CN103539596A - 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法 - Google Patents

催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法 Download PDF

Info

Publication number
CN103539596A
CN103539596A CN201310513385.7A CN201310513385A CN103539596A CN 103539596 A CN103539596 A CN 103539596A CN 201310513385 A CN201310513385 A CN 201310513385A CN 103539596 A CN103539596 A CN 103539596A
Authority
CN
China
Prior art keywords
formate
formic acid
nitro
hydrogen
carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310513385.7A
Other languages
English (en)
Inventor
李新昊
蔡翊宇
龚灵红
陈接胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201310513385.7A priority Critical patent/CN103539596A/zh
Publication of CN103539596A publication Critical patent/CN103539596A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,以氮化碳负载纳米钯或聚合物半导体负载纳米金属为催化剂,以甲酸或甲酸盐为氢源,反应温度0℃至150℃,将高效催化甲酸或甲酸盐氢转移至底物硝基选择性生成对应的胺。与现有技术相比,本方法反应条件温和,底物转化率和产物选择性高,催化剂易于回收、循环性好,体系环保绿色低能耗,具有极其重要的工业应用价值。

Description

催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
技术领域
本发明属于精细化学品技术领域,具体涉及一种氮化碳负载纳米钯催化转移甲酸或甲酸盐中的氢可控还原不饱和有机物的方法。进一步为氮化碳负载纳米钯催化剂催化硝基等化合物选择性生成对应胺的方法。
背景技术
选择性催化硝基化合物加氢生成胺类是非常重要的催化反应,在化工和制药工业有广泛的应用。胺类广泛用于合成药物、染料、聚合物、杀虫剂、香料和表面活性剂、生物质燃料等精细化工产品。直接还原硝基化合物是其常规制备手段。液相和气相加氢是工业上普遍采用的两种生产方法,而液相加氢由于不存在对底物沸点的限制而使其适用范围更加广泛,尤其适用于小规模精细化学品如胺类等精细化学品的生产。
实现这一加氢过程的方法主要包括以:(1)光催化还原,电催化还原,以硫化碱、水合联氨、二硫化硒、金属氢化物为还原剂还原,这些方法反应条件温和,工艺简单,但存在转化速率低或还原剂昂贵的缺陷;(2)以化学计量比的还原剂如铁、锌、铝、铜等金属还原,该方法产率高,工艺简单,但副产物高产物分离过程复杂,对环境破坏严重;(3)以氢气为氢源,贵金属或镍基催化剂催化底物加氢,该方法规模适于工业应用,然而,基于氢气催化加氢的工业过程有着高能耗,高成本,选择性偏低的缺陷。同时,氢气的分解转移过程需要高温,并且速率较低,同时,氢气作为工业原料的储运过程为生产带来了额外的成本。
另一个替代性的催化加氢工艺是通过从氢供体分子上提取并转移氢原子使硝基化合物氢化,相比传统的催化加氢工艺具有明显的优势。该方法选择均相或异相催化剂与氢供体构成反应体系,在温和的反应条件下将硝基化合物高效选择性生成胺。在可选的氢供体(水合联氨、醇类、甲酸及甲酸盐等)中,生物质甲酸具有低毒、稳定性好、价格低廉、产量大等优点,是一种储运使用非常安全的可持续性氢源。
在近年来的研究中,含有钌,铑,钯,铜,钴,钼和铁(J.Am.Chem.Soc.2011年133期12875页)等金属中心的均相催化剂在氢转移催化加氢硝基化合物中表现出了很高的活性,其催化活性与特定的有机配体直接相关,然而以甲酸为氢源的例子较少。并且金属有机催化剂对空气和湿度非常敏感,反应时须进行惰气保护,这限制了其大规模工业应用的前景。异相催化剂如镍基催化剂或负载金、铂、钯等纳米粒子的催化剂有着重复使用性好等特点而受到关注,如雷尼镍被用于催化甲酸氢转移至硝基化合物,但该方法存在催化剂易溶解,甲酸用量大,反应产率低等缺陷(Syn.Commun.2000年30期2889页)。钯碳催化剂被用于催化甲酸氢转移至硝基化合物(Ind.J.Chem.2000年709页),但该方法在反应时催化剂与底物的重量比达到30%至50%,且甲酸大大过量,催化剂易失活。二氧化钛负载金纳米粒子催化剂(Adv.Synth.Catal.2011年353期281页)也被用于催化甲酸还原硝基化合物,但该催化剂转化效率很低,远远不能达到工业催化的要求。因此,现阶段急需一种高效的,催化甲酸(或甲酸盐)氢转移的异相催化剂。
