EP4359518A1 - Polypeptides d'alpha-amylase - Google Patents

Polypeptides d'alpha-amylase

Info

Publication number
EP4359518A1
EP4359518A1 EP22737444.4A EP22737444A EP4359518A1 EP 4359518 A1 EP4359518 A1 EP 4359518A1 EP 22737444 A EP22737444 A EP 22737444A EP 4359518 A1 EP4359518 A1 EP 4359518A1
Authority
EP
European Patent Office
Prior art keywords
seq
alpha
amylase
polypeptide
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22737444.4A
Other languages
German (de)
English (en)
Inventor
Rajendra Kulothungan SAINATHAN
Carsten Andersen
Aishwarya DESHPANDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes AS
Original Assignee
Novozymes AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novozymes AS filed Critical Novozymes AS
Publication of EP4359518A1 publication Critical patent/EP4359518A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to alpha-amylase polypeptides having alpha-amylase activity.
  • the present invention further relates to polynucleotides encoding such alpha-amylase polypeptides, vectors and host cells comprising genes encoding such alpha-amylase polypeptides, which may also enable the production of such alpha-amylase polypeptides.
  • the present invention further relates to use in household cleaning or treatment, in particular laundry and dishwashing, including hand wash and/or automatic laundry and/or hand wash and/or automatic dishwashing. The present invention is particularly useful for cleaning laundry.
  • Alpha-amylases (alpha-1, 4-glucan-4-glucanohydrolases, E.C. 3.2.1.1) constitute a group of enzymes, which catalyses hydrolysis of starch and other linear and branched 1,4-gluosidic oligo- and polysaccharides.
  • alpha-amylases there is a long history of industrial application of alpha-amylases in e.g. detergent, baking, brewing, starch liquefaction and saccharification such as in preparation of high fructose syrups or as part of ethanol production from starch. Many of these and other applications of alpha-amylases utilize alpha-amylases derived from microorganisms, in particular bacterial alpha-amylases.
  • alpha-amylases include an alpha-amylase from B.licheniformis, also known as Termamyl, which has been extensively characterized and the crystal structure has been determined for this enzyme.
  • Alkaline amylases such as the alpha- amylase derived from Bacillus sp. as disclosed in WO 95/26397, form a particular group of alpha- amylases that have found use in detergents. Many of these known bacterial amylases have been modified in order to improve their functionality in a particular application.
  • alpha-amylase polypeptides having alpha-amylase activity that exhibit an improved property.
  • the present invention relates to an alpha-amylase polypeptide having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18,
  • the present invention also relates to a polynucleotide encoding an alpha amylase polypeptide according to the invention, a nucleic acid construct comprising the polynucleotide encoding the alpha amylase polypeptide according to the invention, an expression vector comprising the polynucleotide encoding the alpha amylase polypeptide according to the invention, or a host cell comprising the polynucleotide encoding the alpha amylase polypeptide according to the invention.
  • the present invention also relates to a method of producing an alpha amylase polypeptide, comprising (a) cultivating the host cell of the invention under conditions suitable for expression of the alpha amylase polypeptide, and (b) recovering the alpha amylase polypeptide.
  • references to “about” a value or parameter herein includes aspects that are directed to that value or parameter perse. For example, description referring to “about X” includes the aspect “X”.
  • A-, B- and C-domains The structure of alpha-amylases comprises three distinct domains A, B and C, see, e.g., Machius et al., 1995, J. Mol. Biol. 246: 545-559.
  • domain means a region of a polypeptide that in itself forms a distinct and independent substructure of the whole molecule.
  • Alpha-amylases consist of a beta/alpha-8 barrel harboring the active site residues, which is denoted the A-domain, a rather long loop between the beta-sheet 3 and alpha-helix 3, which is denoted the B-domain (together; “A and B domain”), and a C-domain and in some cases also a carbohydrate binding domain (e.g., WO 2005/001064; Machius et al., supra).
  • the domains of an alpha-amylase can be determined by structure analysis such as using crystallographically techniques.
  • An alternative method for determining the domains of an alpha- amylase is by sequence alignment of the amino acid sequence of the alpha-amylase with another alpha-amylase for which the domains have been determined.
  • the sequence that aligns with, e.g., the C-domain sequence in the alpha-amylase for which the C-domain has been determined can be considered the C-domain for the given alpha-amylase.
  • a and B domain means these two domains taken as one unit, whereas the C domain is another unit of the alpha-amylases.
  • the amimo acid sequence of the “A and B domain” is understood as one sequence or one part of a sequence of an alpha-amylase comprising an “A and B domain” and other domains (such as the C domain).
  • allelic variant means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences.
  • An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
  • Alpha-Amylases refers to enzymes which catalyze the hydrolysis of starch, glycogen, and related polysaccharides to oligosaccharides, maltose, or glucose. Amylases are glycoside hydrolases and act on a-1,4-glycosidic bonds. The amylases suitable in the cleaning compositions of the invention are preferably alpha amylases.
  • Alpha- amylases (EC 3.2.1.1) includes 1,4-a-D-glucan glucanohydrolase and glycogenase and are calcium metalloenzymes.
  • alpha-amylase breaks down long-chain carbohydrates, ultimately yielding maltotriose and maltose from amylose, or maltose, glucose and "limit dextrin” from amylopectin.
  • Suitable amylases of the present invention are preferably microbial e.g. obtained from bacterial or fungal sources.
  • alpha- amylase activity means the activity of alpha 1 ,4-glucan 4 glucanohydrolases, E.C. 3.2.1.1, which constitute a group of enzymes, which catalyze hydrolysis of starch and other linear and branched 1 ,4 alpha-glucosidic oligo and polysaccharides.
  • Alpha-amylase activity refers to the activity of an alpha-amylase wherein the activity is determined according to the procedure described in the Examples.
  • the alpha-amylase activity may be determined according to a method using the micro swatch assay which is described in the Examples.
  • amino acid refers to the standard twenty genetically-encoded amino acids and their corresponding stereoisomers in the ‘d’ form (as compared to the natural T form), omega-amino acids other naturally-occurring amino acids, unconventional amino acids (e.g. a, a -disubstituted amino acids, N-alkyl amino acids, etc.) and chemically derivatised amino acids. Chemical derivatives of one or more amino acids may be achieved by reaction with a functional side group.
  • Such derivatised molecules include, for example, those molecules in which free amino groups have been derivatised to form amine hydrochlorides, p-toluene sulphonyl groups, carboxybenzoxy groups, f-butyloxycarbonyl groups, chloroacetyl groups or formyl groups.
  • Free carboxyl groups may be derivatised to form salts, methyl and ethyl esters or other types of esters and hydrazides.
  • Free hydroxyl groups may be derivatised to form O-acyl or O-alkyl derivatives.
  • chemical derivatives are those peptides which contain naturally occurring amino acid derivatives of the twenty standard amino acids.
  • 4-hydroxyproline may be substituted for proline; 5-hydroxylysine may be substituted for lysine; 3-methylhistidine may be substituted for histidine; homoserine may be substituted for serine and ornithine for lysine.
  • Derivatives also include peptides containing one or more additions or deletions as long as the requisite activity is maintained. Other included modifications are amidation, amino terminal acylation (e.g. acetylation or thioglycolic acid amidation), terminal carboxylamidation (e.g. with ammonia or methylamine), and the like terminal modifications.
  • polypeptides of the invention comprise or consist of l-amino acids.
  • Catalytic domain means the region of an enzyme containing the catalytic machinery of the enzyme.
  • cDNA means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA.
  • the initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.
  • Chimeric polypeptide means a polypeptide having amylase activity whose composition is generated by replacing a sequence of amino acids from one polypeptide having amylase activity with those from homologous positions of one or more other polypeptides having amylase activity.
  • Coding sequence means a polynucleotide, which directly specifies the amino acid sequence of a polypeptide.
  • the boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon such as ATG, GTG, or TTG and ends with a stop codon such as TAA, TAG, or TGA.
  • the coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof.
  • control sequences means nucleic acid sequences necessary for expression of a polynucleotide encoding a mature polypeptide of the present invention.
  • Each control sequence may be native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide or native or foreign to each other.
  • control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator.
  • the control sequences include a promoter, and transcriptional and translational stop signals.
  • the control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a polypeptide.
  • corresponding to refers to a way of determining the specific amino acid of a sequence wherein reference is made to a specific amino acid sequence.
  • reference is made to a specific amino acid sequence.
  • the skilled person would be able to align another amino acid sequence to said amino acid sequence that reference has been made to, in order to determine which specific amino acid may be of interest in said another amino acid sequence.
  • Alternative alignment methods may be used and are well-known for the skilled person.
  • Dish washing composition refers to all forms of compositions for cleaning hard surfaces.
  • the present invention is not restricted to any particular type of dish wash composition or any particular detergent.
  • the dish washing composition is a liquid dish washing composition, a powder dish washing composition, wherein the composition may optionally be in the form of a unit dose.
  • Detergent component the term “detergent component” is defined herein to mean the types of chemicals which can be used in detergent compositions.
  • detergent components are surfactants, hydrotropes, builders, co-builders, chelators or chelating agents, bleaching system or bleach components, polymers, fabric hueing agents, fabric conditioners, foam boosters, suds suppressors, dispersants, dye transfer inhibitors, fluorescent whitening agents, perfume, optical brighteners, bactericides, fungicides, soil suspending agents, soil release polymers, anti-redeposition agents, enzyme inhibitors or stabilizers, enzyme activators, antioxidants, and solubilizers.
  • the detergent composition may comprise of one or more of any type of detergent component.
  • Detergent composition refers to compositions that find use in the removal of undesired compounds from items to be cleaned, such as textiles, dishes, and hard surfaces.
  • the detergent composition may be used to e.g. clean textiles, dishes and hard surfaces for both household cleaning and industrial cleaning.
  • the terms encompass any materials/compounds selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid, gel, powder, granulate, paste, or spray compositions) and includes, but is not limited to, detergent compositions (e.g., liquid and/or solid laundry detergents and fine fabric detergents; hard surface cleaning formulations, such as for glass, wood, ceramic and metal counter tops and windows; carpet cleaners; oven cleaners; fabric fresheners; fabric softeners; and textile and laundry pre-spotters, as well as dish wash detergents).
  • detergent compositions e.g., liquid and/or solid laundry detergents and fine fabric detergents
  • hard surface cleaning formulations such as for glass, wood, ceramic and metal counter tops and windows
  • carpet cleaners oven cleaners
  • fabric fresheners fabric softeners
  • textile and laundry pre-spotters as well as dish wash detergents
  • the detergent composition may contain one or more additional enzymes (such as amylases, proteases, proteases, peroxidases, cellulases, betaglucanases, xyloglucanases, hemicellulases, xanthanases, xanthan lyases, lipases, acyl transferases, phospholipases, esterases, laccases, catalases, aryl esterases, amylases, alpha-amylases, glucoamylases, cutinases, pectinases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, carrageenases, pullulanases, tannases, arabinosidases, hyaluronidases, chondroitinases, xyloglucanases,
  • additional enzymes such as amylases, prote
  • Dish wash refers to all forms of washing dishes, e.g. by hand or automatic dish wash. Washing dishes includes, but is not limited to, the cleaning of all forms of crockery such as plates, cups, glasses, bowls, all forms of cutlery such as spoons, knives, forks and serving utensils as well as ceramics, plastics, metals, china, glass and acrylics.
  • Enzyme Detergency benefit refers to the advantageous effect an enzyme may add to a detergent compared to the same detergent without the enzyme.
  • Important detergency benefits which can be provided by enzymes are stain removal with no or very little visible soils after washing and/or cleaning, prevention or reduction of re-deposition of soils released in the washing process (an effect that also is termed anti redeposition), restoring fully or partly the whiteness of textiles which originally were white but after repeated use and wash have obtained a greyish or yellowish appearance (an effect that also is termed whitening).
  • Textile care benefits which are not directly related to catalytic stain removal or prevention of re-deposition of soils, are also important for enzyme detergency benefits.
  • textile care benefits are prevention or reduction of dye transfer from one fabric to another fabric or another part of the same fabric (an effect that is also termed dye transfer inhibition or anti-backstaining), removal of protruding or broken fibers from a fabric surface to decrease pilling tendencies or remove already existing pills or fuzz (an effect that also is termed anti-pilling), improvement of the fabric-softness, colour clarification of the fabric and removal of particulate soils which are trapped in the fibers of the fabric or garment.
  • Enzymatic bleaching is a further enzyme detergency benefit where the catalytic activity generally is used to catalyze the formation of bleaching component such as hydrogen peroxide or other peroxides.
  • expression refers to any step involved in the production of a alpha-amylase polypeptide(s) including, but not limited to, transcription, post- transcriptional modification, translation, post-translational modification, and secretion.
  • Expression vector refers to a linear or circular DNA molecule that comprises a polynucleotide encoding an alpha-amylase polypeptide(s) and is operably linked to control sequences that provide for its expression.
  • fragment refers to a polypeptide having one or more (e.g., several) amino acids absent from the amino and/or carboxyl terminus of the mature polypeptide of any one of the alpha-amylase polypeptide sequences herein disclosed.
  • Fusion polypeptide is a polypeptide in which one polypeptide is fused at the N-terminus or the C-terminus of the polypeptide of the present invention.
  • a fusion polypeptide is produced by fusing a polynucleotide encoding another polypeptide to a polynucleotide of the present invention.
  • Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fusion polypeptide is under control of the same promoter(s) and terminator.
  • Fusion polypeptides may also be constructed using intein technology in which fusion polypeptides are created post-translationally (Cooper et al., 1993, EM BO J. 12: 2575-2583; Dawson et at., 1994, Science 266: 776-779).
  • a fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides. Examples of cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J.
  • High stringency means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 65°C.
  • Hard surface cleaning is defined herein as cleaning of hard surfaces wherein hard surfaces may include floors, tables, walls, roofs etc. as well as surfaces of hard objects such as cars (car wash) and dishes (dish wash). Dish washing includes but are not limited to cleaning of plates, cups, glasses, bowls, and cutlery such as spoons, knives, forks, serving utensils, ceramics, plastics, metals, china, glass and acrylics.
  • host cell means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention.
  • host cell encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication, as well as a recombinant host cell, an isolated host cell (e.g., an isolated recombinant host cell), a heterologous host cell (e.g., a host cell that is not Myrothecium roridum host cell).
  • Hybrid polypeptide means a polypeptide comprising domains from two or more polypeptides, e.g., a binding domain from one polypeptide and a catalytic domain from another polypeptide. The domains may be fused at the N-terminus or the C-terminus.
  • Hybridization means the pairing of substantially complementary strands of nucleic acids, using standard Southern blotting procedures. Hybridization may be performed under medium, medium-high, high or very high stringency conditions. Medium stringency conditions means prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide for 12 to 24 hours, followed by washing three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 55°C.
  • Medium-high stringency conditions means prehybridization and hybridization at42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide for 12 to 24 hours, followed by washing three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 60°C.
  • High stringency conditions means prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide for 12 to 24 hours, followed by washing three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 65°C.
  • Very high stringency conditions means prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide for 12 to 24 hours, followed by washing three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 70°C.
  • Improved property means a characteristic associated with alpha-amylase polypeptide(s) that is improved compared to the parent.
  • improved properties include, but are not limited to, increased amylolytic activity, increased catalytic efficiency, increased catalytic rate, increased chemical stability, increased oxidation stability, increased pH activity, increased pH stability, increased specific activity, increased substrate binding, increased substrate cleavage, increased substrate specificity, increased substrate stability, increased surface properties, increased thermal activity, and increased thermostability and increased wash performance such as soil performance e.g. performance to starch containing soils, stain removal, anti-greying, stability e.g.
  • thermostability pH stability, or stability in the presence of builders, including chelant, stability in powder, liquid or gel detergent formulations or dishwashing compositions, altered temperature-dependent performance and activity profile, pH activity, substrate specificity, product specificity, and chemical stability.
  • the improved property may be any of those herein defined and described, such as increased specific activity.
  • Improved Wash Performance is defined herein as displaying an alteration of the wash performance of an amylase of the present invention relative to the wash performance of the parent alpha-amylase. The alteration may e.g. be seen as increased stain removal.
  • the wash performance is improved if the Improvement Factor (IF) is at least 1.1, at least 1.2, at least 1.3.
  • IF Improvement Factor
  • Isolated refers to a substance in a form or environment which does not occur in nature.
  • isolated substances include (1) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; use of a stronger promoter than the promoter naturally associated with the gene encoding the substance).
  • An isolated substance may be present in a fermentation broth sample.
  • isolated polynucleotide means a polynucleotide that is modified by the hand of man.
  • the isolated polynucleotide is at least 1% pure, e.g., at least 5% pure, at least 10% pure, at least 20% pure, at least 40% pure, at least 60% pure, at least 80% pure, at least 90% pure, and at least 95% pure, as determined by agarose electrophoresis.
  • the polynucleotides may be of genomic, cDNA, RNA, semisynthetic, synthetic origin, or any combinations thereof.
  • Laundering relates to both household laundering and industrial laundering and means the process of treating textiles with a solution containing a cleaning or detergent composition of the present invention.
  • the laundering process can for example be carried out using e.g. a household or an industrial washing machine or can be carried out by hand.
  • Mature polypeptide refers to means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. It is known in the art that a host cell may produce a mixture of two of more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide.
  • Mature polypeptide coding sequence refers to a polynucleotide that encodes a mature polypeptide having alpha-amylase activity.
  • Modification in the context of the polypeptides of the invention, means that one or more amino acids within the reference amino acid sequence are altered by substitution with a different amino acid, by insertion of an amino acid or by deletion, preferably by at least one deletion.
  • modification in the context of the polypeptides of the invention, means that one or more amino acids within the reference amino acid sequence are altered by substitution with a different amino acid, by insertion of an amino acid or by deletion, preferably by at least one deletion.
  • modification alteration
  • mutation may be used interchangeably and constitute the same meaning and purpose.
  • nucleic acid construct means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more control sequences.
  • operably linked means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.
  • parent alpha-amylase as used herein means an alpha-amylase to which alterations are made to produce the alpha-amylase polypeptide(s) of the present invention. This term also refers to the polypeptide with which a alpha-amylase polypeptide(s) of the invention is compared.
  • the parent may be a naturally occurring (wild type) polypeptide, or it may even be an alpha-amylase polypeptide(s) thereof, prepared by any suitable means.
  • the parent protein may be alpha-amylase polypeptide(s) of a naturally occurring polypeptide which has been modified or altered in the amino acid sequence.
  • the parent alpha-amylase may have one or more (or one or several) amino acid substitutions, deletions and/or insertions.
  • the parent alpha-amylase may be an alpha-amylase polypeptide(s) of a parent alpha-amylase.
  • a parent may also be an allelic variant which is a polypeptide encoded by any of two or more alternative forms of a gene occupying the same chromosomal locus.
  • Recombinant when used in reference to a cell, nucleic acid, protein or vector, means that it has been modified from its native state. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell, or express native genes at different levels or under different conditions than found in nature.
  • Recombinant nucleic acids differ from a native sequence by one or more nucleotides and/or are operably linked to heterologous sequences, e.g., a heterologous promoter in an expression vector.
  • Recombinant proteins may differ from a native sequence by one or more amino acids and/or are fused with heterologous sequences.
  • a vector comprising a nucleic acid encoding a polypeptide is a recombinant vector.
  • the term “recombinant” is synonymous with “genetically modified” and “transgenic”.
  • Sequence identity The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter “sequence identity”.
  • the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later.
  • the parameters used may be gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
  • the output of Needle labeled “longest identity” (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
  • the parameters used may be gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix.
  • the output of Needle labeled “longest identity” (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
  • Subsequence refers to a polynucleotide having one or more (e.g., several) nucleotides absent from the 5' and/or 3' end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having alpha- amylase activity.
  • Textile means any textile material including yarns, yarn intermediates, fibers, non-woven materials, natural materials, synthetic materials, and any other textile material, fabrics made of these materials and products made from fabrics (e.g., garments and other articles).
  • the textile or fabric may be in the form of knits, wovens, denims, non-wovens, felts, yarns, and towelling.
  • the textile may be cellulose based such as natural cellulosics, including cotton, flax/linen, jute, ramie, sisal or coir or manmade cellulosics (e.g.
  • the textile or fabric may also be non-cellulose based such as natural polyamides including wool, camel, cashmere, mohair, rabit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylen and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibers.
  • non-cellulose based such as natural polyamides including wool, camel, cashmere, mohair, rabit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylen and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibers.
  • blends are blends of cotton and/or rayon/viscose with one or more companion material such as wool, synthetic fibers (e.g.
  • Fabric may be conventional washable laundry, for example stained household laundry.
  • fabric or garment it is intended to include the broader term textiles as well.
  • Textile care benefits is defined as not being directly related to catalytic stain removal or prevention of re-deposition of soils, are also important for enzyme detergency benefits.
  • textile care benefits are prevention or reduction of dye transfer from one textile to another textile or another part of the same textile (an effect that is also termed dye transfer inhibition or anti-backstaining), removal of protruding or broken fibers from a textile surface to decrease pilling tendencies or remove already existing pills or fuzz (an effect that also is termed anti-pilling), improvement of the textile-softness, colour clarification of the textile and removal of particulate soils which are trapped in the fibers of the textile.
  • Enzymatic bleaching is a further enzyme detergency benefit where the catalytic activity generally is used to catalyze the formation of bleaching component such as hydrogen peroxide or other peroxides or other bleaching species.”
  • Wild-Type Enzyme in reference to an amino acid sequence or nucleic acid sequence means that the amino acid sequence or nucleic acid sequence is a native or naturally-occurring sequence.
  • naturally-occurring refers to anything (e.g., proteins, amino acids, or nucleic acid sequences) that is found in nature.
