EP1846157B1 - Method for synthesis of carbon nanotubes - Google Patents

Method for synthesis of carbon nanotubes Download PDF

Info

Publication number
EP1846157B1
EP1846157B1 EP06709240.3A EP06709240A EP1846157B1 EP 1846157 B1 EP1846157 B1 EP 1846157B1 EP 06709240 A EP06709240 A EP 06709240A EP 1846157 B1 EP1846157 B1 EP 1846157B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
iron
process according
transition metal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06709240.3A
Other languages
German (de)
French (fr)
Other versions
EP1846157A1 (en
Inventor
Serge Bordere
Daniel Cochard
Eric Dutilh
Patrice Gaillard
Dominique Plee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0501197A external-priority patent/FR2881734B1/en
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP1846157A1 publication Critical patent/EP1846157A1/en
Application granted granted Critical
Publication of EP1846157B1 publication Critical patent/EP1846157B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/40
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • B01J35/393
    • B01J35/615
    • B01J35/66
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Definitions

  • the present invention relates to a process for the synthesis of carbon nanotubes (CNTs) in the gas phase in the presence of a metal catalyst supported by a specific inorganic substrate.
  • CNTs carbon nanotubes
  • Carbon nanotubes are recognized today as materials with great advantages, due to their very high mechanical properties, very high aspect ratios (length / diameter) as well as their electrical properties.
  • Nanotubes composed of a single sheet are known: this is called SWNT (acronym for Single Wall Nanotubes) or nanotubes composed of several concentric sheets called MWNT (acronym for Multi Wall Nanotubes).
  • SWNTs are generally more difficult to manufacture than MWNTs.
  • the production of carbon nanotubes can be carried out according to various processes such as electric discharge, laser ablation or chemical vapor deposition (CVD)
  • a carbon source is injected at a relatively high temperature over a catalyst, said catalyst being able to consist of a metal supported on an inorganic solid.
  • a metal supported on an inorganic solid preferentially mentioned iron, cobalt, nickel, molybdenum and among the supports, one often finds alumina, silica or magnesia.
  • Possible carbon sources are methane, ethane, ethylene, acetylene, ethanol, methanol, acetone or even the synthesis gas CO + H 2 (HIPCO process).
  • the synthesis is done by contacting a catalyst containing iron (for example Fe 3 O 4 , Fe on a carbon support, Fe on an alumina support or Fe on a carbon fibril support) with a gaseous compound. containing carbon (preferably CO or hydrocarbon (s)), advantageously in the presence of a compound capable of reacting with carbon to produce gaseous products, (for example CO, H 2 or H 2 O).
  • a catalyst containing iron for example Fe 3 O 4 , Fe on a carbon support, Fe on an alumina support or Fe on a carbon fibril support
  • a gaseous compound preferably CO or hydrocarbon (s)
  • the catalysts are prepared by dry impregnation, precipitation or wet impregnation.
  • WO 87/07559 corresponding to EP 270.666 B1 of the same applicant claims a process for manufacturing fibril diameter between 3.5 and 70 nm but L / D form ratio between 5 and 100, from the same reagents and catalysts.
  • US 2001/0036549 A1 of Hyperion Catalysis International Inc. discloses an improved process for the preparation of NTC by decomposition of a carbon source in contact with a multivalent transition metal or preferably a mixture of metals (such as Fe and Mo, Cr, Mn and / or or Ce), the improvement of which is that the transition metal, forming a multiplicity of catalytic sites of size between 3.5 and 70 nm, is supported by an inorganic substrate smaller than 400 microns.
  • a multivalent transition metal or preferably a mixture of metals such as Fe and Mo, Cr, Mn and / or or Ce
  • the carbon source is a hydrogen / ethylene mixture whose respective partial pressures are 0.66 and 0.33, the reaction time at 650 ° C. is 30 minutes and the catalyst is prepared by impregnation with a pyrolysis alumina (iron content not given, estimated at 15%) with iron nitrate in the presence of methanol in an amount sufficient to obtain a paste; the productivity is 6.9 g / g in 30 minutes while it reaches between 10.9 and 11.8 when molybdenum salt is added, for iron levels of the order of 9 to 10% and molybdenum 1 to 2%.
  • the co-metal is cerium, chromium, manganese
  • the productivity of nanotubes is 8.3, 9.7 and 11, respectively.
  • iron acetylacetonate is less effective than iron nitrate.
  • Example 16 the impregnation is made in the aqueous route by precipitation at a pH substantially equal to 6 by simultaneous addition of iron nitrate solutions and sodium bicarbonate.
  • the catalyst gives a selectivity of 10.5 for an iron content of 15% and a semi-continuous introduction into the reactor.
  • Ph. Mouron et al, in Diamond and Related Materials 12 (2003) pp 780-785 describe the synthesis of CNT by a fluidized bed CVD method from acetylene or iso-pentane as a carbon source.
  • the catalysts studied are prepared by mixing an MgO type substrate (BET: 100 m 2 / g) with a solution of iron nitrate in the ethanol to obtain a precursor which is then dried and ground into powder form.
  • the mass content of Fe in the catalysts studied is always less than 15%.
  • the supports are capable of being impregnated with a quantity of transition metal (s) and / or transition metal oxide (s) such as the metal mass (s). transition may represent from 30 to 40% by weight of the final catalyst.
  • the particle size of the support is chosen to allow good fluidization of the catalyst during the synthesis reaction of the CNTs.
  • the carrier particles have a diameter in the broad sense between about 20 and about 500 microns.
  • the particle size of the support was outside the limits indicated above.
  • the impregnation of the support particles is advantageously carried out under a dry gas sweep, for example by means of an aqueous solution of iron nitrate when the transition metal is iron, at a temperature between room temperature and room temperature. boiling temperature of the solution; according to the invention, the amount of impregnating solution is chosen so that at any time the support particles are in contact with a quantity of solution sufficient to ensure the formation of a surface film on said support particles .
  • the reduction of the catalyst takes place in situ in the synthesis reactor, advantageously in a fluidized bed, and the catalyst does not see the air and thus the transition metal or metals, preferably the iron remains in metal form.
  • the catalyst in the form of metal oxide (s), preferably in the form of iron oxide, can be injected directly into the reaction medium without going through a reduction step. This advantageously avoids the installation of a reduction reactor and / or the storage of the reduced-form catalyst which should be carried out under an inert gas.
  • the carbon source may be selected from any type of carbonaceous material such as methane, ethane, propane, butane, other higher aliphatic alkane, benzene, cyclohexane, ethylene, propylene, butene, isobutene, other higher aliphatic alkene, toluene, xylene, cumene ethylbenzene, naphthalene, phenanthrene, anthracene, acetylene and higher alkyne, formaldehyde, acetaldehyde, acetone, methanol, ethanol, carbon monoxide, etc., alone or in admixture.
  • carbonaceous material such as methane, ethane, propane, butane, other higher aliphatic alkane, benzene, cyclohexane, ethylene, propylene, butene, isobutene, other higher aliphatic alkene, toluene
  • the CNTs obtained according to the process described above can be used in many fields, in particular in electronics (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), in mechanics, for example for the reinforcement of composite materials (CNTs are a hundred times more resistant and six times lighter than steel) and electromechanical (they can lengthen or contract by charge injection).
  • CNTs are a hundred times more resistant and six times lighter than steel
  • electromechanical they can lengthen or contract by charge injection
  • the use of CNTs can be mentioned in macromolecular compositions intended for example for the packaging of components. electronics, fuel line manufacturing, antistatic coatings or coatings, thermistors, supercapacitor electrodes, etc.).
  • a catalyst is prepared from Puralox NWA 155 gamma alumina of which less than 5% by weight of the particles are less than 100 ⁇ m and less than 2% are greater than 500 ⁇ m and whose median diameter is of the order of 250 ⁇ m. .
  • the surface characteristics and porosity are indicated below: BET surface area (m 2 / g) 154 Total pore volume (cm 3 / g) 0.45 (pores from 0 to 200 nm measured by DFT) Volume of micropores (cm 3 / g) 0.005 (pores from 0 to 2 nm measured by t-plot)
  • the catalyst is then left at 100 ° C. in an oven for 16 hours.
  • a catalyst is prepared from Puralox SCCA 5-150 gamma alumina having a median diameter of about 85 ⁇ m.
  • BET surface area m 2 / g
  • Total pore volume cm 3 / g
  • Micropore volume cm 3 / g
  • 0.0036 pores from 0 to 2 nm measured by t-plot
  • a 25% iron catalyst is prepared by impregnation under conditions similar to those of Example 2 with the same SCCA 5-150 alumina: the duration of addition and the volume of solution are simply adjusted in proportion to the content of the product. iron that we seek to fix, 16h.
  • the catalyst is then left at 100 ° C. in an oven for 16 hours.
  • a 35% iron catalyst is prepared by impregnation with SCCA 5-150 alumina. The duration of addition and the volume of solution are simply adjusted in proportion to the iron content that one seeks to fix, ie 23h.
  • the catalyst is then left at 100 ° C. in an oven for 16 hours.
  • a 50% iron catalyst is prepared by impregnation with SCCA 5-150 alumina. The duration of addition and the volume of solution are simply adjusted in proportion to the iron content that one seeks to fix, ie 32h.
  • the catalyst is left at 100 ° C. in an oven for 16 hours.
  • a catalyst is prepared from Engelhard gamma C 500-511 alumina with a median diameter of 150 ⁇ m.
  • the surface characteristics and porosity are indicated below: BET surface area (m 2 / g) 206 Total pore volume (cm 3 / g) 0.48 (pores from 0 to 200 nm measured by DFT) Micropore volume (cm 3 / g) 0 (pores from 0 to 2 nm measured by t-plot)
  • a 25% iron catalyst is prepared using the conditions of Example 3. The catalyst is left at 100 ° C for 16 hours.
  • a catalyst is prepared from Engelhard's Theta C 500-512 alumina with a median diameter of 70 ⁇ m.
  • a 25% iron catalyst is prepared by impregnation under the same conditions as in Example 3.
  • a catalytic test is carried out by placing a mass of approximately 150 g of catalyst in a reactor 25 cm in diameter and 1 m in effective height, equipped with a disengagement to prevent the entrainment of fine particles to the reactor. downstream.
  • the mixture is heated to 300 ° C. under nitrogen to decompose the nitrates, and is then heated under hydrogen and nitrogen (20% / 80% vol / vol) to 650 ° C.
  • an ethylene flow rate of 3000 NL / h and a hydrogen flow rate of 1000 NL / h are given, which corresponds to an ethylene partial pressure of 0.75.
  • the gas flow rate is sufficient for the solid to be well above the fluidization limit speed, while remaining below the rate of flight.
  • Catalyst of the example Productivity Type of NTC formed 1 6.6 MWNT / ⁇ : 10-30 nm no other forms of C 2 8 MWNT / ⁇ : 10-30 nm no other forms of C 3 11.4 MWNT / ⁇ : 10-30 nm no other forms of C 4 20 MWNT / ⁇ : 10-30 nm no other forms of C 5 15 MWNT / ⁇ : 10-30 nm no other forms of C 6 10 MWNT / ⁇ : 10-30 nm no other forms of C 7 9 MWNT / ⁇ : 10-30 nm no other forms of C
  • the example 10 US 2001/0036549 describes the synthesis of CNT from a hydrogen / ethylene mixture in contact with a 12% iron catalyst prepared from pyrolysis alumina impregnated with iron nitrate; the productivity in CNT is 5.5 for a catalyst in 30 minutes.
  • a catalyst prepared according to Example 4 is introduced into a reactor according to Example 8 and heated to 300 ° C to decompose the nitrates.
  • the reactor is cooled and the catalyst is recovered in air.
  • This catalyst which has not undergone a reduction step which is therefore in the form of iron oxide, is then reintroduced into the reactor heated to 650 ° C. according to Example 8 directly in a flow of ethylene and hydrogen with a ethylene partial pressure of 0.8. After 60 minutes of reaction, the heating is stopped and the result of the quantity and quality of the product formed is evaluated.
  • a productivity of 14.6 is obtained comparable to the results obtained with a reduced catalyst; the CNTs formed are MWNT / ⁇ : 10-30 nm and do not contain other forms of carbon.