我们提出了一类新的氮化碳负载纳米钯催化剂,进一步拓展为聚合物半导体负载纳米金属催化剂,能够高效催化甲酸氢转移至底物硝基专一生成对应的胺。作为基底的聚合物半导体可以分三类,氮化碳,掺杂碳和共轭高分子。其中氮化碳作为基底具有成本低廉,制备过程简单,易于从反应体系分离等优点。同时氮化碳能够调节金属纳米粒子的电子结构,其表面氨基对贵金属活性中心有着稳定作用;氮化碳在溶剂中的分散性较好,对有机底物的亲和性高,这些都是其作为基底提高催化剂催化活性的重要原因。掺杂碳材料是一类新兴碳材料,在有着碳材料优势的同时还通过引入杂原子调节了其电子结构,增加了活性位点,因而具有与碳材料不同的催化性质,有着广阔的应用前景。共轭高分子来源广泛,结构单元丰富,化学性质差异较大,可针对不同的催化反应选择合适的共轭高分子作为催化剂基底来调节反应活性,是目前研究的一个热点。本方法通过选择不同的催化剂基底与金属催化中心组合,实现了温和的反应条件,极高的底物转化速率和产物选择性,同时具有催化剂易于回收、循环性好,体系环保绿色和低能耗等优点,具有极其重要的潜在工业应用价值。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种解决原有催化加氢工业过程中现存的问题的氮化碳负载纳米钯或聚合物半导体负载纳米金属催化可控还原不饱和有机化合物的方法。
本发明的目的可以通过以下技术方案来实现:
催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,以甲酸或甲酸盐为氢源,在0℃至150℃下,在溶剂中将高效催化甲酸或甲酸盐氢转移至底物硝基选择性生成对应的胺,具体采用以下步骤:
以甲酸或甲酸盐为氢源,控制反应温度为0-150℃,在溶剂中与硝基底物混合,控制甲酸或甲酸盐与硝基底物的摩尔比为0.01:1-2000:1,以氮化碳负载纳米钯或聚合物半导体负载纳米金属为催化剂,将甲酸或甲酸盐的氢转移至硝基底物中可控还原转化为相应胺类化合物。
所述的甲酸盐为含有甲酸根的化学或生物物质,包括但不限于甲酸锂、甲酸钠、甲酸钾、甲酸胺、甲酸三乙胺盐或甲酸三乙醇胺盐。
所述的硝基底物含有硝基官能团的有机分子或者聚合物,包括但不限于芳香、杂环或稠环硝基化合物。
作为优选的实施方式,芳香硝基化合物为硝基苯或取代芳香硝基苯,杂环硝基化合物为氮杂环硝基化合物。
作为更加优选的实施方式,取代芳香硝基苯的取代基为一种或多种推电子或吸电子基团,所述的推电子基团为烷基、烷氧基、氨基甲基或羟基,所述的吸电子基团为直接与芳环相连的氟、酰基、酮基、硝基、羧基或酯基。
所述的甲酸或甲酸盐与硝基底物的摩尔比优选1:1-7:1。
所述的溶剂包括但不限于水、氮氮二甲基酰胺、乙醇、乙腈、乙酸乙酯或四氢呋喃。
所述的反应温度优选10-50℃。
所述的氮化碳负载纳米钯催化剂中的钯颗粒尺寸为1-50nm,载体为氮化碳,钯与氮化碳的重量比为0.001:99.999-40:60,所述的聚合物半导体负载纳米金属催化剂中采用的金属为金、银、铱、镍、钌、铂或铑中的一种或几种,金属颗粒尺寸为1-50nm,其载体为氮掺杂石墨烯、聚乙炔、聚丙烯腈、聚对苯撑乙炔、聚对苯撑乙稀或聚噻吩中的一种或几种;金属与载体的重量比为0.001:99.999-40:60。
作为优选的实施方式,氮化碳负载纳米钯催化剂中钯与氮化碳的重量比优选8:92,聚合物半导体负载纳米金属催化剂中金属与载体的重量比优选8:92。
与现有技术相比,本发明以甲酸或甲酸盐作为氢供体成本低廉,安全性好,反应条件温和反应速率高,产物选择性高,催化剂易回收,循环性好,环境友好,能耗低,有极高的工业化应用前景。更重要的是,本发明适用于任何气体气氛中的催化反应体系,即空气气氛,惰性气体气氛等体系中均能提供高的催化转化率和选择性,由于钯表面存在活化的甲酸脱出的氢一步转移至硝基化合物,不需经过多步反应及各种部分加氢产物,同时,载体与钯粒子的直接接触能够调节钯粒子的电子结构,由此氮化碳负载纳米钯催化剂获得极高的转化速率和选择性。
附图说明
图1为氮化碳负载钯纳米粒子粉末的X-射线衍射谱图;
图2为氮化碳负载钯纳米粒子的透射电镜照片。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1:
将半导体氮化碳分散至去离子水中,加入适量氯钯酸或氯钯酸钠溶液后浸渍一段时间。用氢氧化钠溶液调节分散了半导体氮化碳的氯钯酸或氯钯酸钠溶液的pH后,加入还原剂还原并洗涤,烘干。
