EP3681841A1 - Nouveau procede de stockage de l'hydrogene - Google Patents

Nouveau procede de stockage de l'hydrogene

Info

Publication number
EP3681841A1
EP3681841A1 EP18783061.7A EP18783061A EP3681841A1 EP 3681841 A1 EP3681841 A1 EP 3681841A1 EP 18783061 A EP18783061 A EP 18783061A EP 3681841 A1 EP3681841 A1 EP 3681841A1
Authority
EP
European Patent Office
Prior art keywords
alkoxyamine
hydrogen
borane
complexes
pph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18783061.7A
Other languages
German (de)
English (en)
Inventor
Mathieu Jonathan Damien Pucheault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3681841A1 publication Critical patent/EP3681841A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/13Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C239/00Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof
    • C07C239/08Hydroxylamino compounds or their ethers or esters
    • C07C239/20Hydroxylamino compounds or their ethers or esters having oxygen atoms of hydroxylamino groups etherified
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a novel process for storing hydrogen using alkoxyamine-borane complexes.
  • alkoxyamine-borane complexes shown below have a dative bond between the nitrogen atom and BH 3 as well as amine-borane complexes.
  • Physical storage is currently the most advanced technology and consists of a liquid hydrogen tank operating between 350 and 700 bar, with operating temperatures of around -120 ° C.
  • Storage in the form of materials can be divided into three distinct classes: absorbent materials (zeolites, aerogels, etc.), metal hydrides (LiAlH 4 , NaBH 4 , MgH 2 , etc.) and chemical storage, in particular in the form of conventional borane amine complexes (NH 3 BH 3 , MeNH 2 BH 3 , Me 2 NHBH 3 , ).
  • absorbent materials zeolites, aerogels, etc.
  • metal hydrides LiAlH 4 , NaBH 4 , MgH 2 , etc.
  • chemical storage in particular in the form of conventional borane amine complexes (NH 3 BH 3 , MeNH 2 BH 3 , Me 2 NHBH 3 , ).
  • One of the more general aspects of the invention relates to a new simple process for storing and releasing hydrogen, not involving toxic compounds, and allowing a high hydrogen storage rate because of the low molecular weight of alkoxyamine-borane complexes.
  • the present invention relates to the use of alkoxyamine-borane complexes for the storage of hydrogen.
  • alkoxyamine-borane complex is intended to mean a complex formed by reaction between an alkoxyamine and a borane.
  • hydrogen storage is meant, in the sense of the invention, a method for storing hydrogen and then releasing it for use.
  • the present invention also relates to the use of alkoxyamine-borane complexes for the storage of hydrogen followed by a step of hydrogen release.
  • hydrogen release the chemical step to obtain a release of hydrogen.
  • the invention makes it possible to have a very promising chemical hydrogen reservoir.
  • these compounds have a particular availability of 6.67% hydrogen mass, which is as good or better than all other types of storage.
  • the present invention also relates to the use of alkoxyamine-borane complexes for the storage of hydrogen, said alkoxyamine-borane complexes being of formula (I),
  • alkyl -C 10 refers to an acyclic carbon chain, saturated, linear or branched, comprising 1 to 10 carbon atoms.
  • Examples of C 1 -C 10 alkyls include methyl, ethyl, propyl, butyl, pentyl, hexyl or heptyl groups.
  • the definition of propyl, butyl, pentyl, hexyl or heptyl includes all possible isomers.
  • butyl includes n-butyl, iso-butyl, sec-butyl and tert-butyl and the term propyl includes n-propyl and iso-propyl.
  • C 3 -C 10 cycloalkyl denotes a saturated or partially saturated mono-, bi- or tri-ring comprising from 3 to 10 carbon atoms.
  • the cycloalkyl group may be a cyclohexyl group.
  • the present invention also relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenation of said alkoxyamine-borane complexes.
  • the present invention also relates to a process for the release of hydrogen from alkoxyamine-borane complexes, comprising a step of contacting at least one alkoxyamine-borane complex with a catalyst or a step of thermal heating of the above-mentioned alkoxyamine-alkane complexes. borane.
  • the invention relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenating said alkoxyamine-borane complexes, and a step of contacting at least one alkoxyamine complex -borane with a catalyst of rhodium, platinum, palladium, gold or nickel, in particular selected from RhCl (PPh 3 ) 3 , NiCl 2 (PPh 3 ) 2 , Rh @ TBAB and Ni @ TBAB, Pd (OH ) 2 / C, PtCl 2 , PdCl 2 , KAuC, Pt (PPh 3 ) 4 .
  • a catalyst of rhodium, platinum, palladium, gold or nickel in particular selected from RhCl (PPh 3 ) 3 , NiCl 2 (PPh 3 ) 2 , Rh @ TBAB and Ni @ TBAB, Pd (OH ) 2 / C, PtCl 2 , PdC
  • the present invention also relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenation of said alkoxyamine-borane complexes, and a step of bringing an alkoxyamine-borane complex into contact with RhCl (PPh 3 ) 3 .
