EP3721497A1 - Procédé de fabrication d'un composé à base d'oxyde de graphène pour électrode à air d'une batterie métal-air et composé associé - Google Patents

Procédé de fabrication d'un composé à base d'oxyde de graphène pour électrode à air d'une batterie métal-air et composé associé

Info

Publication number
EP3721497A1
EP3721497A1 EP18826431.1A EP18826431A EP3721497A1 EP 3721497 A1 EP3721497 A1 EP 3721497A1 EP 18826431 A EP18826431 A EP 18826431A EP 3721497 A1 EP3721497 A1 EP 3721497A1
Authority
EP
European Patent Office
Prior art keywords
graphene oxide
sulfur
nitrogen
compound
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18826431.1A
Other languages
German (de)
English (en)
Inventor
Philippe Stevens
Gwenaelle Toussaint
Aurélien Louis HABRIOUX
Clément Aimé COMMINGES
Boniface KOKOH
Ismail ABIDAT
Téko Wilhelmin NAPPORN
David PORTEHAULT
Emmanuelle CAZAYUS-CLAVERIE
Olivier Durupthy
Corinne Chaneac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Centre National de la Recherche Scientifique CNRS
Original Assignee
Electricite de France SA
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, Centre National de la Recherche Scientifique CNRS filed Critical Electricite de France SA
Publication of EP3721497A1 publication Critical patent/EP3721497A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of metal-air batteries, and more particularly to the processes for manufacturing graphene-based compounds for reversible air electrodes of metal-air batteries.
  • Lithium-ion batteries widely used in portable electrical appliances, offer a high energy capacity and have a long life, of the order of 5000 cycles of charge / discharge. However, these batteries have reached a maturation threshold that limits their use in more demanding applications in electricity such as residential electricity storage, network storage or electric vehicles.
  • Metal-air battery cells typically consist of a metal-based negative electrode such as zinc, iron, or lithium, coupled to an air electrode. These two electrodes are generally in contact with an aqueous alkaline electrolyte.
  • the advantage of the metal-air systems lies in the use of a positive electrode of infinite capacity, the oxygen consumed at the positive electrode does not need to be stored in the electrode but can be taken from the electrode. 'ambiant air.
  • Electrochemical generators metal-air type are known for their high mass energies, which can reach several hundred Wh / kg.
  • Air electrodes are for example used in alkaline fuel cells which are particularly advantageous compared to other systems because of the kinetics reaction at the electrodes and because of the absence of noble metals such as platinum.
  • An air electrode is a porous solid structure, usually in carbon powder, in contact with the liquid electrolyte.
  • the interface between the air electrode and the liquid electrolyte is a so-called "triple contact" interface where the active solid material of the electrode (this electrode generally also comprising a catalyst), the gaseous oxidant, is simultaneously present. , that is, air, and the liquid electrolyte.
  • the air electrode is usually composed of high surface area carbon powder, making it possible to offer a high reaction surface and therefore a high current density relative to the geometrical surface of the electrode.
  • a large reaction surface is advantageous for compensating for the difference between the density of gaseous oxygen and that of a liquid.
  • the molar density of oxygen in air is about 0.03 mol / L compared to water that has a density of 55 mol / L.
  • the large carbon surface makes it possible to multiply the reaction sites in the air electrode.
  • the catalyst commonly used in air electrodes disintegrates in contact with the alkaline electrolyte of the metal-air batteries and is found in the electrolyte. This effect is particularly accentuated when the electrical potential applied to the electrode increases (especially in the recharge phase).
  • the manganese oxide MnO 2 is transformed into MnO 4 then MnO 4 .
  • the carbon grains of the structure of the air electrodes corrode by oxidation during operation of the battery. This effect is all the more important as the potential applied to the electrode is high. Unfortunately, the conditions of this corrosion are always encountered during the recharging of the battery, since this recharge generally imposes a potential greater than 0.6 V at the discharge potential of the air electrode.
  • the present invention proposes a method of manufacturing a graphene oxide compound for an air electrode of a metal-air battery, the process comprising:
  • This process makes it possible to manufacture an original compound consisting of nitrogen and sulfur doped graphene oxide, further comprising nanoparticles of cobalt oxide.
  • This compound has a strong stability in alkaline media of pH greater than 13, which makes it a compound of choice for application in the porous structure of a metal-air battery air electrode.
  • the method allows better control of the incorporation of nitrogen and sulfur in graphene oxide, in particular by the step of heating the graphene oxide powder.
  • the conditions of this heating make it possible in particular to substantially modify the proportion of graphitic sites occupied by the nitrogen atoms in graphene oxide.
  • the method proposes in particular to synthesize the cobalt oxide nanoparticles directly in an aqueous solution containing the support consisting of graphene oxide doped with nitrogen and sulfur. This technique differs from the prior art which generally proposes to manufacture nanoparticles separately before reacting them with a support at a later stage.
  • the powder may be heated under an inert atmosphere at a temperature between 700 ° C and 1100 ° C.
  • the powder may be gradually heated by increasing the temperature under an inert atmosphere at a rate of between 1 ° C per minute and 20 ° C per minute.
  • Such conditions for heating the graphene oxide powder in the presence of the sulfur-based organic compound and nitrogen make it possible to control the speciation of nitrogen and sulfur in the structure of graphene oxide.
  • speciation refers to the different forms of possible linkages of a chemical element (in this case sulfur and nitrogen) in a given environment (in this case a graphene oxide sheet).
  • the temperature and the rise in temperature favor a gradual sublimation of the organic compound based on nitrogen and sulfur, without destroying graphene oxide.
  • Such temperature conditions also favor graphitic speciation of nitrogen.
  • the organic compound based on nitrogen and sulfur may be thiourea.
  • Thiourea has the advantage of being an organic compound that is easy to handle and to produce, and in which the stoichiometric proportions of nitrogen and sulfur are suitable for the manufacture of the compound of the invention.
  • the second aqueous suspension can be heated to a temperature of between 80 ° C and 150 ° C.
  • Such a temperature makes it possible to create favorable deposition conditions for a homogeneous distribution of nanoparticles directly on the graphene oxide doped with nitrogen and sulfur, avoiding local agglomeration of nanoparticles.
  • the second aqueous suspension is heated in a microwave oven.
  • Microwave heating seems to favor growth of cobalt oxide nanoparticles directly on nitrogen and sulfur doped graphene oxide with a rate of nearly 90%.
  • a heating mode leads to the creation of nanoparticles having a substantially spherical shape and a size of between 2 nm and 5 nm.
  • This method differs in particular from hydrothermal heating techniques commonly used to make cobalt oxide crystals, which then have larger sizes and do not bind with such a large proportion on the layers.
  • a proportion of between 80% and 95% of the cobalt nitrate compound can be fixed in the form of nanoparticles of cobalt oxide on the surface of the at least one sheet of graphene oxide.
  • the method may further comprise:
  • the compound obtained by the method described above makes it possible to halve the weight of an air electrode relative to a conventional electrode using as catalyst manganese.
  • the compound is stable in cycling and does not deteriorate in the presence of an alkaline electrolyte of strongly basic pH (greater than 13), commonly used in metal-air batteries.
  • the invention also relates to the compound based on graphene oxide for an air electrode of a metal-air battery obtained by the method described above.
  • Such a compound comprises at least one sheet of oxidized graphene oxide doped with nitrogen and sulfur heteroatoms and comprising on one surface of the at least one sheet of oxidized graphene oxide doped with nitrogen heteroatoms and of sulfur cobalt oxide nanoparticles.
  • This compound has the advantage of being light and stable in an alkaline medium. In addition, it does not degrade during potential variations experienced by the electrodes of a battery, and in particular a reversible air electrode metal-air battery in which it can be used in place of dispersed manganese oxide on a carbon powder such as carbon black.
  • the nitrogen heteroatoms present in the carbonaceous structure of graphene oxide make it possible to modify the charge density (by making it positive) on the adjacent carbon atoms, which then form sites facilitating both the adsorption of the species.
  • oxygen such as the oxygen dioxygen used in metal-air batteries or hydroxyl ions), and their transformation into oxidation and reduction products.
  • the nitrogen doping makes it possible to significantly increase the activity of graphene oxide during the dioxygen reduction reaction.
  • Sulfur doping accentuates this effect, and also contributes to better stability in alkaline medium and cycling in a metal-air battery. This effect of improving the electrochemical stability in alkaline medium and in cycling is accentuated by the presence of nanoparticles of cobalt oxide.
  • the cobalt oxide nanoparticles make it possible to improve the electrical performance of the compound during the oxidation reactions of the water, for example during the charging of a battery.
  • the electrical conduction properties of the graphene oxide combined with the electrocatalytic properties of the cobalt oxide nanoparticles make it possible to facilitate the charge transfer at the interface between the oxygenated species and the structure of the compound. Used in an air electrode, this effectively channels the charges between the reaction sites on the air electrode and the battery.
  • Such a compound, used in a metal-air battery air electrode makes it possible to reduce the weight of the air electrode by about 50% and to reduce the energy losses during cycling of a metal battery. about 30% air.
  • the nitrogen may represent a proportion of between 3% and 5% atomic in the at least one sheet