Description

La présente invention a pour objet un procédé de synthèse de nanotubes de carbone (NTC) en phase gazeuse en présence d'un catalyseur métallique supporté par un substrat inorganique spécifique.The present invention relates to a process for the synthesis of carbon nanotubes (CNTs) in the gas phase in the presence of a metal catalyst supported by a specific inorganic substrate.

Technique antérieurePrior art

Les nanotubes de carbone sont reconnus aujourd'hui comme des matériaux présentant de grands avantages, du fait de leurs propriétés mécaniques, de leurs rapports de forme (longueur/diamètre) très élevés ainsi que de leurs propriétés électriques.Carbon nanotubes are recognized today as materials with great advantages, due to their very high mechanical properties, very high aspect ratios (length / diameter) as well as their electrical properties.

Ils se composent de feuillets graphitiques enroulés terminés par des hémisphères constitués de pentagones et d'hexagones de structure proche des fullerènes.They consist of coiled graphitic sheets terminated by hemispheres consisting of pentagons and hexagons of structure close to fullerenes.

On connaît des nanotubes composés d'un seul feuillet : on parle alors de SWNT (acronyme anglais de Single Wall Nanotubes) ou de nanotubes composés de plusieurs feuillets concentriques appelés alors MWNT (acronyme anglais de Multi Wall Nanotubes). Les SWNT sont en général plus difficiles à fabriquer que les MWNT.Nanotubes composed of a single sheet are known: this is called SWNT (acronym for Single Wall Nanotubes) or nanotubes composed of several concentric sheets called MWNT (acronym for Multi Wall Nanotubes). SWNTs are generally more difficult to manufacture than MWNTs.

La production des nanotubes de carbone peut être mise en oeuvre selon différents procédés comme la décharge électrique, l'ablation laser ou la déposition chimique en phase vapeur (CVD)The production of carbon nanotubes can be carried out according to various processes such as electric discharge, laser ablation or chemical vapor deposition (CVD)

Parmi ces techniques, cette dernière semble être la seule susceptible de pouvoir assurer la fabrication en quantité importante de nanotubes de carbone, condition essentielle pour assurer un prix de revient permettant de déboucher massivement dans les applications polymères et résines.Among these techniques, the latter seems to be the only one likely to be able to ensure the production of a large quantity of carbon nanotubes, an essential condition to ensure a cost price to debouch massively in polymer and resin applications.