  • the present invention also relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenation of said alkoxyamine-borane complexes, and a step of contacting an alkoxyamine-borane complex with NiCl 2 (PPli 3) 2 .
  • the present invention also relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenation of said alkoxyamine-borane complexes, and a step of contacting an alkoxyamine-borane complex with Rh @ TBAB.
  • the present invention also relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenation of said alkoxyamine-borane complexes, and a step of bringing an alkoxyamine-borane complex into contact with Ni @ TBAB.
  • the hydrogen release reaction is generally carried out in the presence of a catalyst derived from a metal chosen from rhodium, nickel, palladium, platinum and copper, at a temperature ranging from 30 ° C. to 80 ° C. C, for a duration ranging from 3 to 1500 minutes.
  • a catalyst derived from a metal chosen from rhodium, nickel, palladium, platinum and copper at a temperature ranging from 30 ° C. to 80 ° C. C, for a duration ranging from 3 to 1500 minutes.
  • the hydrogen release reaction from 0.5 mmol of one of the alkoxyamine-borane complexes evoked makes it possible to produce from 5 cm 3 to 25 cm 3 of gas.
  • the invention relates to a process for the release of hydrogen from alkoxyamine-borane complexes comprising a step of dehydrogenating said alkoxyamine-borane complexes by thermal heating of said alkoxyamine-borane complexes above 80 ° C, preferably above 100 ° C and more preferably above 120 ° C.
  • the following five alkoxyamine-borane complexes are synthesized and used in the invention.
  • the present invention also relates to a process for the preparation of alkoxyamine-borane complexes of formula (I) comprising a step of placing hydroxy lamines of formula (II) in the presence of
  • R and R ' are chosen from hydrogen, a C 1 -C 10 alkyl or C 3 -C 10 cycloalkyl group, or a salt thereof, for example a hydrochloride, with NaBH 4 and a mineral acid, preferentially H 2 SO 4 or HCl, this process not requiring a purification step.
  • mineral acid means an acid derived from a mineral or inorganic body, for example hydrochloric, sulfuric or nitric acid.
  • the preparation of the alkoxyamine-borane complexes of formula (I) is generally carried out in an organic solvent, preferably THF (tetrahydrofuran).
  • organic solvent preferably THF (tetrahydrofuran).
  • the invention relates to a process for preparing the following alkoxyamine-borane complexes:
  • alkoxyamine-borane complexes of formula (I) is generally carried out with a hydroxylamine / NaBH 4 hydrochloride ratio ranging from 1: 1 to 1: 2, this ratio being, according to a preferred embodiment of the invention set at 1: 1.2.
  • Figure 1 relates to the study of the dehydrogenation rate of the complex (5) in the presence of 5 mol% of Wilkinson catalyst with the abscissa time expressed in minutes and the ordinate the change in the volume of gas expressed in cm 3 .
  • Figure 2 relates to the study of the rate of dehydrogenation of the complex (2) in the presence of 5 mol% of Wilkinson catalyst with the abscissa time expressed in minutes and the ordinate the evolution of the volume of gas expressed in cm 3 .
  • FIG. 3 relates to the study of the rate of dehydrogenation of the complex (5) in the presence of 5 mol% of NiCl 2 (PPh 3 ) 2 with the abscissa the time expressed in minutes and the ordinate the evolution of the volume of gas expressed in cm 3 .
  • FIG. 4 relates to the study of the rate of dehydrogenation of the complex (5) in the presence of 5 mol% of Pt (PPh 3 ) 4 with the abscissa the time expressed in minutes and the ordinate the evolution of the volume of gas expressed in cm 3 .
  • the alkoxyamine-borane complex (2) was synthesized under the same conditions as above, using O-tert-butylhydroxylamine hydrochloride, in the presence of sodium borohydride in THF (Table 2). This synthesis was first done on a small scale (CF39), then on a larger scale (CF452).
  • the last alkoxyamine-borane complex synthesized is O-methylhydroxylamine borane (5) from commercial O-methylhydroxylamine hydrochloride in the presence of NaBH 4 in THF. Unlike other starting materials, this hydrochloride has low solubility in most solvents. For this synthesis, a great deal of optimization of the conditions was therefore carried out in order to improve the solubility of O-methylhydroxylamine hydrochloride (Table 5).
  • alkoxyamine-borane complexes show a high potential for hydrogen storage applications because of their high hydrogen density.
  • RhCl (PPh 3 ) 3 (2.5 mol%) 50 15 10
  • the complexes (1), (2) and (5) have different dehydrogenation rates, the use of one or the other of these complexes thus makes it possible to modulate this rate of dehydrogenation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne l'utilisation de complexes alkoxyamine-boranes pour le stockage de l'hydrogène.

