.500 C avec un ou plusieurs métaux de transition multivalents et récupération desdits NTC, caractérisé en ce que le ou les métaux de transition sont supportés sur un substrat de surface spécifique BET supérieure à 50 m2/g, et, de préférence, comprise entre 70 m2/g et 300 m2/g; parmi les supports, on citera de préférence les supports inorganiques, et de manière avantageuse les alumines de type gamma ou théta. The present invention relates to a process for the synthesis of CNTs by decomposition of a carbon source which is brought into contact in a reactor, preferably with a fluidized bed, at a temperature of between 500 and 1,500 C with one or more metals of multivalent transition and recovery of said CNTs, characterized in that the transition metal (s) are supported on a substrate with a BET specific surface area greater than 50 m2 / g, and, preferably, between 70 m2 / g and 300 m2 / g; among the supports, mention will preferably be made of inorganic supports, and advantageously of aluminas of the gamma or theta type.

Selon un mode de réalisation préféré, les supports sont susceptibles d'être imprégnés par une quantité de métal(aux) de transition allant jusqu'à 50 % en poids du catalyseur final, et avantageusement représentant de 15 à 50 % du poids du catalyseur final. According to a preferred embodiment, the supports are capable of being impregnated with a quantity of transition metal (s) ranging up to 50% by weight of the final catalyst, and advantageously representing from 15 to 50% of the weight of the final catalyst. .

La taille des particules du support est avantageusement choisie pour permettre une bonne fluidisation du catalyseur lors de la réaction de synthèse des NTC. Dans la pratique, pour assurer une productivité correcte, on préfère que les particules de support aient un diamètre compris au sens large entre environ 20 et environ 500 m. Bien entendu, on ne sortirait pas du cadre de l'invention si la taille des particules du support était hors des limites indiquées précédemment. The size of the particles of the support is advantageously chosen to allow good fluidization of the catalyst during the CNT synthesis reaction. In practice, to ensure proper productivity, it is preferred that the carrier particles have a diameter of broadly between about 20 and about 500 m. Of course, it would not be departing from the scope of the invention if the size of the particles of the support were outside the limits indicated above.

L'imprégnation des particules de support est avantageusement mise en oeuvre sous balayage de gaz sec, par exemple au moyen d'une solution aqueuse de nitrate de fer lorsque le métal de transition est le fer, à une température comprise entre la température ambiante et la température d'ébullition de la solution; on choisit la quantité de solution d'imprégnation pour qu'à à tout moment, les particules de support soient en contact avec une quantité de solution juste suffisante pour assurer la formation d'un film de surface sur lesdites particules de support. The impregnation of the support particles is advantageously carried out under a dry gas sweep, for example by means of an aqueous solution of iron nitrate when the transition metal is iron, at a temperature between room temperature and boiling temperature of the solution; the quantity of impregnation solution is chosen so that at all times the support particles are in contact with an amount of solution just sufficient to ensure the formation of a surface film on said support particles.

Le fait de travailler à sec , c'est-à-dire en ayant à tout moment juste la quantité de liquide nécessaire pour créer un film liquide en surface des particules de support catalytique est un avantage car cela permet, en chauffant sous balayage d'air sec, d'éviter les rejets aqueux (par exemple les rejets aqueux de nitrates lorsque la solution d'imprégnation contient du nitrate de fer; après imprégnation, le produit obtenu, est chauffé vers 300 C sous gaz inerte ou non pour éliminer les nitrates) Selon un mode de réalisation préféré, la réduction du catalyseur s'opère in-situ dans le réacteur de synthèse, avantageusement à lit fluidisé, et le catalyseur ne revoit pas l'air et ainsi, le fer reste sous forme métal. The fact of working dry, that is to say by having at all times just the quantity of liquid necessary to create a liquid film on the surface of the particles of catalytic support is an advantage because this allows, by heating under sweeping of dry air, to avoid aqueous discharges (for example aqueous discharges of nitrates when the impregnation solution contains iron nitrate; after impregnation, the product obtained is heated to 300 C under inert gas or not to remove nitrates ) According to a preferred embodiment, the reduction of the catalyst takes place in situ in the synthesis reactor, advantageously with a fluidized bed, and the catalyst does not see the air again and thus, the iron remains in metal form.