  • non-naturally occurring refers to anything that is not found in nature (e.g., recombinant nucleic acids and protein sequences produced in the laboratory or modification of the wild- type sequence).
  • wild-type enzyme and “parent enzyme” can be used interchangeably when the parent enzyme is not a variant enzyme.
  • variant or “polypeptide variant” or “polypeptide” or “alpha- amylase variant” when used in relation to a variant of the present invention, as used herein, refer to a polypeptide having alpha-amylase activity comprising an alteration, i.e., a substitution, insertion, and/or deletion, at one or more (e.g., several) positions relative to the ‘parent’ alpha- amylase.
  • a substitution means replacement of the amino acid occupying a position with a different amino acid
  • a deletion means removal of the amino acid occupying a position
  • an insertion means adding an amino acid adjacent to and immediately following the amino acid occupying a position
  • very high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 70°C.
  • very low stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C.
  • wash cycle is defined herein with respect to dishwashing as a washing operation wherein dishware are exposed to the wash liquor for a period of time by circulating the wash liquor and spraying the wash liquor onto the dishware in order to clean the dishware and finally the superfluous wash liquor is removed.
  • a wash cycle may be repeated one, two, three, four, five or even six times at the same or at different temperatures.
  • the dishware is generally rinsed and dried.
  • One of the wash cycles can be a soaking step, where the dishware is left soaking in the wash liquor for a period.
  • wash liquor is defined herein as the solution or mixture of water and detergent components.
  • wash time with respect to automatic dishwashing is defined herein as the time it takes for the entire washing process; i.e. the time for the wash cycle(s) and rinse cycle(s) together.
  • detergent composition includes unless otherwise indicated, granular or powder-form all-purpose or heavy-duty washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so- called heavy-duty liquid (HDL) types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, cleaning bars, soap bars, mouthwashes, denture cleaners, car or carpet shampoos, bathroom cleaners; hair shampoos and hair-rinses; shower gels, foam baths; metal cleaners; as well as cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types.
  • HDL heavy-duty liquid
  • washing agents including the various tablet, granular, liquid and rinse-aid types for household and institutional use
  • liquid cleaning and disinfecting agents including antibacterial hand-wash types
  • detergent composition and “detergent formulation” are used in reference to mixtures which are intended for use in a wash medium for the cleaning of soiled objects.
  • the term is used in reference to laundering fabrics and/or garments (e.g., “laundry detergents”).
  • laundry detergents e.g., "laundry detergents”
  • the term refers to other detergents, such as those used to clean dishes, cutlery, etc. (e.g., "dishwashing detergents”).
  • automated dishwashing detergent composition refers to compositions comprising detergent components, which composition is intended for cleaning dishware such as plates, cups, glasses, bowls, cutlery such as spoons, knives, forks, serving utensils, ceramics, plastics, metals, china, glass and acrylics in a dishwashing machine. It is not intended that the present invention be limited to any particular detergent formulation or composition.
  • the term "effective amount of enzyme” refers to the quantity of enzyme necessary to achieve the enzymatic activity required in the specific application, e.g., in a defined detergent composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and are based on many factors, such as the particular enzyme used, the cleaning application, the specific composition of the detergent composition, and whether a liquid or dry (e.g., granular, bar) composition is required, and the like.
  • the term "effective amount” of an enzyme refers to the quantity of enzyme described hereinbefore that achieves a desired level of enzymatic activity, e.g., in a defined detergent composition. In one embodiment, the effective amount of a protease is the same as the effective amount of an alpha-amylase.
  • the effective amount of a protease is different to the effective amount of an alpha-amylase, e.g., the effective amount of a protease may be more or may be less than the effective amount of an alpha-amylase.
  • water hardness or “degree of hardness” or “dH” or “°dH” as used herein refers to German degrees of hardness. One degree is defined as 10 milligrams of calcium oxide per litre of water.
  • relevant washing conditions is used herein to indicate the conditions, particularly washing temperature, time, washing mechanics, detergent concentration, type of detergent and water hardness, actually used in households in a detergent market segment.
  • adjunct materials means any liquid, solid or gaseous material selected for the particular type of detergent composition desired and the form of the product (e.g., liquid, granule, powder, bar, paste, spray, tablet, gel, or foam composition), which materials are also preferably compatible with the enzymes used in the composition.
  • granular compositions are in "compact” form, while in other embodiments, the liquid compositions are in a "concentrated” form.
  • stain removing enzyme describes an enzyme that aids the removal of a stain or soil from a fabric or a hard surface. Stain removing enzymes act on specific substrates, e.g., protease on protein, amylase on starch, lipase and cutinase on lipids (fats and oils), pectinase on pectin and hemicellulases on hemicellulose. Stains are often depositions of complex mixtures of different components which either results in a local discolouration of the material by itself or which leaves a sticky surface on the object which may attract soils dissolved in the washing liquor thereby resulting in discolouration of the stained area.
  • an enzyme acts on its specific substrate present in a stain the enzyme degrades or partially degrades its substrate thereby aiding the removal of soils and stain components associated with the substrate during the washing process.
  • a protease acts on a grass stain it degrades the protein components in the grass and allows the green/brown colour to be released during washing.
  • reduced amount means in this context that the amount of the component is smaller than the amount which would be used in a reference process under otherwise the same conditions. In a preferred embodiment the amount is reduced by, e.g., at least 5%, such as at least 10%, at least 15%, at least 20% or as otherwise herein described.
  • liquid laundry detergent composition refers to a detergent composition which is in a stabilized liquid form and used in a method for laundering a fabric.
  • the detergent composition has been formulated to be in fluid form.
  • binder laundry detergent composition refers to a detergent composition which is in a solid form, such as a granulate, non-dusting granulate or powder, which is used in a method for laundering a fabric.
  • liquid dishwash detergent composition refers to a detergent composition which is in a stabilized liquid form and used in dishwash.
  • Dishwash may be any kind of dishwash, such as manual dishwash and such as automated dishwash (ADW).
  • ADW automated dishwash
  • powder dishwash detergent composition refers to a detergent composition which is in a solid form, such as a granulate, powder or compact unit and used in dishwash.
  • a powder dishwash detergent composition is typically used in automated dishwash, but the used is not limited to such ADW, and may also be intended for used in any other kind of dishwash, such as manual dishwash.
  • Delta intensity or “Delta intensity value” are defined herein as the result of an intensity measurement of a test material, e.g. a Melamine tiles stained with starch DM-277 (Center For Testmaterials BV, P.O. Box 120, 3133 KT Vlaardingen, the Netherlands) or a hard surface.
  • the delta intensity is the intensity value of the test material washed with amylase subtracting the intensity value of the test material washed without amylase.
  • numbering refers to the way each of the amino acid residues in a polypeptide of the present invention is numbered. I.e. the skilled person would know that when, e.g. position 202 is numbered according to SEQ ID NO: 1 , he would know that by alignment of any other polypeptide with SEQ ID NO: 1 , he will be able to determine the corresponding amino acid residue in the other polypeptide. Alignment of two or more amino acid sequences has been described elsewhere herein.
  • references to “about” a value or parameter herein includes embodiments that are directed to that value or parameter per se.
  • description referring to “about X” includes the embodiment “X”.
  • “about” includes a range that encompasses at least the uncertainty associated with the method of measuring the particular value, and can include a range of plus or minus two standard deviations around the stated value.
  • reference to a gene or polypeptide that is “derived from” another gene or polypeptide X includes the gene or polypeptide X.
  • the present invention relates to an alpha-amylase polypeptide having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18,
  • the present invention relates to an alpha-amylase polypeptide having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or 100% sequence identity to the amino acid sequence of SEQ ID
  • the alpha-amylase polypeptide further comprises a pairwise deletion of the amino acids corresponding to position 180, 181, 182, 183 and 184.
  • pairwise deletion refers to one deletion in two separate positions. Such positions may be adjacent to one another but are not limited to such adjacent pairs. A pairwise deletion may thus, also be deletion of one amino acid and another amino acid which may be up to three amino acids further downstream or upstream from the first deletion.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 180+181.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 180+182.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 180+183.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 180+184.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 181+182.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 181+183.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 181+184.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 182+ 183.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 182+184.
  • the alpha-amylase polypeptide comprises a pairwise deletion of the amino acids corresponding to 183+184.
  • the alpha-amylase polypeptide further comprises a substitution at one or both of the non-deleted positions of 180, 181, 182, 183 and 184.
  • the number of alterations is 1-50, e.g., 1-45, 1-40, 1-35, 1-30, 1-25, 1-20, 1-15, 1-10 or 1-5, such as 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 alterations.
  • the number of substitutions is 1-50, e.g., 1-45, 1-40, 1-35, 1-30, 1-25, 1-20, 1-15, 1-10 or 1-5, such as 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ,
  • the number of deletion is 1-50, e.g., 1-45, 1-40, 1-35, 1-30, 1-25, 1-20, 1- 15, 1-10 or 1-5, such as 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22,
  • the substituted amino acid residue is different from the naturally-occurring amino acid residue in that position.
  • the substitution is selected from the group consisting of A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y, with the proviso that the substituted amino acid residue is different from the naturally-occurring amino acid residue in that position.
  • polypeptides having substitutions should be understood as encompassing all possible combinations of one or more substitutions at the specified positions.
  • the alpha-amylase polypeptide has at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the parent alpha-amylase polypeptide.
  • the present invention relates to an alpha-amylase polypeptide having alpha-amylase activity.
  • the present invention relates to alpha-amylase polypeptide of a parent alpha-amylase having alpha-amylase activity, wherein said alpha- amylase polypeptide has an improved wash performance, and wherein said alpha-amylase polypeptide has alpha-amylase activity.
  • a value of 1.0 corresponds to the performance observed for the parent alpha-amylase polypeptide.
  • a value above 1.0 indicates an improvement of performance of the alpha-amylase polypeptide tested compared to the parent alpha-amylase polypeptide. Accordingly, any value of > 1.0 is indicative for improvement of property.
  • improved property means a characteristic associated with a variant that is improved compared to the parent.
  • Such improved properties include, but are not limited to, increased amylolytic activity, increased catalytic efficiency, increased catalytic rate, increased chemical stability, increased oxidation stability, increased pH activity, increased pH stability, increased specific activity, increased substrate binding, increased substrate cleavage, increased substrate specificity, increased substrate stability, increased surface properties, increased thermal activity, and increased thermostability and increased wash performance such as soil performance e.g. performance to starch containing soils, stain removal, anti-greying, stability e.g. thermostability, pH stability, or stability in the presence of builders, including chelant, stability in powder, liquid or gel detergent formulations or dishwashing compositions, altered temperature-dependent performance and activity profile, pH activity, substrate specificity, product specificity, and chemical stability.
  • the improved property may be any of those herein defined and described, such as increased specific activity, such as performance, of the variant compared to the parent polypeptide.
  • alpha-amylase polypeptide comprising an alteration at one or more residues to the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 , SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21 , SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 31
  • alpha-amylase polypeptide comprising a substitution at one or more residues to the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21 , SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO:
  • alpha-amylase polypeptide comprising a deletion at one or more residues to the amino acid sequence of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21 , SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO:
  • the present invention also relates to isolated polynucleotides that encode any of the alpha-amylase polypeptide(s) of the present invention.
  • the techniques used to isolate or clone a polynucleotide include isolation from genomic DNA or cDNA, or a combination thereof.
  • the cloning of the polynucleotides from genomic DNA can be effected, e.g., by using the polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York.
  • Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligation activated transcription (LAT) and polynucleotide-based amplification (NASBA) may be used.
  • LCR ligase chain reaction
  • LAT ligation activated transcription
  • NASBA polynucleotide-based amplification
  • the polynucleotides may be cloned from a strain of Trichoderma, Lecanicillium, Simplicillium, Aspergillus, Cornyascus, Acrophialophora, Rhinocladiella, Nemania, Talaromyces, Collariella, Rigidoporous, and/or Loramyces, or a related organism and thus, for example, may be a species variant of the polypeptide encoding region of the polynucleotide.
  • Modification of a polynucleotide encoding alpha-amylase polypeptide(s) of the present invention may be necessary for synthesizing polypeptides substantially similar to the polypeptide.
  • the term “substantially similar” to the polypeptide refers to non-naturally occurring forms of the polypeptide.
  • These polypeptides may differ in some engineered way from the polypeptide isolated from its native source, e.g., polypeptides that differ in specific activity, thermostability, pH optimum, or the like.
  • the polypeptides may be constructed on the basis of the polynucleotide presented as the mature polypeptide coding sequence e.g., a subsequence thereof, and/or by introduction of nucleotide substitutions that do not result in a change in the amino acid sequence of the polypeptide, but which correspond to the codon usage of the host organism intended for production of the enzyme, or by introduction of nucleotide substitutions that may give rise to a different amino acid sequence.
  • nucleotide substitution see, e.g., Ford et a!., 1991, Protein Expression and Purification 2: 95-107.
  • the present invention also relates to nucleic acid constructs comprising a polynucleotide encoding alpha-amylase polypeptide(s) of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
  • the polynucleotide may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
  • the polynucleotide may be manipulated in a variety of ways to provide for expression of alpha-amylase polypeptide(s). Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector.
  • the techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
  • the control sequence may be a promoter, a polynucleotide which is recognized by a host cell for expression of the polynucleotide.
  • the promoter contains transcriptional control sequences that mediate the expression of the alpha-amylase polypeptide(s).
  • the promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
  • suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the Bacillus amyloliquefaciens alpha-amylase gene ( amyQ ), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus licheniformis penicillinase gene (penP ), Bacillus stearothermophilus maltogenic amylase gene ( amyM ), Bacillus subtilis levansucrase gene ( sacB ), Bacillus subtilis xylA and xylB genes, Bacillus thuringiensis crylllA gene (Agaisse and Lereclus, 1994, Molecular Microbiology 13: 97-107), E.
  • E. coli trc promoter (Egon et ai, 1988, Gene 69: 301-315), Streptomyces coelicolor agarase gene ( dagA ), and prokaryotic beta-lactamase gene (Villa- Kamaroff et ai, 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731), as well as the tac promoter (DeBoer et ai, 1983, Proc. Natl. Acad. Sci. USA 80: 21-25).
  • promoters for directing transcription of the polynucleotide of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase ( glaA ), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787), Fusarium venenatum amyloglucosidase (WO 00/56900), Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum
  • useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae galactokinase (GAL1), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1, ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1), and Saccharomyces cerevisiae 3-phosphoglycerate kinase.
  • ENO-1 Saccharomyces cerevisiae enolase
  • GAL1 Saccharomyces cerevisiae galactokinase
  • ADH1, ADH2/GAP Saccharomyces cerevisiae triose phosphate isomerase
  • TPI Saccharomyces cerevisiae metallothionein
  • the control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription.
  • the terminator is operably linked to the 3’-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the host cell may be used in the present invention.
  • Preferred terminators for bacterial host cells are obtained from the genes for Bacillus clausii alkaline protease ( aprH ), Bacillus licheniformis alpha-amylase ( amyL ), and Escherichia coli ribosomal RNA ( rrnB ).
  • Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, Fusarium oxysporum trypsin-like protease, Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase V, Trichoderma ree
  • Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are described by Romanos etai, 1992, supra.
  • control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.
  • mRNA stabilizer regions are obtained from a Bacillus thuringiensis crylllA gene (WO 94/25612) and a Bacillus subtilis SP82 gene (Hue etai., 1995, J. Bacteriol. 177: 3465-3471).
  • the control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell.
  • the leader is operably linked to the 5’-terminus of the polynucleotide encoding the polypeptide. Any leader that is functional in the host cell may be used.
  • Preferred leaders for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans those phosphate isomerase.
  • Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
  • ENO-1 Saccharomyces cerevisiae enolase
  • Saccharomyces cerevisiae 3-phosphoglycerate kinase Saccharomyces cerevisiae alpha-factor
  • Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase ADH2/GAP
  • the control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3’-terminus of the polynucleotide and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.
  • Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
  • the control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into the cell’s secretory pathway.
  • the 5’-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide.
  • the 5’-end of the coding sequence may contain a signal peptide coding sequence that is heterologous to the coding sequence.
  • a heterologous signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence.
  • heterologous signal peptide coding sequence may simply replace the natural signal peptide coding sequence to enhance secretion of the polypeptide.
  • any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.
  • Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for Bacillus NCIB 11837 maltogenic amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus alpha- amylase, Bacillus stearothermophilus neutral proteases ( nprT , nprS, nprM ), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and Palva, 1993, Microbiol. Rev. 57: 109- 137.
  • Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Humicola insolens cellulase, Humicola insolens endoglucanase V, Humicola lanuginosa lipase, and Rhizomucor miehei aspartic proteinase.
  • Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
  • the control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide.
  • the resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases).
  • a propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide.
  • the propeptide coding sequence may be obtained from the genes for Bacillus subtilis alkaline protease ( aprE ), Bacillus subtilis neutral protease (nprT), Myceliophthora thermophila laccase (WO 95/33836), Rhizomucor miehei aspartic proteinase, and Saccharomyces cerevisiae alpha-factor.
  • the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.
  • regulatory sequences that regulate expression of the polypeptide relative to the growth of the host cell.
  • regulatory sequences are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound.
  • Regulatory sequences in prokaryotic systems include the lac, tac, and trp operator systems.
  • yeast the ADH2 system or GAL1 system may be used.
  • the Aspergillus niger glucoamylase promoter In filamentous fungi, the Aspergillus niger glucoamylase promoter, Aspergillus oryzae TAKA alpha-amylase promoter, and Aspergillus oryzae glucoamylase promoter, Trichoderma reesei cellobiohydrolase I promoter, and Trichoderma reesei cellobiohydrolase II promoter may be used.
  • Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the polypeptide would be operably linked to the regulatory sequence.
  • the present invention also relates to recombinant expression vectors comprising a polynucleotide encoding alpha-amylase polypeptide(s) of the present invention, a promoter, and transcriptional and translational stop signals.
  • the various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the alpha-amylase polypeptide(s) at such sites.
  • the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression.
  • the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
  • the recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide.
  • the choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.
  • the vector may be a linear or closed circular plasmid.
  • the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.
  • the vector may contain any means for assuring self-replication.
  • the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
  • a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.
  • the vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells.
  • a selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
  • bacterial selectable markers are Bacillus licheniformis or Bacillus subtilis dal genes, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin, or tetracycline resistance.
  • Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3.
  • Selectable markers for use in a filamentous fungal host cell include, but are not limited to, adeA (phosphoribosylaminoimidazole-succinocarboxamide synthase), adeB (phosphoribosyl- aminoimidazole synthase), amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5’-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof.
  • adeA phosphoribosylaminoimidazole-succinocarboxamide synthase
  • adeB phospho
  • Aspergillus cell Preferred for use in an Aspergillus cell are Aspergillus nidulans or Aspergillus oryzae amdS and pyrG genes and a Streptomyces hygroscopicus bargene.
  • Preferred for use in a Trichoderma cell are adeA, adeB, amdS, hph, and pyrG genes.
  • the selectable marker may be a dual selectable marker system as described in WO 2010/039889.
  • the dual selectable marker is a hph-tk dual selectable marker system.
  • the vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
  • the vector may rely on the polynucleotide’s sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or non-homologous recombination.
  • the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s).
  • the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination.
  • the integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.
  • the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question.
  • the origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell.
  • the term “origin of replication” or “plasmid replicator” means a polynucleotide that enables a plasmid or vector to replicate in vivo.
  • bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB110, pE194, pTA1060, and rAMb1 permitting replication in Bacillus.
  • origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
  • AMA1 and ANSI examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANSI (Gems et ai, 1991, Gene 98: 61-67; Cullen et ai, 1987, Nucleic Acids Res. 15: 9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.
  • More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a polypeptide.
  • An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
  • the present invention also relates to recombinant host cells, comprising a polynucleotide encoding alpha-amylase polypeptide(s) of the present invention operably linked to one or more control sequences that direct the production of alpha-amylase polypeptide(s) of the present invention.
  • a construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra- chromosomal vector as described earlier.
  • the term "host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the alpha-amylase polypeptide(s) and its source.
  • the host cell may be any cell useful in the recombinant production of alpha-amylase polypeptide(s), e.g., a prokaryote or a eukaryote.
  • the polypeptide is heterologous to the recombinant host cell. In some embodiments, at least one of the one or more control sequences is heterologous to the polynucleotide encoding the alpha-amylase polypeptide(s).
  • the recombinant host cell comprises at least two copies, e.g., three, four, or five, of the polynucleotide of the present invention.
  • the host cell may be any microbial or plant cell useful in the recombinant production of a polypeptide of the present invention, e.g., a prokaryotic cell or a fungal cell.
  • the prokaryotic host cell may be any Gram-positive or Gram-negative bacterium.
  • Gram positive bacteria include, but are not limited to, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, and Streptomyces.
  • Gram-negative bacteria include, but are not limited to, Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
  • the bacterial host cell may be any Bacillus cell including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.
  • the bacterial host cell may also be any Streptococcus cell including, but not limited to, Streptococcus equisimilis, Streptococcus pyogenes, Streptococcus uberis, and Streptococcus equi subsp. Zooepidemicus cells.
  • the bacterial host cell may also be any Streptomyces cell including, but not limited to, Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, and Streptomyces lividans cells.
  • the introduction of DNA into a Bacillus cell may be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Mol. Gen. Genet. 168: 111-115), competent cell transformation (see, e.g., Young and Spizizen, 1961, J. Bacteriol. 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, J. Mol. Biol. 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, J. Bacteriol. 169: 5271-5278).