  • the sulfur may represent a proportion of between 0.4% and 0.8% atomic in the at least one a sheet
  • the oxygen may represent a proportion of between 1.2% and 1.6% atomic in the at least one sheet
  • the carbon may represent a proportion of between 97.4% and 98% atomic in the at least one sheet.
  • Nitrogen heteroatoms provide graphene sheets with p- and n-type semiconductor properties favorable to oxygen reduction (ORR) and oxygen production (OER) reactions. evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst, Hong Bin Yang et al., Sci., Adv., 2016, 2: el 501, 22).
  • the p-type domains created by the N-pyridinic heteroatoms accept the electrons of the adjacent carbons thus facilitating the adsorption of the OH and OOH type intermediates of the oxidation reaction (OER) in an alkaline medium.
  • the p-type domains of graphene accept the electrons of the OH species adsorbed on the surface thus accelerating the intermediate step OH ® OH adSOrbé ⁇
  • a proportion of nitrogen of between 3% and 5% by weight in the at least one sheet of graphene oxide is favorable to oxygen reduction (ORR) and oxygen evolution (OER) reactions in an alkaline medium, thereby improving the catalytic activity of the graphene oxide compound.
  • the nitrogen heteroatoms can occupy graphitic, pyrrolic and pyrinidic sites in the at least one sheet in the proportions following: between 15% and 50% of graphitic sites, between 25% and 25% of pyrrolic sites, between 30% and 40% of pyrinidic sites and between 10% and 20% of NO x type groups.
  • Such speciation of nitrogen atoms in particular with the presence of graphitic nitrogen in proportions of up to more than 30%, contributes to creating the electronic conditions allowing the oxygen species to react on a major part of the surface of the oxide. graphene, not just on its edges.
  • a proportion of between 70% and 80% of the sulfur heteroatoms can be distributed in the form of carbon-sulfur-carbon CSC or carbon-sulfur-hydrogen CSH groups, and a proportion of between 20% and 30%.
  • sulfur heteroatoms may be distributed in the form of C-SO n groups .
  • the presence of sulfur heteroatoms makes it possible to further increase the polarization of carbon.
  • the presence of sulfur heteroatoms further enhances the catalytic activity of the graphene oxide compound for both the oxygen reduction reaction (ORR) and the oxygen production reaction (OER). ).
  • the nanoparticles of cobalt oxide can be distributed substantially homogeneously on the at least one graphene oxide sheet, and the average distance between two nanoparticles of cobalt oxide on at least one a sheet of graphene oxide may be between 0.5 nm and 3 nm.
  • This substantially homogeneous distribution of the cobalt oxide nanoparticles on the support formed by nitrogen and sulfur-doped graphene oxide also contributes to making this compound effective in an application as a catalyst of an air electrode for a metal-air battery.
  • the nanoparticles are not agglomerated, but distributed over the entire surface of the graphene oxide, the compound offers a greater amount of reaction sites. This reduces the amount of compound used in an air electrode, further contributing to reducing its weight.
  • the cobalt oxide nanoparticles have a substantially spherical shape and a size less than 10 nm, preferably between 2 nm and 5 nm on the at least one sheet, preferably 4 nm.
  • the nanoparticles of cobalt oxide represent between 40% and 60% of the mass of the compound. Cobalt oxide promotes the oxygen production reaction (OER).
  • nanoparticles of cobalt oxide having a size of less than 10 nm, preferably of between 2 nm and 5 nm on at least one sheet make it possible to obtain a stable compound and sufficiently cover the surface of graphene without cover it completely, thus avoiding blocking any oxygen reduction reaction (ORR).
  • ORR oxygen reduction reaction
  • the use of 4 nm cobalt oxide nanoparticles is particularly advantageous.
  • the invention also provides an air electrode comprising a compound as described above.
  • the invention also relates to a metal-air battery comprising at least one air electrode as described above.
  • FIG. 1 is a flow chart showing steps of the process for manufacturing a graphene oxide compound for an air electrode of a metal-air battery
  • FIG. 2 is a schematic representation of a graphene sheet doped with nitrogen, integrated in the sheet so as to occupy different sites within the sheet: graphitic, pyrrolic and pyrinidic sites;
  • FIG. 3 is a schematic representation of a graphene oxide sheet identifying various possible configurations for binding oxygen to carbon in the sheet;
  • FIG. 4 is a schematic representation of a metal-air battery comprising an air electrode manufactured from the compound,
  • FIG. 5 is an X-ray diffractogram of nanoparticles of cobalt oxide on the surface of reduced graphene oxide films doped with nitrogen and sulfur;
  • FIG. 6 represents a histogram of the distances separating two nanoparticles of cobalt oxide; nearest neighbors, showing a homogeneous distribution of cobalt oxide nanoparticles on the sheets of graphene oxide doped with nitrogen and sulfur,
  • FIG. 7 is a graph showing the repeatability of the electrical behavior of an air electrode comprising the compound of the invention in cycling.
  • the present invention provides an original manufacturing method of a compound usable to improve the service life, optimize the structure and reduce the weight of air electrode metal-air batteries.
  • the compound resulting from the process is incorporated in a metal-air battery air electrode
  • the air electrode displays equivalent electrical performances better than those of the electrodes using manganese oxide as a catalyst, but does not encounter the degradation problems observed in the prior art air electrodes in cycling.
  • the term "cycling" refers to the periodic charges and discharges that occur during operation of the metal-air battery.
  • the compound of the present invention into a metal-air battery air electrode, it becomes possible to use solid or gelled electrolytes in metal-air batteries, thus avoiding the maintenance constraints that arise during the use of liquid electrolytes.
  • a solid or gelled electrolyte is particularly advantageous for application in portable systems.
  • the compound presented below may also be used for other applications, especially those in which an electrochemical resistance to alkaline pHs typically greater than 13 is desired.
  • Figure 1 schematically illustrates a few steps of a method of manufacturing a compound according to the invention.
  • a first aqueous solution 1 of a graphene oxide 10 is obtained.
  • This step can be carried out using a known technique for synthesizing graphene oxide, such as for example the so-called “Hummers” method, described in the document Hummers, William S .; Offeman, Richard E. (March 20, 1958). "Preparation ofGraphitic Oxide", Journal of the American Chemical Society. 80 (6): 1339.
  • This method provides a graphite oxide which can then be exfoliated in an ultrasonic bath to prepare the graphene oxide used in step S1.
  • the first aqueous solution 1 may typically contain water and several layers of graphene oxide.
  • an organic compound 2 based on nitrogen and sulfur is added to the aqueous suspension 1.
  • This compound may for example be chosen from thiourea or thiourea derivatives.
  • the water of the first aqueous suspension is evaporated with mechanical stirring by heating in an oil bath to obtain a powder comprising graphene oxide sheets.
  • the powder is heated in an oven at temperatures typically between 700 ° C and 1100 ° C under an inert atmosphere (eg argon) for about 2 hours.
  • This step allows the nitrogen and sulfur of the nitrogen and sulfur compound 2 to be inserted into the graphene oxide.
  • the oven gradually increases in temperature to favor the incorporation of nitrogen preferentially into graphite sites of graphene oxide.
  • the intermediate compound 20 based on nitrogen-doped graphene oxide 21 and sulfur 31 thus obtained is added in a second aqueous suspension 3 comprising a water / ethanol mixture in proportions of 50/50 during a step S5.
  • Cobalt oxide 4 or cobalt nitrate hexahydrate is added to the second aqueous suspension.
  • Ammonia may be added to the second aqueous suspension 3 which is then heated at a temperature of 100 ° C for about 10 minutes so as to promote the growth of cobalt oxide nanoparticles 41 on a surface of at least one sheet of graphene oxide doped with nitrogen and sulfur, during a step S6.
  • the heating of the second aqueous solution can be done by microwave heating, while the prior art generally uses a hydrothermal heating.
  • Microwave heating appears to contribute to forming spherical cobalt oxide nanoparticles having a size between 2 nm and 5 nm, directly on the surface of a sheet of graphene oxide doped with nitrogen and sulfur, with a homogeneous distribution. on this surface.
  • step S7 comprises graphene oxide sheets comprising nitrogen heteroatoms 21, sulfur heteroatoms 31 and cobalt oxide nanoparticles 41 substantially uniformly distributed over the surface of the leaflets.
  • the process of the present invention naturally leads to the formation of a compound in which nitrogen 21 represents up to 4 atomic% of a sheet of compound 30, and occupies different sites in the sheet.
  • nitrogen 21 occupies between 15% and 50% of graphitic sites, between 25% and 35% of pyrrolic sites and between 30% and 40% of pyrinidic sites in the compound 30.
  • the nitrogen doping 21 may lead to a distribution of nitrogen either on the edges of the graphene oxide sheet, or in substitution of carbon atoms in the leaflet itself.
  • the sulfur 31 occupies up to 0.6 atomic% of a sheet of the compound 30, the oxygen occupies about 1.4 atomic% of a sheet of the compound 30 and the carbon about 93.7 atomic%.
  • the sulfur atoms in the compound 30 are 76% in the form of CSC or CSF groups and 24% in the form of C-SO n groups .
  • FIG. 2 schematically represents a two-dimensional plan of graphene 200 doped with nitrogen.
  • This figure illustrates an example of a graphitic site 201, an example of a pyrrolic site 202, an example of a pyridinic site 203, a pyridinium 204 and a pyridine nitrogen N-oxide 205.
  • FIG. 3 schematically shows a graphene oxide sheet 10 comprising carbon atoms 12, oxygen atoms 11 and hydrogen atoms 13.
  • Oxygen can typically form three different chemical bonds in graphene.
  • a first type of bond 101 consists of forming an epoxide group.
  • a second Linkage type 102 consists of forming a hydroxyl group.
  • a third type of bond 103 consists of forming a carboxyl group.
  • FIG. 4 schematically illustrates a metal-air battery 400 comprising a negative terminal 410, and at least one positive terminal 411.