La source de carbone peut être choisie parmi tout type de matériau carboné tel que méthane, éthane, propane, butane, autre alcane aliphatique supérieur, benzène, cyclohexane, éthylène, propylène, butène, isobutène, autre alcène aliphatique supérieur, toluène, xylène, cumène, éthyl benzène, naphtalène, phénanthrène, anthracène, acétylène et alcyne supérieur, formaldéhyde, acétaldéhyde, acétone, méthanol, éthanol, monoxyde de carbone, etc., seuls ou en mélange. The carbon source can be chosen from any type of carbonaceous material such as methane, ethane, propane, butane, other higher aliphatic alkane, benzene, cyclohexane, ethylene, propylene, butene, isobutene, other higher aliphatic alkene, toluene, xylene, cumene , ethyl benzene, naphthalene, phenanthrene, anthracene, acetylene and higher alkyne, formaldehyde, acetaldehyde, acetone, methanol, ethanol, carbon monoxide, etc., alone or as a mixture.

Les NTC obtenus selon le procédé décrit ci-dessus peuvent être utilisés dans de nombreux domaines, notamment en électronique (selon la température et leur structure, ils peuvent être conducteurs, semi- conducteurs ou isolants), en mécanique, par exemple pour le renfort des matériaux composites (les NTC sont cent fois plus résistants et six fois plus légers que l'acier) et électromécanique (ils peuvent s'allonger ou se contracter par injection de charge) On peut par exemple citer l'utilisation de NTC dans des compositions macromoléculaires destinées par exemple à l'emballage de composants électroniques, à la fabrication de conduites d'essence (fuel line), de revêtements ou coating antistatiques, dans des thermistors, des électrodes pour supercapacités, etc. The CNTs obtained according to the process described above can be used in many fields, in particular in electronics (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), in mechanics, for example for the reinforcement of composite materials (CNTs are a hundred times more resistant and six times lighter than steel) and electromechanical (they can stretch or contract by charge injection) We can for example cite the use of CNTs in macromolecular compositions intended for example for the packaging of electronic components, for the manufacture of fuel lines, antistatic coatings or coating, in thermistors, electrodes for supercapacitors, etc.

Exemple 1Example 1

On prépare un catalyseur à partir d'alumine gamma Puralox NWA 155 dont moins de 5 % en poids des particules sont inférieures à 100 m et moins de 2 % sont supérieures à 500 m et dont le diamètre médian est de l'ordre de 250 m. Les caractéristiques de surface et porosité sont indiquées ci-dessous: Surface BET (m2/g) 154 Volume poreux total (cm3/g) 0,45 (pores de 0 à 200 nm mesuré par DFT) Volume des micropores (cm3/g) 0, 005 (pores de 0 à 2 nm mesuré par t-plot) Dans un réacteur de 3 L muni d'une double enveloppe chauffé à 100 C, on introduit 300 g d'alumine et on balaye à l'air. Au moyen d'une pompe, on injecte alors en continu 700 ml d'une solution de fer contenant 545 g/I de nitrate de fer nonahydrate. Le ratio visé (masse de métal / masse de catalyseur) étant de 15 % en fer métal, la durée d'addition de la solution de fer est de 10 h et la vitesse d'ajout du liquide est égale à la vitesse d'évaporation de l'eau. A catalyst is prepared from Puralox NWA 155 gamma alumina in which less than 5% by weight of the particles are less than 100 m and less than 2% are greater than 500 m and whose median diameter is of the order of 250 m . The surface and porosity characteristics are given below: BET surface (m2 / g) 154 Total pore volume (cm3 / g) 0.45 (pores from 0 to 200 nm measured by DFT) Volume of micropores (cm3 / g) 0.005 (pores from 0 to 2 nm measured by t-plot) In a 3 L reactor fitted with a double jacket heated to 100 ° C., 300 g of alumina are introduced and they are swept in air. By means of a pump, 700 ml of an iron solution containing 545 g / l of iron nitrate nonahydrate are then injected continuously. The target ratio (mass of metal / mass of catalyst) being 15% iron metal, the duration of addition of the iron solution is 10 h and the rate of addition of the liquid is equal to the rate of evaporation some water.