Selon cette méthode, on injecte une source de carbone à température relativement élevée sur un catalyseur, ledit catalyseur pouvant être constitué d'un métal supporté sur un solide inorganique. Parmi les métaux, sont cités de manière préférentielle fer, cobalt, nickel, molybdène et parmi les supports, on retrouve souvent alumine, silice ou magnésie.According to this method, a carbon source is injected at a relatively high temperature over a catalyst, said catalyst being able to consist of a metal supported on an inorganic solid. Among the metals, preferentially mentioned iron, cobalt, nickel, molybdenum and among the supports, one often finds alumina, silica or magnesia.

Les sources de carbone envisageables sont le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, l'acétone, voire le gaz de synthèse CO + H2 (procédé HIPCO).Possible carbon sources are methane, ethane, ethylene, acetylene, ethanol, methanol, acetone or even the synthesis gas CO + H 2 (HIPCO process).

Parmi les documents présentant la synthèse de nanotubes de carbone, on peut citer WO 86/03455A1 d'Hyperion Catalysis International Inc. correspondant à EP 225.556 B1 que l'on peut considérer comme l'un des brevets de base sur la synthèse des NTC qui revendique des fibrilles de carbone (ancienne dénomination des NTC) quasi cylindriques dont le diamètre est compris entre 3,5 et 70 nm, le rapport de forme supérieur ou égal à 100 ainsi que leur procédé de préparationAmong the documents presenting the synthesis of carbon nanotubes, mention may be made of WO 86/03345 A1 of Hyperion Catalysis International Inc. corresponding to EP 225,556 B1 that one can consider as one of the basic patents on the synthesis of the CNTs which claims carbon fibrils (former name of the CNTs) quasi cylindrical whose diameter is between 3.5 and 70 nm, the aspect ratio greater than or equal to 100 and their preparation process

La synthèse se fait par mise en contact d'un catalyseur contenant du fer (par exemple Fe3O4, Fe sur un support de charbon, Fe sur un support d'alumine ou Fe sur un support en fibrille carbonée) avec un composé gazeux contenant du carbone (de préférence CO ou hydrocarbure(s)), avantageusement en présence d'un composé capable de réagir avec du carbone pour produire des produits gazeux, (par exemple CO, H2 ou H2O). Dans les exemples, les catalyseurs sont préparés par imprégnation à sec, par précipitation ou par imprégnation en voie humide.The synthesis is done by contacting a catalyst containing iron (for example Fe 3 O 4 , Fe on a carbon support, Fe on an alumina support or Fe on a carbon fibril support) with a gaseous compound. containing carbon (preferably CO or hydrocarbon (s)), advantageously in the presence of a compound capable of reacting with carbon to produce gaseous products, (for example CO, H 2 or H 2 O). In the examples, the catalysts are prepared by dry impregnation, precipitation or wet impregnation.

WO 87/07559 correspondant à EP 270.666 B1 du même déposant revendique un procédé pour fabriquer des fibrilles de diamètre compris entre 3,5 et 70 nm mais de rapport de forme L/D compris entre 5 et 100, à partir des mêmes réactifs et catalyseurs. WO 87/07559 corresponding to EP 270.666 B1 of the same applicant claims a process for manufacturing fibril diameter between 3.5 and 70 nm but L / D form ratio between 5 and 100, from the same reagents and catalysts.

Aucune information sur la productivité (qui serait exprimée comme la masse de fibrilles formées par gramme de catalyseur et par unité de temps) n'est donnée hormis le fait qu'il faut travailler, dans le cas où le composé gazeux contenant du carbone est le benzène, à plus de 800°C.No information on productivity (which would be expressed as the mass of fibrils formed per gram of catalyst and per unit of time) is given except that it is necessary to work, in the case where the gaseous compound containing carbon is the benzene at over 800 ° C.

D'autres documents revendiquent des améliorations de procédé, telles que le lit fluidisé continu qui permet de contrôler l'état d'agrégation du catalyseur et des matériaux carbonés formés (voir par exemple WO 02/94713A1 au nom de l'Université de Tsinghua) ou des améliorations de produits tels WO 02/095097 A1 au nom de Trustees Of Boston College qui prépare des nanotubes de morphologie variée et non alignés, en jouant sur la nature du catalyseur et les conditions de réaction.Other documents claim process improvements, such as the continuous fluidized bed which makes it possible to control the state of aggregation of the catalyst and of the carbonaceous materials formed (see for example WO 02 / 94713A1 on behalf of Tsinghua University) or product improvements such as WO 02/095097 A1 in the name of Trustees Of Boston College which prepares nanotubes of varied and non-aligned morphology, playing on the nature of the catalyst and the reaction conditions.

US 2001/0036549 A1 d'Hyperion Catalysis International Inc. décrit un procédé amélioré de préparation de NTC par décomposition d'une source de carbone en contact avec un métal de transition multivalent ou de préférence un mélange de métaux (tel que Fe et Mo, Cr, Mn et/ou Ce), dont l'amélioration consiste en ce que le métal de transition, formant une multiplicité de sites catalytiques de taille comprise entre 3,5 et 70 nm, est supporté par un substrat inorganique de taille inférieure à 400 µm. US 2001/0036549 A1 of Hyperion Catalysis International Inc. discloses an improved process for the preparation of NTC by decomposition of a carbon source in contact with a multivalent transition metal or preferably a mixture of metals (such as Fe and Mo, Cr, Mn and / or or Ce), the improvement of which is that the transition metal, forming a multiplicity of catalytic sites of size between 3.5 and 70 nm, is supported by an inorganic substrate smaller than 400 microns.

Dans les exemples, la source de carbone est un mélange hydrogène/éthylène dont les pressions partielles respectives sont de 0,66 et 0,33, le temps de réaction à 650°C est de 30 minutes et le catalyseur est préparé par imprégnation d'une alumine de pyrolyse (taux de fer non donné, estimé à 15 %) avec du nitrate de fer en présence de méthanol en quantité suffisante pour obtenir une pâte ; la productivité est de 6,9 g/g en 30 minutes tandis qu'elle atteint entre 10,9 et 11,8 lorsque du sel de molybdène est ajouté, pour des taux de fer de l'ordre de 9 à 10% et de molybdène de 1 à 2 %. Quand le co-métal est le cérium, le chrome, le manganèse, la productivité en nanotubes est respectivement de 8,3, 9,7 et 11.In the examples, the carbon source is a hydrogen / ethylene mixture whose respective partial pressures are 0.66 and 0.33, the reaction time at 650 ° C. is 30 minutes and the catalyst is prepared by impregnation with a pyrolysis alumina (iron content not given, estimated at 15%) with iron nitrate in the presence of methanol in an amount sufficient to obtain a paste; the productivity is 6.9 g / g in 30 minutes while it reaches between 10.9 and 11.8 when molybdenum salt is added, for iron levels of the order of 9 to 10% and molybdenum 1 to 2%. When the co-metal is cerium, chromium, manganese, the productivity of nanotubes is 8.3, 9.7 and 11, respectively.

On constate aussi que l'acétylacétonate de fer est moins efficace que le nitrate de fer.It is also found that iron acetylacetonate is less effective than iron nitrate.

Dans l'exemple 16, l'imprégnation est faite en voie aqueuse par précipitation à pH sensiblement égal à 6 par ajout simultané de solutions de nitrate de fer et de bicarbonate de sodium. Le catalyseur conduit à une sélectivité de 10,5 pour un taux de fer de 15 % et une introduction en semi-continu dans le réacteur.In Example 16, the impregnation is made in the aqueous route by precipitation at a pH substantially equal to 6 by simultaneous addition of iron nitrate solutions and sodium bicarbonate. The catalyst gives a selectivity of 10.5 for an iron content of 15% and a semi-continuous introduction into the reactor.