  • the battery comprises an electrolyte 403 separating a negative electrode 401 from at least one positive electrode 402.
  • the positive electrode 402 is in the case of the invention an air electrode comprising the compound 30 described above in its structure.
  • the precursor material is commercial graphite powder (with grain sizes less than 20 ⁇ m).
  • the graphite powder typically 3 g is dispersed in a solution of sulfuric acid (46 ml) with magnetic stirring for 10 min.
  • Sodium nitrate 1.5 g is added to the suspension.
  • the mixture is stirred mechanically for 10 minutes. This entire process is carried out at 20 ° C.
  • the suspension is then cooled using an ice bath. 9 g of potassium permanganate are then added to the suspension which is still kept under magnetic stirring.
  • the whole mixture is then brought to the temperature of 35 ° C. for 30 min by means of heating by an oil bath.
  • An amount (for example 10 mL) of pure water is added to the mixture.
  • the temperature of the oil bath is then raised to 98 ° C for 15 minutes.
  • the mixture is then cooled with an ice bath.
  • 420 ml of water and then 5 ml of hydrogen peroxide are then added to the reaction mixture.
  • the suspension is kept under magnetic stirring for 30 minutes.
  • the material then undergoes a recovery and washing protocol.
  • the suspension is centrifuged for 15 min at a radial centrifugal acceleration (ACR) of 2744 g and at a controlled temperature of 5 ° C. Following the centrifugation step the supernatant is removed. The pellet is resuspended in a hydrochloric acid solution.
  • the suspension is again centrifuged for 15 min at an ACR of 2744 g and at a controlled temperature of 5 ° C.
  • This washing operation is repeated twice. The same washing operation is repeated 5 times by replacing the hydrochloric acid with pure water but this time at a temperature of 20 ° C.
  • the solid is dried in an oven (typical temperature of 40 ° C) for 48 hours. The powder is then ground manually in a mortar.
  • the graphene oxide sheets are doped with nitrogen, with sulfur as well as with nanoparticles of cobalt oxide.
  • Graphene oxide is first exfoliated by the application of ultrasonic waves.
  • An aqueous suspension (pure water, volume 200 mL) containing a concentration of 1 mg / mL of the previously obtained solid is firstly produced.
  • the suspension is placed in an ultrasonic bath (800 W) for 1 h.
  • 8 mg / ml of thiourea are added.
  • the suspension is then stirred mechanically for 30 min.
  • the water is then evaporated with mechanical stirring by heating in an oil bath at 100 ° C.
  • a heat treatment of the powder thus obtained is then carried out at 700 ° C. under an argon atmosphere for 2 hours.
  • the temperature rise of the oven is 10 ° C / min.
  • the oven is then cooled by inertia.
  • cobalt oxide nanoparticles also called Co-based nanostructured spinels
  • the deposition of cobalt oxide nanoparticles can be achieved by the method described below.
  • the reduced graphene oxide powder doped with sulfur and nitrogen atoms (N, S-RGO, for "nitrogen, sulfur and reduced graphene oxide”), obtained at the end of the steps of synthesis described in the preceding paragraph, is re-dispersed in a mixture of pure water / ethanol in a proportion of 50/50 by volume, at a rate of 1 mg of powder per milliliter of liquid.
  • This suspension is kept under magnetic stirring for 24 hours in order to ensure the dispersion of the layers of reduced and doped graphene oxide in the water / ethanol mixture.
  • the suspension is then placed in an ultrasonic bath for 1 h, to ensure that exfoliation of the material is maintained.
  • the 20 ml of suspension are transferred to a 30 ml volume glass reactor for a monomode microwave oven.
  • the control of the synthesis temperature is ensured by a temperature probe (for example a plunging probe ruby). After a rise in temperature in a few seconds until reaching 100 ° C. in the reaction medium, this temperature is kept constant for 10 minutes.
  • the reactor is then cooled in the microwave by a flow of compressed air for a few minutes.
  • the material is obtained in the form of an unstable suspension which sediments in a few seconds. He undergoes a protocol of recovery and washing. The suspension is centrifuged at an ACR of 29220 g for 30 minutes. The supernatant is then removed. The black powder remaining on the wall of the tube is then resuspended in pure water. This washing operation is repeated until the pH of the supernatant reaches a value between 7 and 7.5. Finally, the solid is dried under vacuum at 45 ° C for 12 h and the recovered powder is ground manually in a mortar.
  • the material is characterized by X-ray diffraction.
  • Fig. 5 shows an X-ray diffractogram of Co 3 O 4 on reduced nitrogen and sulfur doped graphene oxide.
  • the ordinate axis 501 represents the intensity of the signal detected by diffractometry
  • the abscissa axis 502 represents the orientation angle of the X-ray beam, 2 theta.
  • Reference peaks (indicated by the lines 503) show a single crystalline phase Co 3 0 4 as well as the presence of a small amount of stacked GRO sheets, evidenced by a 504large peak at about 31 ° (2-theta Lambda Co). Ka).
  • the morphology is characterized by transmission electron microscopy.
  • the monocrystalline CO 3 O 4 particles are in spherical form with a diameter varying between 2 and 5 nm.
  • a peculiarity of the material is the selective deposition of the CO 3 O 4 nanoparticles on the N, S-RGO sheets: the proportion of unsupported nanoparticles is very small, less than about 10% by number.
  • the charge rate is estimated at 50% by mass (ratio of the mass of the nanoparticles supported on the total mass of the material, considering that 90% of the particles are actually deposited on the GRO) by thermogravimetric analysis.
  • FIG. 6 shows that the nanoparticles are distributed in a substantially homogeneous manner on each sheet of graphene oxide doped with nitrogen and sulfur.
  • FIG. 6 represents the percentage of nanoparticles while the axis 602 represents the distance in nanometers separating two neighboring nanoparticles of cobalt oxide.
  • 80% of the distances separating two neighboring nanoparticles of cobalt oxide 41 are between 0.5 nm and 3 nm, and only 16% of the nanoparticles are aggregated.
  • Electrochemical measurements to evaluate the catalytic properties of the material vis-à-vis oxygen release and reduction reactions are performed using a potentiostat.
  • the measurements are carried out in an aqueous electrolytic medium consisting of potassium hydroxide at a concentration of 1 mol / l.
  • the measurements are carried out in an electrochemical cell with 3 electrodes of volume 50 ml.
  • a saturated calomel reference electrode is employed.
  • a counter electrode consisting of a vitreous carbon plate is used.
  • the electrolyte is previously saturated with oxygen for 30 min.
  • the electrolyte (100 mL) is made by dissolving 6.4 g of potassium hydroxide pellets in pure water.
  • an ink is first produced.
  • This ink consists of 750 ⁇ l of pure water, 250 ⁇ l of isopropanol and 60 ⁇ l of a solution of Nafion® 5% by weight in a mixture of aliphatic alcohols and 5 mg of powder of the previously synthesized material.
  • the electrochemical measurements are performed under quasi-stationary conditions using a rotating disk electrode.
  • the measurements to determine the activity of the material with respect to the oxygen reduction reaction are carried out at rotating rotational electrode speeds of 400, 900, 1600 and 2500 rotations per minute in the range.
  • potential of between 1 and 0.25 V / ERH (ERH designating the reference electrode with hydrogen) at a linear variation rate of potential of 5 mV / s.
  • the measurements to determine the activity of the materials with respect to the oxygen evolution reaction were carried out at a rotational speed of the rotating disk electrode of 1600 rotations per minute in the range of potential between 1 and 1,8 V / ERH at a linear rate of variation of potential of 5 mV / s.
  • the reversibility criterion is determined by calculating the potential difference between the potential required to have a current density of 10 mA / cm during the oxygen evolution reaction and the potential required to have current density of -1 mA / cm during the reduction reaction.
  • a reversibility criterion of 0.78 V is obtained for the composite material comprising a carbon loading rate of 50%.
  • An evaluation of the stability of the materials was subsequently performed using an air electrode.
  • This electrode consists of a Teflon body.
  • the electrical connection is provided via a gold wire.
  • the mechanical conductive support used to deposit the catalyst is a nickel foam previously treated by immersion in a 6 mol / L hydrochloric acid solution for 30 min.
  • the foam is subsequently washed and dried in an oven at 80 ° C.
  • a catalytic ink consisting of 54 ⁇ l of a 60% aqueous PTLE solution, 2 ml of ethanol and 8 mg of catalytic powder is produced.
  • the homogenization of the ink is carried out by using an ultrasonic bath at 800 W for 1 h.
  • the nickel foam is impregnated with catalytic dip ink or "dip coating" according to the English terminology.
  • the deposited catalyst mass is verified by weighing.
  • the cycling stability of the catalytic material is then evaluated in an aqueous electrolytic medium containing an electrolyte consisting of potassium hydroxide at a concentration of 6 mol / L.
  • Electrochemical measurements by chronopotentiometry are carried out by using a potentiostat in an electrochemical cell with 3 electrodes of volume 50 ml.
  • a saturated silver chloride reference electrode is employed.
  • a counter electrode consisting of a vitreous carbon plate is used.
  • Current densities of -8 mA / cm and 10 mA / cm are respectively applied during the discharge and charge cycles.
  • the charging and discharging cycles have respective durations of 8 and 12 h and the total duration of the test is 214 h.
  • Figure 7 illustrates the results of these cycling tests, performed by alternately applying current densities of -8 mA / cm (for 12 h) and 10 mA / cm (for 8 h).
  • the axis 701 denotes the measured potential with respect to the Ag / AgCl / KCl (saturated) pair in volts.
  • the axis 702 designates the current density measured in mA / cm 2 and the axis 703 designates the time in hours. This figure shows that the air electrode comprising the compound 30 described above does not undergo degradation in cycling, and keep the same electrical performance even after several cycles of charging / discharging.
  • a second test was performed on electrodes containing the material object of the invention bound with PTFE only on a nickel grid. These electrodes were cycled at +30 mA / cm 2 and -30 mA / cm 2 under ambient air in an 8 mol / L solution of KOH. No degradation was observed over 50 cycles.

Abstract

Il est proposé un procédé de fabrication d'un composé (30) à base d'oxyde de graphène pour électrode à air d'une batterie métal-air. Un composé organique (2) à base d'azote et de soufre est ajouté à une suspension aqueuse (1) d'un oxyde de graphène. L'eau de la suspension est évaporée pour obtenir une poudre (5). Cette poudre est chauffée sous atmosphère inerte pour sublimer le composé organique et stimuler l'incorporation d'azote (21) issu du composé organique dans des sites graphitiques de l'oxyde de graphène. L'oxyde de graphène dopé azote et soufre (20) est ajoutée dans une deuxième suspension aqueuse (3) comprenant un composé à base de nitrate de cobalt (4). Cette deuxième suspension est chauffée pour former des nanoparticules (41) d'oxyde de cobalt à la surface d'au moins un feuillet d'oxyde de graphène dopé azote et soufre.

Description

Procédé de fabrication d’un composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air et composé associé
DOMAINE TECHNIQUE
L’invention se rapporte au domaine des batteries métal-air, et plus particulièrement aux procédés de fabrication de composés à base de graphène pour électrodes à air réversibles de batteries métal-air.
ARRIÈRE-PLAN TECHNOLOGIQUE
Le stockage de l’énergie électrique sous forme électrochimique fait l’objet de nombreuses recherches qui se concentrent en partie sur le perfectionnement des batteries existantes et le développement de nouveaux moyens de stockage électrochimique.
Les batteries lithium-ion, très largement utilisées dans les appareils électriques portables, offrent une grande capacité énergétique et ont une longue durée de vie, de l’ordre de 5000 cycles de charge/décharge. Toutefois, ces batteries ont atteint un seuil de maturation qui limite leur utilisation dans des applications plus demandeuses en électricité telles que dans le stockage d’électricité résidentielle, le stockage réseau ou les véhicules électriques.
Une alternative intéressante et prometteuse en termes de ratio performance/coûts est envisagée grâce aux batteries métal-air.
Les cellules de batteries métal-air se composent généralement d’une électrode négative à base d’un métal tel que le zinc, le fer ou le lithium, couplée à une électrode à air. Ces deux électrodes sont généralement en contact avec un électrolyte aqueux alcalin.
Lors de la décharge d’une telle batterie, de l’oxygène est réduit à l’électrode positive et le métal est oxydé à l’électrode négative :
Décharge à l’électrode négative : M Mn+ + n e
Décharge à l’électrode positive : 02 + 2 H20 + 4 e 4 OH
L’avantage des systèmes métal-air réside dans l’utilisation d’une électrode positive de capacité infinie, l’oxygène consommé à l’électrode positive n’ayant pas besoin d’être stocké dans l’électrode mais pouvant être prélevé dans l’air ambiant. Les générateurs électrochimiques de type métal-air sont donc connus pour leurs énergies massiques élevées, pouvant atteindre plusieurs centaines de Wh/kg.
Les électrodes à air sont par exemple utilisées dans des piles à combustible alcalines qui sont particulièrement avantageuses par rapport à d’autres systèmes en raison des cinétiques réactionnelles élevées au niveau des électrodes et en raison de l’absence de métaux nobles tels que le platine.
Une électrode à air est une structure solide poreuse, généralement en poudre de carbone, en contact avec l’électrolyte liquide. L’interface entre l’électrode à air et l’électrolyte liquide est une interface dite « à triple contact » où sont présents simultanément la matière solide active de l’électrode (cette électrode comprenant généralement en outre un catalyseur), l’oxydant gazeux, c’est-à-dire l’air, et l’électrolyte liquide. L’électrode à air est habituellement composée de poudre de carbone à haute surface, permettant d’offrir une surface de réaction élevée et donc une densité de courant importante par rapport à la surface géométrique de l’électrode. Une grande surface de réaction est avantageuse pour compenser la différence entre la densité de l’oxygène gazeux et celle d’un liquide. Par exemple, la densité molaire de l’oxygène dans l’air est égale à environ 0,03 mol/L comparé à l’eau qui a une densité de 55 mol/L. La grande surface du carbone permet de multiplier les sites de réaction dans l’électrode à air.
Une description des différents types d’électrodes à air pour batteries zinc-air est exposée par exemple dans l’article bibliographique de V. Neburchilov et al., intitulé « A review on air cathodes for zinc-air fuel cells », Journal of Power Sources 195 (2010) p. 1271-1291. Lorsqu’une batterie métal-air doit être rechargée électriquement, le sens du courant est inversé. De l’oxygène est produit à l’électrode positive et le métal est redéposé par réduction à l’électrode négative :
Recharge à l’électrode négative : Mn+ + n e M
Recharge à l’électrode positive : 4 OH 02 + 2 H20 + 4 e
Il a été constaté que le catalyseur couramment utilisé dans les électrodes à air, l’oxyde de manganèse, se désagrège au contact de l’électrolyte alcalin des batteries métal-air et se retrouve dans l’électrolyte. Cet effet est notamment accentué lorsque le potentiel électrique appliqué à l’électrode augmente (en phase de recharge notamment). À partir de +0.5 V par rapport au potentiel rédox du couple Hg/HgO, et dans un électrolyte de pH supérieur à 13, l’oxyde de manganèse Mn02 se transforme en Mn04 puis en Mn04 . Par ailleurs, les grains de carbone de la structure des électrodes à air se corrodent par oxydation lors du fonctionnement de la batterie. Cet effet est d’autant plus important que le potentiel appliqué à l’électrode est élevé. Malheureusement, les conditions de cette corrosion se rencontrent systématiquement lors de la recharge de la batterie, puisque cette recharge impose en général un potentiel supérieur de 0.6 V au potentiel en décharge de l’électrode à air.
En vue de résoudre ces problèmes, il a été proposé d’utiliser une deuxième électrode positive qui est connectée à la borne positive de la batterie uniquement lors de la charge de cette dernière. Toutefois, cette solution impose une conception plus complexe de la batterie et des branchements supplémentaires pour gérer les phases de charge et décharge, et présente en outre le désavantage d’alourdir et agrandir la batterie en y rajoutant un composant métallique supplémentaire dans chaque cellule.
Il est par conséquent recherché un composé permettant d’éviter les dommages mentionnés ci-dessus sur des électrodes à air, ainsi qu’un procédé de fabrication d’un tel composé.
EXPOSE DE L’INVENTION
Pour répondre aux problèmes exposés ci-avant, la présente invention propose un procédé de fabrication d’un composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air, le procédé comportant :
- préparer une première suspension aqueuse d’un oxyde de graphène dans de l’eau;
- ajouter un composé organique à base d’azote et de soufre dans la suspension aqueuse ;
- évaporer l’eau de la suspension aqueuse de sorte à obtenir une poudre ;
- chauffer la poudre sous atmosphère inerte de sorte à sublimer le composé organique à base d’azote et de soufre et stimuler l’incorporation d’azote issu du composé organique à base d’azote et de soufre dans des sites graphitiques de l’oxyde de graphène afin d’obtenir de l’oxyde de graphène dopé azote et soufre,
- ajouter l’oxyde de graphène dopé azote et soufre dans une deuxième suspension aqueuse comprenant un composé à base de nitrate de cobalt,
- chauffer la deuxième suspension aqueuse de sorte à former des nanoparticules d’oxyde de cobalt à la surface d’au moins un feuillet d’oxyde de graphène dopé azote et soufre, formant ainsi le composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air.
Ce procédé permet de fabriquer un composé original, constitué d’oxyde de graphène dopé azote et soufre, comprenant en outre des nanoparticules d’oxyde de cobalt. Ce composé présente une stabilité forte dans des milieux alcalins de pH supérieur à 13, ce qui en fait un composé de choix pour une application dans la structure poreuse d’une électrode à air de batterie métal-air.
Le procédé permet un meilleur contrôle de l’incorporation de l’azote et du soufre dans l’oxyde de graphène, notamment grâce à l’étape de chauffage de la poudre d’oxyde de graphène. Les conditions de ce chauffage permettent notamment de modifier sensiblement la proportion de sites graphitiques occupés par les atomes d’azote dans l’oxyde de graphène.
L’incorporation sur un tel oxyde de graphène dopé azote et soufre, de nanoparticules d’oxyde de cobalt renforce encore plus la stabilité électrochimique du composé en milieu alcalin.
Le procédé propose notamment de synthétiser les nanoparticules d’oxyde de cobalt directement dans une solution aqueuse contenant le support constitué par l’oxyde graphène dopé azote et soufre. Cette technique diffère de l’art antérieur qui propose généralement de fabriquer séparément des nanoparticules avant de les faire réagir avec un support lors d’une étape ultérieure.
Selon un mode de réalisation, la poudre peut être chauffée sous atmosphère inerte à une température comprise entre 700°C et l l00°C.
Selon un mode de réalisation, la poudre peut être chauffée progressivement en augmentant la température sous atmosphère inerte à une vitesse comprise entre de l°C par minute et 20°C par minute.
De telles conditions de chauffage de la poudre d’oxyde de graphène en présence du composé organique à base de soufre et azote permettent de contrôler la spéciation de l’azote et du soufre dans la structure de l’oxyde de graphène. Le terme « spéciation » désigne les différentes formes de liaisons possibles d’un élément chimique (en l’espèce le soufre et l’azote) dans un environnement donné (en l’espèce un feuillet d’oxyde de graphène). La température et la montée en température favorisent une sublimation progressive du composé organique à base d’azote et de soufre, sans détruire l’oxyde de graphène. De telles conditions en température favorisent également une spéciation graphitique de l’azote. Selon un mode de réalisation, le composé organique à base d’azote et de soufre peut être de la thiourée.
La thiourée présente l’avantage d’être un composé organique facile à manipuler et à produire, et dans lequel les proportions stœchiométriques en azote et soufre sont adaptées à la fabrication du composé de l’invention.