Le catalyseur est ensuite laissé à 100 C en étuve pendant 16 h. The catalyst is then left at 100 ° C. in an oven for 16 h.

Exemple 2Example 2

On prépare un catalyseur à partir d'alumine gamma Puralox SCCA 5-150 de diamètre médian égal à environ 85 m. A catalyst is prepared from Puralox SCCA 5-150 gamma alumina with a median diameter equal to about 85 m.

Les caractéristiques de surface et porosité sont indiquées ci-dessous: Surface BET (m2/g) 148 Volume poreux total (cm3/g) 0,47 (pores de 0 à 200 nm mesuré par DFT) Volume micropores (cm3/g) 0,0036 (pores de 0 à 2 nm mesuré par t-plot) La préparation du catalyseur et l'imprégation sont faites de la même manière The surface and porosity characteristics are given below: BET surface (m2 / g) 148 Total pore volume (cm3 / g) 0.47 (pores from 0 to 200 nm measured by DFT) Micropore volume (cm3 / g) 0 , 0036 (pores from 0 to 2 nm measured by t-plot) The preparation of the catalyst and the impregnation are done in the same way

qu'à l'exemple 1.than in example 1.

Exemple 3Example 3

On prépare un catalyseur à 25 % de fer par imprégnation dans des conditions proches de celles de l'exemple 2 avec la même alumine SCCA 5150: la durée d'addition et le volume de solution sont simplement ajustés au prorata de la teneur en fer que l'on cherche à fixer, soit 16h. A 25% iron catalyst is prepared by impregnation under conditions similar to those of Example 2 with the same SCCA 5150 alumina: the addition time and the volume of solution are simply adjusted in proportion to the iron content that we are trying to fix, i.e. 4 p.m.

Le catalyseur est ensuite laissé à 100 C en étuve pendant 16h. The catalyst is then left at 100 ° C. in an oven for 16 h.

Exemple 4Example 4

On prépare un catalyseur à 35 % de fer par imprégnation de l'alumine SCCA 5-150. La durée d'addition et le volume de solution sont simplement ajustés au prorata de la teneur en fer que l'on cherche à fixer, soit 23h. A 35% iron catalyst is prepared by impregnation of SCCA 5-150 alumina. The addition time and the volume of solution are simply adjusted in proportion to the iron content that one seeks to fix, ie 23 hours.

Le catalyseur est ensuite laissé à 100 C en étuve pendant 16h. The catalyst is then left at 100 ° C. in an oven for 16 h.

Exemple 5Example 5

On prépare un catalyseur à 50 % de fer par imprégnation de l'alumine SCCA 5-150. La durée d'addition et le volume de solution sont simplement ajustés au prorata de la teneur en fer que l'on cherche à fixer, soit 32h. A 50% iron catalyst is prepared by impregnation of SCCA 5-150 alumina. The addition time and the volume of solution are simply adjusted in proportion to the iron content that one seeks to fix, ie 32 h.

Le catalyseur est laissé à 100 C en étuve pendant 16h. The catalyst is left at 100 ° C. in an oven for 16 h.

Exemple 6Example 6

On prépare un catalyseur à partir d'alumine gamma C 500-511 d'Engelhard de diamètre médian 150 m. Les caractéristiques de surface et porosité sont indiquées ci-dessous: Surface BET (m2/g) 206 Volume poreux total (cm3/g) 0,48 (pores de 0 à 200 nm mesuré par DFT) Volume micropores (cm3/g) 0 (pores de 0 à 2 nm mesuré par t-plot) On prépare un catalyseur à 25 % de fer en utilisant les conditions de l'exemple 3. Le catalyseur est laissé à 100 C pendant 16 h. A catalyst is prepared from Engelhard C 500-511 gamma alumina with a median diameter of 150 m. The surface and porosity characteristics are given below: BET surface (m2 / g) 206 Total pore volume (cm3 / g) 0.48 (pores from 0 to 200 nm measured by DFT) Micropore volume (cm3 / g) 0 (pores from 0 to 2 nm measured by t-plot) A catalyst containing 25% iron is prepared using the conditions of Example 3. The catalyst is left at 100 ° C. for 16 h.