Un autre exemple par imprégnation en voie aqueuse de fer et de molybdène conduit à des résultats aussi bons que la voie méthanol.Another example by aqueous impregnation of iron and molybdenum leads to results as good as the methanol route.

Ce document montre aussi que le remplacement du fer par le molybdène à des teneurs supérieures à 2,5 % en Mo est plutôt défavorable puisqu'une productivité de 8,8 est atteinte en 30 minutes pour un mélange à proportions égales de Fe et Mo (total = 16,7%).This document also shows that the replacement of iron by molybdenum with contents higher than 2.5% in Mo is rather unfavorable since a productivity of 8.8 is reached in 30 minutes for a mixture in equal proportions of Fe and Mo ( total = 16.7%).

Lorsqu'on utilise un support non poreux tel que l'alumine de pyrolyse Degussa utilisée par Hyperion de surface spécifique = 100 m2/g, on constate qu'il est difficile d'imprégner de grandes quantités de fer car seule la couche externe est accessible au gaz et les couches inférieures n'auront pas d'action catalytique suffisante.When using a non-porous support such as Degussa pyrolysis alumina used by Hyperion specific surface = 100 m 2 / g, it is found that it is difficult to impregnate large amounts of iron because only the outer layer is accessible to gas and the lower layers will not have sufficient catalytic action.

De plus, la technique utilisant ce genre de support est compliquée puisque la taille des particules est de 20 nm et la densité en vrac est de 0,06, ce qui augmente la difficulté de mise en oeuvre industrielle.In addition, the technique using this kind of support is complicated since the particle size is 20 nm and the bulk density is 0.06, which increases the difficulty of industrial implementation.

Ph. Mouron et al, dans Diamond and Related Materials 12 (2003) pp 780-785 , décrivent la synthèse de NTC selon un procédé par CVD en lit fluidisé à partir d'acétylène ou d'iso-pentane comme source de carbone. Les catalyseurs étudiés sont préparés par mélange d'un substrat de type MgO (BET : 100 m2/g) avec une solution de nitrate de fer dans l'éthanolde façon à obtenir un précurseur qui est ensuite séché et broyé sous forme de poudre. La teneur massique en Fe dans les catalyseurs étudiés est toujours inférieure à 15%. Ph. Mouron et al, in Diamond and Related Materials 12 (2003) pp 780-785 , describe the synthesis of CNT by a fluidized bed CVD method from acetylene or iso-pentane as a carbon source. The catalysts studied are prepared by mixing an MgO type substrate (BET: 100 m 2 / g) with a solution of iron nitrate in the ethanol to obtain a precursor which is then dried and ground into powder form. The mass content of Fe in the catalysts studied is always less than 15%.

La présente invention a pour objet un procédé de synthèse de NTC par décomposition d'une source de carbone qui est mise en contact dans un réacteur, de préférence à lit fluidisé, à une température comprise entre 500 et 1.500 °C avec un ou plusieurs métaux de transition multivalents à un degré d'oxydation nul et/ou sous forme d'oxydes (degré d'oxydation positif) et récupération desdits NTC, caractérisé en ce que : le ou les métaux de transition et/ou leur(s) oxyde(s) sont supportés sur un substrat de surface spécifique BET supérieure à 50 m2/g, et, de préférence, comprise entre 70 m2/g et 300 m2/g choisi parmi les supports inorganiques, et de manière avantageuse les alumines de type gamma ou théta.

  • la quantité de métal(aux) de transition représente de 15 à 50 % du poids du catalyseur final, et
  • le catalyseur est préparé par imprégnation du substrat avec une solution d'imprégnation contenant au moins un sel de métal(aux) de transition, la quantité de solution d'imprégnation étant choisie pour qu'à tout moment, les particules de support soient en contact avec juste la quantité de solution nécessaire pour assurer la formation d'un film de surface sur lesdites particules de support.
  • les particules de substrat ont un diamètre compris entre 20 et 500 µm.
The present invention relates to a process for synthesizing NTC by decomposition of a carbon source which is brought into contact in a reactor, preferably a fluidized bed, at a temperature of between 500 and 1,500 ° C. with one or more metals multivalent transition at a zero oxidation state and / or in the form of oxides (degree of positive oxidation) and recovery of said CNTs, characterized in that: the transition metal (s) and / or their oxide (s) ( s) are supported on a BET surface area substrate greater than 50 m 2 / g, and preferably between 70 m 2 / g and 300 m 2 / g chosen from inorganic supports, and advantageously the aluminas of gamma or theta type.
  • the amount of metal (s) transition represents from 15 to 50% of the weight of the final catalyst, and
  • the catalyst is prepared by impregnating the substrate with an impregnating solution containing at least one transition metal salt, the quantity of impregnation solution being chosen so that at any moment the support particles are in contact with each other; with just the amount of solution necessary to ensure the formation of a surface film on said carrier particles.
  • the substrate particles have a diameter of between 20 and 500 μm.

Selon un mode de réalisation préféré, les supports sont susceptibles d'être imprégnés par une quantité de métal(aux) de transition et/ou d'oxyde(s) de métal(aux) de transition telle que la masse de métal (aux) de transition peut représenter de 30 à 40 % en poids du catalyseur final.According to a preferred embodiment, the supports are capable of being impregnated with a quantity of transition metal (s) and / or transition metal oxide (s) such as the metal mass (s). transition may represent from 30 to 40% by weight of the final catalyst.

La taille des particules du support est choisie pour permettre une bonne fluidisation du catalyseur lors de la réaction de synthèse des NTC. Dans la pratique, pour assurer une productivité correcte, les particules de support οnt un diamètre compris au sens large entre environ 20 et environ 500 µm. Bien entendu, on ne sortirait pas du cadre de l'invention si la taille des particules du support était hors des limites indiquées précédemment.The particle size of the support is chosen to allow good fluidization of the catalyst during the synthesis reaction of the CNTs. In practice, to ensure correct productivity, the carrier particles have a diameter in the broad sense between about 20 and about 500 microns. Of course, it would not be outside the scope of the invention if the particle size of the support was outside the limits indicated above.

L'imprégnation des particules de support est avantageusement mise en oeuvre sous balayage de gaz sec, par exemple au moyen d'une solution aqueuse de nitrate de fer lorsque le métal de transition est le fer, à une température comprise entre la température ambiante et la température d'ébullition de la solution ; selon l'invention, on choisit la quantité de solution d'imprégnation pour qu'à à tout moment, les particules de support soient en contact avec une quantité de solution suffisante pour assurer la formation d'un film de surface sur lesdites particules de support.The impregnation of the support particles is advantageously carried out under a dry gas sweep, for example by means of an aqueous solution of iron nitrate when the transition metal is iron, at a temperature between room temperature and room temperature. boiling temperature of the solution; according to the invention, the amount of impregnating solution is chosen so that at any time the support particles are in contact with a quantity of solution sufficient to ensure the formation of a surface film on said support particles .