本发明通过上述方法制备得到的氮化碳负载纳米钯催化剂的化学组成为:钯质量分数为0.1-40%的钯-氮化碳催化剂。图1为实施例1的氮化碳负载纳米钯催化剂粉末X-射线衍射谱图,说明有大量金属钯(111)和(200)晶面存在;图2为实施例1的氮化碳负载纳米钯催化剂催化剂透射电子显微镜照片,由图可知氮化碳所负载的钯纳米粒子小于5nm,尺寸分布比较均一。纳米级金属钯颗粒的稳定存在是氮化碳负载钯纳米粒子高反应活性的重要原因。
实施例2:
分别将氮掺杂石墨烯、聚乙炔、聚丙烯腈、聚对苯撑乙炔、聚对苯撑乙稀和聚噻吩等聚合物半导体分散至去离子水中,加入适量氯钯酸或氯钯酸钠溶液后浸渍一段时间。用氢氧化钠溶液调节分散了聚合物半导体的氯钯酸或氯钯酸钠溶液的pH后,加入硼氢化钠溶液还原并洗涤,烘干。
本发明通过上述方法制备得到的聚合物半导体纳米钯催化剂的化学组成为:钯质量分数为0.001:99.999至40:60的聚合物半导体纳米钯催化剂。
实施例3:
将实例2中所述聚合物半导体分散至去离子水中,分别加入适量的含金、银、铱、镍、钌、铂、或铑的溶液后浸渍一段时间。用氢氧化钠溶液调节分散了半导体氮化碳的含金、银、铱、镍、钌、铂、或铑的溶液的pH后,加入还原剂还原并洗涤,烘干。本发明通过上述方法制备得到的聚合物半导体负载纳米金属催化剂的化学组成为:聚合物半导体负载的金、银、铱、镍、钌、铂、或铑质量分数为0.001:99.999至40:60的催化剂。
实施例4:
将0.5mmol硝基苯,10mg8%钯-氮化碳催化剂加入3.75mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例5:
将0.5mmol硝基苯,10mg8%钯-氮化碳催化剂分别加入5mL乙醇、乙腈中超声30s,加入纯甲酸开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于95%,苯胺选择性大于99%。
实施例6:
将0.5mmol硝基苯,10mg8%钯-氮化碳催化剂分别加入5mL去离子水中超声30s,加入纯甲酸开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例7:
将0.5mmol硝基苯,10mg8%钯-氮化碳催化剂分别加入5mL去离子水中超声30s,加入0.2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例8:
将0.5mmol硝基苯,10mg8%钯-氮化碳催化剂分别加入5mL去离子水中超声30s,加入8M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例9:
将0.5mmol硝基苯,10mg8%钯-氮化碳催化剂加入3.75mL去离子水中超声30s,加入2M甲酸钠水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例10:
将2.5mmol硝基苯,50mg8%钯-氮化碳催化剂分别加入25mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例11:
将5mmol硝基苯,100mg8%钯-氮化碳催化剂分别加入25mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例12:
将0.5mmol硝基苯,10mg0.1%钯-氮化碳催化剂分别加入5mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例13:
将0.5mmol硝基苯,10mg40%钯-氮化碳催化剂分别加入5mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例14:
将0.5mmol邻甲基硝基苯、间甲基硝基苯、对甲基硝基、对氟硝基苯、对羟基硝基苯、对甲氧基硝基苯、6-硝基喹啉、2,6-二甲基硝基苯、硝基萘、1,3-二硝基苯、2-氨基-3甲基硝基苯、对硝基苯乙酮、对羟基苯甲酸甲酯、苯、分别与10mg8%钯-氮化碳催化剂各加入3.75mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于93%,胺选择性大于99%。
实施例15:
将重复实施例4反应1次后的催化剂回收,加入0.5mmol硝基苯,3.75mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例16:
将重复实施例4反应8次后的催化剂回收,加入0.5mmol硝基苯,3.75mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例17:
将0.5mmol硝基苯,10mg8%金-氮化碳催化剂分别加入25mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。
实施例18:
将0.5mmol硝基苯,10mg8%钯-聚噻吩催化剂分别加入25mL去离子水中超声30s,加入2M甲酸水溶液开始反应,反应结束后用气相色谱(FID检测器)分析结果得结果转化率大于99%,苯胺选择性大于99%。

Claims (10)

1.催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,该方法采用以下步骤:以甲酸或甲酸盐为氢源,控制反应温度为0-150℃,在溶剂中与硝基底物混合,控制甲酸或甲酸盐与硝基底物的摩尔比为0.01:1-2000:1,以氮化碳负载纳米钯或聚合物半导体负载纳米金属为催化剂,将甲酸或甲酸盐的氢转移至硝基底物中可控还原转化为相应胺类化合物。
2.根据权利要求1所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,所述的甲酸盐为含有甲酸根的化学或生物物质,包括但不限于甲酸锂、甲酸钠、甲酸钾、甲酸胺、甲酸三乙胺盐或甲酸三乙醇胺盐。
3.根据权利要求1所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,所述的硝基底物含有硝基官能团的有机分子或者聚合物,包括但不限于芳香、杂环或稠环硝基化合物。
4.根据权利要求3所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,芳香硝基化合物为硝基苯或取代芳香硝基苯,杂环硝基化合物为氮杂环硝基化合物。
5.根据权利要求4所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,所述的取代芳香硝基苯的取代基为一种或多种推电子或吸电子基团,所述的推电子基团为烷基、烷氧基、氨基甲基或羟基,所述的吸电子基团为直接与芳环相连的氟、酰基、酮基、硝基、羧基或酯基。
6.根据权利要求1-5中任一项所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,所述的甲酸或甲酸盐与硝基底物的摩尔比优选1:1-7:1。
7.根据权利要求1所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,所述的溶剂包括但不限于水、氮氮二甲基酰胺、乙醇、乙腈、乙酸乙酯或四氢呋喃。
8.根据权利要求1所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,所述的反应温度优选10-50℃。
9.根据权利要求1所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,
所述的氮化碳负载纳米钯催化剂中的钯颗粒尺寸为1-50nm,载体为氮化碳,钯与氮化碳的重量比为0.001:99.999-40:60,
所述的聚合物半导体负载纳米金属催化剂中采用的金属为金、银、铱、镍、钌、铂或铑中的一种或几种,金属颗粒尺寸为1-50nm,其载体为氮掺杂石墨烯、聚乙炔、聚丙烯腈、聚对苯撑乙炔、聚对苯撑乙稀或聚噻吩中的一种或几种;金属与载体的重量比为0.001:99.999-40:60。
10.根据权利要求9所述的催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法,其特征在于,
所述的氮化碳负载纳米钯催化剂中钯与氮化碳的重量比优选8:92,
所述的聚合物半导体负载纳米金属催化剂中金属与载体的重量比优选8:92。
CN201310513385.7A 2013-10-25 2013-10-25 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法 Pending CN103539596A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310513385.7A CN103539596A (zh) 2013-10-25 2013-10-25 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310513385.7A CN103539596A (zh) 2013-10-25 2013-10-25 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法

Publications (1)

Publication Number Publication Date
CN103539596A true CN103539596A (zh) 2014-01-29

Family

ID=49963509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310513385.7A Pending CN103539596A (zh) 2013-10-25 2013-10-25 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法

Country Status (1)

Country Link
CN (1) CN103539596A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268901A (zh) * 2016-07-18 2017-01-04 刘义林 一种掺氮石墨烯负载Pd/Ni催化剂及其制备方法
CN106748753A (zh) * 2016-12-28 2017-05-31 江苏扬农化工集团有限公司 乙醇制乙酸乙酯联产芳胺的方法
CN107033009A (zh) * 2017-06-07 2017-08-11 吉林大学 快速还原芳香硝基化合物制备氨基化合物的方法
CN107051566A (zh) * 2017-03-22 2017-08-18 湖北大学 氮杂碳包覆钴催化剂的制备方法及基于上述催化剂的不饱和化合物催化转移加氢的方法
CN108658067A (zh) * 2018-06-20 2018-10-16 河北大学 一种磷氮共掺杂碳材料及其制备方法与用途
CN108658714A (zh) * 2018-05-03 2018-10-16 中国科学院青岛生物能源与过程研究所 一种芳胺类化合物的制备方法
CN109012728A (zh) * 2018-08-10 2018-12-18 复旦大学 可见光下催化氧还原合成过氧化氢用催化剂及其制备方法
WO2020057274A1 (zh) * 2018-09-20 2020-03-26 大连理工大学 一种取代伯胺的制备方法
CN112151812A (zh) * 2019-06-28 2020-12-29 河海大学 铑/硼氮共掺杂石墨烯气凝胶三维复合电极催化剂的制备方法
CN112920055A (zh) * 2021-02-01 2021-06-08 重庆工商大学 一种可见光催化硝基芳烃与羧酸一锅加氢和酰胺化方法
CN114130395A (zh) * 2021-11-25 2022-03-04 西北民族大学 基于催化合成胺类化合物的磁性超疏水镍碳纳米复合催化材料的制备方法
CN114289050A (zh) * 2021-12-23 2022-04-08 沈阳化工研究院有限公司 一种应用于芳香硝基物连续加氢的催化剂和制备方法
CN114405544A (zh) * 2021-12-29 2022-04-29 盐城工学院 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
CN115364886A (zh) * 2022-06-20 2022-11-22 山东大学 一种等离子体光催化材料及在二氧化碳环加成反应的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491863A (zh) * 2011-11-30 2012-06-13 浙江大学 一种芳香族硝基化合物选择性加氢还原方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491863A (zh) * 2011-11-30 2012-06-13 浙江大学 一种芳香族硝基化合物选择性加氢还原方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIYA RAM ET AL.: "A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic hydrogen transfer agent", 《TETRAHEDRON LETTERS》, vol. 25, no. 32, 31 December 1984 (1984-12-31), pages 3415 - 3418, XP000644519, DOI: doi:10.1016/S0040-4039(01)91034-2 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268901A (zh) * 2016-07-18 2017-01-04 刘义林 一种掺氮石墨烯负载Pd/Ni催化剂及其制备方法
CN106748753A (zh) * 2016-12-28 2017-05-31 江苏扬农化工集团有限公司 乙醇制乙酸乙酯联产芳胺的方法
CN106748753B (zh) * 2016-12-28 2019-04-12 江苏扬农化工集团有限公司 乙醇制乙酸乙酯联产芳胺的方法
CN107051566A (zh) * 2017-03-22 2017-08-18 湖北大学 氮杂碳包覆钴催化剂的制备方法及基于上述催化剂的不饱和化合物催化转移加氢的方法
CN107033009A (zh) * 2017-06-07 2017-08-11 吉林大学 快速还原芳香硝基化合物制备氨基化合物的方法
CN108658714B (zh) * 2018-05-03 2021-04-13 中国科学院青岛生物能源与过程研究所 一种芳胺类化合物的制备方法
CN108658714A (zh) * 2018-05-03 2018-10-16 中国科学院青岛生物能源与过程研究所 一种芳胺类化合物的制备方法
CN108658067A (zh) * 2018-06-20 2018-10-16 河北大学 一种磷氮共掺杂碳材料及其制备方法与用途
CN108658067B (zh) * 2018-06-20 2020-07-17 河北大学 一种磷氮共掺杂碳材料及其制备方法与用途
CN109012728A (zh) * 2018-08-10 2018-12-18 复旦大学 可见光下催化氧还原合成过氧化氢用催化剂及其制备方法
WO2020057274A1 (zh) * 2018-09-20 2020-03-26 大连理工大学 一种取代伯胺的制备方法
CN112151812A (zh) * 2019-06-28 2020-12-29 河海大学 铑/硼氮共掺杂石墨烯气凝胶三维复合电极催化剂的制备方法
CN112151812B (zh) * 2019-06-28 2021-09-28 河海大学 铑/硼氮共掺杂石墨烯气凝胶三维复合电极催化剂的制备方法
CN112920055A (zh) * 2021-02-01 2021-06-08 重庆工商大学 一种可见光催化硝基芳烃与羧酸一锅加氢和酰胺化方法
CN112920055B (zh) * 2021-02-01 2022-08-05 重庆工商大学 一种可见光催化硝基芳烃与羧酸一锅加氢和酰胺化方法
CN114130395A (zh) * 2021-11-25 2022-03-04 西北民族大学 基于催化合成胺类化合物的磁性超疏水镍碳纳米复合催化材料的制备方法
CN114289050A (zh) * 2021-12-23 2022-04-08 沈阳化工研究院有限公司 一种应用于芳香硝基物连续加氢的催化剂和制备方法
CN114405544A (zh) * 2021-12-29 2022-04-29 盐城工学院 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
CN114405544B (zh) * 2021-12-29 2023-11-21 盐城工学院 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
CN115364886A (zh) * 2022-06-20 2022-11-22 山东大学 一种等离子体光催化材料及在二氧化碳环加成反应的应用
CN115364886B (zh) * 2022-06-20 2023-07-28 山东大学 一种等离子体光催化材料及在二氧化碳环加成反应的应用