Exemple 7Example 7

On prépare un catalyseur à partir d'alumine théta C 500-512 d'Engelhard de diamètre médian 70 m. A catalyst is prepared from Engelhard's theta C 500-512 alumina with a median diameter of 70 m.

Les caractéristiques de surface et porosité sont indiquées ci-dessous S BET (m2/g) Volume poreux total (cm3/g) Volume micropores (cm3/g) 0,37 (pores de 0 à 200 nm mesuré par DFT) 0,003 (pores de 0 à 2 nm mesuré par t-plot) On prépare un catalyseur à 25 % de fer par imprégnation dans les mêmes 15 conditions qu'à l'exemple 3. The surface and porosity characteristics are given below S BET (m2 / g) Total pore volume (cm3 / g) Micropore volume (cm3 / g) 0.37 (pores from 0 to 200 nm measured by DFT) 0.003 (pores from 0 to 2 nm measured by t-plot) A 25% iron catalyst is prepared by impregnation under the same conditions as in Example 3.

Exemple 8Example 8

On pratique un test catalytique en mettant une masse d'environ 150 g de catalyseur en couche dans un réacteur de 25 cm de diamètre et 1 m de hauteur efficace, équipé d'un désengagement destiné à éviter l'entraînement de fines particules vers l'aval. On chauffe à 300 C sous azote pour décomposer les nitrates, puis on monte sous hydrogène et azote (20%/80% vol./vol.) jusqu'à 650 C. A cette température, on met un débit d'éthylène de 3000 NUh et un débit d'hydrogène de 1000 NL/h, ce qui correspond à une pression partielle en éthylène de 0,75. A catalytic test is carried out by placing a mass of about 150 g of catalyst in a layer in a reactor 25 cm in diameter and 1 m in effective height, equipped with a disengagement intended to prevent the entrainment of fine particles towards the reactor. downstream. The mixture is heated to 300 C under nitrogen to decompose the nitrates, then the mixture is raised under hydrogen and nitrogen (20% / 80% vol./vol.) To 650 C. At this temperature, an ethylene flow rate of 3000 is set. NUh and a hydrogen flow rate of 1000 NL / h, which corresponds to an ethylene partial pressure of 0.75.

Le débit gazeux est suffisant pour que le solide soit largement au-delà de la vitesse limite de fluidisation, tout en restant en dessous de la vitesse d'envolement. The gas flow rate is sufficient for the solid to be well above the limit fluidization speed, while remaining below the flight speed.

Après 60 minutes, on arrête la chauffe et on évalue le résultat de la quantité de produit formé. Parallèlement, une estimation de la qualité des nanotubes produits est faite par microscopie (type de NTC formé : SWNT ou MWNT; . 0; présence d'autres formes de C) Les résultats sont réunis dans le tableau ci-dessous: Catalyseur de Productivité Type de NTC formé After 60 minutes, the heating is stopped and the result is evaluated for the quantity of product formed. At the same time, an estimate of the quality of the nanotubes produced is made by microscopy (type of CNT formed: SWNT or MWNT;. 0; presence of other forms of C) The results are gathered in the table below: Typical Productivity Catalyst of CNTs formed

l'exempleThe example

1 6,6 MWNT / 0: 10-30 nm pas d'autres formes de C 2 8 MWNT / 0: 10-30 nm pas d'autres formes de C 3 11,4 MWNT / 0: 10-30 nm pas d'autres formes de C 4 20 MWNT / 0: 10-30 nm pas d'autres formes de C 15 MWNT / 0:10-30 nm pas d'autres formes de C 6 10 MWNT / 0: 10-30 nm pas d'autres formes de C 7 9 MWNT / 0:10-30 nm pas d'autres formes de C A titre comparatif, l'exemple 10 de US 2001/0036549 décrit la synthèse de NTC à partir d'un mélange hydrogène/éthylène en contact avec un catalyseur à 12 0/0 en fer préparé à partir d'alumine de pyrolyse imprégnée avec du nitrate de fer; la 5 productivité en NTC est de 5,5 pour un catalyseur en 30 minutes. 1 6.6 MWNT / 0: 10-30 nm no other forms of C 2 8 MWNT / 0: 10-30 nm no other forms of C 3 11.4 MWNT / 0: 10-30 nm no d '' other forms of C 4 20 MWNT / 0: 10-30 nm no other forms of C 15 MWNT / 0: 10-30 nm no other forms of C 6 10 MWNT / 0: 10-30 nm no d 'other forms of C 7 9 MWNT / 0: 10-30 nm no other forms of CA as a comparison, Example 10 of US 2001/0036549 describes the synthesis of CNTs from a hydrogen / ethylene mixture in contact with a 12% iron catalyst prepared from pyrolysis alumina impregnated with iron nitrate; the CNT productivity is 5.5 for a catalyst in 30 minutes.