Description

Nouveau procédé de stockage de l'hydrogène
La présente invention concerne un nouveau procédé de stockage de l'hydrogène utilisant des complexes alkoxyamine-boranes.
Les complexes alkoxyamine-boranes représentés ci-dessous comportent une liaison dative entre l'atome d'azote et BH3 tout comme les complexes amine-boranes.
Ces composés ne sont décrits que dans deux articles datant de 1958 (Parry et al. JACS 1958, 80, 1549 ; Parry et al. JACS 1958, 80, 1868).
/( .R'
R NH
♦ R, R' = H, alkyl
BH3
Structure générale des complexes alkoxyamine-boranes
La synthèse de ces composés étant décrite avec des composés toxiques et qui ne sont plus utilisés tels que le diborane gaz, il était donc nécessaire de mettre au point une synthèse peu ou pas toxique, économique et permettant une montée en échelle aisée.
Les solutions actuelles pour le stockage de l'hydrogène se décomposent en deux grandes familles : le stockage physique et le stockage sous forme de matériaux.
Le stockage physique est actuellement la technologie la plus aboutie et consiste en un réservoir d'hydrogène liquide fonctionnant entre 350 et 700 bar, avec des températures de fonctionnement de l'ordre de -120°C.
Le stockage sous forme de matériaux peut être divisé en trois classes distinctes : les matériaux absorbants (zéolites, aérogels, ...), les hydrures métalliques (LiAlH4, NaBH4, MgH2, ...) et le stockage chimique, notamment sous forme de complexes aminé borane classiques (NH3BH3, MeNH2BH3, Me2NHBH3, ...).
Les solutions précédemment citées présentent néanmoins des inconvénients : les conditions drastiques de température et de pression pour le stockage physique, le coût et l'encrassement des matériaux pour les matériaux absorbants, la nécessité d'employer des réactifs en condition stœchiométrique pour avoir une déshydrogénation réversible des hydrures de métaux, et enfin une réhydrogénation compliquée des complexes amine-borane classiques.
La transformation des complexes alkoxyamine-boranes par déshydrogénation catalytique aminoboranes et iminoboranes correspondants n'a jamais été décrite.
L'un des aspects les plus généraux de l'invention concerne un nouveau procédé simple de stockage et de relargage de l'hydrogène, n'impliquant pas de composés toxiques, et permettant un fort taux de stockage de l'hydrogène en raison du faible poids moléculaire des complexes alkoxyamine-boranes.
Selon l'un de ses aspects les plus généraux, la présente invention concerne l'utilisation de complexes alkoxyamine-boranes pour le stockage de l'hydrogène.
Au sens de l'invention, il est entendu par «complexe alkoxyamine-borane », un complexe formé par réaction entre une alkoxyamine et un borane.
Par « stockage d'hydrogène », il est entendu, au sens de l'invention, une méthode permettant de conserver de l'hydrogène pour ensuite le libérer en vue de son utilisation.
La présente invention concerne également l'utilisation de complexes alkoxyamine-boranes pour le stockage de l'hydrogène suivi d'une étape de relargage de l'hydrogène.
Au sens de l'invention, il est entendu par «relargage d'hydrogène », l'étape chimique permettant d'obtenir un dégagement d'hydrogène.
L'invention permet de disposer d'un réservoir chimique d'hydrogène très prometteur. Ainsi, ces composés présentent une disponibilité notamment de 6,67% d'hydrogène en masse, ce qui est aussi bon, voire meilleur que tous les autres types de stockage.
La présente invention concerne également l'utilisation de complexes alkoxyamine-boranes pour le stockage de l'hydrogène, lesdits complexes alkoxyamine-boranes étant de formule (I),
R NH (i)
BH3
pour laquelle R et R' sont choisis indépendamment parmi un hydrogène, un groupement alkyle en Ci à Cio ou cycloalkyle en C3 à Cio. Au sens de l'invention, l'expression « alkyle en Ci à C10 » désigne une chaîne carbonée acyclique, saturée, linéaire ou ramifiée, comprenant 1 à 10 atomes de carbone. Des exemples d'alkyles en Ci à C10 incluent les groupes méthyle, éthyle, propyle, butyle, pentyle, hexyle ou heptyle. La définition de propyle, butyle, pentyle, hexyle ou heptyle inclut tous les isomères possibles. Par exemple, le terme butyle comprend n-butyle, iso-butyle, sec-butyle et tert- butyle et le terme propyle comprend n-propyle et iso -propyle.