Le fait de travailler «à sec», c'est-à-dire en ayant à tout moment juste la quantité de liquide nécessaire pour créer un film liquide en surface des particules de support catalytique est un avantage car cela permet, en chauffant sous balayage d'air sec, d'éviter les rejets aqueux (par exemple les rejets aqueux de nitrates lorsque la solution d'imprégnation contient du nitrate de fer ; après imprégnation, le produit obtenu, est chauffé vers 300°C sous gaz inerte ou non pour éliminer les nitrates)The fact of working "dry", that is to say having at any time just the amount of liquid necessary to create a liquid film on the surface of the catalyst support particles is an advantage because it allows, by heating under scanning of dry air, to avoid aqueous discharges (for example aqueous discharges of nitrates when the impregnating solution contains iron nitrate, after impregnation, the product obtained is heated to 300 ° C under inert gas or not to eliminate nitrates)

Selon un mode de réalisation préféré, la réduction du catalyseur s'opère in-situ dans le réacteur de synthèse, avantageusement en lit fluidisé, et le catalyseur ne revoit pas l'air et ainsi, le ou les métaux de transition, de préférence le fer reste sous forme métal.According to a preferred embodiment, the reduction of the catalyst takes place in situ in the synthesis reactor, advantageously in a fluidized bed, and the catalyst does not see the air and thus the transition metal or metals, preferably the iron remains in metal form.

Dans le cas d'une synthèse de NTC en continu avec un catalyseur sous forme d'oxyde(s) métallique(s), de préférence sous forme d'oxyde de fer, le catalyseur peut être injecté directement dans le milieu réactionnel sans passer par une étape de réduction. On évite ainsi avantageusement l'installation d'un réacteur de réduction et/ou le stockage du catalyseur sous forme réduite qui devrait être réalisé sous gaz inerte.In the case of continuous synthesis of CNT with a catalyst in the form of metal oxide (s), preferably in the form of iron oxide, the catalyst can be injected directly into the reaction medium without going through a reduction step. This advantageously avoids the installation of a reduction reactor and / or the storage of the reduced-form catalyst which should be carried out under an inert gas.

La source de carbone peut être choisie parmi tout type de matériau carboné tel que méthane, éthane, propane, butane, autre alcane aliphatique supérieur, benzène, cyclohexane, éthylène, propylène, butène, isobutène, autre alcène aliphatique supérieur, toluène, xylène, cumène, éthyl benzène, naphtalène, phénanthrène, anthracène, acétylène et alcyne supérieur, formaldéhyde, acétaldéhyde, acétone, méthanol, éthanol, monoxyde de carbone, etc., seuls ou en mélange.The carbon source may be selected from any type of carbonaceous material such as methane, ethane, propane, butane, other higher aliphatic alkane, benzene, cyclohexane, ethylene, propylene, butene, isobutene, other higher aliphatic alkene, toluene, xylene, cumene ethylbenzene, naphthalene, phenanthrene, anthracene, acetylene and higher alkyne, formaldehyde, acetaldehyde, acetone, methanol, ethanol, carbon monoxide, etc., alone or in admixture.

Les NTC obtenus selon le procédé décrit ci-dessus peuvent être utilisés dans de nombreux domaines, notamment en électronique (selon la température et leur structure, ils peuvent être conducteurs, semi-conducteurs ou isolants), en mécanique, par exemple pour le renfort des matériaux composites (les NTC sont cent fois plus résistants et six fois plus légers que l'acier) et électromécanique (ils peuvent s'allonger ou se contracter par injection de charge) On peut par exemple citer l'utilisation de NTC dans des compositions macromoléculaires destinées par exemple à l'emballage de composants électroniques, à la fabrication de conduites d'essence (fuel line), de revêtements ou coating antistatiques, dans des thermistors, des électrodes pour supercapacités, etc.The CNTs obtained according to the process described above can be used in many fields, in particular in electronics (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), in mechanics, for example for the reinforcement of composite materials (CNTs are a hundred times more resistant and six times lighter than steel) and electromechanical (they can lengthen or contract by charge injection). For example, the use of CNTs can be mentioned in macromolecular compositions intended for example for the packaging of components. electronics, fuel line manufacturing, antistatic coatings or coatings, thermistors, supercapacitor electrodes, etc.).

Exemple 1Example 1

On prépare un catalyseur à partir d'alumine gamma Puralox NWA 155 dont moins de 5 % en poids des particules sont inférieures à 100 µm et moins de 2 % sont supérieures à 500 µm et dont le diamètre médian est de l'ordre de 250 µm. Les caractéristiques de surface et porosité sont indiquées ci-dessous: Surface BET (m2/g) 154 Volume poreux total (cm3/g) 0,45 (pores de 0 à 200 nm mesuré par DFT) Volume des micropores (cm3/g) 0,005 (pores de 0 à 2 nm mesuré par t-plot) A catalyst is prepared from Puralox NWA 155 gamma alumina of which less than 5% by weight of the particles are less than 100 μm and less than 2% are greater than 500 μm and whose median diameter is of the order of 250 μm. . The surface characteristics and porosity are indicated below: BET surface area (m 2 / g) 154 Total pore volume (cm 3 / g) 0.45 (pores from 0 to 200 nm measured by DFT) Volume of micropores (cm 3 / g) 0.005 (pores from 0 to 2 nm measured by t-plot)

Dans un réacteur de 3 L muni d'une double enveloppe chauffé à 100 °C, on introduit 300 g d'alumine et on balaye à l'air. Au moyen d'une pompe, on injecte alors en continu 700 ml d'une solution de fer contenant 545 g/l de nitrate de fer nonahydrate. Le ratio visé (masse de métal / masse de catalyseur) étant de 15 % en fer métal, la durée d'addition de la solution de fer est de 10 h et la vitesse d'ajout du liquide est égale à la vitesse d'évaporation de l'eau.In a 3-liter reactor equipped with a double jacket heated to 100 ° C., 300 g of alumina are introduced and the mixture is swept in air. By means of a pump, 700 ml of an iron solution containing 545 g / l of iron nitrate nonahydrate are then continuously injected. The target ratio (mass of metal / mass of catalyst) being 15% of iron metal, the duration of addition of the iron solution is 10 h and the speed of addition of the liquid is equal to the evaporation rate some water.

Le catalyseur est ensuite laissé à 100 °C en étuve pendant 16 h.The catalyst is then left at 100 ° C. in an oven for 16 hours.

Exemple 2Example 2

On prépare un catalyseur à partir d'alumine gamma Puralox SCCA 5-150 de diamètre médian égal à environ 85 µm.A catalyst is prepared from Puralox SCCA 5-150 gamma alumina having a median diameter of about 85 μm.

Les caractéristiques de surface et porosité sont indiquées ci-dessous : Surface BET (m2/g) 148 Volume poreux total (cm3/g) 0,47 (pores de 0 à 200 nm mesuré par DFT) Volume micropores (cm3/g) 0,0036 (pores de 0 à 2 nm mesuré par t-plot) The surface characteristics and porosity are indicated below: BET surface area (m 2 / g) 148 Total pore volume (cm 3 / g) 0.47 (pores from 0 to 200 nm measured by DFT) Micropore volume (cm 3 / g) 0.0036 (pores from 0 to 2 nm measured by t-plot)

La préparation du catalyseur et l'imprégnation sont faites de la même manière qu'à l'exemple 1.The catalyst preparation and the impregnation are carried out in the same manner as in Example 1.

Exemple 3Example 3

On prépare un catalyseur à 25 % de fer par imprégnation dans des conditions proches de celles de l'exemple 2 avec la même alumine SCCA 5-150: la durée d'addition et le volume de solution sont simplement ajustés au prorata de la teneur en fer que l'on cherche à fixer, soit 16h.A 25% iron catalyst is prepared by impregnation under conditions similar to those of Example 2 with the same SCCA 5-150 alumina: the duration of addition and the volume of solution are simply adjusted in proportion to the content of the product. iron that we seek to fix, 16h.