Claims (9)

RevendicationsClaims 1. Procédé de synthèse de NTC par décomposition d'une source de carbone mise en contact dans un réacteur, de préférence à lit fluidisé, à une température comprise entre 500 et 1.500 C avec un ou plusieurs métaux de transition multivalents et récupération desdits NTC, caractérisé en ce que le ou les métaux de transition sont supportés sur un substrat de surface spécifique BET supérieure à 50 m2/g, et, de préférence, comprise entre 70 m2/g et 300 m2/g; de préférence choisi parmi les supports inorganiques, et de manière avantageuse parmi les alumines de type gamma ou théta. 1. Process for the synthesis of CNTs by decomposition of a carbon source brought into contact in a reactor, preferably with a fluidized bed, at a temperature between 500 and 1,500 C with one or more multivalent transition metals and recovery of said CNTs, characterized in that the transition metal (s) are supported on a substrate with a BET specific surface area greater than 50 m2 / g, and, preferably, between 70 m2 / g and 300 m2 / g; preferably chosen from inorganic supports, and advantageously from aluminas of the gamma or theta type. 2. Procédé selon la revendication 1, caractérisé en ce que la quantité de métal(aux) de transition représente jusqu'à 50% en poids du catalyseur final, et avantageusement représentant de 15 à 50 % du poids du catalyseur final. 2. Method according to claim 1, characterized in that the quantity of transition metal (s) represents up to 50% by weight of the final catalyst, and advantageously representing from 15 to 50% of the weight of the final catalyst. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les particules de catalyseur ont un diamètre compris au sens large entre environ 20 et environ 500 m. 3. Method according to claim 1 or 2, characterized in that the catalyst particles have a diameter comprised in the broad sense between about 20 and about 500 m. 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le catalyseur est préparé par imprégnation du substrat avec une solution d'imprégnation contenant au moins un sel de métal(aux) de transition, de préférence sous balayage de gaz sec. 4. Method according to any one of claims 1 to 3, characterized in that the catalyst is prepared by impregnating the substrate with an impregnation solution containing at least one transition metal salt, preferably under sweeping. dry gas. 5. Procédé selon la revendication 4 mettant en oeuvre un catalyseur à base de fer, caractérisé en ce que ledit catalyseur est préparé par imprégnation du substrat au moyen d'une solution aqueuse de nitrate de fer, de préférence à une température comprise entre la température ambiante et la température d'ébullition de la solution de la solution d'imprégnation, et en ce que la quantité de liquide, à tout moment, en contact avec le substrat est juste suffisant pour assurer la formation d'un film de surface sur les particules. 5. Method according to claim 4 using an iron-based catalyst, characterized in that said catalyst is prepared by impregnation of the substrate by means of an aqueous solution of iron nitrate, preferably at a temperature between the temperature ambient temperature and the boiling temperature of the solution of the impregnation solution, and in that the amount of liquid, at any time, in contact with the substrate is just sufficient to ensure the formation of a surface film on them. particles. 6. Procédé selon une des revendications 4 ou 5, selon laquelle la réduction du catalyseur s'opère in-situ et celui-ci ne revoit pas l'air. 6. Method according to one of claims 4 or 5, according to which the reduction of the catalyst takes place in situ and the latter does not see the air again. 7. NTC susceptibles d'être obtenus selon le procédé tel que défini selon 7. CNTs likely to be obtained according to the process as defined according to l'une quelconque des revendications 1 à 6. any one of claims 1 to 6. 8. Utilisation des NTC de la revendication 7 comme agents d'amélioration des propriétés mécaniques et/ou de conductivité électrique, notamment dans des compositions à base de polymères. 8. Use of the CNTs of claim 7 as agents for improving the mechanical properties and / or electrical conductivity, in particular in compositions based on polymers. 9. Utilisation des NTC selon la revendication 7 dans les conduites d'essence, des revêtements antistatiques, des thermistors, des électrodes pour supercapacités. 9. Use of CNTs according to claim 7 in fuel lines, antistatic coatings, thermistors, electrodes for supercapacitors.
FR0501197A 2005-02-07 2005-02-07 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES Active FR2881734B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
FR0501197A FR2881734B1 (en) 2005-02-07 2005-02-07 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES
FR0510699A FR2881735B1 (en) 2005-02-07 2005-10-20 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES
PCT/FR2006/000250 WO2006082325A1 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes
KR1020147004442A KR20140041864A (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes
KR1020077017811A KR101411708B1 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes
CA002596558A CA2596558A1 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes
JP2007553659A JP2008529941A (en) 2005-02-07 2006-02-03 Carbon nanotube synthesis method
US11/814,811 US7799246B2 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes
ES06709240.3T ES2658069T3 (en) 2005-02-07 2006-02-03 Carbon nanotube synthesis procedure
CN2006800040835A CN101213020B (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes
EP06709240.3A EP1846157B1 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0501197A FR2881734B1 (en) 2005-02-07 2005-02-07 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES

Publications (2)

Publication Number Publication Date
FR2881734A1 true FR2881734A1 (en) 2006-08-11
FR2881734B1 FR2881734B1 (en) 2009-02-20

Family

ID=34979355

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0501197A Active FR2881734B1 (en) 2005-02-07 2005-02-07 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES

Country Status (2)

Country Link
CN (1) CN101213020B (en)
FR (1) FR2881734B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132077A1 (en) * 2006-05-16 2007-11-22 Arkema France Catalytic composition comprising catalytic activated carbon and carbon nanotubes, manufacturing process, electrode and super capacitator comprising the catalytic compound
EP2213369A1 (en) * 2009-01-15 2010-08-04 Carlo Vittorio Mazzocchia A process for the preparation of a catalyst, a catalyst obtained thereby, and its use in the production of nanotubes
CN113562722A (en) * 2021-08-05 2021-10-29 青岛科技大学 Method for producing carbon nano tube by using semicoke-based catalyst prepared by microfluidization bed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009600B (en) * 2016-07-29 2019-07-23 菏泽学院 Improve polyethylene oxide/polybutylene succinate polyblend mechanical property method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826596A1 (en) * 2001-06-28 2003-01-03 Toulouse Inst Nat Polytech Preparation of particles of a supported metallic catalyst by chemical vapour phase deposition, useful for selective manufacture of carbon nanotubes of pre-determined dimensions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315139C (en) * 2002-07-12 2007-05-09 四川工业学院 Superhigh-capacitance capacitor with composite carbon nanotube and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826596A1 (en) * 2001-06-28 2003-01-03 Toulouse Inst Nat Polytech Preparation of particles of a supported metallic catalyst by chemical vapour phase deposition, useful for selective manufacture of carbon nanotubes of pre-determined dimensions

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CORRIAS M ET AL: "Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process", CHEMICAL ENGINEERING SCIENCE, OXFORD, GB, vol. 58, no. 19, October 2003 (2003-10-01), pages 4475 - 4482, XP004457064, ISSN: 0009-2509 *
FAZLE KIBRIA A K M ET AL: "Synthesis of narrow-diameter carbon nanotubes from acetylene decomposition over an iron-nickel catalyst supported on alumina", CARBON, vol. 40, no. 8, July 2002 (2002-07-01), pages 1241 - 1247, XP004357621, ISSN: 0008-6223 *
NAVARRO LOPEZ P ET AL: "A study of carbon nanotube formation by C2H2 decomposition on an iron based catalyst using a pulsed method", CARBON, vol. 41, no. 13, 2003, pages 2509 - 2517, XP004458779, ISSN: 0008-6223 *
PEREZ-CABERO M ET AL: "Syntheses of CNTs over several iron-supported catalysts: influence of the metallic precursors", CATALYSIS TODAY, ELSEVIER, vol. 93-95, 1 September 2004 (2004-09-01), pages 681 - 687, XP004549012, ISSN: 0920-5861 *
YU Z ET AL: "Catalytic engineering of carbon nanotube production", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 279, no. 1-2, 28 January 2005 (2005-01-28), pages 223 - 233, XP004718191, ISSN: 0926-860X *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132077A1 (en) * 2006-05-16 2007-11-22 Arkema France Catalytic composition comprising catalytic activated carbon and carbon nanotubes, manufacturing process, electrode and super capacitator comprising the catalytic compound
FR2901156A1 (en) * 2006-05-16 2007-11-23 Arkema Sa Catalytic composition, useful to cover the electrode collectors and as electrode like electrochemical supercondenser, comprises polymeric binder and catalytic compound comprising carbon nanotubes and catalytic activated carbon
EP2213369A1 (en) * 2009-01-15 2010-08-04 Carlo Vittorio Mazzocchia A process for the preparation of a catalyst, a catalyst obtained thereby, and its use in the production of nanotubes
CN113562722A (en) * 2021-08-05 2021-10-29 青岛科技大学 Method for producing carbon nano tube by using semicoke-based catalyst prepared by microfluidization bed
CN113562722B (en) * 2021-08-05 2023-06-20 青岛科技大学 Method for producing carbon nano tube by using semicoke-based catalyst prepared by microfluidization bed

Also Published As

Publication number Publication date
CN101213020A (en) 2008-07-02
FR2881734B1 (en) 2009-02-20
CN101213020B (en) 2012-09-26

Similar Documents

Publication Publication Date Title
EP1846157B1 (en) Method for synthesis of carbon nanotubes
EP1968889B1 (en) Method for synthesis of carbon nanotubes
US8562937B2 (en) Production of carbon nanotubes
EP1694891B1 (en) Rhenium catalysts and methods for production of single-walled carbon nanotubes
EP2467205A2 (en) Two-layer catalyst, process for preparing same and use for the manufacture of nanotubes
US20100038602A1 (en) Method for preparing carbon fibrils and/or nanotubes from a carbon source integrated with the catalyst
FR2915743A1 (en) COMPOSITE OF NANOTUBES OR NANOFIBERS ON BETA-SIC FOAM
FR2984922A1 (en) PROCESS FOR CO-PRODUCTION OF CARBON NANOTUBES AND GRAPHENE
FR2881734A1 (en) Preparation of carbon nanotubes comprises decomposition of a carbon source by contacting in a fluidized bed reactor with multivalent transition metals supported on inorganic substrate having a defined surface area
FR2949075A1 (en) FE / MO SUPPORTED CATALYST, PROCESS FOR PREPARING THE SAME, AND USE IN THE MANUFACTURE OF NANOTUBES
WO2008065121A1 (en) Process for synthesizing nanotubes, especially carbon nanotubes, and their uses
FR2909369A1 (en) Synthesis of nanotube, especially carbon nanotube, e.g. used as agent for improving mechanical property in resin composition, by using multivalent transition metal supported on support having specific Brunauer Emmett Teller surface area
RU2546154C1 (en) Nanocomposite based on nitrogen-containing carbon nanotubes with encapsulated cobalt and nickel particles and method of obtaining thereof
Sakurai et al. Limitation in growth temperature for water-assisted single wall carbon nanotube forest synthesis
Fuente-Cuesta et al. Simultaneous CO 2 removal from biomass conversion product gas and carbon nanotube formation via catalytic chemical vapour deposition
JP2008529941A (en) Carbon nanotube synthesis method
FR2983741A1 (en) TRANSITION METAL TYPE CATALYST SUPPORTED BY A SUBSTRATE, METHOD FOR MANUFACTURING SAME AND USE THEREOF FOR MANUFACTURING CARBON NANOTUBES

Legal Events

Date Code Title Description
CA Change of address
CD Change of name or company name
PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18

PLFP Fee payment

Year of fee payment: 19

PLFP Fee payment

Year of fee payment: 20