  • protoplast transformation see, e.g., Chang and Cohen, 1979, Mol. Gen. Genet. 168: 111-115
  • competent cell transformation see, e.g., Young and Spizizen, 1961, J. Bacteriol. 81: 823-829,
  • the introduction of DNA into an E. coli cell may be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et ai, 1988, Nucleic Acids Res. 16: 6127-6145).
  • the introduction of DNA into a Streptomyces cell may be effected by protoplast transformation, electroporation (see, e.g., Gong et ai, 2004, Folia Microbiol. (Praha) 49: 399-405), conjugation (see, e.g., Mazodier et ai, 1989, J. Bacteriol.
  • DNA into a Pseudomonas cell may be effected by electroporation (see, e.g., Choi et ai., 2006, J. Microbiol. Methods 64: 391-397) or conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71: 51-57).
  • the introduction of DNA into a Streptococcus cell may be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981, Infect. Immun. 32: 1295-1297), protoplast transformation (see, e.g., Catt and Jollick, 1991, Microbios 68: 189-207), electroporation (see, e.g., Buckley etai, 1999, Appl. Environ. Microbiol. 65: 3800-3804), or conjugation (see, e.g., Clewell, 1981, Microbiol. Rev. 45: 409-436).
  • any method known in the art for introducing DNA into a host cell can be used.
  • the host cell may be a fungal cell.
  • “Fungi” as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as well as the Oomycota and all mitosporic fungi (as defined by Hawksworth et al., In, Ainsworth and Bisby’s Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK).
  • the fungal host cell may be a yeast cell.
  • yeast as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, Passmore, and Davenport, editors, Soc. App. Bacteriol. Symposium Series No. 9, 1980).
  • the yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell, such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell.
  • the fungal host cell may be a filamentous fungal cell.
  • “Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra).
  • the filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
  • the filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.
  • the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zona
  • Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus and Trichoderma host cells are described in EP 238023, Yelton et ai, 1984, Proc. Natl. Acad Sci. USA 81: 1470-1474, and Christensen et al., 1988, Bio/Technology 6: 1419-1422. Suitable methods for transforming Fusarium species are described by Malardier et al., 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N.
  • the present invention also relates to methods of producing alpha-amylase polypeptide(s) of the present invention, comprising (a) cultivating a cell, which in its wild-type form produces the alpha-amylase polypeptide(s) under conditions conducive for production of the alpha-amylase polypeptide(s); and optionally, (b) recovering the alpha-amylase polypeptide(s).
  • the cell is a Trichoderma, Lecanicillium, Simplicillium, Aspergillus, Cornyascus, Acrophialophora, Rhinocladiella, Nemania, Talaromyces, Collariella, Rigidoporous, Loramyces, Fusarium, GHmaniella, Gliomastix, Albifimbria, Rasamsonia, Hamigera and/or Acremonium cell.
  • the cell is a Trichoderma harzianum, Trichoderma atroviride, Trichoderma reesei, Trichoderma longipile, Trichoderma koningiopsis, Trichoderma koningii, Trichoderma sinuosum, Lecanicillium stimulinum, Simplicillium lameillicola, Aspergillus nidulans, Aspergillus wentii, Cornyascus sepedonium, Acrophialophora fusispora, Rhinocladiella sp., Nemania serpens, Talaromyces leycettanus, Collariella virescens, Rigidoporous sp.
  • the present invention also relates to methods of producing alpha-amylase polypeptide(s) of the present invention, comprising (a) cultivating a recombinant host cell of the present invention under conditions conducive for production of the alpha-amylase polypeptide(s); and optionally, (b) recovering the polypeptide.
  • the host cells are cultivated in a nutrient medium suitable for production of the alpha- amylase polypeptide(s) using methods known in the art.
  • the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid-state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the alpha-amylase polypeptide(s) to be expressed and/or isolated.
  • the cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection).
  • the alpha-amylase polypeptide(s) can be recovered directly from the medium. If the alpha-amylase polypeptide(s) is not secreted, it can be recovered from cell lysates.
  • the alpha-amylase polypeptide(s) may be detected using methods known in the art that are specific for the alpha-amylase polypeptide(s). These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the alpha-amylase polypeptide(s).
  • the alpha-amylase polypeptide(s) may be recovered using methods known in the art.
  • the alpha-amylase polypeptide(s) may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.
  • the alpha-amylase polypeptide(s) may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure alpha-amylase polypeptide(s).
  • chromatography e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion
  • electrophoretic procedures e.g., preparative isoelectric focusing
  • differential solubility e.g., ammonium sulfate precipitation
  • SDS-PAGE or extraction (see, e.g., Protein Purification, Janson
  • the alpha-amylase polypeptide(s) is not recovered, but rather a host cell of the present invention expressing the alpha-amylase polypeptide(s) is used as a source of the alpha-amylase polypeptide(s). Fermentation Broth Formulations or Cell Compositions
  • the present invention also relates to a fermentation broth formulation or a cell composition comprising alpha-amylase polypeptide(s) of the present invention.
  • the fermentation broth product may further comprise additional ingredients used in the fermentation process, such as, for example, cells (including, the host cells containing the gene encoding the polypeptide of the present invention which are used to produce the polypeptide of interest), cell debris, biomass, fermentation media and/or fermentation products.
  • the composition is a cell-killed whole broth containing organic acid(s), killed cells and/or cell debris, and culture medium.
  • fermentation broth refers to a preparation produced by cellular fermentation that undergoes no or minimal recovery and/or purification.
  • fermentation broths are produced when microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis (e.g., expression of enzymes by host cells) and secretion into cell culture medium.
  • the fermentation broth can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation.
  • the fermentation broth is unfractionated and comprises the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) are removed, e.g., by centrifugation.
  • the fermentation broth contains spent cell culture medium, extracellular enzymes, and viable and/or nonviable microbial cells.
  • the fermentation broth formulation and cell compositions comprise a first organic acid component comprising at least one 1-5 carbon organic acid and/or a salt thereof and a second organic acid component comprising at least one 6 or more carbon organic acid and/or a salt thereof.
  • the first organic acid component is acetic acid, formic acid, propionic acid, a salt thereof, or a mixture of two or more of the foregoing and the second organic acid component is benzoic acid, cyclohexanecarboxylic acid, 4-methylvaleric acid, phenylacetic acid, a salt thereof, or a mixture of two or more of the foregoing.
  • the composition contains an organic acid(s), and optionally further contains killed cells and/or cell debris.
  • the killed cells and/or cell debris are removed from a cell-killed whole broth to provide a composition that is free of these components.
  • the fermentation broth formulations or cell compositions may further comprise a preservative and/or anti-microbial (e.g., bacteriostatic) agent, including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art.
  • a preservative and/or anti-microbial agent including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art.
  • the cell-killed whole broth or composition may comprise the unfractionated contents of the fermentation materials derived at the end of the fermentation.
  • the cell-killed whole broth or composition comprises the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) are grown to saturation, incubated under carbon- limiting conditions to allow protein synthesis.
  • the cell-killed whole broth or composition comprises the spent cell culture medium, extracellular enzymes, and killed filamentous fungal cells.
  • the microbial cells present in the cell-killed whole broth or composition may be permeabilized and/or lysed using methods known in the art.
  • a whole broth or cell composition as described herein is typically a liquid, but may comprise insoluble components, such as killed cells, cell debris, culture media components, and/or insoluble enzyme(s). In some embodiments, insoluble components may be removed to provide a clarified liquid composition.
  • the whole broth formulations and cell compositions of the present invention may be produced by a method described in WO 90/15861 or WO 2010/096673.
  • the present invention also relates to composition comprising alpha-amylase polypeptide(s) of the present invention.
  • the compositions are enriched in such an alpha-amylase polypeptide(s).
  • enriched means that the alpha-amylase activity of the composition has been increased, e.g., with an enrichment factor of 1.1.
  • the invention is directed to compositions comprising an alpha- amylase polypeptide(s) of the present invention in combination with one or more additional components.
  • additional components are within the skill of the artisan and includes conventional ingredients, including the exemplary non-limiting components set forth below.
  • the present invention relates to a composition
  • a composition comprising one or more additional components selected from the group consisting of one or more enzymes, oxidizing agents, bleach activators, bleach catalysts, chelating agents, bulking agents, builders, buffering agents, structurants, sequestrants, optical brighteners, antifoaming agents, enzymes, fragrances, anti-redeposition agents, skin conditioning agents, softness extenders, emulsifiers, crystal growth inhibitors, metal care agents, glass care agents and colorants.
  • one or more enzymes selected from the group consisting of one or more enzymes, oxidizing agents, bleach activators, bleach catalysts, chelating agents, bulking agents, builders, buffering agents, structurants, sequestrants, optical brighteners, antifoaming agents, enzymes, fragrances, anti-redeposition agents, skin conditioning agents, softness extenders, emulsifiers, crystal growth inhibitors, metal care agents, glass care agents and colorants.
  • the present invention relates to a composition comprises a surfactant.
  • the present invention relates to a composition wherein the surfactant is one or more surfactants selected from the group consisting of an anionic surfactant, a cationic surfactant, a non-ionic surfactant, zwitterionic surfactant, and amphoteric surfactants or any mixtures thereof.
  • the surfactant is one or more surfactants selected from the group consisting of an anionic surfactant, a cationic surfactant, a non-ionic surfactant, zwitterionic surfactant, and amphoteric surfactants or any mixtures thereof.
  • the present invention relates to a composition wherein the composition is a detergent composition.
  • the composition is a liquid laundry or liquid dish wash composition, such as an Automatic Dish Wash (ADW) liquid detergent composition, or a powder laundry, such as a soap bar, or powder dish wash composition, such as an ADW unit dose detergent composition and such as a Hand Dish Wash (HDW) detergent composition.
  • ADW Automatic Dish Wash
  • HDW Hand Dish Wash
  • the present invention relates to a composition wherein the composition comprises one or more additional enzymes.
  • the composition may comprise an alpha-amylase polypeptide(s) as the major enzymatic component, e.g., a mono-component composition.
  • the composition may comprise multiple enzymatic activities, such as an proteases, amylases, phospho- lipases, esterases, lipases, cutinases, cellulases, endoglucanases, xyloglucanases, xylanases, pectinases, hemicellulases pectin lyases, xanthanases, peroxidases, keratinases haloperoxygenases, catalases, mannanases, lechinase, RNase, DNAse, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pento-sanases, malanases, b-glucanases, arabinosida
  • the additional enzyme(s) may be produced, for example, by a microorganism belonging to the genus Bacillus, e.g. Bacillus licheniformis and Bacillus subtilis, or the genus Aspergillus, e.g., Aspergillus aculeatus, Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, or Aspergillus oryzae Fusarium, e.g., Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusa
  • compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition.
  • the composition may be in the form of a granulate or a microgranulate.
  • the alpha-amylase polypeptide(s) may be stabilized in accordance with methods known in the art.
  • compositions comprise a cleaning/detergent components, preferably a mixture of components.
  • the cleaning components will be present in the composition in an amount from 0.001 to 99.9 wt%, more typically from 0.01 to 80 wt% cleaning component.
  • the composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic and/or ampholytic and/or semi-polar nonionic and/or mixtures thereof.
  • the surfactants are typically present at a level of from 0.1% to 60% by weight or from 0.5 to 50 wt% or 1 to 40 wt% of the composition.
  • the alpha-amylase polypeptide(s) of the present invention may be added to a detergent composition in an amount corresponding to 0.001- 100 mg of protein, such as 0.01-100 mg of protein, preferably 0.005-50 mg of protein, more preferably 0.01-25 mg of protein, even more preferably 0.05-10 mg of protein, most preferably 0.05-5 mg of protein, and even most preferably 0.01-1 mg of protein per liter of wash liquor.
  • protein in this context is contemplated to be understood to include a alpha-amylase polypeptide(s) according to the present invention.
  • a composition for use in automatic dish wash (ADW), for example, may include 0.0001%- 50%, such as 0.001 %-20%, such as 0.01 %-10%, such as 0.05-5% of enzyme protein by weight of the composition.
  • a composition for use in hand dish wash (HDW), for example, may include 0.0001 %-50%, such as 0.001 %-20%, such as 0.01 %-10%, such as 0.05-5% of enzyme protein by weight of the composition.
  • a composition for use in laundry granulation may include 0.0001 %-50%, such as 0.001 %-20%, such as 0.01 %-10%, such as 0.05%-5% of enzyme protein by weight of the composition.
  • a composition for use in laundry liquid may include 0.0001 %-10%, such as 0.001-7%, such as 0.1%-5% of enzyme protein by weight of the composition.
  • the alpha-amylase polypeptide(s) of the invention as well as the further active components, such as additional enzymes, may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in, for example, WO92/19709 and WO92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • a low detergent concentration system includes detergents where less than about 800 ppm of detergent components are present in the wash water.
  • Japanese detergents are typically considered low detergent concentration system as they have approximately 667 ppm of detergent components present in the wash water.
  • a medium detergent concentration includes detergents where between about 800 ppm and about 2000ppm of detergent components are present in the wash water.
  • North American detergents are generally considered to be medium detergent concentration systems as they have approximately 975 ppm of detergent components present in the wash water.
  • a high detergent concentration system includes detergents where greater than about 2000 ppm of detergent components are present in the wash water.
  • European detergents are generally considered to be high detergent concentration systems as they have approximately 4500-5000 ppm of detergent components in the wash water.
  • Latin American detergents are generally high suds phosphate builder detergents and the range of detergents used in Latin America can fall in both the medium and high detergent concentrations as they range from 1500 ppm to 6000 ppm of detergent components in the wash water. Such detergent compositions are all embodiments of the invention.
  • a alpha-amylase polypeptide(s) of the present invention may also be incorporated in the detergent formulations disclosed in W097/07202, which is hereby incorporated by reference.
  • compositions of the present invention are given herein of preferred uses of the compositions of the present invention.
  • dosage of the composition and other conditions under which the composition is used may be determined on the basis of methods known in the art.
  • composition according to the present invention further comprises a chelator.
  • chelator refers to chemicals which form molecules with certain metal ions, inactivating the ions so that they cannot react with other elements.
  • a chelator may be defined as a binding agent that suppresses chemical activity by forming chelates. Chelation is the formation or presence of two or more separate bindings between a ligand and a single central atom.
  • the ligand may be any organic compound, a silicate or a phosphate.
  • chelating agents comprises chelants, chelating agent, chelating agents, complexing agents, or sequestering agents that forms water-soluble complexes with metal ions such as calcium and magnesium.
  • the chelate effect describes the enhanced affinity of chelating ligands for a metal ion compared to the affinity of a collection of similar nonchelating ligands for the same metal.
  • Chelating agents having binding capacity with metal ions in particular calcium (Ca2+) ions, and has been used widely in detergents and compositions in general for wash, such as laundry or dish wash. Chelating agents have however shown themselves to inhibit enzymatic activity.
  • the term chelating agent is used in the present application interchangeably with “complexing agent” or “chelating agent” or “chelant”.
  • alpha-amylases are calcium sensitive the presence of chelating agents these may impair the enzyme activity.
  • the calcium sensitivity of alpha-amylases can be determined by incubating a given alpha-amylase in the presence of a strong chelating agent and analyze the impact of this incubation on the activity of the alpha-amylase in question. A calcium sensitive alpha-amylase will lose a major part or all of its activity during the incubation.
  • Chelating agent may be present in the composition in an amount from 0.0001 wt% to 20wt%, preferably from 0.01 to 10 wt%, more preferably from 0.1 to 5wt%.
  • Non-limiting examples of chelating agents are; EDTA, DTMPA, HEDP, and citrate.
  • the composition comprises a alpha-amylase polypeptide(s) according to the invention and a chelating agent, such as EDTA, DTMPA, HEDP or citrate.
  • EDTA refers to ethylene-diamine-tetra-acetic acid which falls under the definition of “strong chelating agents”.
  • DTMPA diethylenetriamine penta(methylene phosphonic acid). DTMPA can inhibit the scale formation of carbonate, sulfate and phosphate.
  • HEDP hydroxy-ethane diphosphonic acid
  • the chelate effect or the chelating effect describes the enhanced affinity of chelating ligands for a metal ion compared to the affinity of a collection of similar nonchelating ligands for the same metal.
  • the strength of this chelate effect can be determined by various types of assays or measure methods thereby differentiating or ranking the chelating agents according to their chelating effect (or strength).
  • the chelating agents may be characterized by their ability to reduce the concentration of free calcium ions (Ca2+) from 2.0 mM to 0.10 mM or less at pH 8.0, e.g. by using a test based on the method described by M.K.Nagarajan et al., JAOCS, Vol. 61, no. 9 (September 1984), pp. 1475-1478.
  • a chelator having the same ability to reduce the concentration of free calcium ions (Ca2+) from 2.0 mM to 0.10 mM at pH as EDTA at equal concentrations of the chelator are said to be strong chelators.
  • composition of the present invention may be in any convenient form, e.g., a bar, a homogenous tablet, a tablet having two or more layers, a pouch having one or more compartments, a regular or compact powder, a granule, a paste, a gel, or a regular, compact or concentrated liquid.
  • a bar e.g., a bar, a homogenous tablet, a tablet having two or more layers, a pouch having one or more compartments, a regular or compact powder, a granule, a paste, a gel, or a regular, compact or concentrated liquid.
  • detergent formulation forms such as layers (same or different phases), pouches, as well as forms for machine dosing unit.
  • Pouches can be configured as single or multicompartments. It can be of any form, shape and material which is suitable for hold the composition, e.g. without allowing the release of the composition from the pouch prior to water contact.
  • the pouch is made from water soluble film which encloses an inner volume. Said inner volume can be divided into compartments of the pouch.
  • Preferred films are polymeric materials preferably polymers which are formed into a film or sheet.
  • Preferred polymers, copolymers or derivatives thereof are selected polyacrylates, and water soluble acrylate copolymers, methyl cellulose, carboxy methyl cellulose, sodium dextrin, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, maltodextrin, polymethacrylates, most preferably polyvinyl alcohol copolymers and, hydroxypropyl methyl cellulose (HPMC).
  • the level of polymer in the film for example PVA is at least about 60%.
  • Preferred average molecular weight will typically be about 20,000 to about 150,000.
  • Films can also be of blend compositions comprising hydrolytically degradable and water soluble polymer blends such as polyactide and polyvinyl alcohol (known under the Trade reference M8630 as sold by Chris Craft In. Prod. Of Gary, Ind. , US) plus plasticisers like glycerol, ethylene glycerol, Propylene glycol, sorbitol and mixtures thereof.
  • the pouches can comprise a solid laundry cleaning composition or part components and/or a liquid cleaning composition or part components separated by the water soluble film.
  • the compartment for liquid components can be different in composition than compartments containing solids. Ref: (US2009/0011970 A1).
  • Detergent ingredients may be separated physically from each other by compartments in water dissolvable pouches or in different layers of tablets. Thereby negative storage interaction between components may be avoided. Different dissolution profiles of each of the compartments can also give rise to delayed dissolution of selected components in the wash solution.
  • a liquid or gel detergent which is not unit dosed, may be aqueous, typically containing at least 20% by weight and up to 95% water, such as up to about 70% water, up to about 65% water, up to about 55% water, up to about 45% water, up to about 35% water.
  • Other types of liquids including without limitation, alkanols, amines, diols, ethers and polyols may be included in an aqueous liquid or gel.
  • An aqueous liquid or gel detergent may contain from 0-30% organic solvent.
  • a liquid or gel detergent may be non-aqueous.
  • compositions are in the form of a soap bar, such as a laundry soap bar, and may be used for hand washing laundry, fabrics and/or textiles.
  • a soap bar refers to includes laundry bars, soap bars, combo bars, syndet bars and detergent bars.
  • the types of bar usually differ in the type of surfactant they contain, and the term laundry soap bar includes those containing soaps from fatty acids and/or synthetic soaps.
  • the laundry soap bar has a physical form which is solid and not a liquid, gel or a powder at room temperature.
  • solid refers to a physical form which does not significantly change over time, i.e. if a solid object (e.g. laundry soap bar) is placed inside a container, the solid object does not change to fill the container it is placed in.
  • the bar is a solid typically in bar form but can be in other solid shapes such as round or oval.
  • the soap bar may also comprise complexing agents like EDTA and HEDP, perfumes and/or different type of fillers, surfactants e.g. anionic synthetic surfactants, builders, polymeric soil release agents, detergent chelators, stabilizing agents, fillers, dyes, colorants, dye transfer inhibitors, alkoxylated polycarbonates, suds suppressers, structurants, binders, leaching agents, bleaching activators, clay soil removal agents, anti-redeposition agents, polymeric dispersing agents, brighteners, fabric softeners, perfumes and/or other compounds known in the art.
  • the soap bar may be processed in conventional laundry soap bar making equipment such as but not limited to: mixers, plodders, e.g. a two stage vacuum plodder, extruders, cutters, logo- stampers, cooling tunnels and wrappers.
  • the invention is not limited to preparing the soap bars by any single method.
  • the premix of the invention may be added to the soap at different stages of the process.
  • the premix comprising a soap, an enzyme, optionally one or more additional enzymes, a protease inhibitor, and a salt of a monovalent cation and an organic anion may be prepared and the mixture may then plodded.
  • the enzyme and optional additional enzymes may be added at the same time as an enzyme inhibitor, e.g. a protease inhibitor, for example in liquid form.
  • the process may further comprise the steps of milling, extruding, cutting, stamping, cooling and/or wrapping.
  • the detergent composition may comprise one or more surfactants, which may be anionic and/or cationic and/or non-ionic and/or semi-polar and/or zwitterionic, or a mixture thereof.
  • the detergent composition includes a mixture of one or more nonionic surfactants and one or more anionic surfactants.
  • the surfactant(s) is typically present at a level of from about 0.1% to 60% by weight, such as about 1% to about 40%, or about 3% to about 20%, or about 3% to about 10%.