Le catalyseur est ensuite laissé à 100 °C en étuve pendant 16h.The catalyst is then left at 100 ° C. in an oven for 16 hours.

Exemple 4Example 4

On prépare un catalyseur à 35 % de fer par imprégnation de l'alumine SCCA 5-150. La durée d'addition et le volume de solution sont simplement ajustés au prorata de la teneur en fer que l'on cherche à fixer, soit 23h.A 35% iron catalyst is prepared by impregnation with SCCA 5-150 alumina. The duration of addition and the volume of solution are simply adjusted in proportion to the iron content that one seeks to fix, ie 23h.

Le catalyseur est ensuite laissé à 100°C en étuve pendant 16h.The catalyst is then left at 100 ° C. in an oven for 16 hours.

Exemple 5Example 5

On prépare un catalyseur à 50 % de fer par imprégnation de l'alumine SCCA 5-150. La durée d'addition et le volume de solution sont simplement ajustés au prorata de la teneur en fer que l'on cherche à fixer, soit 32h.A 50% iron catalyst is prepared by impregnation with SCCA 5-150 alumina. The duration of addition and the volume of solution are simply adjusted in proportion to the iron content that one seeks to fix, ie 32h.

Le catalyseur est laissé à 100°C en étuve pendant 16h.The catalyst is left at 100 ° C. in an oven for 16 hours.

Exemple 6Example 6

On prépare un catalyseur à partir d'alumine gamma C 500-511 d'Engelhard de diamètre médian 150 µm. Les caractéristiques de surface et porosité sont indiquées ci-dessous : Surface BET (m2/g) 206 Volume poreux total (cm3/g) 0,48 (pores de 0 à 200 nm mesuré par DFT) Volume micropores (cm3/g) 0 (pores de 0 à 2 nm mesuré par t-plot) A catalyst is prepared from Engelhard gamma C 500-511 alumina with a median diameter of 150 μm. The surface characteristics and porosity are indicated below: BET surface area (m 2 / g) 206 Total pore volume (cm 3 / g) 0.48 (pores from 0 to 200 nm measured by DFT) Micropore volume (cm 3 / g) 0 (pores from 0 to 2 nm measured by t-plot)

On prépare un catalyseur à 25 % de fer en utilisant les conditions de l'exemple 3. Le catalyseur est laissé à 100 °C pendant 16 h.A 25% iron catalyst is prepared using the conditions of Example 3. The catalyst is left at 100 ° C for 16 hours.

Exemple 7Example 7

On prépare un catalyseur à partir d'alumine théta C 500-512 d'Engelhard de diamètre médian 70 µm.A catalyst is prepared from Engelhard's Theta C 500-512 alumina with a median diameter of 70 μm.

Les caractéristiques de surface et porosité sont indiquées ci-dessous S BET (m2/g) 93 Volume poreux total (cm3/g) 0,37 (pores de 0 à 200 nm mesuré par DFT) Volume micropores (cm3/g) 0,003 (pores de 0 à 2 nm mesuré par t-plot) The surface characteristics and porosity are shown below S BET (m 2 / g) 93 Total pore volume (cm 3 / g) 0.37 (pores from 0 to 200 nm measured by DFT) Micropore volume (cm 3 / g) 0.003 (pores from 0 to 2 nm measured by t-plot)

On prépare un catalyseur à 25 % de fer par imprégnation dans les mêmes conditions qu'à l'exemple 3.A 25% iron catalyst is prepared by impregnation under the same conditions as in Example 3.

Exemple 8Example 8

On pratique un test catalytique en mettant une masse d'environ 150 g de catalyseur en couche dans un réacteur de 25 cm de diamètre et 1 m de hauteur efficace, équipé d'un désengagement destiné à éviter l'entraînement de fines particules vers l'aval. On chauffe à 300 °C sous azote pour décomposer les nitrates, puis on monte sous hydrogène et azote (20%/80% vol./vol.) jusqu'à 650 °C. A cette température, on met un débit d'éthylène de 3000 NL/h et un débit d'hydrogène de 1000 NL/h, ce qui correspond à une pression partielle en éthylène de 0,75.A catalytic test is carried out by placing a mass of approximately 150 g of catalyst in a reactor 25 cm in diameter and 1 m in effective height, equipped with a disengagement to prevent the entrainment of fine particles to the reactor. downstream. The mixture is heated to 300 ° C. under nitrogen to decompose the nitrates, and is then heated under hydrogen and nitrogen (20% / 80% vol / vol) to 650 ° C. At this temperature, an ethylene flow rate of 3000 NL / h and a hydrogen flow rate of 1000 NL / h are given, which corresponds to an ethylene partial pressure of 0.75.

Le débit gazeux est suffisant pour que le solide soit largement au-delà de la vitesse limite de fluidisation, tout en restant en dessous de la vitesse d'envolement.The gas flow rate is sufficient for the solid to be well above the fluidization limit speed, while remaining below the rate of flight.

Après 60 minutes, on arrête la chauffe et on évalue le résultat de la quantité de produit formé. Parallèlement, une estimation de la qualité des nanotubes produits est faite par microscopie (type de NTC formé : SWNT ou MWNT; . Ø ; présence d'autres formes de C)After 60 minutes, the heating is stopped and the result of the quantity of product formed is evaluated. At the same time, an estimate of the quality of the produced nanotubes is made by microscopy (type of CNT formed: SWNT or MWNT, Ø, presence of other forms of C).

Les résultats sont réunis dans le tableau ci-dessous : Catalyseur de l'exemple Productivité Type de NTC formé 1 6,6 MWNT / Ø : 10-30 nm pas d'autres formes de C 2 8 MWNT / Ø : 10-30 nm pas d'autres formes de C 3 11,4 MWNT / Ø : 10-30 nm pas d'autres formes de C 4 20 MWNT / Ø : 10-30 nm pas d'autres formes de C 5 15 MWNT / Ø : 10-30 nm pas d'autres formes de C 6 10 MWNT / Ø : 10-30 nm pas d'autres formes de C 7 9 MWNT / Ø : 10-30 nm pas d'autres formes de C The results are summarized in the table below: Catalyst of the example Productivity Type of NTC formed 1 6.6 MWNT / Ø: 10-30 nm no other forms of C 2 8 MWNT / Ø: 10-30 nm no other forms of C 3 11.4 MWNT / Ø: 10-30 nm no other forms of C 4 20 MWNT / Ø: 10-30 nm no other forms of C 5 15 MWNT / Ø: 10-30 nm no other forms of C 6 10 MWNT / Ø: 10-30 nm no other forms of C 7 9 MWNT / Ø: 10-30 nm no other forms of C

A titre comparatif, l'exemple 10 de US 2001/0036549 décrit la synthèse de NTC à partir d'un mélange hydrogène/éthylène en contact avec un catalyseur à 12 % en fer préparé à partir d'alumine de pyrolyse imprégnée avec du nitrate de fer ; la productivité en NTC est de 5,5 pour un catalyseur en 30 minutes.By way of comparison, the example 10 US 2001/0036549 describes the synthesis of CNT from a hydrogen / ethylene mixture in contact with a 12% iron catalyst prepared from pyrolysis alumina impregnated with iron nitrate; the productivity in CNT is 5.5 for a catalyst in 30 minutes.

Exemple 9Example 9

Un catalyseur préparé selon l'exemple 4 est introduit dans un réacteur selon l'exemple 8 et est chauffé à 300°C pour décomposer les nitrates. On refroidit le réacteur et on récupère le catalyseur à l'air. Ce catalyseur qui n'a pas subi d'étape de réduction qui est donc sous forme d'oxyde de fer est alors réintroduit dans le réacteur chauffé à 650°C selon l'exemple 8 directement dans un flux d'éthylène et hydrogène avec une pression partielle d'éthylène de 0,8. Après 60 min de réaction, on arrête la chauffe et on évalue le résultat de la quantité et de la qualité du produit formé. On obtient une productivité de 14,6 comparable aux résultats obtenus avec un catalyseur réduit; les NTC formés sont de type MWNT / Ø : 10-30 nm et ne contiennent pas d'autres formes de carbone.A catalyst prepared according to Example 4 is introduced into a reactor according to Example 8 and heated to 300 ° C to decompose the nitrates. The reactor is cooled and the catalyst is recovered in air. This catalyst, which has not undergone a reduction step which is therefore in the form of iron oxide, is then reintroduced into the reactor heated to 650 ° C. according to Example 8 directly in a flow of ethylene and hydrogen with a ethylene partial pressure of 0.8. After 60 minutes of reaction, the heating is stopped and the result of the quantity and quality of the product formed is evaluated. A productivity of 14.6 is obtained comparable to the results obtained with a reduced catalyst; the CNTs formed are MWNT / Ø: 10-30 nm and do not contain other forms of carbon.

Claims (8)

  1. Process for synthesizing CNTs by decomposition of a carbon source that is brought into contact in a fluidized-bed reactor, at a temperature of between 500°C and 1500°C, with one or more multivalent transition metals with a zero oxidation state and/or in oxide form (positive oxidation state) and recovery of said CNTs, characterized in that:
    - the transition metal or metals and/or their oxide(s) are supported on a substrate with a BET specific surface area of between 70 m2/g and 300 m2/g, chosen from inorganic supports,
    - the amount of transition metal(s) represents from 15% to 50% of the weight of the final catalyst,
    - the catalyst is prepared by impregnating the substrate with an impregnation solution containing at least one salt of transition metal (s), the amount of impregnation solution being chosen so that, at any moment, the support particles are in contact with exactly the amount of solution needed to ensure the formation of a surface film on said support particles,
    - the substrate particles have a diameter of between 20 and 500 µm.
  2. Process according to Claim 1, characterized in that the inorganic support is chosen from gamma-type or theta-type aluminas.
  3. Process according to Claim 1 or 2, characterized in that the amount of transition metal(s) represents from 30% to 40% of the weight of the final catalyst.
  4. Process according to any one of the preceding claims, characterized in that the catalyst is under a stream of dry gas.
  5. Process according to one of the preceding claims, characterized in that it uses an iron catalyst.
  6. Process according to Claim 5 using an iron-based catalyst, characterized in that said catalyst is prepared by impregnating the substrate by means of an aqueous iron nitrate solution, preferably at a temperature between room temperature and the boiling point of the impregnation solution.
  7. Process according to one of the preceding claims, characterized in that it is continuous.
  8. Process according to one of the preceding claims, characterized in that the catalyst is based on metal oxide(s), preferably on iron oxide.
EP06709240.3A 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes Active EP1846157B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0501197A FR2881734B1 (en) 2005-02-07 2005-02-07 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES
FR0510699A FR2881735B1 (en) 2005-02-07 2005-10-20 PROCESS FOR THE SYNTHESIS OF CARBON NANOTUBES
US72965005P 2005-10-24 2005-10-24
PCT/FR2006/000250 WO2006082325A1 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes

Publications (2)

Publication Number Publication Date
EP1846157A1 EP1846157A1 (en) 2007-10-24
EP1846157B1 true EP1846157B1 (en) 2017-12-13

Family

ID=36694574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709240.3A Active EP1846157B1 (en) 2005-02-07 2006-02-03 Method for synthesis of carbon nanotubes

Country Status (7)

Country Link
US (1) US7799246B2 (en)
EP (1) EP1846157B1 (en)
KR (2) KR20140041864A (en)
CA (1) CA2596558A1 (en)
ES (1) ES2658069T3 (en)
FR (1) FR2881735B1 (en)
WO (1) WO2006082325A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909989A1 (en) * 2006-12-18 2008-06-20 Arkema France Catalyst material for production of multi-shell carbon fibrils and nanotubes for use e.g. as reinforcing material, contains multivalent transition metal and a solid organic substrate
WO2010014650A2 (en) * 2008-07-29 2010-02-04 Honda Motor Co., Ltd. Preferential growth of single-walled carbon nanotubes with metallic conductivity
KR101007184B1 (en) * 2008-10-17 2011-01-12 제일모직주식회사 Supported Catalyst for Synthesizing Carbon Nanotubes, Method for Preparing thereof and Carbon Nanotube Using the Same
EP2419553A4 (en) 2009-04-17 2014-03-12 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
FR2949074B1 (en) 2009-08-17 2013-02-01 Arkema France BI-LAYER CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF FOR MANUFACTURING NANOTUBES
FR2949075B1 (en) 2009-08-17 2013-02-01 Arkema France FE / MO SUPPORTED CATALYST, PROCESS FOR PREPARING THE SAME, AND USE IN THE MANUFACTURE OF NANOTUBES
FR2950628B1 (en) 2009-09-25 2013-11-01 Arkema France MASTER MIXTURE FOR THE MANUFACTURE OF DRILLING FLUID
US8252713B1 (en) * 2010-11-10 2012-08-28 King Abdulaziz City Science And Technology Combination catalysts based on iron for the substantial synthesis of multi-walled carbon nanotubes by chemical vapor deposition
FR2984922B1 (en) 2011-12-22 2015-04-17 Arkema France PROCESS FOR CO-PRODUCTION OF CARBON NANOTUBES AND GRAPHENE
MX354526B (en) 2012-04-16 2018-03-07 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream.
CN104271498B (en) 2012-04-16 2017-10-24 赛尔斯通股份有限公司 The method and structure of oxycarbide is reduced with non-iron catalyst
NO2749379T3 (en) 2012-04-16 2018-07-28
WO2013158158A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods for treating an offgas containing carbon oxides
WO2013158160A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Method for producing solid carbon by reducing carbon dioxide
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
JP6025979B2 (en) 2012-07-13 2016-11-16 シーアストーン リミテッド ライアビリティ カンパニー Methods and systems for forming ammonia and solid carbon products
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
MX2015006893A (en) 2012-11-29 2016-01-25 Seerstone Llc Reactors and methods for producing solid carbon materials.
WO2014151119A2 (en) 2013-03-15 2014-09-25 Seerstone Llc Electrodes comprising nanostructured carbon
EP3113880A4 (en) 2013-03-15 2018-05-16 Seerstone LLC Carbon oxide reduction with intermetallic and carbide catalysts
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
JP6102001B2 (en) 2013-07-10 2017-03-29 エルジー・ケム・リミテッド Supported catalyst and method for producing carbon nanotube aggregate
FR3009561B1 (en) 2013-08-06 2017-12-22 Arkema France PROCESS FOR PREPARING BLACK EXPANDABLE POLYSTYRENE
FR3030890B1 (en) 2014-12-22 2019-07-26 Arkema France ACTIVE ELECTRODE MATERIAL FOR BATTERY LI / S
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
FR3064623A1 (en) 2017-03-31 2018-10-05 Arkema France PURIFICATION PROCESS OF RAW CARBON NANOTUBES
FR3076952B1 (en) 2018-01-16 2023-08-11 Arkema France FORMULATION IN THE FORM OF A SOLID-LIQUID DISPERSION FOR THE MANUFACTURE OF A CATHODE FOR A LI/S BATTERY AND METHOD FOR PREPARING THE SAID FORMULATION
FR3078201B1 (en) 2018-02-19 2023-01-13 Arkema France FORMULATION OF ACTIVE MATERIAL FOR LI-S ACCUMULATOR AND METHOD FOR PREPARATION
FR3080491B1 (en) 2018-04-20 2021-06-18 Arkema France INCREASED CAPACITY LITHIUM / SULFUR BATTERY AND RELATED METHODS
FR3091041A1 (en) 2018-12-20 2020-06-26 Arkema France ELECTRONIC CONDUCTIVE COMPOSITION FOR ANY SOLID LITHIUM BATTERY
US11377944B2 (en) 2019-04-17 2022-07-05 Saudi Arabian Oil Company Methods of suspending proppants in hydraulic fracturing fluid
WO2020214374A1 (en) 2019-04-17 2020-10-22 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11767466B2 (en) 2019-04-17 2023-09-26 Saudi Arabian Oil Company Nanocomposite coated proppants and methods of making same
US11370951B2 (en) 2019-04-17 2022-06-28 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11370706B2 (en) 2019-07-26 2022-06-28 Saudi Arabian Oil Company Cement slurries, cured cement and methods of making and use thereof
FR3116158B1 (en) 2020-11-10 2022-12-02 Arkema France Process for the synthesis of compositions of lithium iron phosphate - carbon

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707916A (en) 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
CA1321863C (en) 1986-06-06 1993-09-07 Howard G. Tennent Carbon fibrils, method for producing the same, and compositions containing same
US6919064B2 (en) * 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
US7157068B2 (en) 2001-05-21 2007-01-02 The Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture
CN1141250C (en) 2001-05-25 2004-03-10 清华大学 Process and reactor for continuously preparing nm carbon tubes with fluidized bed
US20090286675A1 (en) * 2001-05-25 2009-11-19 Tsinghua University Continuous mass production of carbon nanotubes in a nano-agglomerate fluidized-bed and the reactor
FR2826596B1 (en) * 2001-06-28 2004-08-13 Toulouse Inst Nat Polytech CATALYTIC COMPOSITION FOR THE SELECTIVE MANUFACTURING OF CARBON NANOTUBES ORDERED IN FLUIDIZED BED, AND METHOD FOR MANUFACTURING SAME
US6905544B2 (en) * 2002-06-26 2005-06-14 Mitsubishi Heavy Industries, Ltd. Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial
US7250148B2 (en) * 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
GB0226590D0 (en) * 2002-11-14 2002-12-24 Univ Cambridge Tech Method for producing carbon nanotubes and/or nanofibres
AU2003291133A1 (en) * 2002-11-26 2004-06-18 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof
WO2005065100A2 (en) * 2003-12-15 2005-07-21 Resasco Daniel E Rhenium catalysts and methods for production of single-walled carbon nanotubes
FR2872150B1 (en) * 2004-06-23 2006-09-01 Toulouse Inst Nat Polytech PROCESS FOR THE SELECTIVE MANUFACTURE OF ORDINATED CARBON NANOTUBES
JP4697941B2 (en) * 2005-05-11 2011-06-08 株式会社日本製鋼所 Method for producing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbons

Also Published As

Publication number Publication date
EP1846157A1 (en) 2007-10-24
FR2881735A1 (en) 2006-08-11
KR20070104381A (en) 2007-10-25
KR101411708B1 (en) 2014-06-25
US7799246B2 (en) 2010-09-21
KR20140041864A (en) 2014-04-04
FR2881735B1 (en) 2008-04-18
US20080135816A1 (en) 2008-06-12
CA2596558A1 (en) 2006-08-10
ES2658069T3 (en) 2018-03-08
WO2006082325A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1846157B1 (en) Method for synthesis of carbon nanotubes
EP1968889B1 (en) Method for synthesis of carbon nanotubes
US8562937B2 (en) Production of carbon nanotubes
FR2949074A1 (en) BI-LAYER CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF FOR MANUFACTURING NANOTUBES
US20090291846A1 (en) Rhenium catalysts and methods for production of single-walled carbon nanotubes
JP2008520540A (en) Preparation of catalyst support and supported catalyst from single-walled carbon nanotubes
JP6374513B2 (en) Method for simultaneous production of carbon nanotubes and product gas from crude oil and its products
US20100038602A1 (en) Method for preparing carbon fibrils and/or nanotubes from a carbon source integrated with the catalyst
FR2915745A1 (en) Preparing composite, useful e.g. as catalyst in liquid/gaseous phase reactions, comprises incorporating catalyst e.g. in porous silicon carbide substrate, growing nanotubes/carbon nanofibers, and transforming nanotubes/nanofibers
Xu et al. One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis
FR2984922A1 (en) PROCESS FOR CO-PRODUCTION OF CARBON NANOTUBES AND GRAPHENE
FR2949075A1 (en) FE / MO SUPPORTED CATALYST, PROCESS FOR PREPARING THE SAME, AND USE IN THE MANUFACTURE OF NANOTUBES
FR2881734A1 (en) Preparation of carbon nanotubes comprises decomposition of a carbon source by contacting in a fluidized bed reactor with multivalent transition metals supported on inorganic substrate having a defined surface area
WO2008065121A1 (en) Process for synthesizing nanotubes, especially carbon nanotubes, and their uses
FR2909369A1 (en) Synthesis of nanotube, especially carbon nanotube, e.g. used as agent for improving mechanical property in resin composition, by using multivalent transition metal supported on support having specific Brunauer Emmett Teller surface area
JP2008529941A (en) Carbon nanotube synthesis method
FR2983741A1 (en) TRANSITION METAL TYPE CATALYST SUPPORTED BY A SUBSTRATE, METHOD FOR MANUFACTURING SAME AND USE THEREOF FOR MANUFACTURING CARBON NANOTUBES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080204

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APBV Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNIRAPE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 23/745 20060101ALI20170901BHEP

Ipc: B82Y 40/00 20110101ALI20170901BHEP

Ipc: C08K 7/24 20060101ALI20170901BHEP

Ipc: B01J 35/00 20060101ALI20170901BHEP

Ipc: B01J 35/02 20060101ALI20170901BHEP

Ipc: B01J 21/04 20060101ALI20170901BHEP

Ipc: B01J 37/02 20060101ALI20170901BHEP

Ipc: B01J 8/24 20060101ALI20170901BHEP

Ipc: C30B 29/60 20060101ALI20170901BHEP

Ipc: B82Y 30/00 20110101ALI20170901BHEP

Ipc: B01J 35/10 20060101AFI20170901BHEP

Ipc: C30B 7/00 20060101ALI20170901BHEP

Ipc: C01B 32/162 20170101ALI20170901BHEP

Ipc: C08K 3/04 20060101ALI20170901BHEP

INTG Intention to grant announced

Effective date: 20171005

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 953858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006054319

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2658069

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180308

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 953858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006054319

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180914

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221230

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230125

Year of fee payment: 18

Ref country code: ES

Payment date: 20230310

Year of fee payment: 18

Ref country code: CH

Payment date: 20230307

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230110

Year of fee payment: 18

Ref country code: DE

Payment date: 20221229

Year of fee payment: 18

Ref country code: BE

Payment date: 20230117

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230113

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006054319

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01J0035100000

Ipc: B01J0035600000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231229

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240108

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240129

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240305

Year of fee payment: 19