Similar Documents

Publication Publication Date Title
CN103539596A (zh) 催化转移甲酸或甲酸盐中的氢可控还原硝基化合物的方法
Xu et al. Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core-shell structured CdS@ C3N4
Liu et al. g-C3N4 hydrogen-bonding viologen for significantly enhanced visible-light photocatalytic H2 evolution
CN103641673B (zh) 一种氮化碳负载型金属纳米粒子催化还原碳碳双键的方法
Yu et al. Gold‐Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile
CN104028293B (zh) 一种低温氮掺杂石墨烯负载纳米Pd加氢催化剂的制备方法
CN101116817B (zh) 碳氮纳米管负载铂钌纳米粒子电极催化剂的制备方法
Rangraz et al. Selenium-doped graphitic carbon nitride decorated with Ag NPs as a practical and recyclable nanocatalyst for the hydrogenation of nitro compounds in aqueous media
Meng et al. Graphene‐Supported Trimetallic Core–Shell Cu@ CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane
CN108794756A (zh) 一种镍离子修饰的共价有机框架材料的制备方法及其应用
CN113145155B (zh) 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN109603819B (zh) 一种石墨烯负载PdRu双金属催化剂及其制备方法和应用
CN113101933B (zh) 一种负载型镍钴双金属纳米催化剂及其在催化香兰素选择性加氢反应中的应用
CN108636433B (zh) 一种氮掺杂多孔碳固载的贵金属催化剂及其制备方法和应用
CN106944065B (zh) 石墨烯负载镍加氢催化剂的制备方法和应用
Yang et al. Construction of low-cost Z-scheme heterojunction Cu2O/PCN-250 photocatalysts simultaneously for the enhanced photoreduction of CO2 to alcohols and photooxidation of water
CN110921657A (zh) 石墨烯量子点的制备方法及其应用
CN108212189A (zh) 一种微量贵金属修饰的过渡金属催化剂及其制备和应用
Nanadegani et al. Cobalt oxide NPs immobilized on environmentally benign biological macromolecule-derived N-doped mesoporous carbon as an efficient catalyst for hydrogenation of nitroarenes
Zhao et al. Transformation from 3D boron organic polymers to 1D nanorod arrays: loading highly dispersed nanometal for green catalysis
Gao et al. Electronic interaction and oxgen vacancy engineering of g-C3N4/α-Bi2O3 Z-scheme heterojunction for enhanced photocatalytic aerobic oxidative homo-/hetero-coupling of amines to imines in aqueous phase
CN107353268B (zh) 一种由5-羟甲基糠醛选择加氢制备5-甲基糠醛的方法
CN110813281B (zh) 纳米碳负载团簇态钯基催化剂在腈类化合物催化加氢制备伯胺中的应用
Cheng et al. Biomass derived carbon dots mediated exciton dissociation in rose flower-like carbon nitride for boosting photocatalytic performance
Liu et al. Cobalt encapsulated in N‑doped graphene sheet for one-pot reductive amination to synthesize secondary amines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140129