  • the surfactant(s) is chosen based on the desired cleaning application, and includes any conventional surfactant(s) known in the art. Any surfactant known in the art for use in detergents may be utilized.
  • the detergent When included therein the detergent will usually contain from about 1% to about 40% by weight, such as from about 5% to about 30%, including from about 5% to about 15%, or from about 20% to about 25% of an anionic surfactant.
  • anionic surfactants include sulfates and sulfonates, in particular, linear alkylbenzenesulfonates (LAS), isomers of LAS, branched alkylbenzenesulfonates (BABS), phenylalkanesulfonates, alpha-olefinsulfonates (AOS), olefin sulfonates, alkene sulfonates, alkane-2, 3-diylbis(sulfates), hydroxyalkanesulfonates and disulfonates, alkyl sulfates (AS) such as sodium dodecyl sulfate (SDS), fatty alcohol sulfates (FAS), primary alcohol sulfates (PAS), alcohol
  • the detergent When included therein the detergent will usually contain from about 0 % to about 40% by weight of a cationic surfactant.
  • cationic surfactants include alklydimethylethanolamine quat (ADMEAQ), cetyltrimethylammonium bromide (CTAB), dimethyldistearylammonium chloride (DSDMAC), and alkylbenzyldimethylammonium, alkyl quaternary ammonium compounds, alkoxylated quaternary ammonium (AQA) compounds, and combinations thereof.
  • the detergent When included therein the detergent will usually contain from about 0.2% to about 40% by weight of a non-ionic surfactant, for example from about 0.5% to about 30%, in particular from about 1% to about 20%, from about 3% to about 10%, such as from about 3% to about 5%, or from about 8% to about 12%.
  • a non-ionic surfactant for example from about 0.5% to about 30%, in particular from about 1% to about 20%, from about 3% to about 10%, such as from about 3% to about 5%, or from about 8% to about 12%.
  • Non-limiting examples of non-ionic surfactants include alcohol ethoxylates (AE or AEO), alcohol propoxylates, propoxylated fatty alcohols (PFA), epoxy-capped poly(oxyalkylated) alcohols, alkoxylated fatty acid alkyl esters, such as ethoxylated and/or propoxylated fatty acid alkyl esters, alkylphenol ethoxylates (APE), nonylphenol ethoxylates (NPE), alkylpolyglycosides (APG), alkoxylated amines, fatty acid monoethanolamides (FAM), fatty acid diethanolamides (FADA), ethoxylated fatty acid monoethanolamides (EFAM), propoxylated fatty acid monoethanolamides (PFAM), polyhydroxy alkyl fatty acid amides, or /V-acyl N- alkyl derivatives of glucosamine (glucamides, GA, or fatty acid glucamide, FAGA), as well
  • the detergent When included therein the detergent will usually contain from about 0 % to about 40% by weight of a semipolar surfactant.
  • semipolar surfactants include amine oxides (AO) such as alkyldimethylamineoxide, N-(coco alkyl)-/ ⁇ /,/ ⁇ /-dimethylamine oxide and N- (tallow-alkyl)-/ ⁇ /,/ ⁇ /-bis(2-hydroxyethyl)amine oxide, fatty acid alkanolamides and ethoxylated fatty acid alkanolamides, and combinations thereof.
  • AO amine oxides
  • the detergent When included therein the detergent will usually contain from about 0% to about 40% by weight of a zwitterionic surfactant.
  • zwitterionic surfactants include betaine, alkyldimethylbetaine, sulfobetaine, and combinations thereof.
  • the detergent composition may also comprise one or more isoprenoid surfactants as disclosed in US 20130072416 or US 20130072415.
  • a hydrotrope is a compound that solubilises hydrophobic compounds in aqueous solutions (or oppositely, polar substances in a non-polar environment).
  • hydrotropes typically have both hydrophilic and a hydrophobic character (so-called amphiphilic properties as known from surfactants); however the molecular structure of hydrotropes generally do not favor spontaneous self-aggregation, see e.g. review by Hodgdon and Kaler (2007), Current Opinion in Colloid & Interface Science 12: 121-128. Hydrotropes do not display a critical concentration above which self aggregation occurs as found for surfactants and lipids forming miceller, lamellar or other well defined meso-phases.
  • hydrotropes show a continuous-type aggregation process where the sizes of aggregates grow as concentration increases.
  • many hydrotropes alter the phase behavior, stability, and colloidal properties of systems containing substances of polar and non-polar character, including mixtures of water, oil, surfactants, and polymers.
  • Hydrotropes are classically used across industries from pharma, personal care, food, to technical applications.
  • Use of hydrotropes in detergent compositions allow for example more concentrated formulations of surfactants (as in the process of compacting liquid detergents by removing water) without inducing undesired phenomena such as phase separation or high viscosity.
  • the detergent may contain 0-5% by weight, such as about 0.5 to about 5%, or about 3% to about 5%, of a hydrotrope.
  • a hydrotrope Any hydrotrope known in the art for use in detergents may be utilized.
  • Non-limiting examples of hydrotropes include sodium benzene sulfonate, sodium p-toluene sulfonate (STS), sodium xylene sulfonate (SXS), sodium cumene sulfonate (SCS), sodium cymene sulfonate, amine oxides, alcohols and polyglycolethers, sodium hydroxynaphthoate, sodium hydroxynaphthalene sulfonate, sodium ethylhexyl sulfate, and combinations thereof.
  • the detergent composition may contain about 0-65% by weight, such as about 5% to about 50% of a detergent builder or co-builder, or a mixture thereof.
  • the level of builder is typically 40-65%, particularly 50-65%.
  • the builder and/or co-builder may particularly be a chelating agent that forms water-soluble complexes with Ca and Mg. Any builder and/or co-builder known in the art for use in laundry/ADW/hard surface cleaning detergents may be utilized.
  • Non limiting examples of builders include zeolites, diphosphates (pyrophosphates), triphosphates such as sodium triphosphate (STP or STPP), carbonates such as sodium carbonate, soluble silicates such as sodium metasilicate, layered silicates (e.g., SKS-6 from Hoechst), ethanolamines such as 2-aminoethan-1-ol (MEA), diethanolamine (DEA, also known as 2,2’-iminodiethan-1-ol), triethanolamine (TEA, also known as 2,2’,2”-nitrilotriethan-1-ol), and (carboxymethyl)inulin (CMI), and combinations thereof.
  • zeolites such as 2-aminoethan-1-ol (MEA), diethanolamine (DEA, also known as 2,2’-iminodiethan-1-ol), triethanolamine (TEA, also known as 2,2’,2”-nitrilotriethan-1-ol), and (carboxymethyl)inulin (
  • the detergent composition may also contain 0-50% by weight, such as about 5% to about 30%, of a detergent co-builder.
  • the detergent composition may include a co-builder alone, or in combination with a builder, for example a zeolite builder.
  • co-builders include homopolymers of polyacrylates or copolymers thereof, such as poly(acrylic acid) (PAA) or copoly (acrylic acid/maleic acid) (PAA/PMA).
  • PAA/PMA poly(acrylic acid)
  • Further non-limiting examples include citrate, chelators such as aminocarboxylates, aminopolycarboxylates and phosphonates, and alkyl- or alkenylsuccinic acid.
  • NTA 2,2’,2”-nitrilotriacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • IDS iminodisuccinicacid
  • EDDS ethylenediamine-/ ⁇ /,/ ⁇ /’-disuccinicacid
  • MGDA methylglycinediacetic acid
  • GLDA glutamic acid-/ ⁇ /,/ ⁇ /-diacetic acid
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • EDTMPA ethylenediaminetetra(methylenephosphonic acid)
  • DTMPA or DTPMPA diethylenetriaminepentakis(methylenephosphonic acid)
  • EDG N-( 2- hydroxyethyl)iminodiacetic acid
  • ASMA aspartic acid-/ ⁇ /-monoacetic acid
  • ASDA aspartic acid-A/./V- diacetic acid
  • ASDA as
  • the detergent may contain 0-30% by weight, such as about 1% to about 20%, of a bleaching system.
  • a bleaching system Any bleaching system known in the art for use in laundry/ADW/hard surface cleaning detergents may be utilized.
  • Suitable bleaching system components include bleaching catalysts, photobleaches, bleach activators, sources of hydrogen peroxide such as sodium percarbonate, sodium perborates and hydrogen peroxide— urea (1 :1), preformed peracids and mixtures thereof.
  • Suitable preformed peracids include, but are not limited to, peroxycarboxylic acids and salts, diperoxydicarboxylic acids, perimidic acids and salts, peroxymonosulfuric acids and salts, for example, Oxone (R), and mixtures thereof.
  • Non-limiting examples of bleaching systems include peroxide-based bleaching systems, which may comprise, for example, an inorganic salt, including alkali metal salts such as sodium salts of perborate (usually mono- ortetra-hydrate), percarbonate, persulfate, perphosphate, persilicate salts, in combination with a peracid-forming bleach activator.
  • the term bleach activator is meant herein as a compound which reacts with hydrogen peroxide to form a peracid via perhydrolysis. The peracid thus formed constitutes the activated bleach.
  • Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides or anhydrides.
  • TAED tetraacetylethylenediamine
  • DADHT 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine
  • TAGU tetraacetylglycoluril
  • N-acylimides in particular N- nonanoylsuccinimide (NOSI), sodium 4-[(3, 5, 5-trimethylhexanoyl)oxy]benzene-1 -sulfonate (ISONOBS), 4-(dodecanoyloxy)benzene-1 -sulfonate (LOBS), 4-(decanoyloxy)benzene-1- sulfonate, 4-(decanoyloxy)benzoate (DOBS or DOBA), 4-(nonanoyloxy)benzene-1 -sulfonate (NOBS), and/or those disclosed in W098/17767.
  • NOSI N- nonanoylsuccinimide
  • ISONOBS 4-[(3, 5, 5-trimethylhexanoyl)oxy]benzene-1 -sulfonate
  • LOBS 4-(dodecanoyloxy)benzene-1 -sulfonate
  • DOBS or DOBA 4-(decanoy
  • ATC acetyl triethyl citrate
  • ATC or a short chain triglyceride like triacetin has the advantage that it is environmentally friendly
  • acetyl triethyl citrate and triacetin have good hydrolytical stability in the product upon storage and are efficient bleach activators.
  • ATC is multifunctional, as the citrate released in the perhydrolysis reaction may function as a builder.
  • the bleaching system may comprise peroxyacids of, for example, the amide, imide, or sulfone type.
  • the bleaching system may also comprise peracids such as 6-(phthalimido)peroxyhexanoic acid (PAP).
  • PAP 6-(phthalimido)peroxyhexanoic acid
  • the bleaching system may also include a bleach catalyst, for example manganese triazacyclononane, manganese oxalate, Co, Cu, Mn and Fe bispyridylamine and pentamine acetate cobalt(lll).
  • the bleach component may be an organic catalyst selected from the group consisting of organic catalysts having the following formulae:
  • each R 1 is independently a branched alkyl group containing from 9 to 24 carbons or linear alkyl group containing from 11 to 24 carbons, preferably each R 1 is independently a branched alkyl group containing from 9 to 18 carbons or linear alkyl group containing from 11 to 18 carbons, more preferably each R 1 is independently selected from the group consisting of 2- propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, isononyl, isodecyl, isotridecyl and isopentadecyl.
  • Suitable bleaching systems are described, e.g. in W02007/087258, W02007/087244, W02007/087259, EP1867708 (Vitamin K) and W02007/087242.
  • Suitable photobleaches may for example be sulfonated zinc or aluminium phthalocyanines.
  • the bleach component comprises a source of peracid in addition to bleach catalyst, particularly organic bleach catalyst.
  • the source of peracid may be selected from (a) pre formed peracid; (b) percarbonate, perborate or persulfate salt (hydrogen peroxide source) preferably in combination with a bleach activator; and (c) perhydrolase enzyme and an ester for forming peracid in situ in the presence of water in a textile or hard surface treatment step.
  • the detergent may contain 0-10% by weight, such as 0.5-5%, 2-5%, 0.5-2% or 0.2-1% of a polymer. Any polymer known in the art for use in detergents may be utilized.
  • the polymer may function as a co-builder as mentioned above, or may provide antiredeposition, fiber protection, soil release, dye transfer inhibition, grease cleaning and/or anti-foaming properties. Some polymers may have more than one of the above-mentioned properties and/or more than one of the below-mentioned motifs.
  • Exemplary polymers include (carboxymethyl)cellulose (CMC), poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone) (PVP), poly(ethyleneglycol) or poly(ethylene oxide) (PEG), ethoxylated poly(ethyleneimine), carboxymethyl inulin (CMI), and polycarboxylates such as PAA, PAA/PMA, poly-aspartic acid, and lauryl methacrylate/acrylic acid copolymers , hydrophobically modified CMC (HM-CMC) and silicones, copolymers of terephthalic acid and oligomeric glycols, copolymers of polyethylene terephthalate) and poly(oxyethene terephthalate) (PET-POET), PVP, poly(vinylimidazole) (PVI), poly(vinylpyridine-A/-oxide) (PVPO or PVPNO) and polyvinylpyrrolidone-vinylimidazole
  • exemplary polymers include sulfonated polycarboxylates, polyethylene oxide and polypropylene oxide (PEO-PPO) and diquaternium ethoxy sulfate.
  • PEO-PPO polypropylene oxide
  • diquaternium ethoxy sulfate diquaternium ethoxy sulfate.
  • Other exemplary polymers are disclosed in, e.g., WO 2006/130575. Salts of the above- mentioned polymers are also contemplated. Fabric hueing agents
  • the detergent compositions of the present invention may also include fabric hueing agents such as dyes or pigments, which when formulated in detergent compositions can deposit onto a fabric when said fabric is contacted with a wash liquor comprising said detergent compositions and thus altering the tint of said fabric through absorption/reflection of visible light.
  • fabric hueing agents alter the tint of a surface as they absorb at least a portion of the visible light spectrum.
  • Suitable fabric hueing agents include dyes and dye-clay conjugates, and may also include pigments.
  • Suitable dyes include small molecule dyes and polymeric dyes.
  • Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.l.) classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof, for example as described in W02005/03274, W02005/03275, W02005/03276 and EP1876226 (hereby incorporated by reference).
  • the detergent composition preferably comprises from about 0.00003 wt% to about 0.2 wt%, from about 0.00008 wt% to about 0.05 wt%, or even from about 0.0001 wt% to about 0.04 wt% fabric hueing agent.
  • the composition may comprise from 0.0001 wt% to 0.2 wt% fabric hueing agent, this may be especially preferred when the composition is in the form of a unit dose pouch.
  • Suitable hueing agents are also disclosed in, e.g. WO 2007/087257 and W02007/087243.
  • any detergent components known in the art for use in laundry, ADW or hard surface cleaning detergents may also be utilized.
  • Other optional detergent components include anti corrosion agents, anti-shrink agents, anti-soil redeposition agents, anti-wrinkling agents, bactericides, binders, corrosion inhibitors, metal care agents, glass care agents, disintegrants/disintegration agents, dyes, enzyme stabilizers (including boric acid, borates, CMC, and/or polyols such as propylene glycol), fabric conditioners including clays, fillers/processing aids, fluorescent whitening agents/optical brighteners, foam boosters, foam (suds) regulators, perfumes, soil-suspending agents, softeners, suds suppressors, tarnish inhibitors, and wicking agents, either alone or in combination.
  • Any ingredient known in the art for use in laundry, ADW or hard surface cleaning detergents may be utilized. The choice of such ingredients is well within the skill of the artisan.
  • the detergent compositions of the present invention can also contain dispersants.
  • powdered detergents may comprise dispersants.
  • Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Suitable dispersants are for example described in Powdered Detergents, Surfactant science series volume 71, Marcel Dekker, Inc.
  • the detergent compositions of the present invention may also include one or more dye transfer inhibiting agents.
  • Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine /V-oxide polymers, copolymers of N- vinylpyrrolidone and /V-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
  • the dye transfer inhibiting agents may be present at levels from about 0.0001 % to about 10%, from about 0.01% to about 5% or even from about 0.1% to about 3% by weight of the composition.
  • the detergent compositions of the present invention will preferably also contain additional components that may tint articles being cleaned, such as fluorescent whitening agent or optical brighteners. Where present the brightener is preferably at a level of about 0.01% to about 0.5%.
  • Any fluorescent whitening agent suitable for use in a laundry detergent composition may be used in the composition of the present invention.
  • the most commonly used fluorescent whitening agents are those belonging to the classes of diaminostilbene-sulfonic acid derivatives, diarylpyrazoline derivatives and bisphenyl-distyryl derivatives.
  • diaminostilbene- sulfonic acid derivative type of fluorescent whitening agents include the sodium salts of: 4,4'-bis- (2-diethanolamino-4-anilino-s-triazin-6-ylamino) stilbene-2,2'-disulfonate, 4,4'-bis-(2,4-dianilino- s-triazin-6-ylamino) stilbene-2.2'-disulfonate, 4,4'-bis-(2-anilino-4-(/ ⁇ /-methyl-/ ⁇ /-2-hydroxy- ethylamino)-s-triazin-6-ylamino) stilbene-2,2'-disulfonate, 4,4'-bis-(4-phenyl-1 ,2,3-triazol-2- yl)stilbene-2,2'-disulfonate and sodium 5-(2/-/-naphtho[1,2-c][1 ,2,3]triazol-2-yl)-2
  • Preferred fluorescent whitening agents are Tinopal DMS and Tinopal CBS available from Ciba-Geigy AG, Basel, Switzerland.
  • Tinopal DMS is the disodium salt of 4,4'-bis-(2-morpholino-4-anilino-s-triazin-6-ylamino) stilbene-2,2'-disulfonate.
  • Tinopal CBS is the disodium salt of 2,2'-bis-(phenyl-styryl)-disulfonate.
  • fluorescent whitening agents is the commercially available Parawhite KX, supplied by Paramount Minerals and Chemicals, Mumbai, India.
  • Other fluorescers suitable for use in the invention include the 1-3- diaryl pyrazolines and the 7-alkylaminocoumarins.
  • Suitable fluorescent brightener levels include lower levels of from about 0.01, from 0.05, from about 0.1 or even from about 0.2 wt % to upper levels of 0.5 or even 0.75 wt%.
  • the detergent compositions of the present invention may also include one or more soil release polymers which aid the removal of soils from fabrics such as cotton and polyester based fabrics, in particular the removal of hydrophobic soils from polyester based fabrics.
  • the soil release polymers may for example be nonionic or anionic terephthalte based polymers, polyvinyl caprolactam and related copolymers, vinyl graft copolymers, polyester polyamides see for example Chapter 7 in Powdered Detergents, Surfactant science series volume 71, Marcel Dekker, Inc.
  • Another type of soil release polymers are amphiphilic alkoxylated grease cleaning polymers comprising a core structure and a plurality of alkoxylate groups attached to that core structure.
  • the core structure may comprise a polyalkylenimine structure or a polyalkanolamine structure as described in detail in WO 2009/087523 (hereby incorporated by reference).
  • random graft co-polymers are suitable soil release polymers. Suitable graft co polymers are described in more detail in WO 2007/138054, WO 2006/108856 and WO 2006/113314 (hereby incorporated by reference).
  • Other soil release polymers are substituted polysaccharide structures especially substituted cellulosic structures such as modified cellulose deriviatives such as those described in EP 1867808 or WO 2003/040279 (both are hereby incorporated by reference).
  • Suitable cellulosic polymers include cellulose, cellulose ethers, cellulose esters, cellulose amides and mixtures thereof. Suitable cellulosic polymers include anionically modified cellulose, nonionically modified cellulose, cationically modified cellulose, zwitterionically modified cellulose, and mixtures thereof. Suitable cellulosic polymers include methyl cellulose, carboxy methyl cellulose, ethyl cellulose, hydroxyl ethyl cellulose, hydroxyl propyl methyl cellulose, ester carboxy methyl cellulose, and mixtures thereof.
  • the detergent compositions of the present invention may also include one or more anti redeposition agents such as carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyoxyethylene and/or polyethyleneglycol (PEG), homopolymers of acrylic acid, copolymers of acrylic acid and maleic acid, and ethoxylated polyethyleneimines.
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • PEG polyethyleneglycol
  • homopolymers of acrylic acid copolymers of acrylic acid and maleic acid
  • the cellulose based polymers described under soil release polymers above may also function as anti redeposition agents.
  • the detergent compositions of the present invention may also include one or more rheology modifiers, structurants or thickeners, as distinct from viscosity reducing agents.
  • the rheology modifiers are selected from the group consisting of non-polymeric crystalline, hydroxy- functional materials, polymeric rheology modifiers which impart shear thinning characteristics to the aqueous liquid matrix of a liquid detergent composition.
  • the rheology and viscosity of the detergent can be modified and adjusted by methods known in the art, for example as shown in EP 2169040.
  • adjunct materials include, but are not limited to, anti-shrink agents, anti wrinkling agents, bactericides, binders, carriers, dyes, enzyme stabilizers, fabric softeners, fillers, foam regulators, hydrotropes, perfumes, pigments, sod suppressors, solvents, and structurants for liquid detergents and/or structure elasticizing agents.
  • the composition according to the invention comprises one or more further enzymes, such as at least two enzymes, more preferred at least three, four or five enzymes.
  • the enzymes of the detergent composition have different substrate specificity, e.g., proteolytic activity, amylolytic activity, lipolytic activity, cellulytic activity, hemicellulytic activity, oxidative activity, RNAse activity, DNAse activity or pectolytic activity.
  • composition according to the invention may comprise one or more additional enzymes selected from proteases, second amylases, lipases, cutinases, cellulases, endoglucanases, lechinase, xyloglucanases, pectinases, pectin lyases, xanthanases, peroxidases, haloperoxygenases, catalases, mannanases, or any mixture thereof.