Selon un mode de réalisation, la deuxième suspension aqueuse peut être chauffée à une température comprise entre 80°C et l50°C.
Une telle température permet de créer des conditions de dépôt favorables à une répartition homogène de nanoparticules directement sur l’oxyde de graphène dopé azote et soufre, en évitant une agglomération locale de nanoparticules.
Selon un mode de réalisation, la deuxième suspension aqueuse est chauffée dans un four micro-onde.
Un chauffage micro-onde semble favoriser une croissance des nanoparticules d’oxyde de cobalt directement sur l’oxyde de graphène dopé azote et soufre avec un taux de près de 90%. En outre, un tel mode de chauffage conduit à la création de nanoparticules ayant une forme sensiblement sphérique et une taille comprise entre 2 nm et 5 nm. Ce procédé diffère notamment des techniques de chauffage hydrothermal couramment utilisées pour fabriquer des cristaux d’oxyde de cobalt, qui ont alors des tailles plus grandes et ne se fixent pas avec une proportion aussi grande sur les feuillets.
Selon un mode de réalisation, lors du chauffage de la deuxième solution aqueuse, une proportion comprise entre 80% et 95% du composé à base de nitrate de cobalt peut se fixer sous forme de nanoparticules d’oxyde de cobalt sur la surface de l’au moins un feuillet d’oxyde de graphène.
Selon un mode de réalisation, le procédé peut en outre comprendre :
- incorporer le composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air dans une structure poreuse d’électrode à air. Lorsqu’il est incorporé dans une électrode à air, le composé obtenu par le procédé décrit ci- dessus permet de réduire de moitié le poids d’une électrode à air par rapport à une électrode conventionnelle utilisant en guise de catalyseur de l’oxyde de manganèse. En outre, le composé est stable en cyclage et ne se détériore pas en présence d’un électrolyte alcalin de pH fortement basique (supérieur à 13), couramment utilisés dans les batteries métal- air.
L’invention se rapporte également au composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air obtenu par le procédé décrit ci-avant.
Un tel composé comprend au moins un feuillet d’oxyde de graphène oxydé dopé avec des hétéroatomes d’azote et de soufre et comprenant sur une surface de l’au moins un feuillet d’oxyde de graphène oxydé dopé avec des hétéroatomes d’azote et de soufre des nanoparticules d’oxyde de cobalt.
Ce composé présente l’avantage d’être léger et stable en milieu alcalin. En outre, il ne se dégrade pas lors des variations de potentiel que subissent les électrodes d’une batterie, et notamment une électrode à air réversible de batterie métal-air dans laquelle il peut être utilisé à la place de l’oxyde de manganèse dispersé sur une poudre de carbone telle que le noir de carbone. Les hétéroatomes d’azote présents dans la structure carbonée de l’oxyde de graphène permettent de modifier la densité de charges (en la rendant positive) sur les atomes de carbone adjacents, qui forment alors des sites facilitant à la fois l’adsorption des espèces oxygénées (telle que le dioxygène de l’air utilisé dans les batteries métal-air ou les ions hydroxyles), et leur transformation en produit d’oxydation et de réduction.
Le dopage à l’azote permet notamment d’augmenter significativement l’activité de l’oxyde de graphène lors de la réaction de réduction du dioxygène. Le dopage en soufre accentue cet effet, et contribue également à offrir une meilleure stabilité en milieu alcalin et en cyclage dans une batterie métal-air. Cet effet d’amélioration de la stabilité électrochimique en milieu alcalin et en cyclage est accentué par la présence des nanoparticules d’oxyde de cobalt.
Les nanoparticules d’oxyde de cobalt permettent d’améliorer les performances électriques du composé lors des réactions d’oxydation de l’eau, par exemple lors de la charge d’une batterie. En outre, les propriétés de conduction électrique de l’oxyde de graphène combinées avec les propriétés électrocatalytiques des nanoparticules d’oxyde de cobalt permettent de faciliter le transfert de charge au niveau de l’interface entre les espèces oxygénées et la structure du composé. Utilisé dans une électrode à air, ceci permet de canaliser efficacement les charges entre les sites de réaction sur l’électrode à air et la batterie.
Un tel composé, utilisé dans une électrode à air de batterie métal-air, permet de réduire le poids de l’électrode à air de l’ordre de 50% et de réduire les pertes d’énergie en cyclage d’une batterie métal-air d’environ 30%.
Selon un mode de réalisation, l’azote peut représenter une proportion comprise entre 3% et 5% atomiques dans l’au moins un feuillet, le soufre peut représenter une proportion comprise entre 0,4% et 0.8% atomiques dans l’au moins un feuillet, l’oxygène peut représenter une proportion comprise entre 1.2% et 1.6% atomiques dans l’au moins un feuillet et le carbone peut représenter une proportion comprise entre 97.4% et 98% atomiques dans l’au moins un feuillet.
Les hétéroatomes d’azote procurent aux feuillets de graphène des propriétés semi- conductrices de type p et n favorables aux réactions de réduction d’oxygène (ORR) et de production d’oxygène (OER) (Identification of catalytic sites for oxygen réduction and oxygen évolution in N-doped graphene materials: Development of highly efficient metal- free bifunctional electrocatalyst, Hong Bin Yang et al. Sci. Adv. 2016; 2 : el50l l22). Par exemple, les domaines de type p créés par les hétéroatomes N-pyridiniques acceptent les électrons des carbones adjacents facilitant ainsi l’adsorption des intermédiaires de type OH et OOH de la réaction d’oxydation (OER) en milieu alcalin. En outre, les domaines de type p du graphène acceptent les électrons des espèces OH adsorbées en surface accélérant ainsi l’étape intermédiaire OH ® OHadSOrbé·
Une proportion d’azote comprise entre 3% et 5% atomiques dans l’au moins un feuillet d’oxyde de graphène est favorable aux réactions de réduction d’oxygène (ORR) et de dégagement d’oxygène (OER) en milieu alcalin, améliorant ainsi l’activé catalytique du composé à base d’oxyde de graphène.
Selon un mode de réalisation, les hétéroatomes d’azote peuvent occuper des sites graphitiques, pyrroliques et pyrinidiques dans l’au moins un feuillet dans les proportions suivantes : entre 15% et 50% de sites graphitiques, entre 25% et 25% de sites pyrroliques, entre 30% et 40% de sites pyrinidiques et entre 10% et 20% de groupements de type NOx.
Une telle spéciation des atomes d’azote, avec notamment la présence d’azote graphitiques dans des proportions pouvant atteindre plus de 30%, contribue à créer les conditions électroniques permettant aux espèces oxygénées de réagir sur une majeure partie de la surface de l’oxyde de graphène, et non uniquement sur ses bords.
Selon un mode de réalisation, une proportion comprise entre 70% et 80% des hétéroatomes de soufre peut être répartie sous forme de groupements carbone- soufre-carbone C-S-C ou carbone- soufre-hydrogène C-S-H, et une proportion comprise entre 20% et 30% des hétéroatomes de soufre peut être répartie sous forme de groupements de type C-SOn.
La présence d’hétéroatomes de soufre permet d’augmenter davantage la polarisation du carbone. Ainsi, la présence des hétéroatomes de soufre permet d’améliorer davantage l’activité catalytique du composé à base d’oxyde de graphène aussi bien pour la réaction de réduction d’oxygène (ORR) que pour la réaction de production d’oxygène (OER).
Selon un mode de réalisation, les nanoparticules d’oxyde de cobalt peuvent être réparties de manière sensiblement homogène sur l’au moins un feuillet d’oxyde de graphène, et la distance moyenne entre deux nanoparticules d’oxyde de cobalt sur l’au moins un feuillet d’oxyde de graphène peut être comprise entre 0.5 nm et 3 nm.
Cette répartition sensiblement homogène des nanoparticules d’oxyde de cobalt sur le support formé par l’oxyde de graphène dopé azote et soufre contribue également à rendre performant ce composé dans une application comme catalyseur d’une électrode à air pour batterie métal-air. En effet, les nanoparticules n’étant pas agglomérées, mais réparties sur toute la surface de l’oxyde de graphène, le composé offre une plus grande quantité de sites de réaction. Ceci permet de réduire la quantité de composé utilisé dans une électrode à air, contribuant davantage encore à réduire son poids.
Selon un mode de réalisation, les nanoparticules d’oxyde de cobalt ont une forme sensiblement sphérique et une taille inférieure à 10 nm, de préférence comprise entre 2 nm et 5 nm sur l’au moins un feuillet, préférentiellement de 4 nm. Selon un mode de réalisation, les nanoparticules d’oxyde de cobalt représentent entre 40% et 60% de la masse du composé. L’oxyde de cobalt favorise la réaction de production d’oxygène (OER). En outre, des nanoparticules d’oxyde de cobalt présentant une taille inférieure à 10 nm, de préférence comprise entre 2 nm et 5 nm sur au moins un feuillet permettent d’obtenir un composé stable et de recouvrir suffisamment la surface du graphène sans pour autant la recouvrir totalement, évitant ainsi de bloquer toute réaction de réduction d’oxygène (ORR). En particulier, G utilisation de nanoparticules d’oxyde de cobalt de 4 nm est particulièrement avantageuse.
L’invention propose également une électrode à air comprenant un composé tel que décrit ci-avant. L’invention se rapport également à une batterie métal-air comprenant au moins une électrode à air telle que décrite ci-avant.
DESCRIPTIF DES FIGURES
Le procédé objet de l’invention sera mieux compris à la lecture de la description qui suit d’exemples de réalisations présentés à titre illustratif, aucunement limitatifs, et à l’observation des dessins ci-après sur lesquels :
- la figure 1 est un ordinogramme représentant des étapes du procédé de fabrication d’un composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air;
- la figure 2 est représentation schématique d’un feuillet de graphène dopé à l’azote, intégré dans le feuillet de sorte à occuper différents sites au sein du feuillet : des sites graphitiques, pyrroliques et pyrinidiques ;
- la figure 3 est une représentation schématique d’un feuillet d’oxyde de graphène identifiant différents configurations possibles pour lier l’oxygène au carbone dans le feuillet ; - la figure 4 est représentation schématique d’une batterie métal-air comprenant une électrode à air fabriquée à partir du composé,
- la figure 5 est un diffractogramme de rayons X des nanoparticules d’oxyde de cobalt sur la surface de feuillets d’oxyde de graphène réduit dopé azote et soufre, - la figure 6 représente un histogramme des distances séparant deux nanoparticules d’oxyde de cobalt plus proches voisins, montrant une répartition homogène des nanoparticules d’oxyde de cobalt sur les feuillets d’oxyde de graphène dopé azote et soufre,
- la figure 7 est un graphe montrant la répétitivité du comportement électrique d’une électrode à air comprenant le composé objet de l’invention en cyclage.
Pour des raisons de clarté, les dimensions des différents éléments représentés sur ces figures ne sont pas nécessairement en proportion avec leurs dimensions réelles. Sur les figures, des références identiques correspondent à des éléments identiques.
DESCRIPTION DÉTAILLÉE La présente invention propose un procédé de fabrication original d’un composé utilisable pour améliorer la durée de vie, optimiser la structure et réduire le poids d’électrodes à air de batteries métal-air. Notamment lorsque le composé issu du procédé est incorporé dans une électrode à air de batteries métal-air, l’électrode à air affiche des performances électriques équivalentes voir meilleures que celles des électrodes utilisant de l’oxyde de manganèse en guise de catalyseur, mais ne rencontre pas les problèmes de dégradation observés dans les électrodes à air de l’art antérieur en cyclage. Le terme « cyclage » désigne les charges et décharges périodiques qui s’opèrent lors du fonctionnement de la batterie métal-air.
Par ailleurs, en intégrant le composé de la présente invention dans une électrode à air de batterie métal-air, il devient possible d’utiliser dans les batteries métal-air des électrolytes solides ou gélifiés, évitant ainsi les contraintes de maintenance qui apparaissent lors de l’utilisation d’électrolytes liquides. Un électrolyte solide ou gélifié s’avère particulièrement avantageux pour une application dans des systèmes portables. Le composé présenté ci-après peut aussi être utilisé pour d’autres applications, notamment celles dans lesquelles une résistance électrochimique à des pH alcalins typiquement supérieurs à 13 est recherchée.
La figure 1 illustre schématiquement quelques étapes d’un procédé de fabrication d’un composé selon l’invention.
Dans une première étape Sl, une première solution aqueuse 1 d’un oxyde de graphène 10 est obtenue. Cette étape peut être réalisée en utilisant une technique connue de synthèse d’oxyde de graphène, telle que par exemple la méthode dite de « Hummers », décrite dans le document Hummers, William S.; Offeman, Richard E. (March 20, 1958). " Préparation ofGraphitic Oxide ", Journal of the American Chemical Society. 80 (6): 1339.
Cette méthode permet d’obtenir un oxyde de graphite qui peut ensuite être exfolié dans un bain à ultrasons pour préparer l’oxyde de graphène utilisé à l’étape S1.
La première solution aqueuse 1 peut typiquement contenir de l’eau et plusieurs feuillets d’oxyde de graphène.
Dans une deuxième étape S2, un composé organique 2 à base d’azote et de soufre est ajouté dans la suspension aqueuse 1. Ce composé peut par exemple être choisi parmi la thiourée ou des dérivés de la thiourée. L’eau de la première suspension aqueuse est évaporée sous agitation mécanique par chauffage dans un bain d’huile en vue d’obtenir une poudre 5 comprenant des feuillets d’oxyde de graphène.
Au cours d’étapes S3 et S4 qui suivent, la poudre 5 est chauffée dans un four à des températures typiquement comprises entre 700°C et l l00°C sous atmosphère inerte (par exemple de l’argon) pendant 2 heures environ. Cette étape permet à l’azote et au soufre du composé à base d’azote et de soufre 2 d’être insérés dans l’oxyde de graphène. Le four monte en température progressivement pour favoriser l’incorporation de l’azote préférentiellement dans des sites graphitiques de l’oxyde de graphène.
Le composé intermédiaire 20 à base d’oxyde de graphène dopé azote 21 et soufre 31 ainsi obtenu est ajouté dans une deuxième suspension aqueuse 3 comprenant un mélange eau/éthanol dans des proportions 50/50 lors d’une étape S5. De l’oxyde de cobalt 4 ou bien du nitrate de cobalt hexahydraté est ajouté à la deuxième suspension aqueuse. De l’ammoniaque peut être ajouté à la deuxième suspension aqueuse 3 qui est ensuite chauffée à une température de l00°C pendant 10 minutes environ de sorte à favoriser la croissance de nanoparticules d’oxyde de cobalt 41 sur une surface d’au moins un feuillet d’oxyde de graphène dopé azote et soufre, lors d’une étape S6. Selon un mode de réalisation particulièrement avantageux, le chauffage de la deuxième solution aqueuse peut se faire par chauffage micro-onde, tandis que l’art antérieur utilise généralement un chauffage hydrothermal. Un chauffage micro-onde semble contribuer à former des nanoparticules d’oxyde de cobalt 41 sphériques ayant une taille entre 2 nm et 5 nm, directement sur la surface d’un feuillet d’oxyde de graphène dopé azote et soufre, avec une répartition homogène sur cette surface.
Le composé 30 ainsi obtenu à l’étape S7 comprend des feuillets d’oxyde de graphène comprenant des hétéroatomes d’azote 21, des hétéroatomes de soufre 31 et des nanoparticules d’oxyde de cobalt 41 réparties sensiblement uniformément sur la surface des feuillets.
Le procédé de la présente invention conduit naturellement à la formation d’un composé 30 dans lequel l’azote 21 représente jusqu’à 4% atomiques d’un feuillet du composé 30, et occupe différents sites dans le feuillet. Notamment, il a été constaté qu’à l’issue des étapes S3 et S4, l’azote 21 occupe entre 15% et 50% de sites graphitiques, entre 25% et 35% de sites pyrroliques et entre 30% et 40% de sites pyrinidiques dans le composé 30. Il convient de remarquer que le dopage à l’azote 21 peut conduire à une répartition de l’azote soit sur les bords du feuillet d’oxyde de graphène, soit en remplacement d’atomes de carbone dans le feuillet lui-même.
Le soufre 31 occupe jusqu’à 0.6% atomiques d’un feuillet du composé 30, l’oxygène occupe environ 1.4% atomiques d’un feuillet du composé 30 et le carbone environ 93.7% atomiques.
Les atomes de soufre dans le composé 30 sont présents à 76% sous la forme de groupements C-S-C ou C-S-F et à 24% sous la forme de groupements de type C-SOn.
La figure 2 représente schématiquement un plan bidimensionnel de graphène 200 dopé à l’azote. Cette figure illustre un exemple de site graphitique 201, un exemple de site pyrrolique 202, un exemple de site pyrinidique 203, un pyridinium 204 et un azote pyridinique N- oxyde 205.
La figure 3 représente schématiquement un feuillet d’oxyde de graphène 10 comprenant des atomes de carbone 12, des atomes d’oxygène 11 et des atomes d’hydrogène 13. L’oxygène peut typiquement former trois liaisons chimiques différentes dans le graphène. Un premier type de liaison 101 consiste à former un groupement époxyde. Un deuxième type de liaison 102 consiste à former un groupement hydroxyle. Un troisième type de liaison 103 consiste à former un groupement carboxyle.
La figure 4 illustre schématiquement une batterie métal-air 400 comprenant une borne négative 410, et au moins une borne positive 411. La batterie comprend un électrolyte 403 séparant une électrode négative 401 d’au moins une électrode positive 402. L’électrode positive 402 est dans le cas de l’invention une électrode à air comprenant le composé 30 décrit ci-avant dans sa structure.
Exemple de réalisation
Tout d'abord l'oxyde de graphite est synthétisé selon la technique de « Hummers » évoquée ci-dessus. Cette technique comprend les étapes suivantes :
Le matériau précurseur est une poudre de graphite commerciale (avec des tailles de grain inférieures à 20 pm). La poudre de graphite (typiquement 3 g) est dispersée dans une solution d'acide sulfurique (46 mL) sous agitation magnétique pendant 10 min. Le nitrate de sodium (1,5 g) est ajouté à la suspension. Le mélange est agité mécaniquement pendant 10 min. L'ensemble de ce processus est réalisé à 20° C. La suspension est ensuite refroidie à l'aide d'un bain de glace. 9 g de permanganate de potassium sont ensuite ajoutés à la suspension qui est toujours maintenue sous agitation magnétique. L'ensemble du mélange est ensuite porté à la température de 35° C pendant 30 min à l'aide d'un chauffage par bain d'huile. Une quantité (par exemple 10 mL) d'eau pure est ajoutée au mélange. La température du bain d'huile est ensuite portée jusqu'à 98° C pendant 15 min. Le mélange est ensuite refroidi à l'aide d'un bain de glace. 420 mL d'eau, puis 5 mL de peroxyde d'hydrogène sont ensuite ajoutés au mélange réactionnel. La suspension est maintenue sous agitation magnétique pendant 30 min.
Le matériau subit ensuite un protocole de récupération et de lavage. La suspension est centrifugée pendant 15 min à une accélération centrifuge radiale (ACR) de 2744 g et à température contrôlée de 5°C. Suite à l'étape de centrifugation le surnageant est éliminé. Le culot de centrifugation est remis en suspension dans une solution d'acide chlorhydrique. La suspension est à nouveau centrifugée pendant 15 min à une ACR de 2744 g et à une température contrôlée de 5°C. Cette opération de lavage est répétée 2 fois. La même opération de lavage est répétée 5 fois en remplaçant l'acide chlorhydrique par de l'eau pure mais cette fois-ci à une température de 20°C. Suite à l'étape de lavage le solide est séché à l'étuve (température typique de 40° C) pendant 48 h. La poudre est ensuite broyée manuellement dans un mortier.
Après avoir mis en place la technique de « Hummers » décrite ci-dessus, les feuillets d’oxyde de graphène sont dopés à l’azote, au soufre ainsi qu’avec des nanoparticules d’oxyde de cobalt.
L’oxyde de graphène est tout d'abord exfolié par l'application d'ondes ultrasonores. Une suspension aqueuse (eau pure, volume 200 mL) contenant une concentration de 1 mg/mL du solide précédemment obtenu est tout d'abord réalisée. La suspension est placée dans un bain à ultrasons (800 W) pendant 1 h. Dans la suspension initialement préparée, 8 mg/mL de thiourée sont ajoutés. La suspension est alors agitée mécaniquement pendant 30 min. L'eau est ensuite évaporée sous agitation mécanique par chauffage dans un bain d'huile à 100 °C. Un traitement thermique de la poudre ainsi obtenue est alors réalisé à 700 °C sous atmosphère d'argon pendant 2 h. La montée en température du four est de 10 °C/min. Le four est ensuite refroidi par inertie.
Le dépôt de nanoparticules d’oxyde de cobalt (aussi appelées spinelles nanostructurées à base de Co) sur la surface d’un feuillet d’oxyde de graphène dopé azote et soufre peut être réalisée par la méthode décrite ci-dessous.
La poudre d’oxyde de graphène réduit dopé par des atomes de soufre et d’azote (N,S-RGO, pour « nitrogen, sulfur and reduced graphene oxide selon la terminologie anglo-saxonne), obtenue à l’issue des étapes de synthèse décrites au paragraphe précédent, est re-dispersée dans un mélange d’eau pure/éthanol en proportion 50/50 en volume, à raison d’l mg de poudre par millilitre de liquide. Cette suspension est maintenue sous agitation magnétique pendant 24 h afin d’assurer la dispersion des feuillets d’oxyde de graphène réduit et dopé dans le mélange eau/éthanol. La suspension est ensuite placée dans un bain à ultrasons pendant lh, pour assurer que G exfoliation du matériau est maintenue. Immédiatement après l’application des ondes ultrasonores, 0.130 g de nitrate de cobalt hexahydraté sont ajoutés à 20 mL de la suspension de N,S-RGO. Le mélange, dont le surnageant est de couleur rose après ajout du sel de cobalt, est agité mécaniquement pendant 10 minutes. 2.5 mL d’une solution aqueuse d’ammoniaque à 11% sont alors ajoutés à la suspension, maintenue sous agitation. La couleur du surnageant vire au vert suite à l’ajout d’ammoniaque.
Les 20 mL de suspension sont transférés dans un réacteur en verre de volume 30 mL pour four micro-onde monomode. Le contrôle de la température de synthèse est assuré par une sonde de température (par exemple une sonde plongeante rubis). Après une montée en température en quelques secondes jusqu’à atteindre l00°C au sein du milieu réactionnel, cette température est maintenue constante durant 10 minutes. Le réacteur est ensuite refroidi dans le four micro-onde par un flux d’air comprimé pendant quelques minutes.
Suite à cette dernière étape de synthèse, qui a permis la formation de nanoparticules d’oxyde de cobalt greffées à la surface des feuillets de N,S-RGO, le matériau est obtenu sous forme d’une suspension instable qui sédimente en quelques secondes. Il subit un protocole de récupération et de lavage. La suspension est centrifugée à une ACR de 29220 g pendant 30 minutes. Le surnageant est ensuite éliminé. La poudre noire restant sur la paroi du tube est alors remise en suspension dans de l’eau pure. Cette opération de lavage est répétée jusqu’à ce que le pH du surnageant atteigne une valeur comprise entre 7 et 7.5. Finalement, le solide est séché sous vide à 45°C pendant 12 h et la poudre récupérée est broyée manuellement dans un mortier.
Le matériau est caractérisé par diffraction des rayons X. Les résultats de cette caractérisation sont indiqués sur la figure 5, qui représente un diffracto gramme de rayons X du Co304 sur l’oxyde de graphène réduit dopé azote et soufre. L’axe des ordonnées 501 représente l’intensité du signal détecté par diffractométrie, et l’axe des abscisses 502 représente l’angle d’orientation du faisceau de rayons X, 2 thêta. Les pics de référence (indiqués par les traits 503) montrent une seule phase cristalline Co304 ainsi que la présence d’une faible quantité de feuillets de RGO empilés, mis en évidence par un pic 504large à environ 31° (2théta Lambda Co Ka). La morphologie est caractérisée par microscopie électronique en transmission. Les particules de C03O4 monocristallines se présentent sous forme sphérique de diamètre variant entre 2 et 5 nm. Une particularité du matériau est le dépôt sélectif des nanoparticules de C03O4 sur les feuillets de N,S-RGO : la proportion de nanoparticules non supportées est très faible, inférieure à environ 10% en nombre. Enfin le taux de charge est estimé à 50% en masse (rapport de la masse des nanoparticules supportées sur la masse totale du matériau, en considérant que 90% des particules sont effectivement déposées sur le RGO) par analyse thermogravimétrique. Par ailleurs, la figure 6 montre que les nanoparticules sont réparties de manière sensiblement homogène sur chaque feuillet d’oxyde de graphène dopé azote et soufre. L’axe 601 de la figure 6 représente le pourcentage de nanoparticules tandis que l’axe 602 représente la distance en nanomètres séparant deux nanoparticules d’oxyde de cobalt plus proches voisines. Sur cette figure 6 il apparaît que 80% des distances séparant deux nanoparticules d’oxyde de cobalt 41 plus proches voisines sont comprises entre 0,5 nm et 3 nm, et seulement 16% des nanoparticules sont agrégées.
Caractérisation du composé obtenu
Des expériences ont été réalisées en vue de vérifier les propriétés électriques et la stabilité chimique d’une électrode à air obtenue en y incorporant le composé 30 décrit ci-avant. Un exemple de test est présenté ci-dessous.
Des mesures électrochimiques permettant d'évaluer les propriétés catalytiques du matériau vis-à-vis des réactions de dégagement et de réduction du dioxygène sont réalisées à l'aide d'un potentiostat. Les mesures sont réalisées dans un milieu électrolytique aqueux constitué d'hydroxyde de potassium à la concentration de 1 mol/L. Les mesures sont réalisées dans une cellule électrochimique à 3 électrodes de volume 50 mL. Une électrode de référence au calomel saturé est employée. Une contre-électrode constituée d'une plaque de carbone vitreux est employée. L'électrolyte est préalablement saturé avec de l'oxygène pendant 30 min. L'électrolyte (100 mL) est réalisé en dissolvant 6,4 g de pastilles d'hydroxyde de potassium dans de l'eau pure.
Pour la réalisation des électrodes, une encre est tout d'abord réalisée. Cette encre est constituée de 750 pL d'eau pure, 250 pL d'isopropanol et 60 pL d'une solution de Nafion® à 5 % en masse dans un mélange d'alcools aliphatiques et 5 mg de poudre du matériau préalablement synthétisé. Les mesures électrochimiques sont réalisées en conditions quasi- stationnaires en utilisant une électrode à disque tournant. Les mesures visant à déterminer l'activité du matériau vis-à-vis de la réaction de réduction du dioxygène sont réalisées à des vitesses de rotation de l'électrode à disque tournant de 400, 900, 1600 et 2500 rotations par minute dans la gamme de potentiel compris entre 1 et 0,25 V/ERH (ERH désignant l’électrode de référence à hydrogène) à une vitesse de variation linéaire de potentiel de 5 mV/s. Les mesures visant à déterminer l'activité des matériaux vis-à-vis de la réaction de dégagement du dioxygène ont été réalisées à une vitesse de rotation de l'électrode à disque tournant de 1600 rotations par minute dans la gamme de potentiel compris entre 1 et 1,8 V/ERH à une vitesse de variation linéaire de potentiel de 5 mV/s. Une fois les courbes de polarisation obtenues, le critère de réversibilité est déterminé en calculant la différence de potentiel entre le potentiel requis pour avoir une densité de courant de 10 mA/cm lors de la réaction de dégagement du dioxygène et le potentiel requis pour avoir une densité de courant de -1 mA/cm lors de la réaction de réduction. Un critère de réversibilité de 0,78 V est obtenu pour le matériau composite comprenant un taux de charge de carbone de 50%.
Une évaluation de la stabilité des matériaux a par la suite été réalisée au moyen d'une électrode à air. Cette électrode est constituée d'un corps en Téflon. La connexion électrique est assurée par l'intermédiaire d'un fil d'or. Le support mécanique conducteur employé pour déposer le catalyseur est une mousse de nickel préalablement traitée par immersion dans une solution d'acide chlorhydrique à 6 mol/L pendant 30 min. La mousse est par la suite lavée et séchée à l'étuve à 80 °C. Une encre catalytique constituée de 54 pL d'une solution aqueuse de PTLE à 60%, 2 mL d'éthanol et 8 mg de poudre catalytique est réalisée. L'homogénéisation de l'encre est réalisée par utilisation d'un bain à ultrasons à 800 W pendant 1 h. La mousse de nickel est imprégnée avec l'encre catalytique par immersion ou "dip coating" selon la terminologie anglo-saxone. La masse de catalyseur déposée est vérifiée par pesée. La stabilité en cyclage du matériau catalytique est ensuite évaluée dans un milieu électrolytique aqueux contenant un électrolyte constitué d'hydroxyde de potassium à la concentration de 6 mol/L. Les mesures électrochimiques par chronopotentiométrie sont réalisées en utilisant un potentiostat dans une cellule électrochimique à 3 électrodes de volume 50 mL. Une électrode de référence au chlorure d'argent saturé est employée. Une contre- électrode constituée d'une plaque de carbone vitreux est utilisée. Des densités de courant de -8 mA/cm et 10 mA/cm sont respectivement appliquées lors des cycles de décharge et de charge. Les cycles de charge et de décharge ont des durées respectives de 8 et 12 h et la durée totale du test est de 214 h.
La figure 7 illustre les résultats de ces tests en cyclage, réalisés en appliquant de manière alternative des densités de courant de -8 mA/cm (pendant 12 h) et 10 mA/cm (pendant 8 h). L’axe 701 désigne le potentiel mesuré par rapport au couple Ag/AgCl/KCl (saturé) en Volts. L’axe 702 désigne la densité de courant mesurée en mA/cm2 et l’axe 703 désigne le temps en heures. Cette figure montre que l’électrode à air comprenant le composé 30 décrit ci-dessus ne subit pas de dégradations en cyclage, et conserves les mêmes performances électriques même après plusieurs cycles de charge/décharge.
Un deuxième test a été effectué sur des électrodes contenant le matériau objet de l’invention lié avec du PTFE seulement sur une grille de nickel. Ces électrodes ont été cyclées à +30 mA/cm2 et -30 mA/cm2 sous air ambiant dans une solution 8 mol/L de KOH. Aucune dégradation n’a été observée sur 50 cycles.
Des mesures effectuées par infrarouge in situ de l’électrode pour détecter la présence de carbonate ou de groupements carbonyl montrent qu’il n’y a pas d’oxydation du graphène oxyde dopé préparé par l’invention, même aux fort potentiels de dégagement d’oxygène (> 1.65V vs ERH) sur 3000h de fonctionnement.

Claims

Revendications
1. Procédé de fabrication d’un composé (30) à base d’oxyde de graphène pour électrode à air d’une batterie métal-air, le procédé comportant :
- préparer une première suspension aqueuse (1) d’un oxyde de graphène dans de l’eau;
- ajouter un composé organique (2) à base d’azote et de soufre dans la suspension aqueuse ;
- évaporer l’eau de la suspension aqueuse de sorte à obtenir une poudre (5) ;
- chauffer la poudre sous atmosphère inerte de sorte à sublimer le composé organique à base d’azote et de soufre et stimuler l’incorporation d’azote (21) issu du composé organique à base d’azote et de soufre dans des sites graphitiques de l’oxyde de graphène afin d’obtenir de l’oxyde de graphène dopé azote et soufre (20),
- ajouter l’oxyde de graphène dopé azote et soufre dans une deuxième suspension aqueuse (3) comprenant un composé à base de nitrate de cobalt (4),
- chauffer la deuxième suspension aqueuse de sorte à former des nanoparticules (41) d’oxyde de cobalt à la surface d’au moins un feuillet d’oxyde de graphène dopé azote et soufre, formant ainsi le composé (30) à base d’oxyde de graphène pour électrode à air d’une batterie métal-air.
2. Procédé selon la revendication 1, caractérisé en ce que la poudre est chauffée sous atmosphère inerte à une température comprise entre 700°C et l l00°C.
3. Procédé selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que la poudre est chauffée progressivement en augmentant la température sous atmosphère inerte à une vitesse comprise entre de l°C par minute et 20°C par minute.
4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le composé organique à base d’azote et de soufre est de la thiourée.
5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la deuxième suspension aqueuse est chauffée à une température comprise entre 80°C et l50°C.
6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la deuxième suspension aqueuse est chauffée dans un four micro-onde.
7. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend en outre :
- incorporer le composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air dans une structure poreuse d’électrode à air.
8. Composé à base d’oxyde de graphène pour électrode à air d’une batterie métal-air comprenant au moins un feuillet d’oxyde de graphène oxydé dopé avec des hétéroatomes d’azote et de soufre et comprenant sur une surface de l’au moins un feuillet d’oxyde de graphène oxydé dopé avec des hétéroatomes d’azote et de soufre des nanoparticules d’oxyde de cobalt,
caractérisé en ce que l’azote (21) représente une proportion comprise entre 3% et 5% atomiques dans l’au moins un feuillet, le soufre (31) représente une proportion comprise entre 0,4% et 0.8% atomiques dans l’au moins un feuillet, l’oxygène (11) représente une proportion comprise entre 1.2% et 1.6% atomiques dans l’au moins un feuillet et le carbone (12) représente une proportion comprise entre 97.4% et 98% atomiques dans l’au moins un feuillet.
9. Composé selon la revendication 8, caractérisé en ce que les hétéroatomes d’azote occupent des sites graphitiques (201), pyrroliques (202) et pyrinidiques (203) dans l’au moins un feuillet dans les proportions suivantes : entre 15% et 50% de sites graphitiques, entre 25% et 35% de sites pyrroliques, entre 30% et 40% de sites pyrinidiques et entre 10% et 20% de groupements de type NOx.
10. Composé selon la revendication 8 ou 9, caractérisé en ce qu’une proportion comprise entre 70% et 80% des hétéroatomes de soufre est répartie sous forme de groupements carbone- soufre-carbone C-S-C ou carbone-soufre-hydrogène C-S-H, et une proportion comprise entre 20% et 30% des hétéroatomes de soufre est répartie sous forme de groupements de type C-SOn.
11. Composé selon l’une quelconque des revendications 8 à 10, caractérisé en ce que les nanoparticules (41) d’oxyde de cobalt sont réparties de manière sensiblement homogène sur l’au moins un feuillet d’oxyde de graphène, et en ce que la distance moyenne entre deux nanoparticules d’oxyde de cobalt sur l’au moins un feuillet d’oxyde de graphène est comprise entre 0.5 nm et 3 nm.
12. Composé selon l’une quelconque des revendications 8 à 11, caractérisé en ce que les nanoparticules (41) d’oxyde de cobalt ont une forme sensiblement sphérique et une taille comprise entre 2 nm et 5 nm sur l’au moins un feuillet.
13. Composé selon l’une quelconque des revendications 8 à 12, caractérisé en ce que les nanoparticules d’oxyde de cobalt représentent entre 40% et 60% de la masse du composé.
14. Electrode à air (402) comprenant un composé (30) selon l’une des revendications 8 à 13.
15. Batterie métal-air (400) comprenant au moins une électrode à air selon la revendication 14.
EP18826431.1A 2017-12-07 2018-12-05 Procédé de fabrication d'un composé à base d'oxyde de graphène pour électrode à air d'une batterie métal-air et composé associé Pending EP3721497A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761794A FR3074968B1 (fr) 2017-12-07 2017-12-07 Electrode a air reversible a base d'un oxyde de graphene
PCT/FR2018/053125 WO2019110933A1 (fr) 2017-12-07 2018-12-05 Procédé de fabrication d'un composé à base d'oxyde de graphène pour électrode à air d'une batterie métal-air et composé associé

Publications (1)

Publication Number Publication Date
EP3721497A1 true EP3721497A1 (fr) 2020-10-14

Family

ID=61873422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18826431.1A Pending EP3721497A1 (fr) 2017-12-07 2018-12-05 Procédé de fabrication d'un composé à base d'oxyde de graphène pour électrode à air d'une batterie métal-air et composé associé

Country Status (5)

Country Link
US (1) US11489159B2 (fr)
EP (1) EP3721497A1 (fr)
CN (1) CN111602276A (fr)
FR (1) FR3074968B1 (fr)
WO (1) WO2019110933A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492108B (zh) * 2019-07-30 2022-09-02 武汉理工大学 氮硫共掺杂石墨烯基负载核壳纳米粒子复合材料及其制备方法和应用
FR3104828B1 (fr) 2019-12-13 2022-11-11 Electricite De France Procédé de fabrication d’une électrode à gaz présentant un gradient de composition
CN114583127B (zh) * 2022-02-28 2023-05-09 南京工业大学 一种制备CoNi-S@3D-C纳米复合材料和改性电池隔膜的方法
CN114515552B (zh) * 2022-03-11 2023-03-07 山东大学 一种NiCo合金@氮掺杂石墨烯多级孔气凝胶及其制备方法与在锌-空气电池中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687483A1 (fr) * 2012-07-16 2014-01-22 Basf Se Graphène contenant de l'azote et éventuellement du fer et/ou du cobalt
US20180093893A1 (en) * 2015-04-02 2018-04-05 Case Western Reserve University Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
US20170098843A1 (en) * 2015-10-06 2017-04-06 Board Of Regents, The University Of Texas System Membraneless direct liquid fuel cells
CN105268440A (zh) * 2015-11-06 2016-01-27 河南理工大学 一种石墨烯负载氧化钴催化剂及其制备方法
CN105417532A (zh) * 2015-12-22 2016-03-23 北京理工大学 一步法制备高氮掺杂石墨烯
KR101854514B1 (ko) * 2016-02-12 2018-05-04 영남대학교 산학협력단 3차원 니켈폼 상의 다층 메조기공 구조의 그래핀/니켈-코발트-황화물 배열 복합체 및 이의 제조방법
CN106684389A (zh) * 2016-12-30 2017-05-17 温州大学 硫氮双掺杂石墨烯纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
US11489159B2 (en) 2022-11-01
US20200313185A1 (en) 2020-10-01
CN111602276A (zh) 2020-08-28
FR3074968A1 (fr) 2019-06-14
FR3074968B1 (fr) 2021-09-17
WO2019110933A1 (fr) 2019-06-13

Similar Documents

Publication Publication Date Title
EP3721497A1 (fr) Procédé de fabrication d'un composé à base d'oxyde de graphène pour électrode à air d'une batterie métal-air et composé associé
Wang et al. A stable conversion and alloying anode for potassium‐ion batteries: a combined strategy of encapsulation and confinement
EP2315722B1 (fr) Utilisation d'un oxyhydroxysel apparente a la famille des hydroxydes doubles lamellaires pour la conception et fabrication d'une electrode en vue du stockage d'energie electrique
JP6691112B2 (ja) 二次アルカリバッテリーのための混合材カソード
Karami et al. Synthesis of lead oxide nanoparticles by sonochemical method and its application as cathode and anode of lead-acid batteries
US11682773B2 (en) Electrocatalyst
US20110274989A1 (en) Catalysts for oxygen reduction and evolution in metal-air electrochemical cells
EP0159266A2 (fr) Procédé pour préparer des électrodes négatives alliées et dispositifs utilisant ces électrodes
JP6959344B2 (ja) ビスマス系塩化物貯蔵電極
WO2007023235A1 (fr) Materiau d'electrode positive haute tension de structure spinelle a base de nickel et de manganese pour accumulateurs au lithium
KR101418050B1 (ko) 산소환원 전극용 촉매 및 이의 제조방법
Sharma et al. Graphene–cobaltite–Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells
Chen et al. Facile synthesis of Cu2O nanorod arrays on Cu foam as a self-supporting anode material for lithium ion batteries
Abdel-Aal et al. Facile synthesis of Mn 3 O 4-rGO nanocomposite as an efficient electrode material for application in supercapacitors
US20150099118A1 (en) Metal-air batteries and electrodes therefore utilizing metal nanoparticle synthesized via a novel mechanicochemical route
Wei et al. Chemically etched CeO2-x nanorods with abundant surface defects as effective cathode additive for trapping lithium polysulfides in Li-S batteries
JP6068257B2 (ja) 活物質およびそれを用いた二次電池
Sun et al. Chemical Buffer Layer Enabled Highly Reversible Zn Anode for Deeply Discharging and Long‐Life Zn–Air Battery
Tangaemsakul et al. NiCoS/carbon black based bifunctional air electrode for Zn-air secondary batteries
CN108352520B (zh) 二次电池用锌负极材料
EP0837036A1 (fr) Oxydes doubles de lithium et de manganèse pour électrode positive de dispositifs électrochimiques, leur préparation et les électrodes comportant de tels oxydes
JP2003242972A (ja) 負極活物質及び非水電解質二次電池並びにそれらの製造方法
FR3061992A1 (fr) Materiau d'electrode positive a base d'un oxyde lamellaire lithie recouvert, en tout ou partie, par un autre oxyde a base de manganese et procede de preparation de ce materiau
Moulai et al. Electrosynthesis and characterization of nanostructured MnO 2 deposited on stainless steel electrode: a comparative study with commercial EMD
KOÇAK et al. Highly improved electrocatalytic oxidation of dimethylamine borane on silvernanoparticles modified polymer composite electrode

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220805