Au sens de la présente invention, l'expression «cycloalkyle en C3 à C10 » désigne un mono-, bi- ou tri-cycle saturé ou partiellement saturé, comprenant de 3 à 10 atomes de carbone. Par exemple, le groupement cycloalkyle peut être un groupement cyclohexyle.
La présente invention concerne également un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénation desdits complexes alkoxyamine-boranes. La présente invention concerne également un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes, comprenant une étape de mise en contact d'au moins un complexe alkoxyamine-borane avec un catalyseur ou une étape de chauffage thermique des susdits complexes alkoxyamine-boranes. Selon un mode de réalisation avantageux, l'invention concerne un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénation desdits complexes alkoxyamine-boranes, et une étape de mise en contact d'au moins un complexe alkoxyamine-borane avec un catalyseur de rhodium, de platine, de palladium, d'or ou de nickel, notamment choisi parmi RhCl(PPh3)3, NiCl2(PPh3)2, Rh@TBAB et Ni@TBAB, Pd(OH)2/C, PtCl2, PdCl2, KAuC , Pt(PPh3)4.
La présente invention concerne également un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénation desdits complexes alkoxyamine-boranes, et une étape de mise en contact d'un complexe alkoxyamine-borane avec RhCl(PPh3)3.
La présente invention concerne également un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénationdes dits complexes alkoxyamine-boranes, et une étape de mise en contact d'un complexe alkoxyamine-borane avec NiCl2(PPli3)2.
La présente invention concerne également un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénation desdits complexes alkoxyamine-boranes, et une étape de mise en contact d'un complexe alkoxyamine-borane avec Rh@TBAB.
La présente invention concerne également un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénation desdits complexes alkoxyamine-boranes, et une étape de mise en contact d'un complexe alkoxyamine-borane avec Ni@TBAB.
La réaction de relargage d'hydrogène est en général réalisée en présence d'un catalyseur dérivé d'un métal choisi parmi le rhodium, le nickel, le palladium, le platine, le cuivre, à une température allant de 30°C à 80°C, pour une durée allant de 3 à 1500 minutes.
La réaction de relargage d'hydrogène à partir de 0.5 mmol d'un des complexes alkoxyamine- boranes suscités permet de produire de 5 cm3 à 25 cm3 de gaz.
Selon un autre mode de réalisation avantageux, l'invention concerne un procédé de relargage d'hydrogène à partir de complexes alkoxyamine-boranes comprenant une étape de déshydrogénation des dits complexes alkoxyamine-boranes par chauffage thermique des susdits complexes alkoxyamine-boranes au-dessus de 80°C, préférentiellement au-dessus de 100°C et plus préférentiellement au-dessus de 120°C.
Selon un mode de réalisation particulier de l'invention, les cinq complexes alkoxyamine- boranes suivants sont synthétisés et utilisés dans l'invention.
(1 ) (2) (3) (4) (5) La présente invention concerne également un procédé de préparation de complexes alkoxyamine-boranes de formule (I) comprenant une étape de mise en présence d'hydroxy lamines de formule (II),
pour laquelle R et R' sont choisis parmi un hydrogène ou un groupement alkyle en Ci à C10 ou cycloalkyle en C3 à C10, ou d'un de leurs sels, par exemple un chlorhydrate, avec NaBH4 et un acide minéral, préférentiellement H2S04 ou HCl, ce procédé ne nécessitant pas d'étape de purification.
Au sens de l'invention, il est entendu par «acide minéral », un acide dérivé d'un corps minéral ou inorganique, par exemple l'acide chlorhydrique, sulfurique ou nitrique.
La préparation des complexes alkoxyamine-boranes de formule (I) est en général réalisée dans un solvant organique, de préférence le THF (tétrahydrofurane).
Selon un mode de réalisation avantageux, l'invention concerne un procédé de préparation des complexes alkoxyamine-boranes suivants :
(1 ) (2) (3) (4) (5) comprenant une étape de mise en présence respectivement des chlorhydrates d'hydroxy lamines suivants :
avec NaBH4 et un acide minéral, préférentiellement H2S04 ou HCl, ce procédé ne nécessitant pas d'étape de purification. La préparation des complexes alkoxyamine-boranes de formule (I) est en général réalisée avec un rapport chlorhydrate d'hydroxy lamine / NaBH4 allant de 1 : 1 à 1 :2, ce rapport étant selon un mode préféré de l'invention fixé à 1 : 1.2. Légendes des figures :
La Figure 1 concerne l'étude de la vitesse de déshydrogénation du complexe (5) en présence de 5 mol% de catalyseur de Wilkinson avec en abscisses le temps exprimé en minutes et en ordonnées l'évolution du volume de gaz exprimée en cm3.
La Figure 2 concerne l'étude de la vitesse de déshydrogénation du complexe (2) en présence de 5 mol% de catalyseur de Wilkinson avec en abscisses le temps exprimé en minutes et en ordonnées l'évolution du volume de gaz exprimée en cm3.
La Figure 3 concerne l'étude de la vitesse de déshydrogénation du complexe (5) en présence de 5 mol% de NiCl2(PPh3)2 avec en abscisses le temps exprimé en minutes et en ordonnées l'évolution du volume de gaz exprimée en cm3.
La Figure 4 concerne l'étude de la vitesse de déshydrogénation du complexe (5) en présence de 5 mol% de Pt(PPh3)4 avec en abscisses le temps exprimé en minutes et en ordonnées l'évolution du volume de gaz exprimée en cm3.
Exemples relatifs à la préparation des complexes alkoxyamine-boranes :
Exemple 1 :
Les essais réalisés par les Inventeurs pour synthétiser un complexe alkoxyamine-borane à partir de la Ν,Ο-diméthylhydroxylamine uniquement en présence de NaBH4 dans le THF ont abouti à un bon rendement de 77% en 2h.
Θ
Cl
Un travail d'optimisation mené sur cette synthèse (Tableau 1) a permis d'accéder à un rendement de 86%. Les résultats montrent que le ratio optimum entre l'alkoxyamme-HCl et NaBH4 est de 1 : 1.2. Le complexe obtenu ne nécessite pas de purification. NaBH4
/ .HCI .0. /
NH
H THF BH3
(1 )
Référence NaBH4 (éq.) Température (°C) Temps (h) Traitement Rdt (%)
CF32dry 2 70 72 NaHC03/DCM 6.5
CF35 2 ta. 48 NaHC03/DCM 76
CF65 1.6 ta. 24 NaHC03/DCM 64
CF651 1.2 70 24 NaHC03/DCM 86
CF673 1.2 70 24 NaHC03/DCM 63
CF652 1.2 ta. 24 NaHC03/DCM 51
CF653 2 ta. 24 NaHC03/DCM 79
CF6541 1.2 ta. 2 NaHC03/DCM 68
CF6542 1.2 ta. 2 H20/AcOEt 77
Tableau 1
Exemple 2 :
Le complexe alkoxyamine-borane (2) a été synthétisé dans les mêmes conditions que ci- dessus, en utilisant le chlorhydrate de O-tertbutylhydroxylamine, en présence de borohydrure de sodium dans le THF (Tableau 2). Cette synthèse a d'abord été réalisée sur petite échelle (CF39), puis sur plus grande échelle (CF452).
(2)
Référence NaBH4 (éq.) Température (°C) Temps (h) Traitement Rdt (%)
CF39 2 ta. 24 NaHC03/DCM 38
CF452 2 ta. 24 NaHC03/DCM 64
CF522 1.3 ta. 24 NaHCOVDCM 48
Tableau 2 Exemples 3 et 4 :
Au contraire des précédentes synthèses, les complexes alkoxyamine-boranes (3) et (4) ont été préparés à partir de chlorhydrates non commerciaux (Tableaux 3, 4 et 5) qui ont donc dû être préalablement synthétisés.
(3)
Référence NaBH4 (éq.) Température (°C) Temps (h) Traitement Rdt (%)
CF77 1.2 ta. 24 H20/Et20 37.6
CF80 1.2 ta. 24 H20/Et20 35
Tableau 3
Référence NaBH4 (éq.) Température (°C) Temps (h) Traitement Rdt (%)
CF89 1.2 ta. 24 H20/Et20 65
CF97 1.2 ta. 24 H20/Et20 18
Tableau 4 Exemple 5 :
Le dernier complexe alkoxyamine-borane synthétisé est le O-méthylhydroxylamine borane (5) à partir du chlorhydrate de O-méthylhydroxylamine commercial en présence de NaBH4 dans le THF. A la différence des autres produits de départ, ce chlorhydrate présente une faible solubilité dans la majorité des solvants. Pour cette synthèse, un gros travail d'optimisation des conditions a donc été réalisé dans le but d'améliorer la solubilité du chlorhydrate de O- méthylhydroxylamine (Tableau 5).
(5)
NaBH4 Température Temps Rdt Commentaires/
Référence Traitement
(éq.) (°C) (h) (%) Modifications
CF44 2 t.a. 24 NaHC03/DCM 21
CF462 2 t.a. 24 NaHC03/DCM 10
CF53 1.25 t.a. 24 NaHC03/DCM 17
CF571 1.2 70 24 NaHC03/DCM 18
CF645 1.2 70 24 NaHC03/DCM 7 Sonication lh
Déshydrogénation (20
CF648 1.2 t.a. 24 H20/Et20 47
mL de gaz formé)
CF64EtA 1.2 t.a. 24 H20/Et20 12 Solvant : THF/AcOEt
Solvant :
CF64EtA2 2 t.a. 24 H20/Et20 28
THF/AcOEt/EtOH
Déshydrogénation (15
CF64De2 1.2 30 24 H20/Et20 43 mL des 40 mL de gaz attendu)
CF641eq 1 30 24 H20/Et20 44
Difficultés à sécher le
CF642eq 2 30 24 H20/Et20 246
produit
CF64H20 1.2 30 24 H20/Et20 64 Solvant : THF/H20
CF64H201 1.2 30 24 H20/Et20 53 THF en excès
CF64H202 1.2 30 24 H20/Et20 46 Moins de THF
Addition rapide d'une
CF64H203 1.2 30 24 H20/Et20 17 solution MeONH3 +Cl"
/H20
Addition goutte à goutte
CF64H204 1.2 30 24 H20/Et20 14 d'une solution
MeONH3 +C17H20
CF64H205 1.2 30 72 H20/Et20 20 NaBH4 ajouté en dernier
CF64H206 1.2 30 24 H20/Et20 26 NaBH4 ajouté en dernier
Solution saturée de
CF64H207 1.2 30 24 H20/Et20 44
MeONH3 +C17H20 Solution diluée de
CF64H208 1.2 30 24 H20/Et20 39
MeONH3 +C17H20
Tableau 5
Exemples relatifs à la déshydrogénation des complexes alkoxyamine-boranes :
De nombreuses recherches ont été menées sur les complexes alkoxyamine-boranes (1), (2) et (5). Ces expériences ont permis de mettre en lumière les propriétés intéressantes de la liaison dative bore-azote. Le but de ces expériences était ainsi d'établir l'utilité de ces composés en tant que précurseurs dans certaines réactions, par exemple dans la formation d'aminoboranes par déshydrogénation.
De plus, les complexes alkoxyamine-boranes montrent un fort potentiel pour des applications de stockage de l'hydrogène en raison de leur forte densité en hydrogène.
La déshydrogénation des suscités complexes alkoxyamine-boranes en présence de catalyseurs à base de métaux de transition est ici décrite.
Exemple 6 :
Les catalyseurs les plus efficaces se sont révélés être le catalyseur de Wilkinson (RhCl(PPh3)3) et NiCl2(PPh3)2 avec lesquels 1 équivalent d'hydrogène a été relargué à partir de chaque complexe alkox amine-borane (Tableaux 6, 7 et 8).
H
Catalyseur Température (°C) Temps (min) Volume de gaz formé (cm3)
PdCl2dppp 70 40 20
Pd(OAc)2 70 85 36
Pd(OH)2/C 70 540 15.5
NiCl2.6H20 70 1440 6
RuCl2.xH20 30 - -
PtCl2 30-50 900 20
RhCl(PPh3)3 30 7 22
NiCl2(PPh3)3 30 29 22 PdCl2 30 47 22
Cul 30 - -
Pt(PPh3)4 30-70 204 14
Tableau 6
Exemples 7 et 8 :
Catalyseur Température (°C) Temps (min) Volume de gaz formé (cm3)
Pd(OAc)2 30-70 - -
Pd(OH)2/C 30-70 900 5.5
PtCl2 30-70 900 8
RhCl(PPh3)3 30 12 8.5
NiCl2(PPh3)3 40 11.20 10
PdCl2 70 47.50 22
Tableau 7
Catalyseur Température (°C) Temps (min) Volume de gaz formé (cm3)
Pd(OAc)2 50-80 900 9
Pd(OH)2/C 60-80 1050 8
PtCl2 (dans THF) 50 900 10
RhCl(PPh3)3 (2.5 mol%) 50 15 10
NiCl2(PPh3)3 30-50 36 12
Tableau 8 La comparaison des vitesses de décomposition des trois complexes alkoxyamine-boranes (1), (2) et (5) montre clairement que le Ν,Ο-diméthylhydroxylamine borane (1) est le moins stable des trois.
Les complexes (1), (2) et (5) présentent des vitesses de déshydrogénation différentes, l'utilisation de l'un ou l'autre de ces complexes permet donc de moduler cette vitesse de déshydrogénation.
Exemple 9 :
Des essais supplémentaires ont été menés sur le complexe O-méthylhydroxylamine borane (5) avec le catalyseur de Wilkinson (RhCl(PPh3)3), NiCl2(PPh3)2 et les nanocatalyseurs correspondants à 50°C (Tableau 9).
Les deux nanocatalyseurs sont apparus comme efficaces dans la réaction de déshydrogénation du O-méthylhydroxylamine borane (5).
Catalyseur Température (°C) Temps (min) Volume de gaz formé (cm3)
RhCl(PPh3)3 50-80 3 10
NiCl2(PPh3)3 60-80 6 9
Rh@TBAB 50 37 15
Ni@TBAB 50 900 11
RhCl(PPh3)3
60 108 15.5
(1 mol% supplémentaire)
Tableau 9

Claims

Revendications
1. Utilisation de complexes alkoxyamine-boranes pour le stockage de l'hydrogène.
2. Utilisation selon la revendication 1, de complexes alkoxyamine-boranes pour le stockage de l'hydrogène suivi d'une étape de relargage de l'hydrogène.
3. Utilisation de complexes alkoxyamine-boranes selon la revendication 1, les dits complexes alkoxyamine-boranes étant de formule (I),
R NH (i)
BH3
pour laquelle R et R' sont choisis parmi un hydrogène, un groupement alkyle ou cycloalkyle en Cl à C10.
4. Procédé de relargage d'hydrogène à partir de complexes alkoxyamine- comprenant une étape de déshydrogénation des dits complexes alkoxyamine-boranes.
5. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de mise en contact d'au moins un complexe alkoxyamine-borane avec un catalyseur ou une étape de chauffage thermique des susdits complexes alkoxyamine-boranes.
6. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de mise en contact d'au moins un complexe alkoxyamine-borane avec un catalyseur de rhodium, de platine, de palladium, d'or ou de nickel, notamment choisi parmi RhCl(PPh3)3, NiCl2(PPh3)2, Rh@TBAB et Ni@TBAB, Pd(OH)2/C, PtCl2, PdCl2, KAuC , Pt(PPh3)4
7. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de mise en contact d'un complexe alkoxyamine-borane avec RhCl(PPh3)3.
8. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de mise en contact d'un complexe alkoxyamine-borane avec NiCl2(PPh3)2.
9. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de mise en contact d'un complexe alkoxyamine-borane avec Rh@TBAB
10. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de mise en contact d'un complexe alkoxyamine-borane avec Ni@TBAB
1 1. Procédé de relargage d'hydrogène selon la revendication 4, comprenant une étape de chauffage thermique des susdits complexes alkoxyamine-boranes au-dessus de 80°C, préférentiellement au-dessus de 120°C.
12. Procédé de préparation de complexes alkoxyamine-boranes de formule (I) comprenant une étape de mise en présence d'hydroxy lamines de formule (II), (II)
pour laquelle R et R' sont choisis parmi un hydrogène ou un groupement alkyle en Ci à C10 ou cycloalkyle en C3 à C10, ou d'un de leurs sels, par exemple un chlorhydrate, avec NaBH4 et un acide minéral, préférentiellement H2S04 ou HCl, ce procédé ne nécessitant pas d'étape de purification.
13. Procédé de préparation selon la revendication 12, des complexes alkoxyamine-boranes suivants :
(1 ) (2) (3) (4) (5) comprenant une étape de mise en présence respectivement des chlorhydrates d'hydroxy lamines suivants : avec NaBH4 et un acide minéral, préférentiellement H2S04 ou HCl, ce procédé ne nécessitant pas d'étape de purification.
EP18783061.7A 2017-09-14 2018-09-13 Nouveau procede de stockage de l'hydrogene Withdrawn EP3681841A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758543A FR3070974A1 (fr) 2017-09-14 2017-09-14 Nouveau procede de stockage de l'hydrogene
PCT/FR2018/052250 WO2019053382A1 (fr) 2017-09-14 2018-09-13 Nouveau procede de stockage de l'hydrogene

Publications (1)

Publication Number Publication Date
EP3681841A1 true EP3681841A1 (fr) 2020-07-22

Family

ID=61003078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18783061.7A Withdrawn EP3681841A1 (fr) 2017-09-14 2018-09-13 Nouveau procede de stockage de l'hydrogene

Country Status (6)

Country Link
US (1) US20200255289A1 (fr)
EP (1) EP3681841A1 (fr)
JP (1) JP2020533265A (fr)
CA (1) CA3075501A1 (fr)
FR (1) FR3070974A1 (fr)
WO (1) WO2019053382A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020233608B2 (en) * 2020-02-21 2022-10-20 Korea Gas Corporation Hydrogen storage system and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038980B2 (en) * 2009-07-08 2011-10-18 Ford Motor Company Hydrogen storage materials containing ammonia borane
CN102173385B (zh) * 2011-01-21 2012-11-14 南开大学 一种用氨基络合物合成高容量固态储氢材料氨硼烷的方法
CN102838085B (zh) * 2012-09-18 2014-04-02 武汉凯迪工程技术研究总院有限公司 一种高容量高分子聚合物储氢材料及其制备方法
GB201223264D0 (en) * 2012-12-21 2013-02-06 Cella Energy Ltd A hydrogen-storage-material

Also Published As

Publication number Publication date
FR3070974A1 (fr) 2019-03-15
US20200255289A1 (en) 2020-08-13
WO2019053382A1 (fr) 2019-03-21
JP2020533265A (ja) 2020-11-19
CA3075501A1 (fr) 2019-03-21

Similar Documents

Publication Publication Date Title
JP5923105B2 (ja) キラルスピロ−ピリジルアミドフォスフィン配位子化合物、その合成方法及びその利用
Manas et al. Experimental and computational studies of borohydride catalyzed hydrosilylation of a variety of C [double bond, length as m-dash] O and C [double bond, length as m-dash] N functionalities including esters, amides and heteroarenes
US20190076826A1 (en) Selective hydrogenation catalyst and selective hydrogenation method using the same
CN103539596A (zh) 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
JP4849519B2 (ja) 水素発生方法
CN103570489B (zh) 一种铜催化的由炔烃制备顺式烯烃的方法
JP3504254B2 (ja) 光学活性アミノアルコールおよびその中間体の製造方法
JP2009541418A (ja) ボランエーテル錯体
CN110813281B (zh) 纳米碳负载团簇态钯基催化剂在腈类化合物催化加氢制备伯胺中的应用
EP3681841A1 (fr) Nouveau procede de stockage de l'hydrogene
CA2471463C (fr) Composes (aryl) (amino)boranes, procede pour leur preparation
CN101219988A (zh) 一种4,4′-二取代基-2,2′-联吡啶的合成方法
CN113441184B (zh) 碳二亚胺胺化合成用催化剂、合成方法及所得胍基化合物
EP3196189A1 (fr) Procédé de production d'un composé benzaldéhyde à substitution 2-amino
CN111217670A (zh) 一种催化还原羰基化合物为亚甲基的方法
CN111302962A (zh) 一种将脂肪族硝基化合物中的硝基还原成氨基的快捷方法
CN107382741A (zh) 催化炔烃和胺的分子间氢胺化反应的方法
CN112479990A (zh) 一种高效2,3-二氯吡啶的合成方法
CN113416140B (zh) 一种制备2-甲基戊二胺的方法
CN109369514A (zh) 一种六元碳环衍生物的合成方法
CN109485647A (zh) 一种抗焦虑药物帕戈隆或帕秦克隆的制备方法
CN115624972B (zh) 一种酰胺加氢制备胺的催化剂的制备方法及其应用
JP5158811B2 (ja) 水素発生方法
CN114181090B (zh) 由酰胺经铱和硼试剂共同催化硅氢化合成胺类化合物的制备方法
JP4112651B2 (ja) シス−ヘキサヒドロイソインドリンの製造方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230401