  • suitable enzymes include carbohydrate-active enzymes like carbohydrase, arabinase, galactanase, xylanase; or oxidases, e.g., a laccase, and/or peroxidase.
  • the properties of the selected enzyme(s) should be compatible with the selected detergent, (i.e., pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.
  • preferred enzymes includes a cellulase.
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757 and WO 89/09259.
  • cellulases are the alkaline or neutral cellulases having colour care benefits.
  • Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940.
  • Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US 5,763,254, WO 95/24471 , WO 98/12307 and W099/001544.
  • cellulases are endo-beta-1,4-glucanase enzyme having a sequence of at least 97% identity to the amino acid sequence of position 1 to position 773 of SEQ ID NO:2 of WO 2002/099091 or a family 44 xyloglucanase, which a xyloglucanase enzyme having a sequence of at least 60% identity to positions 40-559 of SEQ ID NO: 2 of WO 2001/062903.
  • CelluzymeD and CarezymeD (Novozymes A/S) Carezyme Premium ⁇ (Novozymes A/S), Celluclean ⁇ (Novozymes A/S), Celluclean Classics (Novozymes A/S), CellusoftD (Novozymes A/S), WhitezymeD (Novozymes A/S), ClazinaseD, and Puradax HAD (Genencor International Inc.), and KAC-500(B)D (Kao Corporation).
  • preferred enzymes include a mannanase.
  • Suitable mannanases include those of bacterial or fungal origin. Chemically or genetically modified mutants are included.
  • the mannanase may be an alkaline mannanase of Family 5 or 26. It may be a wild-type from Bacillus or Humicola, particularly B. agaradhaerens, B. licheniformis, B. halodurans, B. clausii, or H. insolens.
  • Suitable mannanases are described in WO 1999/064619. A commercially available mannanase is Mannaway (Novozymes A/S).
  • preferred enzymes includes a peroxidase.
  • a peroxidase according to the invention is a peroxidase enzyme comprised by the enzyme classification EC 1.11.1.7, as set out by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB), or any fragment derived therefrom, exhibiting peroxidase activity.
  • IUBMB Nomenclature Committee of the International Union of Biochemistry and Molecular Biology
  • Suitable peroxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinopsis, e.g., from C. cinerea (EP 179,486), and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include GuardzymeD (Novozymes A/S).
  • a peroxidase according to the invention also include a haloperoxidase enzyme, such as chloroperoxidase, bromoperoxidase and compounds exhibiting chloroperoxidase or bromoperoxidase activity.
  • haloperoxidases are classified according to their specificity for halide ions. Chloroperoxidases (E.C. 1.11.1.10) catalyze formation of hypochlorite from chloride ions.
  • the haloperoxidase of the invention is a chloroperoxidase.
  • the haloperoxidase is a vanadium haloperoxidase, i.e., a vanadate-containing haloperoxidase.
  • the vanadate-containing haloperoxidase is combined with a source of chloride ion.
  • Haloperoxidases have been isolated from many different fungi, in particular from the fungus group dematiaceous hyphomycetes, such as Caldariomyces, e.g., C. fumago, Alternaria, Curvularia, e.g., C. verruculosa and C. inaequalis, Drechslera, Ulocladium and Botrytis.
  • Caldariomyces e.g., C. fumago
  • Alternaria Curvularia
  • Curvularia e.g., C. verruculosa and C. inaequalis
  • Drechslera Ulocladium and Botrytis.
  • Haloperoxidases have also been isolated from bacteria such as Pseudomonas, e.g., P. pyrrocinia and Streptomyces, e.g., S. aureofaciens.
  • the haloperoxidase is derivable from Curvularia sp., in particular Curvularia verruculosa or Curvularia inaequalis, such as C. inaequalis CBS 102.42 as described in WO 95/27046; or C. verruculosa CBS 147.63 or C.
  • An oxidase according to the invention include, in particular, any laccase enzyme comprised by the enzyme classification EC 1.10.3.2, or any fragment derived therefrom exhibiting laccase activity, or a compound exhibiting a similar activity, such as a catechol oxidase (EC 1.10.3.1), an o-aminophenol oxidase (EC 1.10.3.4), or a bilirubin oxidase (EC 1.3.3.5).
  • a catechol oxidase EC 1.10.3.1
  • an o-aminophenol oxidase EC 1.10.3.4
  • a bilirubin oxidase EC 1.3.3.5
  • Preferred laccase enzymes are enzymes of microbial origin.
  • the enzymes may be derived from plants, bacteria or fungi (including filamentous fungi and yeasts).
  • Suitable examples from fungi include a laccase derivable from a strain of Aspergillus, Neurospora, e.g., N. crassa, Podospora, Botrytis, Collybia, Fomes, Lentinus, Pleurotus, Trametes, e.g., T. villosa and T. versicolor, Rhizoctonia, e.g., R. solani, Coprinopsis, e.g., C. cinerea, C. comatus, C. friesii, and C. plicatilis, Psathyrella, e.g., P. condelleana, Panaeolus, e.g., P.
  • papilionaceus Myceliophthora, e.g., M. thermophila, Schytalidium, e.g., S. thermophilum, Polyporus, e.g., P. pinsitus, Phlebia, e.g., P. radiata (WO 92/01046), or Coriolus, e.g., C. hirsutus (JP 2238885).
  • Suitable examples from bacteria include a laccase derivable from a strain of Bacillus.
  • a laccase derived from Coprinopsis or Myceliophthora is preferred; in particular a laccase derived from Coprinopsis cinerea, as disclosed in WO 97/08325; or from Myceliophthora thermophila, as disclosed in WO 95/33836.
  • preferred enzymes include a protease.
  • Suitable proteases include those of bacterial, fungal, plant, viral or animal origin e.g. vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. It may be an alkaline protease, such as a serine protease or a metalloprotease.
  • a serine protease may for example be of the S1 family, such as trypsin, or the S8 family such as subtilisin.
  • a metalloproteases protease may for example be a thermolysin from e.g. family M4 or other metalloprotease such as those from M5, M7 or M8 families.
  • subtilases refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501-523.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, Bacillus alkalophilus, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and W009/021867, and Subtilisin lentus, Subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN’, subtilisin 309, subtilisin 147 and subtilisin 168 and e.g. protease PD138 described in (WO93/18140).
  • Other useful proteases may be those described in W001/016285 and W002/016547.
  • trypsin-like proteases examples include trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in W094/25583 and W005/040372, and the chymotrypsin proteases derived from Cellumonas described in W005/052161 and W005/052146.
  • a further preferred protease is the alkaline protease from Bacillus lentus DSM 5483, as described for example in W095/23221, and variants thereof which are described in WO92/21760, W095/23221, EP1921147 and EP1921148.
  • metalloproteases are the neutral metalloprotease as described in WO07/044993 (Proctor & Gamble/Genencor Int.) such as those derived from Bacillus amyloliquefaciens.
  • Examples of useful proteases are the variants described in: WO89/06279 W092/19729, WO96/034946, WO98/20115, WO98/20116, WO99/011768, WO01/44452, W003/006602, W004/03186, W004/041979, W007/006305, W011/036263, W011/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 24, 27, 42, 55, 59, 60, 66, 74, 85, 96, 97, 98, 99, 100, 101 , 102, 104, 116, 118, 121 , 126, 127, 128, 154, 156, 157, 158, 161 , 164, 176, 179, 182, 185, 188, 189, 193, 198, 199, 200, 203, 206, 211 , 212, 216, 218, 226, 229, 230, 2
  • protease variants may comprise one or more of the mutations selected from the group consisting of: S3T, V4I, S9R, S9E, A15T, S24G, S24R, K27R, N42R, S55P, G59E, G59D, N60D, N60E, V66A, N74D, S85R, A96S, S97G, S97D, S97A, S99E, S99D, S99G, S99M, S99N, S99R, S99H, S101A, V 1021 , V102Y, V102N, S104A, G116V, G116R, H118D, H118N, A120S, S126L, P127Q, S128A, S154D, A156E, G157D, G157P, S158E, Y161A, R164S, Q176E, N179E, S182E, Q185N, A188P, G189E, V193M, N198D
  • the protease variants are preferably variants of the Bacillus lentus protease shown in SEQ ID NO 1 of W02016/001449, the Bacillus amylolichenifaciens protease (BPN’) shown in SEQ ID NO 2 of WO2016/001449.
  • the protease variants preferably have at least 80% sequence identity to SEQ ID NO 1 or SEQ ID NO 2 of WO 2016/001449.
  • a protease variant comprising a substitution at one or more positions corresponding to positions 171 , 173, 175, 179, or 180 of SEQ ID NO: 1 of W02004/067737, wherein said protease variant has a sequence identity of at least 75% but less than 100% to SEQ ID NO: 1 of W02004/067737.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutation S99D, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% or at least 98% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutation S99D.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutation S99E, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% or at least 98% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutation S99E.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations Y167A+R170S+A194P, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% or at least 98% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations Y167A+R170S+A194P.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations S9E+N43R+N76D+V205I+Q206L+Y209W+S259D+N261W+L262E, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90% or at least 95% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations S9E+N43R+N76D+V205I+Q206L+ Y209W+S259D+N261W+L262E.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations S3T+V4I+S99D+S101 R+S103A+V104I+G160S+V199M+V205I+ L217D, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90% or at least 95% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations S3T+V4I+S99D+S101R+S103A+V104I+ G160S+V199M+V205I+L217D.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations S3T+V4I+S99D+S101 E+S103A+V104I+G160S+V205I, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90% or at least 95% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations S3T+V4I+S99D+S101E+S103A+V104I+ G160S+V205I.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations S99D+S101 E+S103A+V104I+G160S, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90%, at least 95% or at least 96% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations S99D+S101 E+S103A+V104I+G160S.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations S99D+S101E+S103A+V104I+S156D+G160S+L262E, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90% or at least 95% sequence identity to SEQ ID NO:
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations S99D+S101 E+S103A+V104I+S156D+G160S+L262E.
  • the protease is a variant of the polypeptide of SEQ ID NO: 19 comprising the mutations S87N+S101G+V104N, wherein position numbers correspond to positions of the polypeptide of SEQ ID NO: 20, for example a variant having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% or at least 98% sequence identity to SEQ ID NO: 19.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 19 with the mutations S87N+S101G+V104N.
  • the protease comprises or consists of the polypeptide of SEQ ID NO:
  • the protease is a variant of the polypeptide of SEQ ID NO: 20 comprising the mutation Y217L, for example a variant having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97% or at least 98% sequence identity to SEQ ID NO: 20.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 20 with the mutation Y217L.
  • the protease is a variant of the polypeptide of SEQ ID NO: 20 comprising the mutations S24G+S53G+S78N+S101 N+G128S+Y217Q, for example a variant having at least 80%, at least 85%, at least 90%, at least 95% or at least 96% sequence identity to SEQ ID NO: 20.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 20 with the mutations S24G+S53G+S78N+S101 N+G128S+Y217Q.
  • the protease is a variant of the polypeptide of SEQ ID NO: 20 comprising the mutations S24G+S53G+S78N+S101 N+G128A+Y217Q, for example a variant having at least 80%, at least 85%, at least 90%, at least 95% or at least 96% sequence identity to SEQ ID NO: 20.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 20 with the mutations S24G+S53G+S78N+S101 N+G128A+Y217Q.
  • the protease comprises or consists of the polypeptide of SEQ ID NO:
  • the protease is a variant of the polypeptide of SEQ ID NO: 21 having at least 80%, at least 85%, at least 90% or at least 95% sequence identity to SEQ ID NO: 21.
  • the protease may e.g. be a variant of the polypeptide of SEQ ID NO: 21 comprising one or more mutations selected from the group consisting of S27K, N109K, S111 E, S171 E, S173P, G174K, S175P, F180Y, G182A, L184F, Q198E, N199K and T297P, for example 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12 or all of said mutations.
  • the protease is a variant of the polypeptide of SEQ ID NO: 21 comprising the mutations S27K+N109K+S111 E+S171E+S173P+G174K+S175P+F180Y+ G182A+L184F+Q198E+ N199K+T297P, for example a variant having at least 80%, at least 85%, at least 90% or at least 95% sequence identity to SEQ ID NO: 21.
  • the protease comprises or consists of the polypeptide of SEQ ID NO: 21 with the mutations S27K+N109K+S111 E+S171E+S173P+G174K+S175P+F180Y+G182A+L184F+Q198E+ N199K+T297P.
  • Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Duralase Tm , Durazym Tm , Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Blaze®, Blaze Evity® 100T, Blaze Evity® 125T, Blaze Evity® 150T, Neutrase®, Everlase®, Esperase®, Novozymes Progress®, Novozymes Progress® Uno and Novozymes Progress®Excel (Novozymes A/S), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect Ox®, Purafect OxP®, Puramax®, FN2®, FN3®, FN4®, Excellase®, Excell
  • Suitable nucleases includes a deoxyribonucleases (DNases) and ribonucleases (RNases) which are any enzyme that catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA or RNA backbone respectively, thus degrading DNA and RNA.
  • DNases deoxyribonucleases
  • RNases ribonucleases
  • Exonucleases digest nucleic acids from the ends. Endonucleases act on regions in the middle of target molecules.
  • the nuclease is preferably a DNase, which is preferable is obtainable from a microorganism, preferably a fungi or bacterium.
  • a DNase which is obtainable from a species of Bacillus is preferred; in particular a DNase which is obtainable from Bacillus cibi, Bacillus subtilis or Bacillus licheniformis is preferred. Examples of such DNases are described in WO 2011/098579, W02014/087011 and WO2017/060475. Particularly preferred is also a DNase obtainable from a species of Aspergillus; in particular a DNase which is obtainable from Aspergillus oryzae, such as a DNase described in WO 2015/155350.
  • the detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes.
  • a detergent additive of the invention i.e. , a separate additive or a combined additive
  • Preferred detergent additive formulations are granulates, in particular non-dusting granulates as described above, liquids, in particular stabilized liquids, or slurries.
  • preferred enzymes includes a lipase and/or cutinase.
  • Suitable lipases and cutinases include those of bacterial or fungal origin. Chemically modified or protein engineered mutant enzymes are included. Examples include lipase from Thermomyces, e.g. from T. lanuginosus (previously named Humicola lanuginosa) as described in EP258068 and EP305216, cutinase from Humicola, e.g. H. insolens (WO96/13580), lipase from strains of Pseudomonas (some of these now renamed to Burkholderia), e.g. P. alcaligenes or P.
  • lipase variants such as those described in EP407225, WO92/05249, WO94/01541, W094/25578, W095/14783, WO95/30744, W095/35381, W095/22615,
  • Preferred commercial lipase products include include LipolaseTM, LipexTM; LipolexTM and LipocleanTM (Novozymes A/S), Lumafast (originally from Genencor) and Lipomax (originally from Gist-Brocades).
  • lipases sometimes referred to as acyltransferases or perhydrolases, e.g. acyltransferases with homology to Candida antarctica lipase A (WO10/111143), acyltransferase from Mycobacterium smegmatis (WO05/56782), perhydrolases from the CE 7 family (WO09/67279), and variants of the M. smegmatis perhydrolase in particular the S54V variant used in the commercial product Gentle Power Bleach from Huntsman Textile Effects Pte Ltd (W010/100028).
  • preferred enzymes includes another amylase.
  • Suitable amylases which can be used together with the compositions of the invention may be an alpha-amylase or a glucoamylase and may be of bacterial or fungal origin. Chemically modified or protein engineered mutants are included.
  • Amylases include, for example, alpha-amylases obtained from Bacillus, e.g., a special strain of Bacillus licheniformis, described in more detail in GB 1,296,839.
  • Suitable amylases include amylases having SEQ ID NO: 2 in WO 95/10603 or variants having 90% sequence identity to SEQ ID NO: 3 thereof. Preferred variants are described in WO 94/02597, WO 94/18314, WO 97/43424 and SEQ ID NO: 4 of WO 99/019467, such as variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 178, 179, 181 , 188, 190, 197, 201 , 202, 207, 208, 209, 211 , 243, 264, 304, 305, 391 , 408, and 444.
  • amylases having SEQ ID NO: 6 in WO 02/010355 or variants thereof having 90% sequence identity to SEQ ID NO: 6.
  • Preferred variants of SEQ ID NO: 6 are those having a deletion in positions 181 and 182 and a substitution in position 193.
  • amylases which are suitable are hybrid alpha-amylase comprising residues 1-33 of the alpha-amylase derived from B. amyloliquefaciens shown in SEQ ID NO: 6 of WO 2006/066594 and residues 36-483 of the B. licheniformis alpha-amylase shown in SEQ ID NO: 4 of WO 2006/066594 or variants having 90% sequence identity thereof.
  • Preferred variants of this hybrid alpha-amylase are those having a substitution, a deletion or an insertion in one of more of the following positions: G48, T49, G107, H156, A181 , N190, M197, 1201 , A209 and Q264.
  • hybrid alpha-amylase comprising residues 1-33 of the alpha-amylase derived from B. amyloliquefaciens shown in SEQ ID NO: 6 of WO 2006/066594 and residues 36- 483 of SEQ ID NO: 4 are those having the substitutions:
  • amylases which are suitable are amylases having SEQ ID NO: 6 in WO 99/019467 or variants thereof having 90% sequence identity to SEQ ID NO: 6.
  • Preferred variants of SEQ ID NO: 6 are those having a substitution, a deletion or an insertion in one or more of the following positions: R181 , G182, H183, G184, N195, I206, E212, E216 and K269.
  • Particularly preferred amylases are those having deletion in positions R181 and G182, or positions H183 and G184.
  • Additional amylases which can be used are those having SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 2 or SEQ ID NO: 7 of WO 96/023873 or variants thereof having 90% sequence identity to SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7.
  • Preferred variants of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7 are those having a substitution, a deletion or an insertion in one or more of the following positions: 140, 181 , 182, 183, 184, 195, 206, 212, 243, 260, 269, 304 and 476, using SEQ ID 2 of WO 96/023873 for numbering.
  • More preferred variants are those having a deletion in two positions selected from 181 , 182, 183 and 184, such as 181 and 182, 182 and 183, or positions 183 and 184.
  • Most preferred amylase variants of SEQ ID NO: 1 , SEQ ID NO: 2 or SEQ ID NO: 7 are those having a deletion in positions 183 and 184 and a substitution in one or more of positions 140, 195, 206, 243, 260, 304 and 476.
  • amylases which can be used are amylases having SEQ ID NO: 2 of WO 08/153815, SEQ ID NO: 10 in WO 01/66712 or variants thereof having 90% sequence identity to SEQ ID NO: 2 of WO 08/153815 or 90% sequence identity to SEQ ID NO: 10 in WO 01/66712.
  • Preferred variants of SEQ ID NO: 10 in WO 01/66712 are those having a substitution, a deletion or an insertion in one of more of the following positions: 176, 177, 178, 179, 190, 201 , 207, 211 and 264.
  • amylases having SEQ ID NO: 2 of WO 09/061380 or variants having 90% sequence identity to SEQ ID NO: 2 thereof.
  • Preferred variants of SEQ ID NO: 2 are those having a truncation of the C-terminus and/or a substitution, a deletion or an insertion in one of more of the following positions: Q87, Q98, S125, N128, T131, T165, K178, R180, S181, T182, G183, M201, F202, N225, S243, N272, N282, Y305, R309, D319, Q320, Q359, K444 and G475.
  • More preferred variants of SEQ ID NO: 2 are those having the substitution in one of more of the following positions: Q87E,R, Q98R, S125A, N128C, T131I, T165I, K178L, T182G, M201 L, F202Y, N225E.R, N272E.R, S243Q,A,E,D, Y305R, R309A, Q320R, Q359E, K444E and G475K and/or deletion in position R180 and/or S181 or of T182 and/or G183.
  • Most preferred amylase variants of SEQ ID NO: 2 are those having the substitutions:
  • variants are C-terminally truncated and optionally further comprises a substitution at position 243 and/or a deletion at position 180 and/or position 181.
  • amylases having SEQ ID NO: 1 of W013184577 or variants having 90% sequence identity to SEQ ID NO: 1 thereof.
  • Preferred variants of SEQ ID NO: 1 are those having a substitution, a deletion or an insertion in one of more of the following positions: K176, R178, G179, T180, G181 , E187, N192, M199, I203, S241 , R458, T459, D460, G476 and G477.
  • More preferred variants of SEQ ID NO: 1 are those having the substitution in one of more of the following positions: K176L, E187P, N192FYH, M199L, I203YF, S241QADN, R458N, T459S, D460T, G476Kand G477K and/or deletion in position R178 and/or S179 or of T180 and/or G181.
  • Most preferred amylase variants of SEQ ID NO: 1 are those having the substitutions:
  • variants optionally further comprise a substitution at position 241 and/or a deletion at position 178 and/or position 179.
  • amylases having SEQ ID NO: 1 of W010104675 or variants having 90% sequence identity to SEQ ID NO: 1 thereof.
  • Preferred variants of SEQ ID NO: 1 are those having a substitution, a deletion or an insertion in one of more of the following positions: N21 , D97, V128 K177, R179, S180, 1181, G182, M200, L204, E242, G477 and G478.
  • SEQ ID NO: 1 More preferred variants of SEQ ID NO: 1 are those having the substitution in one of more of the following positions: N21D, D97N, V128I K177L, M200L, L204YF, E242QA, G477K and G478K and/or deletion in position R179 and/or S180 or of 1181 and/or G182. Most preferred amylase variants of SEQ ID NO: 1 are those having the substitutions:
  • variants optionally further comprise a substitution at position 200 and/or a deletion at position 180 and/or position 181.
  • amylases are the alpha-amylase having SEQ ID NO: 12 in WO01/66712 or a variant having at least 90% sequence identity to SEQ ID NO: 12.
  • Preferred amylase variants are those having a substitution, a deletion or an insertion in one of more of the following positions of SEQ ID NO: 12 in WO01/66712: R28, R118, N174; R181 , G182, D183, G184, G186, W189, N195, M202, Y298, N299, K302, S303, N306, R310, N314; R320, H324, E345, Y396, R400, W439, R444, N445, K446, Q449, R458, N471, N484.
  • Particular preferred amylases include variants having a deletion of D183 and G184 and having the substitutions R118K, N195F, R320K and R458K, and a variant additionally having substitutions in one or more position selected from the group: M9, G149, G182, G186, M202, T257, Y295, N299, M323, E345 and A339, most preferred a variant that additionally has substitutions in all these positions.
  • amylase variants such as those described in WO2011/098531, WO2013/001078 and WO2013/001087.
  • amylases are Amplify PrimeTM, AtlanticTM, ArcticTM, EverestTM, DuramylTM, TermamylTM, FungamylTM, Stainzyme TM, Stainzyme PlusTM, NatalaseTM, Liquozyme X and BANTM (from Novozymes A/S), and RapidaseTM , PurastarTM/EffectenzTM, Powerase, Preferenz S1000, Preferenz S100, Preferenz S110 and Preferenz S210 (from Genencor International Inc./DuPont).
  • the detergent enzyme(s) may be included in the detergent composition according to the invention by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes.
  • a detergent additive i.e., a separate additive or a combined additive, may be formulated, for example, as a granulate, liquid, slurry, etc.
  • Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.
  • Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and US 4,661 ,452 and may optionally be coated by methods known in the art.
  • waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
  • Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
  • Protected enzymes may be prepared according to the method disclosed in EP 238,216.
  • the detergent additive as well as the detergent composition may also comprise one or more microorganisms, such as one or more fungi, yeast, or bacteria.
  • the one or more microorganisms are dehydrated (for example by lyophilization) bacteria or yeast, such as a strain of Lactobacillus.
  • the microrganisms are one or more microbial spores (as opposed to vegetative cells), such as bacterial spores; or fungal spores, conidia, hypha.
  • the one or more spores are Bacillus endospores; even more preferably the one or more spores are endospores of Bacillus subtilis, Bacillus licheniformis, Bacillus amyloliquefaciens, or Bacillus megaterium.
  • microrganisms may be included in the detergent composition or additive in the same way as enzymes (see above).
  • any enzyme in particular the alpha amylase polypeptides of the invention, may be added in an amount corresponding to 0.01-100 mg of enzyme protein per liter of wash liquor, preferably 0.05 - 5 mg of enzyme protein per liter of wash liquor, in particular 0.1-1 mg of enzyme protein per liter of wash liquor.
  • alpha amylase polypeptides of the invention may additionally be incorporated in the detergent formulations disclosed in WO 2006/002643, which is hereby incorporated as reference. Formulation of detergent products
  • the detergent composition of the invention may be in any convenient form, e.g., a bar, a homogenous tablet, a tablet having two or more layers, a pouch having one or more compartments, a regular or compact powder, a granule, a paste, a gel, or a regular, compact or concentrated liquid.
  • a detergent composition according to the invention may be formulated, for example, as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.
  • the detergent composition according to the present invention is a liquid laundry detergent composition, a powder laundry detergent composition, a liquid dishwash detergent composition, or a powder dishwash detergent composition.
  • the composition is a liquid or powder automatic dishwashing (ADW) detergent composition; or a liquid manual dishwashing detergent composition.
  • ADW liquid or powder automatic dishwashing
  • Pouches can be configured as single or multicompartments. It can be of any form, shape and material which is suitable for hold the composition, e.g. without allowing the release of the composition to release of the composition from the pouch prior to water contact.
  • the pouch is made from water soluble film which encloses an inner volume. Said inner volume can be divided into compartments of the pouch.
  • Preferred films are polymeric materials preferably polymers which are formed into a film or sheet.
  • Preferred polymers, copolymers or derivates thereof are selected polyacrylates, and water soluble acrylate copolymers, methyl cellulose, carboxy methyl cellulose, sodium dextrin, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, malto dextrin, poly methacrylates, most preferably polyvinyl alcohol copolymers and, hydroxypropyl methyl cellulose (HPMC).
  • the level of polymer in the film for example PVA is at least about 60%.
  • Preferred average molecular weight will typically be about 20,000 to about 150,000.
  • Films can also be of blended compositions comprising hydrolytically degradable and water soluble polymer blends such as polylactide and polyvinyl alcohol (known under the Trade reference M8630 as sold by MonoSol LLC, Indiana, USA) plus plasticisers like glycerol, ethylene glycerol, propylene glycol, sorbitol and mixtures thereof.
  • the pouches can comprise a solid laundry cleaning composition or part components and/or a liquid cleaning composition or part components separated by the water soluble film.
  • the compartment for liquid components can be different in composition than compartments containing solids: US2009/0011970 A1.
  • Detergent ingredients can be separated physically from each other by compartments in water dissolvable pouches or in different layers of tablets. Thereby negative storage interaction between components can be avoided. Different dissolution profiles of each of the compartments can also give rise to delayed dissolution of selected components in the wash solution.
  • a liquid or gel detergent which is not unit dosed, may be aqueous, typically containing at least 20% by weight and up to 95% water, such as up to about 70% water, up to about 65% water, up to about 55% water, up to about 45% water, up to about 35% water.
  • Other types of liquids including without limitation, alkanols, amines, diols, ethers and polyols may be included in an aqueous liquid or gel.
  • An aqueous liquid or gel detergent may contain from 0-30% organic solvent.
  • a liquid or gel detergent may be non-aqueous.
  • a granular detergent may be formulated as described in WO09/092699, EP1705241, EP1382668, W007/001262, US6472364, W004/074419 or WO09/102854.
  • Other useful detergent formulations are described in WO09/124162, WO09/124163, WO09/117340, WO09/117341, WO09/117342, W009/072069, WO09/063355, W009/132870, WO09/121757, WO09/112296, WO09/112298, W009/103822, W009/087033, W009/050026, W009/047125, W009/047126, W009/047127, W009/047128, W009/021784, W009/010375, W009/000605, WO09/122125, WO09/095645, W009/040544, W009/040545, W009/0247
  • WO2010108002 WO2010111365, WO2010108000, WO2010107635, WO2010090915,
  • the enzyme of the invention may be formulated as a granule for example as a co-granule that combines one or more enzymes. Each enzyme will then be present in more granules securing a more uniform distribution of enzymes in the detergent. This also reduces the physical segregation of different enzymes due to different particle sizes.
  • Methods for producing multi-enzyme co granulates for the detergent industry are disclosed in the IP.com disclosure IPCOM000200739D.
  • WO 2013/188331 Another example of formulation of enzymes by the use of co-granulates are disclosed in WO 2013/188331, which relates to a detergent composition comprising (a) a multi-enzyme co granule; (b) less than 10 wt zeolite (anhydrous basis); and (c) less than 10 wt phosphate salt (anhydrous basis), wherein said enzyme co-granule comprises from 10 to 98 wt% moisture sink component and the composition additionally comprises from 20 to 80 wt% detergent moisture sink component.
  • WO 2013/188331 also relates to a method of treating and/or cleaning a surface, preferably a fabric surface comprising the steps of (i) contacting said surface with the detergent composition as claimed and described herein in an aqueous wash liquor, (ii) rinsing and/or drying the surface.
  • the multi-enzyme co-granule may comprise an enzyme of the invention and (a) one or more enzymes selected from the group consisting of lipases, cellulases, xyloglucanases, perhydrolases, peroxidases, lipoxygenases, laccases, hemicellulases, proteases, cellobiose dehydrogenases, xylanases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, ligninases, pullulanases, tannases, pentosanases, lichenases glucanases, arabinosidases, hyaluronidase, chondroitinase, second amylases, and mixtures thereof.
  • one or more enzymes selected from the group consisting of lipases, cellula
  • the present invention is also directed to methods for using the alpha-amylase polypeptide(s).
  • the alpha-amylase polypeptide(s) of the invention are useful in detergent compositions, laundry washing, dishwashing and/or cleaning processes.
  • the soils and stains that are important for cleaning are composed of many different substances, and a range of different enzymes, all with different substrate specificities, have been developed for use in detergents both in relation to laundry and hard surface cleaning, such as dishwashing. These enzymes are considered to provide an enzyme detergency benefit, since they specifically improve stain removal in the cleaning process that they are used in, compared to the same process without enzymes.
  • Stain removing enzymes that are known in the art include enzymes such as proteases, second amylases, lipases, cutinases, cellulases, endoglucanases, xyloglucanases, pectinases, pectin lyases, xanthanases, peroxidaes, haloperoxygenases, catalases and mannanases.
  • enzymes such as proteases, second amylases, lipases, cutinases, cellulases, endoglucanases, xyloglucanases, pectinases, pectin lyases, xanthanases, peroxidaes, haloperoxygenases, catalases and mannanases.
  • the present invention relates to the use of a alpha-amylase polypeptide(s) as described herein, or to the use of a composition comprising the alpha-amylase polypeptide(s), in a domestic or industrial cleaning process.
  • the present invention relates to the use of a alpha-amylase polypeptide(s) as described herein, or to the use of a composition comprising the alpha-amylase polypeptide(s) for cleaning of fabric, for example laundry.
  • the present invention relates to the use of a alpha-amylase polypeptide(s) as described herein, or to the use of a composition comprising the alpha-amylase polypeptide(s) for cleaning of ceramic, plastic or glass material, for example dishwashing.
  • the invention relates to a laundering process which may be for household laundering as well as industrial laundering. Furthermore, the invention relates to a process for the laundering of textiles (e.g. fabrics, garments, cloths etc.) where the process comprises treating the textile with a washing solution containing a detergent composition of the present invention.
  • the laundering can for example be carried out using a household or an industrial washing machine or be carried out by hand using a detergent composition of the invention.
  • the invention relates to a dish wash process, including ADW and/or HDW; or hard surface cleaning, which may be for household cleaning as well as industrial cleaning. Furthermore, the invention relates to a process for dish wash or hard surface cleaning, where the process comprises treating the dishes or hard surfaces with a washing solution comprising a detergent composition of the present invention.
  • the dish wash or hard surface cleaning can for example be carried out using a household dish washing machine or be carried out by hand using a detergent composition of the invention.
  • a cleaning process may for example be a dishwashing process, such as dishwashing; a laundry process; or cleaning of hard surfaces such as bathroom tiles, floors, table tops, drains, sinks and washbasins.
  • An automated dishwashing process may comprise the following steps: a. Exposing dishware to an aqueous wash liquor comprising a detergent composition; b. Completing at least one wash cycle; and c. Optionally rinsing and drying the dishware.
  • the invention provides a method of dishwashing in an automatic dishwashing machine using a detergent composition as described herein, comprising the steps of adding said detergent composition in a detergent composition compartment in said automatic dishwashing machine, and releasing said detergent composition during a main-wash cycle.
  • compositions may be employed at concentrations from about 1000 - 8000 ppm in the wash liquor, such as 2000-6000 ppm in the wash liquor.
  • the hardness of the wash liquor may be 3-30 °dH.
  • the pH of the wash liquor may be 3-11 , such as 7-11.
  • the temperature of the wash liquor when used may be in the range of 10-70°C.
  • the temperature of the wash liquor can be in the range of 15-60°C, in the range of 20- 50°C, in the range of 25-50°C, in the range of 30-45°C, in the range of 35-40°C, in the range of 35-55°C, or in the range of 40-50°C.
  • the temperature may vary throughout the wash program.
  • One enzyme may be activated at one active temperature range and other enzymes may be activated at another active temperature range differing from the active temperature range of the first enzyme.
  • one or more wash cycles may be carried out at a temperature of 32-38°C and other wash cycles may be carried out at a temperature of 45-55°C.
  • the advantage of this is that the single enzymes are allowed to work at their optimal temperature.
  • the optimal temperature of the enzymes of a detergent composition may vary but is typically in the range of 65-70°C for proteases and in the range of 55-65°C for amylases.
  • the optimal temperature may be determined by different assays, such as comparing the activity over a 15 min period of time in a buffered solution at different temperatures.
  • the dishware can be rinsed with water or with water comprising a rinsing aid.
  • the effectiveness of the cleaning can be further improved if an acidic rinsing aid is used.
  • the rinsing aid should be capable of lowering the pH below 4 during at least a period of the rinsing step.
  • the pH may be even further lowered e.g. to below pH 3.5, such as below pH 3, below pH 2.5 or below pH 2.
  • the period of lowering the pH may be at least 1 minute, such as at least 2 minutes, at least 3 minutes, at least 4 minutes, at least 5 minutes, at least 6 minutes or at least 7 minutes.
  • the period of lowering the pH may even be as long as the time period for the full rinsing step.
  • the ability of lowering the pH during the rinsing step is due to a buffering agent.
  • a buffer with strong buffer capacity at low pH, from pH 4 and below should be selected.
  • the buffer capacity should correspond to the same effect as the pH drop was done with 15 ml 4M HCL/rinse cycle.
  • the ability of lowering the pH during the rinsing step is due to a buffering agent selected from the group consisting of citric acid, acetic acid, potassium dihydrogen phosphate, boric acid, diethyl barbituric acid, Carmody buffer and Britton-Robinson buffer.
  • the rinsing aid can further improve the cleaning of the dishware by rinsing away any soil released from the dishware during the washing cycle.
  • the acidic rinsing aid prevents precipitation of calcium on the dishware.
  • Laundry processes can for example be household laundering, but it may also be industrial laundering.
  • a process for laundering of fabrics and/or garments may be a process comprises treating fabrics with a washing solution containing a detergent composition as described herein.
  • a cleaning process ora textile care process can for example be carried out in a machine-washing process or in a manual washing process.
  • the fabrics and/or garments subjected to a washing, cleaning or textile care process may be conventional washable laundry, for example household laundry.
  • the major part of the laundry is garments and fabrics, including knits, woven, denims, non-woven, felts, yarns, and towelling.
  • the fabrics may be cellulose based such as natural cellulosics, including cotton, flax, linen, jute, ramie, sisal or coir or manmade cellulosics (e.g., originating from wood pulp) including viscose/rayon, ramie, cellulose acetate fibres (tricell), lyocell or blends thereof.
  • the fabrics may also be non-cellulose based such as natural polyamides including wool, camel, cashmere, mohair, rabbit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylene and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibres.
  • non-cellulose based such as natural polyamides including wool, camel, cashmere, mohair, rabbit and silk or synthetic polymer such as nylon, aramid, polyester, acrylic, polypropylene and spandex/elastane, or blends thereof as well as blend of cellulose based and non-cellulose based fibres.
  • the present invention relates to a method of laundering in an automatic laundering machine using a detergent composition as described herein, comprising the steps of adding said detergent composition in a detergent composition compartment in said automatic laundering machine, and releasing said detergent composition during a main wash cycle.
  • the present invention relates to a method of laundering, comprising laundering a garment with a detergent composition as described herein, preferably at a temperature of 50°C or less, or more preferably at a temperature of 45°C or less, or even more preferably at a temperature of 40°C or less even more preferably at a temperature of 35°C or less or even more preferably at a temperature of 30°C or less, even more preferably at a temperature of 25°C or less or even more preferably at a temperature of 20°C or less.
  • These methods include a method for laundering a fabric.
  • the method comprises the steps of contacting a fabric to be laundered with a cleaning laundry solution comprising a detergent composition.
  • the fabric may comprise any fabric capable of being laundered in normal consumer use conditions.
  • the solution preferably has a pH from about 5.5 to about 11.5.
  • the compositions may be employed at concentrations from about 100 ppm, preferably 500 ppm to about 15,000 ppm in solution.
  • the water temperatures typically range from about 5°C to about 95°C, including about 10°C, about 15°C, about 20°C, about 25°C, about 30°C, about 35°C, about 40°C, about 45°C, about 50°C, about 55°C, about 60°C, about 65°C, about 70°C, about 75°C, about 80°C, about 85°C and about 90°C.
  • the water to fabric ratio is typically from about 1 : 1 to about 30: 1.
  • the washing method is conducted at a degree of hardness of from about 0°dH to about 30°dH.
  • the degree of hardness is about 16°dH, under typical US wash conditions about 6°dH, and under typical Asian wash conditions, about 3°dH.
  • the alpha-amylase activity may be determined by a method employing the G7-pNP substrate.
  • G7-pNP which is an abbreviation for 4,6-ethylidene(G 7 )-p-nitrophenyl(Gi)-a,D-maltoheptaoside, a blocked oligosaccharide which can be cleaved by an endo-amylase, such as an alpha-amylase.
  • Kits containing G7-pNP substrate and alpha- Glucosidase is manufactured by Roche/Hitachi (cat. No.11876473).
  • the G7-pNP substrate from this kit contains 22 mM 4,6-ethylidene- G7-pNP and 52.4 mM HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid), pH 7.0) .
  • the alpha-Glucosidase reagent contains 52.4 mM HEPES, 87 mM NaCI, 12.6 mM MgCL, 0.075 mM CaCh, > 4 kU/L alpha-glucosidase).
  • the substrate working solution is made by mixing 1 ml_ of the alpha-Glucosidase reagent with 0.2 ml_ of the G7-pNP substrate. This substrate working solution is made immediately before use.
  • the amylase sample to be analyzed is diluted in dilution buffer to ensure the pH in the diluted sample is 7.
  • the assay is performed by transferring 20mI diluted enzyme samples to 96 well microtiter plate and adding 80mI substrate working solution. The solution is mixed and pre-incubated 1 minute at room temperature and absorption is measured every 20 sec. over 5 minutes at OD 405 nm.
  • the slope (absorbance per minute) of the time dependent absorption-curve is directly proportional to the specific activity (activity per mg enzyme) of the alpha-amylase in question under the given set of conditions.
  • the amylase sample should be diluted to a level where the slope is below 0.4 absorbance units per minute.
  • the alpha-amylase activity can also be determined by a method using the Phadebas substrate (from for example Magle Life Sciences, Lund, Sweden).
  • a Phadebas tablet includes interlinked starch polymers that are in the form of globular microspheres that are insoluble in water. A blue dye is covantly bound to these microspheres.
  • the interlinked starch polymers in the microsphere are degraded at a speed that is proportional to the alpha-amylase activity.
  • the alpha-amylse degrades the starch polymers, the released blue dye is water soluble and concentration of dye can be determined by measuring absorbance at 620nm. The concentration of blue is proportional to the alpha-amylase activity in the sample.
  • the amylase sample to be analysed is diluted in activity buffer with the desired pH.
  • One substrate tablet is suspended in 5ml_ activity buffer and mixed on magnetic stirrer.
  • MTP microtiter plate
  • the amylase sample should be diluted so that the absorbance at 620nm is between 0 and 2.2, and is within the linear range of the activity assay.
  • the alpha-amylase activity can also be determined by reducing sugar assay with for example corn starch substrate.
  • the number of reducing ends formed by the alpha-amylase hydrolysing the alpha-1, 4-glycosidic linkages in starch is determined by reaction with p- Hydroxybenzoic acid hydrazide (PHBAH). After reaction with PHBAH the number of reducing ends can be measured by absorbance at 405nm and the concentration of reducing ends is proportional to the alpha-amylase activity in the sample.
  • PHBAH p- Hydroxybenzoic acid hydrazide
  • the corns starch substrate (3mg/ml) is solubilised by cooking for 5 minutes in milliQ water and cooled down before assay.
  • a Ka-Na-tartrate/NaOH solution K-Na- tartrate (Merck 8087) 50g/l, NaOH 20g/l
  • p- Hydroxybenzoic acid hydrazide PBAH, Sigma H9882
  • PCR-MTP 50mI activity buffer is mixed with 50mI substrate. Add 50mI diluted enzyme and mix. Incubate at the desired temperature in PCR machine for 5 minutes. Reaction is stopped by adding 75mI stop solution (Ka-Na-tartrate/NaOH/PHBAH). Incubate in PCR machine for 10 minutes at 95°C. Transfer 150mI to new MTP and measure absorbance at 405nm.
  • the amylase sample should be diluted so that the absorbance at 405nm is between 0 and 2.2, and is within the linear range of the activity assay.
  • an EnzChek® Ultra Amylase Assay Kit (E33651 , Invitrogen, La Jolla, CA, USA) may be used.
  • the substrate is a corn starch derivative, DOTM starch, which is corn starch labeled with BODIPY® FL dye to such a degree that fluorescence is quenched.
  • DOTM starch corn starch labeled with BODIPY® FL dye to such a degree that fluorescence is quenched.
  • One vial containing approx. 1 mg lyophilized substrate is dissolved in 100 microliters of 50 mM sodium acetate (pH 4.0). The vial is vortexed for 20 seconds and left at room temperature, in the dark, with occasional mixing until dissolved. Then 900 microliters of 100 mM acetate, 0.01% (w/v) TRITON® X100, 0.125 mM CaCI 2 , pH 5.5 is added, vortexed thoroughly and stored at room temperature, in the dark until ready to use.
  • the stock substrate working solution is prepared by diluting 10-fold in residual activity buffer (100 mM acetate, 0.01% (w/v) TRITON® X100, 0.125 mM CaCI 2 , pH 5.5). Immediately after incubation the enzyme is diluted to a concentration of 10-20 ng enzyme protein/ml in 100 mM acetate, 0.01% (W/v) TRITON® X100, 0.125 mM CaCI 2 , pH 5.5.
  • residual activity buffer 100 mM acetate, 0.01% (w/v) TRITON® X100, 0.125 mM CaCI 2 , pH 5.5.
  • the assay 25 microliters of the substrate working solution is mixed for 10 second with 25 microliters of the diluted enzyme in a black 384 well microtiter plate.
  • the fluorescence intensity is measured (excitation: 485 nm, emission: 555 nm) once every minute for 15 minutes in each well at 25°C and the V max is calculated as the slope of the plot of fluorescence intensity against time.
  • the plot should be linear and the residual activity assay has been adjusted so that the diluted reference enzyme solution is within the linear range of the activity assay.
  • amino acid of the first parent polypeptide are defined as domain A and C and amino acid of the second parent polypeptide are defined as the B domain.
  • Synthetic DNA fragments coding for part of the A-C domain from the first parent polypeptide and the B domain from the second parent polypeptide were designed and purchased from an external vendor.
  • the resulting amylase consisting of the A and C domain from the first parent polypeptide and the B domain from the second parent polypeptide is the polypeptide as set forth in SEQ ID NO: 1.
  • Example 1 In order to determine whether the hybrid polypeptide generated as described in Example 1 has a maintained or even improved activity, the hybrid polypeptide was evaluated by the micro swatch assay.
  • the following detergent composition was prepared
  • Model A Detergent 4:1 Molar Ratio of CaCh and MgCh Stock Solution with 6000 dH (Water Hardness).
  • 125.8 g of CaCl 2 .2H 2 0 was weighed into 1 -liter bottle and to this 500 ml of type I water was added and stirred well.
  • To this 43.8 g of MgCl 2 .6H 2 0 was weighed and added and dissolved well and the final volume was made up to 1000 ml with type I water.
  • Model A Detergent with a Water Hardness of 15 (15° dH): 3.335 g of Model A detergent was weighed and transferred into 1 litre bottle and to this 865 ml of type I water was added and mixed well. To this 7.5 ml of 0.535M NaHCOs was added, mixed well and made up the volume to 1 liter with type 1 water. To adjust the water hardness to 15° dH, 2.5 ml of 4:1 molar ratio of CaCl 2 .2H 2 0 and MgCl 2 .6H 2 0 stock solution with 6000° dH was added and the mixture was stirred for 15 min.
  • Colonies were picked from the transformed plate by colony picker (KBiosystems) and inoculated in 96-well culture plate comprising TBGIy media for growth. The cultures were grown for 3 days at 37° C. and the supernatant was recovered from the plates by centrifugation.
  • CS-27 5-meter swatches were obtained from Center for Test materials (CFT, The Netherlands) and were cut into 6 mm micro-swatches using swatch puncher. One or two swatches were placed in each well of 96-well Nunc plates to which 180 pi of Model A detergent (0.33%) was added. The culture supernatants or purified protein were diluted to 0.1 ppm or 0.4 ppm with 100 mM MOPS, pH 7 with 0.1 mM CaCI2, 0.01% Triton-X.
  • AMG Amyloglucosidase
  • PAHBAH p-hydroxybenzoic acid hydrazide
  • the Improvement Factor (IF) was calculated as:
  • IF [Specific Activity of alpha-amylase polypeptide]/[Specific Activity of parent polypeptide (alpha-amylase)]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne des polypeptides d'alpha-amylase. La présente invention concerne également des polynucléotides codant pour les polypeptides d'alpha-amylase ; des constructions d'acide nucléique, des vecteurs et des cellules hôtes comprenant les polynucléotides ; et des procédés d'utilisation des polypeptides d'alpha-amylase.
EP22737444.4A 2021-06-23 2022-06-22 Polypeptides d'alpha-amylase Pending EP4359518A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202141028204 2021-06-23
PCT/EP2022/067024 WO2022268885A1 (fr) 2021-06-23 2022-06-22 Polypeptides d'alpha-amylase

Publications (1)

Publication Number Publication Date
EP4359518A1 true EP4359518A1 (fr) 2024-05-01

Family

ID=82385648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22737444.4A Pending EP4359518A1 (fr) 2021-06-23 2022-06-22 Polypeptides d'alpha-amylase

Country Status (2)

Country Link
EP (1) EP4359518A1 (fr)
WO (1) WO2022268885A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (fr) 2022-05-14 2023-11-23 Novozymes A/S Compositions et procédés de prévention, de traitement, de suppression et/ou d'élimination d'infestations et d'infections phytopathogènes

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (fr) 1969-05-29 1972-11-22
GB1483591A (en) 1973-07-23 1977-08-24 Novo Industri As Process for coating water soluble or water dispersible particles by means of the fluid bed technique
GB1590432A (en) 1976-07-07 1981-06-03 Novo Industri As Process for the production of an enzyme granulate and the enzyme granuate thus produced
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
DK263584D0 (da) 1984-05-29 1984-05-29 Novo Industri As Enzymholdige granulater anvendt som detergentadditiver
US4933287A (en) 1985-08-09 1990-06-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EG18543A (en) 1986-02-20 1993-07-30 Albright & Wilson Protected enzyme systems
DK122686D0 (da) 1986-03-17 1986-03-17 Novo Industri As Fremstilling af proteiner
US5989870A (en) 1986-04-30 1999-11-23 Rohm Enzyme Finland Oy Method for cloning active promoters
US4810414A (en) 1986-08-29 1989-03-07 Novo Industri A/S Enzymatic detergent additive
US5389536A (en) 1986-11-19 1995-02-14 Genencor, Inc. Lipase from Pseudomonas mendocina having cutinase activity
DE3854249T2 (de) 1987-08-28 1996-02-29 Novo Nordisk As Rekombinante Humicola-Lipase und Verfahren zur Herstellung von rekombinanten Humicola-Lipasen.
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
EP0406314B1 (fr) 1988-03-24 1993-12-01 Novo Nordisk A/S Preparation de cellulase
JPH02238885A (ja) 1989-03-13 1990-09-21 Oji Paper Co Ltd フェノールオキシダーゼ遺伝子組換えdna、該組換えdnaにより形質転換された微生物、その培養物及びフェノールオキシダーゼの製造方法
AU641169B2 (en) 1989-06-13 1993-09-16 Genencor International, Inc. A method for killing cells without cell lysis
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
DK0493398T3 (da) 1989-08-25 2000-05-22 Henkel Research Corp Alkalisk, proteolytisk enzym og fremgangsmåde til fremstilling deraf
DK115890D0 (da) 1990-05-09 1990-05-09 Novo Nordisk As Enzym
ATE118545T1 (de) 1990-05-09 1995-03-15 Novo Nordisk As Eine ein endoglucanase enzym enthaltende zellulasezubereitung.
FI903443A (fi) 1990-07-06 1992-01-07 Valtion Teknillinen Framstaellning av lackas genom rekombinantorganismer.
ES2121786T3 (es) 1990-09-13 1998-12-16 Novo Nordisk As Variantes de lipasa.
EP0495258A1 (fr) 1991-01-16 1992-07-22 The Procter & Gamble Company Compositions de détergent contenant de la cellulase de haute activité et de l'argile adoucissant
EP0511456A1 (fr) 1991-04-30 1992-11-04 The Procter & Gamble Company Détergents liquides contenant un ester aromatique de l'acide borique pour inhibition d'enzyme protéolitique
DK0583420T3 (da) 1991-04-30 1996-07-29 Procter & Gamble Builderholdige flydende detergenter med borsyre-polyol-kompleks til inhibering af proteolytisk enzym
US5858757A (en) 1991-05-01 1999-01-12 Novo Nordisk A/S Stabilized enzymes and detergent compositions
US5340735A (en) 1991-05-29 1994-08-23 Cognis, Inc. Bacillus lentus alkaline protease variants with increased stability
JP3450326B2 (ja) 1991-12-13 2003-09-22 ザ、プロクター、エンド、ギャンブル、カンパニー 過酸前駆物質としてのアシル化クエン酸エステル
DK28792D0 (da) 1992-03-04 1992-03-04 Novo Nordisk As Nyt enzym
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
WO1994002597A1 (fr) 1992-07-23 1994-02-03 Novo Nordisk A/S Alpha-amylase mutante, detergent, agent de lavage de vaisselle et de liquefaction
JP3681750B2 (ja) 1992-10-06 2005-08-10 ノボザイムス アクティーゼルスカブ セルラーゼ変異体
DK0689589T4 (da) 1993-02-11 2010-01-04 Genencor Int Oxidativ stabil alfa-amylase
KR950702240A (ko) 1993-04-27 1995-06-19 한스 발터 라벤 세제로의 이용을 위한 새로운 리파제 변형체
DK52393D0 (fr) 1993-05-05 1993-05-05 Novo Nordisk As
FR2704860B1 (fr) 1993-05-05 1995-07-13 Pasteur Institut Sequences de nucleotides du locus cryiiia pour le controle de l'expression de sequences d'adn dans un hote cellulaire.
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
CN1189558C (zh) 1993-10-08 2005-02-16 诺沃奇梅兹有限公司 淀粉酶变体
KR100338786B1 (ko) 1993-10-13 2002-12-02 노보자임스 에이/에스 H2o2-안정한퍼록시다제변이체
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
KR970701264A (ko) 1994-02-22 1997-03-17 안네 제케르 지질분해효소의 변이체 제조방법(a method of preparing a viriant of a lipolytic enzyme)
EP1921147B1 (fr) 1994-02-24 2011-06-08 Henkel AG & Co. KGaA Enzymes améliorées et détergents les contenant
EP0749473B1 (fr) 1994-03-08 2005-10-12 Novozymes A/S Nouvelles cellulases alcalines
JPH09510617A (ja) 1994-03-29 1997-10-28 ノボ ノルディスク アクティーゼルスカブ アルカリ性バチルスアミラーゼ
NL9401048A (nl) 1994-03-31 1995-11-01 Stichting Scheikundig Onderzoe Haloperoxidasen.
DE69528524T2 (de) 1994-05-04 2003-06-26 Genencor Int Lipasen mit verbesserten tensiostabilitaet
PT765394E (pt) 1994-06-03 2002-03-28 Novozymes Biotech Inc Lacases myceliophthora purificadas e acidos nucleicos que as codificam
AU2884595A (en) 1994-06-20 1996-01-15 Unilever Plc Modified pseudomonas lipases and their use
AU2884695A (en) 1994-06-23 1996-01-19 Unilever Plc Modified pseudomonas lipases and their use
EP1559776A3 (fr) 1994-06-30 2006-01-11 Novozymes Biotech, Inc. Systeme d'expression du Fusarium non pathogene, non toxicogene, non toxique et promoteurs et terminateurs utilisés dans ce systeme
WO1996011262A1 (fr) 1994-10-06 1996-04-18 Novo Nordisk A/S Enzyme et preparation enzymatique presentant une activite endoglucanase
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
AU3697995A (en) 1994-10-26 1996-05-23 Novo Nordisk A/S An enzyme with lipolytic activity
AR000862A1 (es) 1995-02-03 1997-08-06 Novozymes As Variantes de una ó-amilasa madre, un metodo para producir la misma, una estructura de adn y un vector de expresion, una celula transformada por dichaestructura de adn y vector, un aditivo para detergente, composicion detergente, una composicion para lavado de ropa y una composicion para la eliminacion del
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
ATE315083T1 (de) 1995-03-17 2006-02-15 Novozymes As Neue endoglukanase
BR9608149B1 (pt) 1995-05-05 2012-01-24 processos para efetuar mutação no dna que codifica uma enzima de subtilase ou sua pré- ou pré-pró-enzima e para a manufatura de uma enzima de subtilase mutante.
DE69636754T2 (de) 1995-07-14 2007-10-11 Novozymes, Inc., Davis Haloperoxidasen aus curvularia verruculosa und nukleinsäuren, die für diese codieren
WO1997004079A1 (fr) 1995-07-14 1997-02-06 Novo Nordisk A/S Enzyme modifiee a activite lipolytique
DE19528059A1 (de) 1995-07-31 1997-02-06 Bayer Ag Wasch- und Reinigungsmittel mit Iminodisuccinaten
AU6655196A (en) 1995-08-11 1997-03-12 Novo Nordisk A/S Novel lipolytic enzymes
US6008029A (en) 1995-08-25 1999-12-28 Novo Nordisk Biotech Inc. Purified coprinus laccases and nucleic acids encoding the same
US5763385A (en) 1996-05-14 1998-06-09 Genencor International, Inc. Modified α-amylases having altered calcium binding properties
WO1998008940A1 (fr) 1996-08-26 1998-03-05 Novo Nordisk A/S Nouvelle endoglucanase
ATE324437T1 (de) 1996-09-17 2006-05-15 Novozymes As Cellulasevarianten
DE69718351T2 (de) 1996-10-08 2003-11-20 Novozymes As Diaminobenzoesäure derivate als farbstoffvorläufer
CA2268772C (fr) 1996-10-18 2008-12-09 The Procter & Gamble Company Compositions detergentes comprenant un enzyme amylolytique et un surfactant cationique
AU4772697A (en) 1996-11-04 1998-05-29 Novo Nordisk A/S Subtilase variants and compositions
WO1998020116A1 (fr) 1996-11-04 1998-05-14 Novo Nordisk A/S Variants de subtilase et compositions
EP1002061A1 (fr) 1997-07-04 2000-05-24 Novo Nordisk A/S VARIANTS D'ENDO-1,4-$g(b)-GLUCANASE DE FAMILLE 6 ET COMPOSITIONS NETTOYANTES CONTENANT DE TELS COMPOSES
CN100593036C (zh) 1997-08-29 2010-03-03 诺沃奇梅兹有限公司 蛋白酶变体及组合物
US6187576B1 (en) 1997-10-13 2001-02-13 Novo Nordisk A/S α-amylase mutants
AR016969A1 (es) 1997-10-23 2001-08-01 Procter & Gamble VARIANTE DE PROTEASA, ADN, VECTOR DE EXPRESIoN, MICROORGANISMO HUESPED, COMPOSICIoN DE LIMPIEZA, ALIMENTO PARA ANIMALES Y COMPOSICIoN PARA TRATAR UN TEXTIL
US5955310A (en) 1998-02-26 1999-09-21 Novo Nordisk Biotech, Inc. Methods for producing a polypeptide in a bacillus cell
EP2287318B1 (fr) 1998-06-10 2014-01-22 Novozymes A/S Mannanases
US6472364B1 (en) 1998-10-13 2002-10-29 The Procter & Gamble Company Detergent compositions or components
ATE332968T1 (de) 1998-10-26 2006-08-15 Novozymes As Erstellung und durchmusterung von interessierenden dna-banken in zellen von filamentösen pilzen
EP1137761B1 (fr) 1998-12-04 2007-08-01 Novozymes A/S Variantes de cutinase
EP2278016B1 (fr) 1999-03-22 2012-09-26 Novozymes Inc. Promoteurs de Fusarium venenatum et leur utilisation
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
EP2206786A1 (fr) 1999-08-31 2010-07-14 Novozymes A/S Nouvelles protéases et variantes associées
CN101974375B (zh) 1999-12-15 2014-07-02 诺沃奇梅兹有限公司 对蛋渍具有改进洗涤性能的枯草杆菌酶变体
EP1259594B1 (fr) 2000-02-24 2009-02-18 Novozymes A/S Xyloglucanases appartenant a la famille 44
EP2221365A1 (fr) 2000-03-08 2010-08-25 Novozymes A/S Variantes avec propriétés altérées
AU2001246407A1 (en) 2000-04-14 2001-10-30 Maxygen, Inc. Nucleic acids encoding polypeptides having haloperoxidase activity
WO2001079460A2 (fr) 2000-04-14 2001-10-25 Novozymes A/S Polypeptides a activite haloperoxydase
AU2001246404A1 (en) 2000-04-14 2001-10-30 Novozymes A/S Polypeptides having haloperoxidase activity
AU2001246406A1 (en) 2000-04-14 2001-10-30 Maxygen, Inc. Nucleic acids encoding polypeptides having haloperoxidase activity
WO2001092502A1 (fr) 2000-06-02 2001-12-06 Novozymes A/S Variants de cutinase
JP4855632B2 (ja) 2000-08-01 2012-01-18 ノボザイムス アクティーゼルスカブ 変更された性質を有するα−アミラーゼ突然変異体
CN100591763C (zh) 2000-08-21 2010-02-24 诺维信公司 枯草杆菌酶
MXPA03011194A (es) 2001-06-06 2004-02-26 Novozymes As Endo-beta-1,4-glucanasa.
DK200101090A (da) 2001-07-12 2001-08-16 Novozymes As Subtilase variants
GB0127036D0 (en) 2001-11-09 2002-01-02 Unilever Plc Polymers for laundry applications
DE10162728A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14393) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
ES2331788T3 (es) 2002-06-11 2010-01-15 Unilever N.V. Pastillas de detergente.
WO2004003186A2 (fr) 2002-06-26 2004-01-08 Novozymes A/S Subtilases et variants de la subtilase presentant une immunogenicite modifiee
TWI319007B (en) 2002-11-06 2010-01-01 Novozymes As Subtilase variants
WO2004067737A2 (fr) 2003-01-30 2004-08-12 Novozymes A/S Subtilases
EP1923455A3 (fr) 2003-02-18 2009-01-21 Novozymes A/S Compositions détergents
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
BRPI0411568A (pt) 2003-06-18 2006-08-01 Unilever Nv composição de tratamento para lavagem de roupa
GB0314211D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
CA2538349C (fr) 2003-06-25 2014-08-12 Novozymes A/S Polypeptides a activite alpha-amylase et polynucleotides codant pour ceux-ci
EP1678296B1 (fr) 2003-10-23 2011-07-13 Novozymes A/S Protease a stabilite amelioree dans les detergents
CN1906303B (zh) 2003-11-19 2013-06-05 金克克国际有限公司 丝氨酸蛋白酶、编码丝氨酸酶的核酸以及包含它们的载体和宿主细胞
MXPA06005652A (es) 2003-12-03 2006-08-17 Genencor Int Perhidrolasa.
JP4955546B2 (ja) 2004-07-05 2012-06-20 ノボザイムス アクティーゼルスカブ 変更された性質を有するα−アミラーゼ変異体
CN101128579B (zh) 2004-12-23 2013-10-02 诺维信公司 α-淀粉酶变体
ATE404660T1 (de) 2005-03-23 2008-08-15 Unilever Nv Körperförmige wasch- oder reinigungsmittelzusammensetzungen
CN101160385B (zh) 2005-04-15 2011-11-16 巴斯福股份公司 具有内部聚氧化乙烯嵌段和外部聚氧化丙烯嵌段的两亲水溶性烷氧基化聚亚烷基亚胺
BRPI0610717A2 (pt) 2005-04-15 2010-07-20 Procter & Gamble composições detergentes lìquidas para lavagem de roupas com polìmeros de polietileno imina modificada e enzima lipase
EP1888734A2 (fr) 2005-05-31 2008-02-20 The Procter and Gamble Company Compositions detergentes renfermant un polymere et leur utilisation
PL1891195T3 (pl) 2005-06-17 2013-03-29 Procter & Gamble Katalizator organiczny ze zwiększoną kompatybilnością enzymatyczną
WO2007006305A1 (fr) 2005-07-08 2007-01-18 Novozymes A/S Variants de subtilase
AR055444A1 (es) 2005-10-12 2007-08-22 Procter & Gamble Uso y produccion de metalopretasa neutra estable al almacenamiento
US8518675B2 (en) 2005-12-13 2013-08-27 E. I. Du Pont De Nemours And Company Production of peracids using an enzyme having perhydrolysis activity
US20070191249A1 (en) 2006-01-23 2007-08-16 The Procter & Gamble Company Enzyme and photobleach containing compositions
BRPI0707209A2 (pt) 2006-01-23 2011-04-26 Procter & Gamble composições detergentes
CN101484565B (zh) 2006-01-23 2011-12-14 宝洁公司 包含脂肪酶和漂白催化剂的组合物
CN101370933B (zh) 2006-01-23 2015-11-25 诺维信公司 脂肪酶变体
WO2007087242A2 (fr) 2006-01-23 2007-08-02 The Procter & Gamble Company Composition comprenant une lipase et un catalyseur de blanchiment
EP2251404A1 (fr) 2006-01-23 2010-11-17 The Procter & Gamble Company Composition de lavage contenant une enzyme et un agent de nuançage
BRPI0707215A2 (pt) 2006-01-23 2011-04-26 Procter & Gamble composições de detergentes
CN101454364B (zh) 2006-05-31 2011-10-26 巴斯夫欧洲公司 基于聚氧化烯和乙烯基酯的两亲性接枝聚合物
DE202006009003U1 (de) 2006-06-06 2007-10-25 BROSE SCHLIEßSYSTEME GMBH & CO. KG Kraftfahrzeugschloß
PL1867708T3 (pl) 2006-06-16 2017-10-31 Procter & Gamble Kompozycje detergentu
ATE503011T1 (de) 2006-07-07 2011-04-15 Procter & Gamble Waschmittelzusammensetzungen
WO2008153815A2 (fr) 2007-05-30 2008-12-18 Danisco Us, Inc., Genencor Division Variants d'une alpha-amylase avec des taux de production améliorés dans les processus de fermentation
EP2162522B1 (fr) 2007-06-22 2018-07-04 Unilever N.V. Compositions détergentes enzymatiques granulaires
ES2364193T3 (es) 2007-07-02 2011-08-26 THE PROCTER & GAMBLE COMPANY Composición para bolsa de múltiples compartimentos para el lavado de ropa.
GB0712991D0 (en) 2007-07-05 2007-08-15 Reckitt Benckiser Nv Improvement in or relating to compositions
GB0712988D0 (en) 2007-07-05 2007-08-15 Reckitt Benckiser Nv Improvements in or relating to compositions
PL2167624T3 (pl) 2007-07-16 2011-05-31 Unilever Nv Stała detergentowa kompozycja
DE102007036392A1 (de) 2007-07-31 2009-02-05 Henkel Ag & Co. Kgaa Zusammensetzungen enthaltend Perhydrolasen und Alkylenglykoldiacetate
DE102007038029A1 (de) 2007-08-10 2009-02-12 Henkel Ag & Co. Kgaa Wasch- oder Reinigungsmittel mit polyesterbasiertem Soil-Release-Polymer
DE102007038031A1 (de) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Mittel enthaltend Proteasen
WO2009021784A1 (fr) 2007-08-14 2009-02-19 Unilever N.V. Pastille détergente
GB0716228D0 (en) 2007-08-20 2007-09-26 Reckitt Benckiser Nv Detergent composition
DE102007041754A1 (de) 2007-09-04 2009-03-05 Henkel Ag & Co. Kgaa Polycyclische Verbindungen als Enzymstabilisatoren
GB0718777D0 (en) 2007-09-26 2007-11-07 Reckitt Benckiser Nv Composition
GB0718944D0 (en) 2007-09-28 2007-11-07 Reckitt Benckiser Nv Detergent composition
WO2009047126A2 (fr) 2007-10-12 2009-04-16 Unilever Plc Détergent à lessive avec additif de prétraitement et son utilisation
CN101821374B (zh) 2007-10-12 2012-08-22 荷兰联合利华有限公司 用于带香味洗衣剂的改进的视觉线索
CN101878291A (zh) 2007-10-12 2010-11-03 荷兰联合利华有限公司 膜微粒中的功能成分
CN101821373A (zh) 2007-10-12 2010-09-01 荷兰联合利华有限公司 含对比薄片状视觉提示的粒状去污剂组合物
WO2009050026A2 (fr) 2007-10-17 2009-04-23 Unilever Nv Compositions de blanchisserie
US7541026B2 (en) * 2007-11-05 2009-06-02 Danisco Us Inc., Genencor Division Alpha-amylase variants with altered properties
NZ584434A (en) 2007-11-05 2011-12-22 Danisco Us Inc VARIANTS OF BACILLUS sp. TS-23 ALPHA-AMYLASE WITH ALTERED PROPERTIES
JP2011506123A (ja) 2007-11-13 2011-03-03 ザ プロクター アンド ギャンブル カンパニー 印刷された水溶性材料を有する単位用量製品を作製するためのプロセス
DE102007056166A1 (de) 2007-11-21 2009-05-28 Henkel Ag & Co. Kgaa Granulat eines sensitiven Wasch- oder Reinigungsmittelinhaltsstoffs
DE102007057583A1 (de) 2007-11-28 2009-06-04 Henkel Ag & Co. Kgaa Waschmittel mit stabilisierten Enzymen
EP2067847B1 (fr) 2007-12-05 2012-03-21 The Procter & Gamble Company Emballage comportant un détergent
DE102007059677A1 (de) 2007-12-10 2009-06-25 Henkel Ag & Co. Kgaa Reinigungsmittel
DE102007059970A1 (de) 2007-12-11 2009-09-10 Henkel Ag & Co. Kgaa Reinigungsmittel
RU2470069C2 (ru) 2008-01-04 2012-12-20 Дзе Проктер Энд Гэмбл Компани Композиция средства для стирки, содержащая гликозилгидролазу
ES2388018T3 (es) 2008-01-10 2012-10-05 Unilever N.V. Gránulos
EA201001199A1 (ru) 2008-01-24 2011-02-28 Юнилевер Н.В. Композиции детергентов для посудомоечных машин
AU2009208848B2 (en) 2008-01-28 2013-12-05 Reckitt Benckiser N.V. Composition
US20090209447A1 (en) 2008-02-15 2009-08-20 Michelle Meek Cleaning compositions
JP5650543B2 (ja) 2008-02-29 2015-01-07 ノボザイムス アクティーゼルスカブ リパーゼ活性を有するポリペプチド及びこれをコードするポリヌクレオチド
WO2009112296A1 (fr) 2008-03-14 2009-09-17 Unilever Plc Compositions de traitement du linge
CN101970632B (zh) 2008-03-14 2012-11-07 荷兰联合利华有限公司 包括聚合润滑剂的洗衣处理组合物
DE102008014759A1 (de) 2008-03-18 2009-09-24 Henkel Ag & Co. Kgaa Verwendung von Imidazolium-Salzen in Wasch- und Reinigungsmitteln
EP2103678A1 (fr) 2008-03-18 2009-09-23 The Procter and Gamble Company Composition détergente comprenant un co-polyester d'acides dicarboxyliques et de diols
DE102008014760A1 (de) 2008-03-18 2009-09-24 Henkel Ag & Co. Kgaa Imidazolium-Salze als Enzymstabilisatoren
EP2103676A1 (fr) 2008-03-18 2009-09-23 The Procter and Gamble Company Composition détergente pour le lavage du linge comprenant un sel de magnésium d'acide diamine-n'n' disuccinique d'éthylène
EP2103675A1 (fr) 2008-03-18 2009-09-23 The Procter and Gamble Company Composition détergente comprenant un polymère cellulosique
PT3061744T (pt) 2008-04-01 2018-06-19 Unilever Nv Preparação de grânulos de fluxo livre de ácido metilglicina diacético
GB0805908D0 (en) 2008-04-01 2008-05-07 Reckitt Benckiser Inc Laundry treatment compositions
EP2107105B1 (fr) 2008-04-02 2013-08-07 The Procter and Gamble Company Composition de détergent comportant un colorant réactif
EP2107106A1 (fr) 2008-04-02 2009-10-07 The Procter and Gamble Company Kit de pièces comportant une composition de détergent solide pour lessive et dispositif de dosage
EP2345711B1 (fr) 2008-04-02 2017-09-06 The Procter and Gamble Company Composition de détergent contenant un tensioactif détersif non ionique et un colorant réactif
DE102008017103A1 (de) 2008-04-02 2009-10-08 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel enthaltend Proteasen aus Xanthomonas
US20090253602A1 (en) 2008-04-04 2009-10-08 Conopco, Inc. D/B/A Unilever Novel personal wash bar
WO2009134670A2 (fr) * 2008-04-30 2009-11-05 Danisco Us Inc., Genencor Division Nouveaux variants d'amylases alpha chimériques
EP2268784B2 (fr) 2008-05-02 2015-10-28 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Granulés à tachage réduit
PL2291505T3 (pl) 2008-07-03 2013-05-31 Henkel Ag & Co Kgaa Stały zestaw pielęgnujący tekstylia, zawierający polisacharyd
ES2424793T3 (es) 2008-07-09 2013-10-08 Unilever N.V. Composiciones para el lavado de ropa
WO2010003783A1 (fr) 2008-07-11 2010-01-14 Unilever Nv Copolymères et compositions détergentes
EP2154235A1 (fr) 2008-07-28 2010-02-17 The Procter and Gamble Company Procédé pour préparer une composition détergente
ATE482264T1 (de) 2008-08-14 2010-10-15 Unilever Nv Bauzusammensetzung
EP2163605A1 (fr) 2008-08-27 2010-03-17 The Procter and Gamble Company Composition détergente comprenant de l'oxydase de cello-oligosaccharide
WO2010024470A1 (fr) 2008-09-01 2010-03-04 The Procter & Gamble Company Composition comprenant une composition polymère à base de polyoxyalkylène
EP2321394B1 (fr) 2008-09-01 2015-03-18 The Procter and Gamble Company Copolymère contenant un groupe hydrophobe et son procédé de production
CA2734876A1 (fr) 2008-09-01 2010-03-04 The Procter & Gamble Company Composition polymere et son procede de production
EP2163608A1 (fr) 2008-09-12 2010-03-17 The Procter & Gamble Company Particule pour composition de lavage comprenant un colorant azurant et du savon
EP2166077A1 (fr) 2008-09-12 2010-03-24 The Procter and Gamble Company Particules contenant un azurant optique
EP2166078B1 (fr) 2008-09-12 2018-11-21 The Procter & Gamble Company Particule pour composition de lavage comprenant un colorant azurant
DE102008047941A1 (de) 2008-09-18 2010-03-25 Henkel Ag & Co. Kgaa Bleichmittel-haltiges Reinigungsmittel
EP2324106A1 (fr) 2008-09-19 2011-05-25 The Procter & Gamble Company Composition détergente comprenant un biopolymère modifié de stabilisation et de renforcement d eau savonneuse
CA2733638A1 (fr) 2008-09-19 2010-03-25 The Procter & Gamble Company Biopolymere a double nature utile dans les produits de nettoyage
CN102159530A (zh) 2008-09-22 2011-08-17 宝洁公司 特殊的多支链多元醛、多元醇和表面活性剂以及基于它们的消费品
WO2010039889A2 (fr) 2008-09-30 2010-04-08 Novozymes, Inc. Procédés pour utiliser des gènes de sélection positive et négative dans une cellule de champignon filamenteux
EP2169040B1 (fr) 2008-09-30 2012-04-11 The Procter & Gamble Company Compositions détergentes liquides démontrant un effet à deux couleurs ou plus
PL2350249T3 (pl) 2008-10-31 2014-09-30 Henkel Ag & Co Kgaa Środek do maszynowego zmywania naczyń
WO2010054986A1 (fr) 2008-11-12 2010-05-20 Unilever Plc Système de mesure de la blancheur d’un tissu
WO2010057784A1 (fr) 2008-11-20 2010-05-27 Unilever Plc Système de mesure de la blancheur d’un tissu
DE102008059447A1 (de) 2008-11-27 2010-06-02 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel enthaltend Proteasen aus Bacillus pumilus
US20110281324A1 (en) 2008-12-01 2011-11-17 Danisco Us Inc. Enzymes With Lipase Activity
DE102008060469A1 (de) 2008-12-05 2010-06-10 Henkel Ag & Co. Kgaa Maschinelle Geschirrspülmitteltablette
DE102008060886A1 (de) 2008-12-09 2010-06-10 Henkel Ag & Co. Kgaa Photolabile Duftspeicherstoffe
WO2010066631A1 (fr) 2008-12-12 2010-06-17 Henkel Ag & Co. Kgaa Article de blanchissage comportant des propriétés de nettoyage et de traitement
WO2010066632A1 (fr) 2008-12-12 2010-06-17 Henkel Ag & Co. Kgaa Article de blanchissage comportant des propriétés de nettoyage et de traitement
DE102008061859A1 (de) 2008-12-15 2010-06-17 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel
DE102008061858A1 (de) 2008-12-15 2010-06-17 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel
EP2366006B1 (fr) 2008-12-16 2013-08-14 Unilever NV Composition solide d'adjuvant
CN102257109B (zh) 2008-12-17 2013-11-20 荷兰联合利华有限公司 洗衣洗涤剂组合物
EP2367922A1 (fr) 2008-12-18 2011-09-28 Unilever NV Composition de détergent de lessive
DE102008063801A1 (de) 2008-12-19 2010-06-24 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel
DE102008063070A1 (de) 2008-12-23 2010-07-01 Henkel Ag & Co. Kgaa Verwendung sternförmiger Polymere mit peripheren negativ geladenen Gruppen und/oder peripheren Silyl-Gruppen zur Ausrüstung von Oberflächen
BRPI0923795B1 (pt) 2008-12-29 2017-02-21 Unilever Nv composição detergente aquosa estruturada e processo de produção da mesma
DE102009004524A1 (de) 2009-01-09 2010-07-15 Henkel Ag & Co. Kgaa Farbschützendes maschinelles Geschirrspülmittel
PL2382299T3 (pl) 2009-01-26 2013-08-30 Unilever Nv Wprowadzanie barwnika do granulowanej kompozycji do prania
DE102009000409A1 (de) 2009-01-26 2010-07-29 Henkel Ag & Co. Kgaa Waschzusatzartikel
EP3998328A1 (fr) 2009-02-09 2022-05-18 The Procter & Gamble Company Composition de détergent
WO2010094356A1 (fr) 2009-02-18 2010-08-26 Henkel Ag & Co. Kgaa Composés copolymères pro-parfum
KR20110124242A (ko) 2009-02-20 2011-11-16 다니스코 유에스 인크. 발효 브로쓰 제형물
EP2403931B1 (fr) 2009-03-05 2014-03-19 Unilever PLC Initiateurs radicalaires de colorant
EP2403990A2 (fr) 2009-03-06 2012-01-11 Huntsman Advanced Materials (Switzerland) GmbH Procédés enzymatiques de blanchissement-azurage des textiles
CN102341495A (zh) 2009-03-10 2012-02-01 丹尼斯科美国公司 巨大芽孢杆菌菌株DSM90相关的α-淀粉酶及其使用方法
BRPI1013881B1 (pt) 2009-03-12 2023-10-17 Unilever Ip Holdings B.V. Composição detergente, e, método doméstico de tratamento de tecido
US20100229312A1 (en) 2009-03-16 2010-09-16 De Buzzaccarini Francesco Cleaning method
US8293697B2 (en) 2009-03-18 2012-10-23 The Procter & Gamble Company Structured fluid detergent compositions comprising dibenzylidene sorbitol acetal derivatives
US8153574B2 (en) 2009-03-18 2012-04-10 The Procter & Gamble Company Structured fluid detergent compositions comprising dibenzylidene polyol acetal derivatives and detersive enzymes
WO2010107560A2 (fr) 2009-03-18 2010-09-23 Danisco Us Inc. Cutinase fongique de magnaporthe grisea
DE102009001691A1 (de) 2009-03-20 2010-09-23 Henkel Ag & Co. Kgaa Wasch- oder Reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem Übergangsmetallkomplex
DE102009001693A1 (de) 2009-03-20 2010-09-23 Henkel Ag & Co. Kgaa 4-Aminopyridin-Derivate als Katalysatoren für die Spaltung organischer Ester
DE102009001692A1 (de) 2009-03-20 2010-09-23 Henkel Ag & Co. Kgaa Wasch- oder Reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem Übergangsmetallkomplex
WO2010111143A2 (fr) 2009-03-23 2010-09-30 Danisco Us Inc. Acyltransférases associées à cal a et leurs procédés d'utilisation
EP2233557A1 (fr) 2009-03-26 2010-09-29 The Procter & Gamble Company Parfum encapsulé, composition détergente pour le lavage du linge comprenant du parfum encapsulé et procédé pour la préparation de parfum encapsulé
DE102009002262A1 (de) 2009-04-07 2010-10-14 Henkel Ag & Co. Kgaa Präbiotische Handgeschirrspülmittel
DE102009002384A1 (de) 2009-04-15 2010-10-21 Henkel Ag & Co. Kgaa Granulares Wasch-, Reinigungs- oder Behandlungsmitteladditiv
US8263543B2 (en) 2009-04-17 2012-09-11 The Procter & Gamble Company Fabric care compositions comprising organosiloxane polymers
WO2010122051A1 (fr) 2009-04-24 2010-10-28 Unilever Plc Particules de détergent hautement actives
RU2509042C2 (ru) 2009-05-19 2014-03-10 Дзе Проктер Энд Гэмбл Компани Способ печатания на водорастворимой пленке
DE102009026810A1 (de) 2009-06-08 2010-12-09 Henkel Ag & Co. Kgaa Nanopartikuläres Mangandioxid
WO2010142503A1 (fr) 2009-06-12 2010-12-16 Unilever Plc Polymères cationiques colorants
EP2443220B1 (fr) 2009-06-15 2013-08-21 Unilever PLC Composition détergente comprenant un polymêre colorant anionique
EP2451918A1 (fr) 2009-07-09 2012-05-16 The Procter & Gamble Company Procédé de lessive d'un tissu utilisant une composition détergente de lessive compactée
WO2011005623A1 (fr) 2009-07-09 2011-01-13 The Procter & Gamble Company Composition détergente pour lessive comprenant de faibles taux d'agent de blanchiment
EP2451920A1 (fr) 2009-07-09 2012-05-16 The Procter & Gamble Company Procédé pour laver des textiles à l'aide d'une composition détergente de lavage sous forme de tablettes
MX342487B (es) 2009-07-09 2016-09-29 The Procter & Gamble Company * Composicion detergente solida para tratamiento de tela con bajo contenido de aditivo. ligeramente alcalina, que comprende acido ftalimido peroxicaproico.
BR112012000460A2 (pt) 2009-07-09 2016-02-16 Procter & Gamble processo contínuo para produção de uma composição detergente para lavagem de roupas
US20110005002A1 (en) 2009-07-09 2011-01-13 Hiroshi Oh Method of Laundering Fabric
EP2451925A1 (fr) 2009-07-09 2012-05-16 The Procter & Gamble Company Procédé de lessive d'un tissu utilisant une composition détergente de lessive compactée
US20110005001A1 (en) 2009-07-09 2011-01-13 Eric San Jose Robles Detergent Composition
CN102471729A (zh) 2009-07-09 2012-05-23 宝洁公司 包含较低含量水溶性电解质的催化性衣物洗涤剂组合物
US20110009307A1 (en) 2009-07-09 2011-01-13 Alan Thomas Brooker Laundry Detergent Composition Comprising Low Level of Sulphate
EP2451932A1 (fr) 2009-07-09 2012-05-16 The Procter & Gamble Company Procédé de lessive d'un tissu utilisant une composition détergente de lessive compactée
WO2011016958A2 (fr) 2009-07-27 2011-02-10 The Procter & Gamble Company Composition détergente
EP2292725B2 (fr) 2009-08-13 2022-08-24 The Procter & Gamble Company Procédé de nettoyage de tissus à basse température
DE102009028891A1 (de) 2009-08-26 2011-03-03 Henkel Ag & Co. Kgaa Verbesserte Waschleistung durch Radikalfänger
AU2010299799B2 (en) 2009-09-25 2015-10-29 Novozymes A/S Subtilase variants
MX2012003387A (es) 2009-09-25 2012-04-10 Novozymes As Uso de variantes de proteasa.
US8741609B2 (en) 2009-12-21 2014-06-03 Danisco Us Inc. Detergent compositions containing Geobacillus stearothermophilus lipase and methods of use thereof
US20120258900A1 (en) 2009-12-21 2012-10-11 Danisco Us Inc. Detergent compositions containing bacillus subtilis lipase and methods of use thereof
CA2783972A1 (fr) 2009-12-21 2011-07-14 Christian Adams Compositions detergentes contenant une lipase issue de thermobifida fusca et leurs procedes d'utilisation
US9896673B2 (en) 2010-02-10 2018-02-20 Novozymes A/S Compositions of high stability alpha amylase variants
GB2477914B (en) 2010-02-12 2012-01-04 Univ Newcastle Compounds and methods for biofilm disruption and prevention
WO2011150157A2 (fr) 2010-05-28 2011-12-01 Danisco Us Inc. Compositions de détergent contenant une lipase de streptomyces griseus et leurs procédés d'utilisation
US20140031272A1 (en) 2011-04-08 2014-01-30 Danisco Us Inc. Compositions
IN2014CN00650A (fr) 2011-06-30 2015-04-03 Novozymes As
IN2014CN00597A (fr) 2011-06-30 2015-04-03 Novozymes As
US20130072416A1 (en) 2011-09-20 2013-03-21 The Procter & Gamble Company High suds detergent compositions comprising isoprenoid-based surfactants
EP2758503A2 (fr) 2011-09-20 2014-07-30 The Procter and Gamble Company Compositions détergentes comprenant des rapports de mélange spécifiques d'agents tensio-actifs à base d'isoprénoïde
ES2909509T3 (es) 2012-06-08 2022-05-06 Danisco Us Inc Variante de alfa-amilasas con mayor actividad en polímeros de almidón
EP2674475A1 (fr) 2012-06-11 2013-12-18 The Procter & Gamble Company Composition détergente
BR112015012982A2 (pt) 2012-12-07 2017-09-12 Novozymes As composição detergente, método de lavagem para têxtil, têxtil lavado, e, uso de uma desoxirribonuclease
JP6825911B2 (ja) 2014-04-11 2021-02-03 ノボザイムス アクティーゼルスカブ 洗剤組成物
CA2950380A1 (fr) 2014-07-04 2016-01-07 Novozymes A/S Variants de subtilase et polynucleotides codant pour ceux-ci
MX2018002831A (es) 2015-10-07 2018-09-28 Novozymes As Polipeptidos.
CN110423737B (zh) * 2019-09-10 2021-04-30 白银赛诺生物科技有限公司 来源于嗜热脂肪土芽孢杆菌的耐热型α-淀粉酶及其应用

Also Published As

Publication number Publication date
WO2022268885A1 (fr) 2022-12-29

Similar Documents

Publication Publication Date Title
US11053483B2 (en) Polypeptides having DNase activity
EP3350323B1 (fr) Polypeptides présentant une activité de dégradation de xylanase et polynucléotides codant pour ceux-ci
WO2018177938A1 (fr) Polypeptides présentant une activité dnase
WO2015001017A2 (fr) Polypeptides présentant un effet anti-redéposition et polynucléotides codant pour ceux-ci
WO2022074037A2 (fr) Variants d'alpha-amylase
EP3942032A1 (fr) Variants d'alpha-amylase et polynucléotides codant pour ceux-ci
EP4139431A1 (fr) Compositions de nettoyage comprenant des polypeptides ayant une activité de dégradation de fructane
EP4359518A1 (fr) Polypeptides d'alpha-amylase
US11001821B2 (en) Polypeptides having protease activity and polynucleotides encoding same
EP4291646A2 (fr) Variants d'alpha-amylase
US20230313165A1 (en) Variants of a family 44 xyloglucanase
US10837006B2 (en) Polypeptides having protease activity and polynucleotides encoding same
US11236317B2 (en) Polypeptides having protease activity and polynucleotides encoding same
WO2014202782A1 (fr) Polypeptides ayant une activité amylase et polynucléotides codant pour ceux-ci
EP2929020A1 (fr) Polypeptides ayant une activité chlorophyllase et polynucléotides codant pour ceux-ci
US20220340843A1 (en) Polypeptides comprising at least two carbohydrate binding domains
US20220033738A1 (en) Polypeptides having nuclease activity
EP3861110A1 (fr) Ribonucléases d'endonucléase 1 pour le nettoyage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR