EP3376031B1 - Adjustable wear-resistant rotary pump - Google Patents

Adjustable wear-resistant rotary pump Download PDF

Info

Publication number
EP3376031B1
EP3376031B1 EP18170712.6A EP18170712A EP3376031B1 EP 3376031 B1 EP3376031 B1 EP 3376031B1 EP 18170712 A EP18170712 A EP 18170712A EP 3376031 B1 EP3376031 B1 EP 3376031B1
Authority
EP
European Patent Office
Prior art keywords
sliding
actuating member
rotary pump
pump according
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18170712.6A
Other languages
German (de)
French (fr)
Other versions
EP3376031A1 (en
Inventor
Christof Lamparski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38283219&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3376031(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3376031A1 publication Critical patent/EP3376031A1/en
Application granted granted Critical
Publication of EP3376031B1 publication Critical patent/EP3376031B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0865Oxide ceramics
    • F05C2203/0869Aluminium oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/06Polyamides, e.g. NYLON
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/12Polyetheretherketones, e.g. PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/10Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/14Self lubricating materials; Solid lubricants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49242Screw or gear type, e.g., Moineau type

Definitions

  • the invention relates to a rotary pump with an adjustable, preferably controllable delivery volume and a method for its production.
  • the rotary pump can in particular be used as a lubricating oil pump for supplying lubricating oil to an internal combustion engine, in particular a motor vehicle engine.
  • Lubricating oil pumps in motor vehicles are driven as a function of the speed of the engine to be supplied with lubricating oil, usually directly or via a mechanical transmission from the engine.
  • the speed of the pump increases accordingly with the speed of the motor.
  • rotary pumps have a constant specific delivery volume, ie deliver essentially the same amount of liquid per revolution at any speed, the delivery volume increases proportionally with the pump speed. Up to a certain limit speed, the demand of the motor also increases roughly proportionally to the motor speed, but kinks or at least flattens out after the limit speed is reached, so that the rotary pump delivers above demand when the limit speed is exceeded. Adjustable rotary pumps have been developed so that the excess flow rate does not have to be routed to a reservoir with losses.
  • adjustable rotary pumps inner-axis and outer-axis gear pumps are from the DE 102 22 131 B4 known.
  • Adjustable vane pumps are also known.
  • the pumps each include a reciprocating actuator.
  • the feed rotor is either a gear or an impeller.
  • the eccentricity between two meshing gears or the eccentricity between the impeller and the actuator is adjusted according to the needs of the consumer by the movement of the adjusting member.
  • With external-axis gear pumps the axial length of engagement of two gearwheels is adjusted.
  • an actuating force is applied to the respective actuator, for example directly with the high-pressure fluid.
  • a spring member counteracts the actuating force.
  • pumps of the type mentioned which are increasingly made of light metal alloys, in particular aluminum alloys, the surfaces of the pump housing and the actuator that are in frictional contact are surprisingly subject to particular wear and tear and determine the service life of the pump.
  • the DE 102 22 131 B4 relates to a displacement pump with delivery volume adjustment. It is a gear pump in which one gear can be shifted linearly relative to the other gear in order to vary the delivery line.
  • the DE 10 2004 033 968 A1 relates to a coating for heavy-duty tribological surfaces of moving components, such as a piston of an internal combustion engine. A lubricating varnish or a coating made of detachable conductor polymers is proposed as coatings.
  • the DE 42 00 305 A1 relates to a controllable vane pump with an adjusting ring which can be pivoted in a housing.
  • the invention is based on a rotary pump of the positive displacement type, which comprises a housing with a delivery chamber, a delivery rotor rotatable about an axis of rotation in the delivery chamber, and at least one actuator that can be moved back and forth in the housing.
  • the actuator can surround the conveyor rotor or preferably be arranged on an end face of the conveyor rotor.
  • An actuator surrounding the feed rotor can be provided in particular in the case of internal-axis pumps, for example gerotor pumps and vane pumps, and as a rotatably mounted eccentric ring, as shown in FIG DE 102 22 131 B4 or the EP 0 846 861 B1 known or formed as a lifting ring.
  • an actuator is preferred, as known from external gear pumps, for example the DE 102 22 131 B4 , is arranged on an end face of the feed rotor and axially seals the feed chamber on the relevant end face.
  • Such an actuator forms an actuating piston which can be axially moved back and forth along the axis of rotation of the feed wheel.
  • An actuator surrounding the conveyor rotor is rotatably or pivotably mounted, but can alternatively also be mounted so as to be linearly movable.
  • the delivery chamber has a low-pressure side and a high-pressure side. At least one inlet is arranged on the low-pressure side and at least one outlet for a fluid to be conveyed is arranged on the high-pressure side.
  • the low pressure side of the delivery chamber and the entire upstream part of the system in which the pump is installed form the low pressure side of the pump.
  • the high pressure side of the delivery chamber and the entire downstream part of the system connected to it form the high pressure side of the pump.
  • the low-pressure side extends up to a reservoir for the fluid, and the high-pressure side extends up to at least the most downstream consumption point which requires high fluid pressure.
  • the actuator can be acted upon in the direction of its movability with an actuating force which depends on the pressure of the fluid on the high-pressure side of the pump or on another variable of the system that is decisive for the requirement.
  • the pressure can be taken directly at the outlet of the delivery chamber or a downstream pump outlet or from a point further downstream in the system, for example the last point of consumption.
  • the temperature of the fluid or a component in the system in which the pump is installed for example an engine temperature, can flow into the formation of the actuating force. If necessary, other or further physical quantities are used to determine the actuating force.
  • the actuating force can be generated by means of an additional actuator, for example an electric motor.
  • the actuator can be acted upon directly by the pressure of the fluid, ie it is acted upon by the pressure fluid when the pump is in operation.
  • the actuator in particular in embodiments in which it is acted upon by the pressurized fluid, the actuator is acted upon with an elastic force counteracting the actuating force.
  • the elastic force is generated by an elastic member, preferably a mechanical spring.
  • the actuator is in sliding contact with the housing, in that the housing forms a track and the actuator forms an actuator sliding surface and the actuator is guided by the track in the sliding contact by means of its sliding surface.
  • the actuator can also be guided in another way, for example in a swivel joint, but more preferably it is only guided by the track.
  • the actuator is at least substantially formed from the plastic sliding material that forms the actuator sliding surface.
  • the raceway is preferably formed from a sliding material.
  • the sliding material can in particular be a plastic, a ceramic material, a nitride, a nickel-phosphorus compound, a sliding varnish, a DLC coating, a Ferroprint coating or a nano-coating.
  • the sliding material can form a surface coating.
  • a housing part forming the raceway can consist exclusively or at least essentially of the sliding material.
  • both the actuator sliding surface and the raceway consist of a sliding material, either the same or a different sliding material. Reductions in wear are, however, already achieved if either only the actuator sliding surface or only the raceway consists of the sliding material, preference being given to the use of the sliding material for the actuator sliding surface.
  • Adhesion can in particular be the friction mechanism that determines wear if the friction partners in sliding contact are so smooth that the friction mechanism of the furrowing or abrasion takes a back seat.
  • the actuating elements arranged on the end faces of the axially movable delivery rotor, namely the two actuating pistons are subject to considerable frictional wear.
  • the adjustment movements required for setting the delivery volume cannot cause vibration wear.
  • the adjustment movements are too slow.
  • oscillations with short strokes and a much higher frequency compared to the control movements are superimposed on the adjustment movements.
  • Adhesion therefore occurs between the sliding surfaces of the actuators and the track of the pump housing, with the result that material welds occur locally, which are broken free by the adjustment movements.
  • the sliding partners d. H. the sliding surface of the actuator or several actuators and the raceway or several raceways of the housing, designed in such a way that the tendency to adhesion in the friction system is significantly reduced compared to the aluminum alloy surfaces customary for the sliding partners.
  • the sliding material is advantageously chosen so that it has an adhesion energy or free surface energy that is at most half as large as the adhesion energy of pure aluminum. This condition is met in particular by plastic materials and ceramic materials, preferably metal oxide ceramics, but also by the other sliding materials mentioned above.
  • the adhesion energy or binding free energy increases with the density of the free electrons. The requirement for a low adhesion energy is therefore met by materials with a low density of free electrons.
  • a group of materials particularly suitable as sliding material are temperature-resistant thermoplastics.
  • the polymer or the possibly several polymers of the plastic sliding material is / are advantageously slide modified, ie the plastic contains a sliding additive which improves the sliding properties.
  • Such a sliding material is also ideally suited in cases in which only one of the sliding partners of the friction system consists of sliding material.
  • a preferred sliding additive is graphite.
  • a polymer from the group of fluoropolymers is particularly suitable as a sliding additive.
  • a preferred example from this group is polytetrafluoroethylene (PTFE).
  • the polymer, copolymer, polymer mixture or polymer blend are particularly preferred as Additive both graphite and at least one fluoropolymer, preferably PTFE, mixed in.
  • the proportion of the sliding additive should be at least 10% by weight in total, more preferably the proportion of the sliding additive is a total of 20% ⁇ 5%. If different materials form the sliding additive, the individual proportions should be at least essentially the same.
  • Plastic sliding materials are preferred which contain 10 ⁇ 2% by weight of graphite and 10 ⁇ 2% by weight of fluoropolymer.
  • the addition of fiber material is also seen as advantageous, preference being given to carbon fibers as the fiber material. Glass fibers should not be added since they can form fine needle points on the surface of the sliding layer formed from the sliding material and therefore impair the sliding properties.
  • the plastic sliding material preferably contains 10 ⁇ 5% by weight, more preferably 10 ⁇ 3% by weight, fiber material.
  • the actuator is formed from the plastic sliding material, preferably by injection molding. In such designs, it is preferably made of plastic. In principle, however, insert parts can be embedded in the plastic; In this sense, the actuator consists at least essentially of the plastic sliding material.
  • a housing part that forms the track can also be formed from the plastic sliding material, preferably by injection molding and solely from the plastic or, in the above sense, at least essentially consist of the plastic.
  • the housing is formed from a metal, preferably a light metal, and the track is formed by an insert part made from the plastic sliding material, preferably a bushing.
  • the actuator and a housing part forming the raceway can each be formed from the plastic sliding material.
  • the actuator consists at least essentially of the plastic sliding material, while the raceway is formed by a plastic sliding material or possibly another sliding material only as a surface coating or as an uncoated metal surface.
  • At least one of the sliding surfaces in sliding contact is formed by a thin sliding layer.
  • the actuator or the housing part forming the raceway consists of a different material under the surface sliding layer, namely a carrier material.
  • the carrier material can in particular be a metal, preferably a light metal.
  • Candidates for light metals are mainly aluminum, aluminum alloys and magnesium alloys.
  • both sliding surfaces are preferably formed as superficial sliding layers, each made of a sliding material with a significantly lower adhesion energy than aluminum or magnesium. If only one of the sliding surfaces of the two sliding partners consists of the sliding material, it is preferably the sliding surface of the actuator.
  • a combination of a first and a second embodiment is also advantageous, in which the actuator or the housing part forming the raceway, preferably the insert part, consists at least essentially of plastic and the other part has a surface layer made of the sliding material, for example also made of plastic or a ceramic material having.
  • the superficial sliding layer can be formed by applying the sliding material or by converting the carrier material.
  • Plastic sliding material is applied, preferably the blank formed from the carrier material is encapsulated with the plastic.
  • the plastic sliding material should have a thermal elongation that comes as close as possible to the elongation of the carrier material.
  • a metal oxide ceramic sliding layer or a nitride layer is created.
  • the carrier material is aluminum or an aluminum alloy, the sliding layer is preferably obtained by anodizing.
  • anodizing in particular a so-called Hardcoat ® -Gleit Anlagen (HC layer), or more preferably a so-called Hardcoat ® can -Glatt sliding layer (HC-GL layer) are formed.
  • Hardcoat ® smooth electrolytes consist of a mixture of oxalic acid and additives. Sulfuric acid (H 2 SO 4 ) is usually used to produce Hardcoat ® layers. Anodic oxidation processes for creating a metal-ceramic sliding layer comparable to Al 2 O 3 sliding layers, for example the so-called DOW process, are also known for magnesium and magnesium alloys as carrier material. PTFE is preferably distributed in the ceramic sliding layer; the ceramic is, so to speak, impregnated with PTFE.
  • the housing or even just a housing part forming the raceway can, as already mentioned, be formed in particular from aluminum or an aluminum alloy.
  • the housing or the relevant housing part is preferably cast.
  • the aluminum alloy is therefore preferably a cast aluminum alloy.
  • the actuator does not consist at least essentially of plastic sliding material, it is preferably formed from aluminum or an aluminum alloy, preferably a cast alloy, preferably by casting and subsequent extrusion or by sintering and calibrating. It applies to both the housing part and the actuator that the respective aluminum alloy preferably contains 10 ⁇ 2% by weight silicon.
  • the respective alloy preferably also contains copper, but in a proportion of at most 4% by weight, preferably at most 3% by weight. It can also contain a small amount of iron.
  • the housing part preferably also other parts of the housing, is or are preferably formed by sand casting or die casting, with die casting primarily being suitable for larger series and sand casting for smaller series. Chill casting can also be used instead of sand casting.
  • a particularly preferred alloy for the housing part and also for the housing as a whole is AlSi8Cu3, if it is sand-cast or Chill casting is formed, and AISi9Cu3 plus a small amount of Fe, if it is formed by die casting.
  • Nitrides preferred as sliding material are titanium carbonitride (TiCN) and in particular nitrided steel.
  • TiCN titanium carbonitride
  • TiCN is used as a surface coating on a light metal carrier material. If nitrided steel forms the sliding material, the corresponding steel is preferably the carrier material.
  • the actuator can be formed from the steel and the actuator sliding surface can be made from the nitrided steel.
  • a particularly preferred sliding pairing is Hardcoat ® ceramic or Hardcoat ® smooth ceramic for one sliding partner and nitrided steel for the other sliding partner.
  • the ceramic sliding material of this pairing can contain PTFE, but low wear is achieved even if only the ceramic is used.
  • a sliding pairing made of Hardcoat ® or Hardcoat ® smooth ceramic with sintered tin bronze is also an alternative, although only a conditionally preferred one with regard to thermal expansion.
  • a DLC sliding layer can in particular be produced by plasma coating.
  • Bonded coatings are also suitable sliding materials, whereby it also applies to bonded coatings that although a reduction in wear is achieved when only one of the sliding partners is coated, preference is given to a bonded coating of both sliding partners of the friction system.
  • a combination of a sliding varnish for one and a plastic material for the other sliding partner is also an advantageous solution.
  • the bonded coating consists of an organic or inorganic binder, one or more solid lubricants and additives. Particularly suitable solid lubricants are MoS 2 , graphite or PTFE, individually or in combination.
  • the surface to be coated is pretreated, in that a phosphate layer is expediently formed on the surface to be coated.
  • a special anti-friction coating is Ferroprint, which contains fine steel plates as a solid lubricant.
  • nano-phosphorus compounds in particular can form the sliding layer.
  • FIG 1 shows an external gear pump in a cross section.
  • a conveyor chamber is formed in which two externally toothed conveyor rotors 1 and 2 in the form of externally toothed gears are rotatably mounted about parallel axes of rotation R 1 and R 2.
  • the conveyor rotor 1 is driven in rotation, for example by the crankshaft of an internal combustion engine of a motor vehicle.
  • the conveying rotors 1 and 2 are in meshing engagement with one another, so that when the conveying rotor 1 is driven in rotation, the conveying rotor 2 meshing therewith is also driven in rotation.
  • An inlet 4 opens into the delivery chamber on a low-pressure side and an outlet 5 for a fluid to be delivered, preferably lubricating oil for an internal combustion engine, on a high-pressure side.
  • the housing 3, 6 also forms an axial sealing surface on each end face of the conveyor rotor 1 and facing axially therefrom, of which in FIG Figure 1 the sealing surface 7 can be seen.
  • the conveying rotor 2 is formed on its two end faces facing axially in each case a further axial sealing surface, of which in cross section the Figure 1 the sealing surface 17 can be seen.
  • the delivery rate of the pump is from the Limit speed governed.
  • the feed rotor 2 can be moved axially relative to the feed rotor 1, ie along its axis of rotation R 2 , so that the length of engagement of the feed rotors 1 and 2 and, accordingly, the feed rate can be changed.
  • the conveyor rotor 2 assumes an axial position with an axial overlap, ie engagement length, which is already reduced in comparison to the maximum engagement length.
  • the conveyor rotor 2 is part of an adjustment unit consisting of a bearing pin 14, an actuator 15, an actuator 16 and the conveyor rotor 2 rotatably mounted on the bearing pin 14 between the actuators 15 and 16.
  • the bearing pin 14 connects the actuators 15 and 16 to one another in a torsionally rigid manner.
  • the actuator 16 forms the axial sealing surface 17 facing the feed rotor 2.
  • the actuator 15 forms the other axial sealing surface 18.
  • the entire adjustment unit is mounted in a displacement chamber of the pump housing 3, 6 so as to be axially displaceable back and forth.
  • the housing is formed by the housing part 3 and the housing cover 6 firmly connected to it.
  • the housing cover 6 is shaped with a base, the end face of which facing the conveyor rotor 1 forms the sealing surface 7.
  • the housing part 3 forms the fourth axial sealing surface 8 on the opposite end face facing the conveyor rotor 1 axially.
  • the actuator 16 is provided on its side facing the conveyor rotor 1 with a circular segment-shaped cutout for the base 6 forming the sealing surface 7. Apart from the respective cutout, the sealing surface 7 corresponds to the sealing surface 8 and the sealing surface 17 corresponds to the sealing surface 18.
  • the adjusting members 15 and 16 of the exemplary embodiment are adjusting pistons.
  • the displacement space in which the adjustment unit is axially movable back and forth, comprises a subchamber 10 delimited by the rear side of the actuator 15 and a subchamber 11 delimited by the rear side of the actuator 16.
  • the subchamber 11 is connected to the high pressure side of the pump and is constantly pressurized fluid branched off there, which thus acts on the rear side of the actuator 16.
  • a mechanical compression spring is arranged as an elasticity member 12, the elasticity of which acts on the rear side of the actuator 15.
  • the elasticity member 12 counteracts the pressure force acting on the actuator 16 in the subspace 11.
  • the regulation of such external gear pumps is known and therefore does not require any explanation.
  • the regulation can in particular according to the DE 102 22 131 B4 be designed.
  • the sealing surfaces 7, 8, 17 and 18 are each provided with a relief pocket on the high pressure side.
  • the four pockets are in Figure 1 to recognize the pockets 7a and 17a.
  • Relief pockets are only formed on the high pressure side.
  • the housing part 3 guides the actuators 15 and 16 in sliding contact.
  • the housing part 3 forms a raceway 3a and the housing part 3 together with the cover 6 forms a raceway 3b, 6b.
  • the actuators 15 and 16 each form an actuator sliding surface 15a and 16a on their outer circumferential surface. More precisely, the raceway 3a and the actuator sliding surface 15a on the one hand and the raceway 3b, 6b and the actuator sliding surface 16a on the other hand are in the sliding contact.
  • a special sliding material forms at least one of the sliding partners of the relevant friction system.
  • the friction system 3a / 15a either the raceway 3a or the actuator sliding surface 15a of the Sliding material are formed.
  • the same sliding material can also form both the raceway 3a and the actuator sliding surface 15a.
  • the two sliding surfaces 3a and 15a can each be formed from a different sliding material.
  • the other friction system 3b, 6b / 16a If only one of the sliding partners of the respective friction system consists of the sliding material, the same sliding material is expediently used in each case. If both friction partners are made of a sliding material, the actuator sliding surfaces 15a and 16a are each made of the same sliding material or the raceways 3a, 3b and 6b are each made of the same sliding material.
  • one of the sliding partners in the respective friction system can consist of a metal alloy, preferably a light metal alloy, it corresponds to preferred exemplary embodiments if each of the sliding partners is formed by a special sliding material with low adhesion energy.
  • the sliding material of the sliding partners of the respective friction system can be the same or different.
  • the actuators 15 and 16 can be formed entirely from the sliding material or from a carrier material, preferably a light metal alloy, and on the surface each have a sliding layer made from the sliding material.
  • the housing in the exemplary embodiment the housing part 3 and the cover 6, can also be molded from plastic, but in preferred exemplary embodiments at least the housing part 3, preferably also the cover 6, is cast from a metal alloy, preferably a light metal alloy.
  • Aluminum alloys are particularly suitable as light metals. Preferred examples are given below:
  • the housing part 3 and the cover 6 are each formed from the same aluminum alloy, namely AISi9Cu3, by die casting.
  • the alloy can contain a small amount of Fe.
  • the raceways 3a, 3b and 6b are obtained with a precise fit by mechanical processing.
  • the actuators 15 and 16 are each molded as a whole from the specified plastic sliding material.
  • the sliding surfaces 15a and 16a are produced with a precise fit by mechanical processing.
  • example 2 corresponds to example 1.
  • a sliding layer made of plastic sliding material or sliding varnish forms raceways 3a, 3b and 6b.
  • the plastic sliding material can in particular be the material of the actuators 15 and 16.
  • the housing part 3 and the cover 6 correspond to example 1.
  • the actuators 15 and 16 each consist of the same Al alloy, preferably AlSi8Cu3. They are formed from a cast semi-finished aluminum alloy by extrusion. Then at least the circumferential surfaces are each provided with a sliding layer made of the plastic sliding material. Instead of forming the blanks of the actuators 15 and 16 by extrusion, the blanks can be formed by sintering and sizing. The extruded or calibrated blanks are heated and encapsulated in a mold with the plastic sliding material, preferably completely encased.
  • the housing part 3 and the cover 6 correspond to example 1.
  • the actuators 15 and 16 each consist of the same aluminum alloy, preferably AlSi8Cu3. They are either formed from a cast semi-finished product by extrusion or alternatively by sintering and calibrating. The actuator blanks are then anodized at least on their circumferential surface which forms the sliding surface 15a and 16a. A mixture of oxalic acid and additives is used as the electrolyte, so that a sliding layer of Al 2 O 3 ⁇ Hardcoat ® smooth is formed on each of the outer circumferential surfaces.
  • the sliding layer is preferably impregnated with PTFE.
  • the raceways 3a, 3b and 6b are also each formed in the same way as an HC-GL sliding layer, preferably as a PTFE-impregnated sliding layer.
  • one of the two sliding partners or both sliding partners can each be formed as an HC sliding layer, likewise preferably as a PTFE-impregnated sliding layer.
  • the housing part 3 and the cover 6 correspond to Example 1 and anodized after molding, so that the raceways 3a, 3b and 6b as Al 2 O 3 -Hardcoat ® (HC-slip layer) can be obtained.
  • the HC sliding layer can be impregnated with PTFE.
  • the actuators 15 and 16 are formed from steel and nitrided on the surface, at least on the outer peripheral surfaces.
  • the housing part 3 and the cover 6 are each molded from AlSi8Cu3 by sand casting or permanent mold casting.
  • the raceways 3a, 3b and 6b are produced with a precise fit by mechanical processing.
  • the actuators 15 and 16 are each formed from cast aluminum by extrusion and anodized.
  • a mixture of oxalic acid and additives is used as the electrolyte, so that a sliding layer of Al 2 O 3 -Hardcoat ® smooth (HC-GL sliding layer) is formed on each of the outer circumferential surfaces.
  • the HC-GL sliding layer preferably contains PTFE.
  • HC ceramic or HC smooth ceramic also forms the raceways 3a, 3b and 6b, the ceramic there also being advantageously impregnated with PTFE.
  • Metal-ceramic sliding layers are particularly suitable for use in friction systems with light metal sand cast structures or chill cast structures or generally light metal cast alloys that have solidified in thermodynamic equilibrium or close to thermodynamic equilibrium.
  • the smaller ⁇ -mixed crystals, for example AISi of the die-cast structure because of the shorter cooling time cause problems that act like fine emery grains for metal-oxide-ceramic sliding layers.
  • both sliding partners should each have an HC or HC-GL sliding layer.
  • both sliding partners are preferably made of a sliding material with low adhesion energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Description

Die Erfindung betrifft eine Rotationspumpe mit verstellbarem, vorzugsweise regelbarem Fördervolumen und ein Verfahren zu deren Herstellung. Die Rotationspumpe kann insbesondere als Schmierölpumpe für die Schmierölversorgung eines Verbrennungsmotors, insbesondere eines Kraftfahrzeugsmotors, verwendet werden.The invention relates to a rotary pump with an adjustable, preferably controllable delivery volume and a method for its production. The rotary pump can in particular be used as a lubricating oil pump for supplying lubricating oil to an internal combustion engine, in particular a motor vehicle engine.

Schmierölpumpen von Kraftfahrzeugen werden in Abhängigkeit von der Drehzahl des mit Schmieröl zu versorgenden Motors angetrieben, üblicherweise direkt oder über ein mechanisches Getriebe vom Motor. Die Drehzahl der Pumpe steigt dementsprechend mit der Drehzahl des Motors. Da Rotationspumpen ein konstantes spezifisches Fördervolumen haben, d. h. pro Umdrehung bei jeder Drehzahl im Wesentlichen die gleiche Flüssigkeitsmenge fördern, steigt das Fördervolumen proportional mit der Pumpendrehzahl. Der Bedarf des Motors steigt bis zu einer gewissen Grenzdrehzahl ebenfalls in etwa proportional zur Motordrehzahl, knickt nach Erreichen der Grenzdrehzahl jedoch ab oder flacht zumindest ab, so dass die Rotationspumpe bei Überschreiten der Grenzdrehzahl über den Bedarf fördert. Um die überschüssige Fördermenge nicht verlustbehaftet in ein Reservoir leiten zu müssen, wurden verstellbare Rotationspumpen entwickelt. Als Beispiele verstellbarer Rotationspumpen sind innenachsige und außenachsige Zahnradpumpen aus der DE 102 22 131 B4 bekannt. Des Weiteren sind verstellbare Flügelzellenpumpen bekannt. Die Pumpen umfassen jeweils ein hin und her bewegbares Stellglied. In den genannten Beispielfällen ist der Förderrotor entweder ein Zahnrad oder ein Flügelrad. Bei den bekannten innenachsigen Zahnradpumpen und Flügelzellenpumpen wird durch die Bewegung des Verstellglieds die Exzentrizität zwischen zwei miteinander kämmenden Zahnrädern oder die Exzentrizität zwischen dem Flügelrad und dem Stellglied entsprechend dem Bedarf des Verbrauchers verstellt. Bei außenachsigen Zahnradpumpen wird die axiale Eingriffslänge zweier Zahnräder verstellt. Für die Verstellung wird das jeweilige Stellglied mit einer Stellkraft beaufschlagt, beispielsweise unmittelbar mit der Hochdruckflüssigkeit. Der Stellkraft wirkt ein Federglied entgegen. Bei Pumpen der genannten Art, die in zunehmendem Maße aus Leichtmetalllegierungen, insbesondere Al-Legierungen hergestellt werden, unterliegen überraschenderweise die in Reibkontakt stehenden Flächen des Pumpengehäuses und des Stellglieds einem besonderen Verschleiß und bestimmen die Lebensdauer der Pumpe.Lubricating oil pumps in motor vehicles are driven as a function of the speed of the engine to be supplied with lubricating oil, usually directly or via a mechanical transmission from the engine. The speed of the pump increases accordingly with the speed of the motor. Since rotary pumps have a constant specific delivery volume, ie deliver essentially the same amount of liquid per revolution at any speed, the delivery volume increases proportionally with the pump speed. Up to a certain limit speed, the demand of the motor also increases roughly proportionally to the motor speed, but kinks or at least flattens out after the limit speed is reached, so that the rotary pump delivers above demand when the limit speed is exceeded. Adjustable rotary pumps have been developed so that the excess flow rate does not have to be routed to a reservoir with losses. As examples of adjustable rotary pumps, inner-axis and outer-axis gear pumps are from the DE 102 22 131 B4 known. Adjustable vane pumps are also known. The pumps each include a reciprocating actuator. In the example cases mentioned, the feed rotor is either a gear or an impeller. In the known inner-axis gear pumps and vane pumps, the eccentricity between two meshing gears or the eccentricity between the impeller and the actuator is adjusted according to the needs of the consumer by the movement of the adjusting member. With external-axis gear pumps, the axial length of engagement of two gearwheels is adjusted. For the adjustment, an actuating force is applied to the respective actuator, for example directly with the high-pressure fluid. A spring member counteracts the actuating force. In pumps of the type mentioned, which are increasingly made of light metal alloys, in particular aluminum alloys, the surfaces of the pump housing and the actuator that are in frictional contact are surprisingly subject to particular wear and tear and determine the service life of the pump.

Die DE 102 22 131 B4 betrifft eine Verdrängerpumpe mit Fördervolumenverstellung. Es handelt sich um eine Zahnradpumpe, bei der ein Zahnrad relativ zum anderen Zahnrad linear verschoben werden kann, um die Förderleitung zu variieren. Die DE 10 2004 033 968 A1 betrifft eine Beschichtung für hochbelastbare tribologische Oberflächen von bewegten Bauteilen, wie einem Kolben einer Verbrennungsmaschine. Als Beschichtungen wird ein Gleitlack oder eine Beschichtung aus lösbaren Leiterpolymeren vorgeschlagen. Die DE 42 00 305 A1 betrifft eine regelbare Flügelzellenpumpe mit einem in einem Gehäuse verschwenkbaren Stellring.the DE 102 22 131 B4 relates to a displacement pump with delivery volume adjustment. It is a gear pump in which one gear can be shifted linearly relative to the other gear in order to vary the delivery line. the DE 10 2004 033 968 A1 relates to a coating for heavy-duty tribological surfaces of moving components, such as a piston of an internal combustion engine. A lubricating varnish or a coating made of detachable conductor polymers is proposed as coatings. the DE 42 00 305 A1 relates to a controllable vane pump with an adjusting ring which can be pivoted in a housing.

Es ist eine Aufgabe der Erfindung, das Gesamtgewicht von verstellbaren Rotationspumpen des Verdrängertyps zu verringern.It is an object of the invention to reduce the overall weight of variable displacement rotary pumps.

Die Erfindung geht von einer Rotationspumpe vom Verdrängertyp aus, die ein Gehäuse mit einer Förderkammer, einen in der Förderkammer um eine Drehachse drehbaren Förderrotor und wenigstens ein in dem Gehäuse hin und her bewegbares Stellglied umfasst. Das Stellglied kann den Förderrotor umgeben oder vorzugsweise zu einer Stirnseite des Förderrotors angeordnet sein. Ein den Förderrotor umgebendes Stellglied kann insbesondere bei innenachsigen Pumpen, beispielsweise Zahnringpumpen und Flügelzellenpumpen, vorgesehen und als drehbar gelagerter Exzenterring wie aus der DE 102 22 131 B4 oder der EP 0 846 861 B1 bekannt oder als Hubring gebildet sein. Bevorzugt wird jedoch ein Stellglied, das wie von Außenzahnradpumpen bekannt, beispielsweise der DE 102 22 131 B4 , zu einer Stirnseite des Förderrotors angeordnet ist und die Förderkammer an der betreffenden Stirnseite axial abdichtet. Ein derartiges Stellglied bildet einen Stellkolben, der längs der Drehachse des Förderrads hin und her axial bewegbar ist. Ein den Förderrotor umgebendes Stellglied ist drehbar oder schwenkbar gelagert, kann aber alternativ auch linear bewegbar gelagert sein. Die Förderkammer weist eine Niederdruckseite und eine Hochdruckseite auf. Auf der Niederdruckseite ist wenigstens ein Einlass und auf der Hochdruckseite ist wenigstens ein Auslass für ein zu förderndes Fluid angeordnet. Die Niederdruckseite der Förderkammer und der gesamte stromaufwärtige Teil des Systems, in dem die Pumpe eingebaut ist, bilden die Niederdruckseite der Pumpe. Die Hochdruckseite der Förderkammer und der gesamte sich daran anschließende, stromabwärtige Teil des Systems bilden die Hochdruckseite der Pumpe. Die Niederdruckseite erstreckt sich bis zu einem Reservoir für das Fluid, und die Hochdruckseite erstreckt sich bis wenigstens zu der stromabwärtigsten Verbrauchsstelle, die hohen Fluiddruck benötigt.The invention is based on a rotary pump of the positive displacement type, which comprises a housing with a delivery chamber, a delivery rotor rotatable about an axis of rotation in the delivery chamber, and at least one actuator that can be moved back and forth in the housing. The actuator can surround the conveyor rotor or preferably be arranged on an end face of the conveyor rotor. An actuator surrounding the feed rotor can be provided in particular in the case of internal-axis pumps, for example gerotor pumps and vane pumps, and as a rotatably mounted eccentric ring, as shown in FIG DE 102 22 131 B4 or the EP 0 846 861 B1 known or formed as a lifting ring. However, an actuator is preferred, as known from external gear pumps, for example the DE 102 22 131 B4 , is arranged on an end face of the feed rotor and axially seals the feed chamber on the relevant end face. Such an actuator forms an actuating piston which can be axially moved back and forth along the axis of rotation of the feed wheel. An actuator surrounding the conveyor rotor is rotatably or pivotably mounted, but can alternatively also be mounted so as to be linearly movable. The delivery chamber has a low-pressure side and a high-pressure side. At least one inlet is arranged on the low-pressure side and at least one outlet for a fluid to be conveyed is arranged on the high-pressure side. The low pressure side of the delivery chamber and the entire upstream part of the system in which the pump is installed form the low pressure side of the pump. The high pressure side of the delivery chamber and the entire downstream part of the system connected to it form the high pressure side of the pump. The low-pressure side extends up to a reservoir for the fluid, and the high-pressure side extends up to at least the most downstream consumption point which requires high fluid pressure.

Das Stellglied ist in Richtung seiner Bewegbarkeit mit einer Stellkraft beaufschlagbar, die von dem Druck des Fluids der Hochdruckseite der Pumpe abhängt oder einer anderen für den Bedarf maßgeblichen Größe des Systems. Der Druck kann unmittelbar an dem Auslass der Förderkammer oder einem nachgelagerten Pumpenauslass oder von einer weiter stromabwärts im System gelegenen Stelle, beispielsweise der letzten Verbrauchsstelle, abgenommen werden. In die Bildung der Stellkraft kann statt des Drucks oder zusätzlich zu dem Druck beispielsweise die Temperatur des Fluids einfließen oder einer Komponente im System, in dem die Pumpe eingebaut ist, beispielsweise eine Motortemperatur. Gegebenenfalls werden andere oder weitere physikalische Größen für die Bestimmung der Stellkraft herangezogen. Die Stellkraft kann mittels eines zusätzlichen Stellglieds, beispielsweise eines Elektromotors, erzeugt werden. Bevorzugter ist jedoch das Stellglied unmittelbar mit dem Druck des Fluids beaufschlagbar, d. h. es wird im Betrieb der Pumpe mit dem Druckfluid beaufschlagt. Das Stellglied wird in bevorzugten Ausführungen, insbesondere in Ausführungen, in denen es mit dem Druckfluid beaufschlagt wird, der Stellkraft entgegenwirkend mit einer Elastizitätskraft beaufschlagt. Die Elastizitätskraft wird von einem Elastizitätsglied erzeugt, vorzugsweise von einer mechanischen Feder.The actuator can be acted upon in the direction of its movability with an actuating force which depends on the pressure of the fluid on the high-pressure side of the pump or on another variable of the system that is decisive for the requirement. The pressure can be taken directly at the outlet of the delivery chamber or a downstream pump outlet or from a point further downstream in the system, for example the last point of consumption. For example, instead of the pressure or in addition to the pressure, the temperature of the fluid or a component in the system in which the pump is installed, for example an engine temperature, can flow into the formation of the actuating force. If necessary, other or further physical quantities are used to determine the actuating force. The actuating force can be generated by means of an additional actuator, for example an electric motor. More preferably, however, the actuator can be acted upon directly by the pressure of the fluid, ie it is acted upon by the pressure fluid when the pump is in operation. In preferred embodiments, in particular in embodiments in which it is acted upon by the pressurized fluid, the actuator is acted upon with an elastic force counteracting the actuating force. The elastic force is generated by an elastic member, preferably a mechanical spring.

Das Stellglied steht mit dem Gehäuse in einem Gleitkontakt, indem das Gehäuse eine Laufbahn und das Stellglied eine Stellglied-Gleitfläche bilden und das Stellglied mittels seiner Gleitfläche von der Laufbahn in dem Gleitkontakt geführt wird. Das Stellglied kann zusätzlich noch anderweitig geführt werden, beispielsweise in einem Schwenkgelenk, bevorzugter wird es jedoch nur von der Laufbahn geführt. Erfindungsgemäß ist das Stellglied zumindest im Wesentlichen aus dem Kunststoffgleitmaterial geformt, das die Stellgliedgleitfläche bildet.The actuator is in sliding contact with the housing, in that the housing forms a track and the actuator forms an actuator sliding surface and the actuator is guided by the track in the sliding contact by means of its sliding surface. The actuator can also be guided in another way, for example in a swivel joint, but more preferably it is only guided by the track. According to the invention, the actuator is at least substantially formed from the plastic sliding material that forms the actuator sliding surface.

Bevorzugt wird die Laufbahn aus einem Gleitmaterial gebildet. Das Gleitmaterial kann insbesondere ein Kunststoff, ein keramisches Material, ein Nitrid, eine Nickelphosphorverbindung, ein Gleitlack, eine DLC-Beschichtung, eine Ferroprint-Beschichtung oder eine Nano-Beschichtung sein. Das Gleitmaterial kann eine Oberflächenbeschichtung bilden. Falls das Gleitmaterial ein Kunststoff ist, kann ein die Laufbahn bildendes Gehäuseteil ausschließlich oder doch zumindest im Wesentlichen aus dem Gleitmaterial bestehen. In bevorzugten Ausführungen besteht sowohl die StellgliedGleitfläche als auch die Laufbahn aus einem Gleitmaterial, entweder je dem gleichen oder jeweils aus einem anderen Gleitmaterial. Verschleißminderungen werden jedoch auch bereits erzielt, wenn entweder nur die Stellglied-Gleitfläche oder nur die Laufbahn aus dem Gleitmaterial besteht, wobei der Verwendung des Gleitmaterials für die Stellglied-Gleitfläche der Vorzug gegeben wird.The raceway is preferably formed from a sliding material. The sliding material can in particular be a plastic, a ceramic material, a nitride, a nickel-phosphorus compound, a sliding varnish, a DLC coating, a Ferroprint coating or a nano-coating. The sliding material can form a surface coating. If the sliding material is a plastic, a housing part forming the raceway can consist exclusively or at least essentially of the sliding material. In preferred embodiments, both the actuator sliding surface and the raceway consist of a sliding material, either the same or a different sliding material. Reductions in wear are, however, already achieved if either only the actuator sliding surface or only the raceway consists of the sliding material, preference being given to the use of the sliding material for the actuator sliding surface.

Die Erfindung beruht auf der Erkenntnis, dass für den Verschleiß Furchung, andererseits aber auch Adhäsion maßgeblich sein kann. Adhäsion kann insbesondere dann der Verschleiß bestimmende Reibmechanismus sein, wenn die im Gleitkontakt stehenden Reibpartner so glatt sind, dass der Reibmechanismus der Furchung oder Abrasion in den Hintergrund tritt. So wurde bei verstellbaren Außenzahnradpumpen festgestellt, dass die zu den Stirnseiten des axial bewegbaren Förderrotors angeordneten Stellglieder, nämlich die beiden Stellkolben, einem beachtlichen Schwingreibverschleiß unterliegen. Die für die Einstellung des Fördervolumens erforderlichen Verstellbewegungen können den Schwingreibverschleiß nicht verursachen. Die Verstellbewegungen sind zu langsam. Den Verstellbewegungen sind jedoch Oszillationen mit im Vergleich zu den Regelbewegungen kurzen Hüben und weitaus höherer Frequenz überlagert. Zwischen den Gleitflächen der Stellglieder und der Laufbahn des Pumpengehäuses kommt es daher zur Adhäsion mit der Folge, dass örtlich Materialverschweißungen auftreten, die durch die Verstellbewegungen losgebrochen werden. Nach der Erfindung werden die Gleitpartner, d. h. die Gleitfläche des Stellglieds oder der mehreren Stellglieder und die Laufbahn oder mehreren Laufbahnen des Gehäuses, so gestaltet, dass die Adhäsionsneigung im Reibungssystem im Vergleich zu den für die Gleitpartner üblichen Oberflächen aus Aluminiumlegierungen deutlich verringert wird. Das Gleitmaterial ist vorteilhafterweise so gewählt, dass es eine Adhäsionsenergie bzw. freie Oberflächenenergie aufweist, die höchstens halb so groß wie die Adhäsionsenergie von reinem Aluminium ist. Diese Bedingung wird insbesondere von Kunststoffmaterialien und keramischen Materialien, vorzugsweise Metalloxidkeramiken, aber auch von den vorstehend genannten weiteren Gleitmaterialien erfüllt. Die Adhäsionsenergie oder freie Bindungsenergie nimmt mit der Dichte der freien Elektronen zu. Die Forderung nach einer niedrigen Adhäsionsenergie erfüllen demnach Materialien mit einer niedrigen Dichte freier Elektronen.The invention is based on the knowledge that grooving, but on the other hand also adhesion, can be decisive for wear. Adhesion can in particular be the friction mechanism that determines wear if the friction partners in sliding contact are so smooth that the friction mechanism of the furrowing or abrasion takes a back seat. In the case of adjustable external gear pumps, for example, it was found that the actuating elements arranged on the end faces of the axially movable delivery rotor, namely the two actuating pistons, are subject to considerable frictional wear. The adjustment movements required for setting the delivery volume cannot cause vibration wear. The adjustment movements are too slow. However, oscillations with short strokes and a much higher frequency compared to the control movements are superimposed on the adjustment movements. Adhesion therefore occurs between the sliding surfaces of the actuators and the track of the pump housing, with the result that material welds occur locally, which are broken free by the adjustment movements. According to the invention, the sliding partners, d. H. the sliding surface of the actuator or several actuators and the raceway or several raceways of the housing, designed in such a way that the tendency to adhesion in the friction system is significantly reduced compared to the aluminum alloy surfaces customary for the sliding partners. The sliding material is advantageously chosen so that it has an adhesion energy or free surface energy that is at most half as large as the adhesion energy of pure aluminum. This condition is met in particular by plastic materials and ceramic materials, preferably metal oxide ceramics, but also by the other sliding materials mentioned above. The adhesion energy or binding free energy increases with the density of the free electrons. The requirement for a low adhesion energy is therefore met by materials with a low density of free electrons.

Eine als Gleitmaterial besonders geeignete Materialgruppe sind temperaturfeste Thermoplaste. Das Polymer oder die gegebenenfalls mehreren Polymere des Kunststoffgleitmaterials ist/sind vorteilhafterweise gleitmodifiziert, d. h. der Kunststoff enthält einen Gleitzusatz, durch den die Gleiteigenschaften verbessert werden. Solch ein Gleitmaterial ist auch bestens in den Fällen geeignet, in denen nur einer der Gleitpartner des Reibsystems aus Gleitmaterial besteht. Ein bevorzugter Gleitzusatz ist Graphit. Alternativ kommt als Gleitzusatz vor allem ein Polymer aus der Gruppe der Fluorpolymere in Frage. Ein bevorzugtes Beispiel aus dieser Gruppe ist Polytetrafluorethylen (PTFE). Besonders bevorzugt sind dem Polymer, Copolymer, der Polymermischung oder dem Polymerblend als Gleitzusatz sowohl Graphit als auch wenigstens ein Fluorpolymer, bevorzugt PTFE, beigemischt. Der Anteil des Gleitzusatzes sollte wenigstens 10 Gew.-% insgesamt betragen, bevorzugter beträgt der Anteil des Gleitzusatzes insgesamt 20 % ± 5 %. Falls unterschiedliche Materialien den Gleitzusatz bilden, sollten die einzelnen Anteile zumindest im Wesentlichen gleich sein. So werden Kunststoffgleitmaterialien bevorzugt, die 10 ± 2 Gew.-% Graphit und 10 ± 2 Gew.-% Fluorpolymer enthalten. Als vorteilhaft wird auch die Zugabe von Fasermaterial angesehen, wobei als Fasermaterial Carbonfasern der Vorzug gegeben wird. Glasfasern sollten nicht zugegeben werden, da sie an der Oberfläche der aus dem Gleitmaterial gebildeten Gleitschicht feine Nadelspitzen bilden können und daher die Gleiteigenschaften verschlechtern. Das Kunststoffgleitmaterial enthält vorzugsweise 10 ± 5 Gew.-%, bevorzugter 10 ± 3 Gew.-% Fasermaterial.A group of materials particularly suitable as sliding material are temperature-resistant thermoplastics. The polymer or the possibly several polymers of the plastic sliding material is / are advantageously slide modified, ie the plastic contains a sliding additive which improves the sliding properties. Such a sliding material is also ideally suited in cases in which only one of the sliding partners of the friction system consists of sliding material. A preferred sliding additive is graphite. Alternatively, a polymer from the group of fluoropolymers is particularly suitable as a sliding additive. A preferred example from this group is polytetrafluoroethylene (PTFE). The polymer, copolymer, polymer mixture or polymer blend are particularly preferred as Additive both graphite and at least one fluoropolymer, preferably PTFE, mixed in. The proportion of the sliding additive should be at least 10% by weight in total, more preferably the proportion of the sliding additive is a total of 20% ± 5%. If different materials form the sliding additive, the individual proportions should be at least essentially the same. Plastic sliding materials are preferred which contain 10 ± 2% by weight of graphite and 10 ± 2% by weight of fluoropolymer. The addition of fiber material is also seen as advantageous, preference being given to carbon fibers as the fiber material. Glass fibers should not be added since they can form fine needle points on the surface of the sliding layer formed from the sliding material and therefore impair the sliding properties. The plastic sliding material preferably contains 10 ± 5% by weight, more preferably 10 ± 3% by weight, fiber material.

Als Gleitmaterial bevorzugte Kunststoffe enthalten 70 ± 10 Gew.-% Polymermaterial. Obgleich grundsätzlich Polymermischungen oder Polymerblends als Basismaterial in Frage kommen, enthält das Kunststoffgleitmaterial bevorzugt nur eine Art von Polymer. Polymere mit ihren langen Kohlenwasserstoffketten haben eine sehr geringe Dichte freier Elektronen und auch entsprechend wenig freie Plätze für freie Elektronen des Gleitpartners. In dieser Hinsicht sind amorphe Polymere mit ihren verknäulten Molekülketten besonders vorteilhaft. Der Kristallinitätsgrad des Polymermaterials sollte möglichst niedrig sein. Andererseits sollte das Polymermaterial keine praktisch ins Gewicht fallende Entropieelastizität haben. Die untere Einsatztemperatur sollte bei -40 °C, besser darunter liegen. Die Dauergebrauchstemperatur sollte wenigstens +150 °C betragen. Innerhalb dieses Gebrauchstemperaturbereichs sind eine geringe Kriechneigung, ausreichende mechanische Festigkeit und Formstabilität gefordert. Für den Einsatz im Fahrzeugbau sollte das Kunststoffgleitmaterial ferner resistent gegen Kraftstoffe sein. Generell ist Resistenz gegen das geförderte Fluid zu fordern. Von Vorteil ist ferner, wenn das Gleitmaterial auch harte Partikel einbetten kann, die durch Furchung, d. h. Abrieb, entstehen können. Bevorzugte Polymermaterialien sind:

  • Polysulfon (PSU) oder insbesondere Polyethersulfon (PES), auch Copolymerisate aus PES und Polysulfon (PSU),
  • Polyphenylensulfid (PPS)
  • Polyetherketone, nämlich PAEK, PEK oder insbesondere PEEK
  • Polyphthalamid (PPA)
  • und Polyamid (PA)
Plastics preferred as sliding material contain 70 ± 10% by weight of polymer material. Although polymer mixtures or polymer blends are fundamentally possible as the base material, the plastic sliding material preferably contains only one type of polymer. Polymers with their long hydrocarbon chains have a very low density of free electrons and accordingly few free spaces for free electrons of the sliding partner. In this regard, amorphous polymers, with their entangled molecular chains, are particularly advantageous. The degree of crystallinity of the polymer material should be as low as possible. On the other hand, the polymer material should not have any practically significant entropy elasticity. The lower operating temperature should be -40 ° C, better below. The long-term use temperature should be at least +150 ° C. Within this service temperature range, a low tendency to creep, sufficient mechanical strength and dimensional stability are required. For use in vehicle construction, the plastic sliding material should also be resistant to fuels. In general, resistance to the pumped fluid is required. It is also advantageous if the sliding material can also embed hard particles that can arise through grooving, ie abrasion. Preferred polymer materials are:
  • Polysulfone (PSU) or especially polyethersulfone (PES), also copolymers of PES and polysulfone (PSU),
  • Polyphenylene sulfide (PPS)
  • Polyetherketones, namely PAEK, PEK or especially PEEK
  • Polyphthalamide (PPA)
  • and polyamide (PA)

Das Stellglied ist in bevorzugten ersten Ausführungsformen aus dem Kunststoffgleitmaterial geformt, vorzugsweise im Spritzguss. Vorzugsweise besteht es in derartigen Ausführungen aus dem Kunststoff. Grundsätzlich können in dem Kunststoff jedoch Einlegeteile eingebettet sein; in diesem Sinne besteht das Stellglied zumindest im Wesentlichen aus dem Kunststoffgleitmaterial. Anstatt des Stellglieds kann auch ein Gehäuseteil, das die Laufbahn bildet, aus dem Kunststoffgleitmaterial geformt sein, vorzugsweise im Spritzguss und allein aus dem Kunststoff oder im vorstehenden Sinne zumindest im Wesentlichen aus dem Kunststoff bestehen. In einer demgegenüber bevorzugten Variante ist das Gehäuse aus einem Metall, vorzugsweise einem Leichtmetall geformt, und die Laufbahn wird von einem aus dem Kunststoffgleitmaterial bestehenden Einsatzteil, vorzugsweise einer Laufbuchse, gebildet. Grundsätzlich können auch das Stellglied und ein die Laufbahn bildendes Gehäuseteil, insbesondere Einsatzteil, jeweils aus dem Kunststoffgleitmaterial geformt sein. Im Rahmen der ersten Ausführungsformen wird es besonders bevorzugt, wenn nur das Stellglied zumindest im Wesentlichen aus dem Kunststoffgleitmaterial besteht, die Laufbahn hingegen von einem Kunststoffgleitmaterial oder gegebenenfalls einem anderen Gleitmaterial nur als Oberflächenbeschichtung oder als unbeschichtete Metalloberfläche gebildet wird.In preferred first embodiments, the actuator is formed from the plastic sliding material, preferably by injection molding. In such designs, it is preferably made of plastic. In principle, however, insert parts can be embedded in the plastic; In this sense, the actuator consists at least essentially of the plastic sliding material. Instead of the actuator, a housing part that forms the track can also be formed from the plastic sliding material, preferably by injection molding and solely from the plastic or, in the above sense, at least essentially consist of the plastic. In a variant which is preferred by comparison, the housing is formed from a metal, preferably a light metal, and the track is formed by an insert part made from the plastic sliding material, preferably a bushing. In principle, the actuator and a housing part forming the raceway, in particular an insert part, can each be formed from the plastic sliding material. In the context of the first embodiments, it is particularly preferred if only the actuator consists at least essentially of the plastic sliding material, while the raceway is formed by a plastic sliding material or possibly another sliding material only as a surface coating or as an uncoated metal surface.

In bevorzugten zweiten Ausführungsformen wird wenigstens eine der in Gleitkontakt stehenden Gleitflächen von einer dünnen Gleitschicht gebildet. Das Stellglied oder das die Laufbahn bildende Gehäuseteil besteht unter der oberflächlichen Gleitschicht aus einem anderen Material, nämlich einem Trägermaterial. Das Trägermaterial kann insbesondere ein Metall, vorzugsweise ein Leichtmetall sein. Kandidaten für Leichtmetalle sind vor allem Aluminium, Aluminiumlegierungen und Magnesiumlegierungen. In den zweiten Ausführungsformen sind vorzugsweise beide Gleitflächen als oberflächliche Gleitschichten aus je einem Gleitmaterial mit gegenüber Aluminium oder Magnesium deutlich geringerer Adhäsionsenergie gebildet. Falls nur eine der Gleitflächen der beiden Gleitpartner aus dem Gleitmaterial besteht, handelt es sich vorzugsweise um die Gleitfläche des Stellglieds. Vorteilhaft ist auch eine Kombination einer ersten und einer zweiten Ausführungsform, bei der das Stellglied oder das die Laufbahn bildende Gehäuseteil, vorzugsweise Einsatzteil, zumindest im Wesentlichen aus Kunststoff besteht und das andere Teil eine Oberflächenschicht aus dem Gleitmaterial, beispielsweise ebenfalls aus Kunststoff oder einem keramischen Material aufweist.In preferred second embodiments, at least one of the sliding surfaces in sliding contact is formed by a thin sliding layer. The actuator or the housing part forming the raceway consists of a different material under the surface sliding layer, namely a carrier material. The carrier material can in particular be a metal, preferably a light metal. Candidates for light metals are mainly aluminum, aluminum alloys and magnesium alloys. In the second embodiment, both sliding surfaces are preferably formed as superficial sliding layers, each made of a sliding material with a significantly lower adhesion energy than aluminum or magnesium. If only one of the sliding surfaces of the two sliding partners consists of the sliding material, it is preferably the sliding surface of the actuator. A combination of a first and a second embodiment is also advantageous, in which the actuator or the housing part forming the raceway, preferably the insert part, consists at least essentially of plastic and the other part has a surface layer made of the sliding material, for example also made of plastic or a ceramic material having.

Die oberflächliche Gleitschicht kann durch Auftragen des Gleitmaterials oder durch Umwandlung des Trägermaterials gebildet werden. Kunststoffgleitmaterial wird aufgetragen, vorzugsweise wird der aus dem Trägermaterial geformte Rohling mit dem Kunststoff umspritzt. Das Kunststoffgleitmaterial sollte eine thermische Längendehnung aufweisen, die der Längendehnung des Trägermaterials möglichst nahe kommt. Durch Umwandlung leichtmetallischer Trägermaterialien entsteht hingegen eine metalloxidkeramische Gleitschicht oder eine Nitridschicht. Ist das Trägermaterial Aluminium oder eine Aluminiumlegierung, wird die Gleitschicht vorzugsweise durch Eloxieren erhalten. Durch Eloxieren kann insbesondere eine so genannte Hardcoat®-Gleitschicht (HC-Schicht) oder bevorzugter eine so genannte Hardcoat®-Glatt-Gleitschicht (HC-GL-Schicht) gebildet werden. Hardcoat®-Glatt-Elektrolyte bestehen aus einer Mischung von Oxalsäure und Additiven. Zur Herstellung von Hardcoat®-Schichten wird in der Regel Schwefelsäure (H2SO4) verwendet. Auch für Magnesium und Magnesiumlegierungen als Trägermaterial sind anodische Oxidationsverfahren zur Schaffung einer mit Al2O3-Gleitschichten vergleichbaren metallkeramischen Gleitschicht bekannt, beispielsweise das so genannte DOW-Verfahren. In der keramischen Gleitschicht ist vorzugsweise PTFE verteilt, die Keramik ist sozusagen mit PTFE imprägniert.The superficial sliding layer can be formed by applying the sliding material or by converting the carrier material. Plastic sliding material is applied, preferably the blank formed from the carrier material is encapsulated with the plastic. The plastic sliding material should have a thermal elongation that comes as close as possible to the elongation of the carrier material. By converting light metal carrier materials, on the other hand, a metal oxide ceramic sliding layer or a nitride layer is created. If the carrier material is aluminum or an aluminum alloy, the sliding layer is preferably obtained by anodizing. By anodizing in particular a so-called Hardcoat ® -Gleitschicht (HC layer), or more preferably a so-called Hardcoat ® can -Glatt sliding layer (HC-GL layer) are formed. Hardcoat ® smooth electrolytes consist of a mixture of oxalic acid and additives. Sulfuric acid (H 2 SO 4 ) is usually used to produce Hardcoat ® layers. Anodic oxidation processes for creating a metal-ceramic sliding layer comparable to Al 2 O 3 sliding layers, for example the so-called DOW process, are also known for magnesium and magnesium alloys as carrier material. PTFE is preferably distributed in the ceramic sliding layer; the ceramic is, so to speak, impregnated with PTFE.

Das Gehäuse oder auch nur ein die Laufbahn bildendes Gehäuseteil kann wie bereits erwähnt insbesondere aus Aluminium oder einer Aluminiumlegierung geformt sein. Das Gehäuse oder das betreffende Gehäuseteil wird vorzugsweise gegossen. Die Aluminiumlegierung ist daher bevorzugt eine Al-Gusslegierung. Falls das Stellglied nicht zumindest im Wesentlichen aus Kunststoffgleitmaterial besteht, wird es bevorzugt aus Aluminium oder einer Aluminiumlegierung, vorzugsweise einer Gusslegierung geformt, bevorzugt durch Gießen und anschließendes Fließpressen oder durch Sintern und Kalibrieren. Sowohl für das Gehäuseteil als auch das Stellglied gilt, dass die jeweilige Aluminiumlegierung vorzugsweise 10 ± 2 Gew.-% Silizium enthält. Bevorzugt enthält die jeweilige Legierung auch Kupfer, allerdings mit einem Anteil von höchstens 4 Gew.-%, bevorzugt höchstens 3 Gew.-%. Des Weiteren kann sie einen kleineren Anteil Eisen enthalten. Das Gehäuseteil, vorzugsweise auch weitere Teile des Gehäuses, ist oder sind vorzugsweise im Sandguss oder Druckguss geformt, wobei sich der Druckguss in erster Linie für größere und der Sandguss für kleinere Serien anbieten. Statt Sandguss kann auch Kokillenguss zur Anwendung gelangen. Eine besonders bevorzugte Legierung für das Gehäuseteil und auch für das Gehäuse insgesamt ist AlSi8Cu3, falls es im Sandguss oder Kokillenguss geformt wird, und AISi9Cu3 zuzüglich eines geringen Fe-Anteils, falls es im Druckguss geformt wird.The housing or even just a housing part forming the raceway can, as already mentioned, be formed in particular from aluminum or an aluminum alloy. The housing or the relevant housing part is preferably cast. The aluminum alloy is therefore preferably a cast aluminum alloy. If the actuator does not consist at least essentially of plastic sliding material, it is preferably formed from aluminum or an aluminum alloy, preferably a cast alloy, preferably by casting and subsequent extrusion or by sintering and calibrating. It applies to both the housing part and the actuator that the respective aluminum alloy preferably contains 10 ± 2% by weight silicon. The respective alloy preferably also contains copper, but in a proportion of at most 4% by weight, preferably at most 3% by weight. It can also contain a small amount of iron. The housing part, preferably also other parts of the housing, is or are preferably formed by sand casting or die casting, with die casting primarily being suitable for larger series and sand casting for smaller series. Chill casting can also be used instead of sand casting. A particularly preferred alloy for the housing part and also for the housing as a whole is AlSi8Cu3, if it is sand-cast or Chill casting is formed, and AISi9Cu3 plus a small amount of Fe, if it is formed by die casting.

Als Gleitmaterial bevorzugte Nitride sind Titancarbonitrid (TiCN) und insbesondere nitrierter Stahl. Als nitrierte Stähle kommen insbesondere Stähle mit hohem Chromgehalt, vorzugsweise mit Molybdänanteil und ebenfalls bevorzugt mit Vanadiumanteil zum Einsatz, beispielsweise 30CrMoV9. TiCN gelangt als Oberflächenbeschichtung auf einem Leichtmetall-Trägermaterial zum Einsatz. Falls nitrierter Stahl das Gleitmaterial bildet, ist der entsprechende Stahl vorzugsweise das Trägermaterial. So kann insbesondere das Stellglied aus dem Stahl geformt und die Stellglied-Gleitfläche aus dem nitrierten Stahl bestehen. Eine besonders bevorzugte Gleitpaarung ist Hardcoat®-Keramik oder Hardcoat®-Glatt-Keramik bei dem einen und nitrierter Stahl bei dem anderen Gleitpartner. Das keramische Gleitmaterial dieser Paarung kann PTFE enthalten, geringer Verschleiß wird jedoch auch bei Verwendung nur der Keramik erzielt. Eine Gleitpaarung aus Hardcoat®- oder Hardcoat®-Glatt-Keramik mit gesinterter Zinnbronze ist ebenfalls eine Alternative, obgleich im Hinblick auf die Wärmeausdehnung nur eine bedingt bevorzugte.Nitrides preferred as sliding material are titanium carbonitride (TiCN) and in particular nitrided steel. In particular, steels with a high chromium content, preferably with a molybdenum content and also preferably with a vanadium content, for example 30CrMoV9, are used as nitrided steels. TiCN is used as a surface coating on a light metal carrier material. If nitrided steel forms the sliding material, the corresponding steel is preferably the carrier material. In particular, the actuator can be formed from the steel and the actuator sliding surface can be made from the nitrided steel. A particularly preferred sliding pairing is Hardcoat ® ceramic or Hardcoat ® smooth ceramic for one sliding partner and nitrided steel for the other sliding partner. The ceramic sliding material of this pairing can contain PTFE, but low wear is achieved even if only the ceramic is used. A sliding pairing made of Hardcoat ® or Hardcoat ® smooth ceramic with sintered tin bronze is also an alternative, although only a conditionally preferred one with regard to thermal expansion.

Verschleiß mindernd wirkt sich auch eine DLC-Beschichtung (Diamond Like Carbon) und hier insbesondere eine Wolframcarbid(WC)-Beschichtung aus. Eine DLC-Gleitschicht kann insbesondere durch Plasmabeschichten erzeugt werden.A DLC (Diamond Like Carbon) coating, and in particular a tungsten carbide (WC) coating, also reduces wear. A DLC sliding layer can in particular be produced by plasma coating.

Gleitlacke sind ebenfalls geeignete Gleitmaterialien, wobei auch für Gleitlacke gilt, dass eine Verschließminderung zwar bereits bei Beschichtung nur eines der Gleitpartner erzielt wird, eine Gleitlackbeschichtung beider Gleitpartner des Reibsystems jedoch der Vorzug gegeben wird. Auch eine Kombination eines Gleitlacks bei dem einen und eines Kunststoffmaterials bei dem anderen Gleitpartner ist eine vorteilhafte Lösung. Der Gleitlack besteht aus einem organischen oder anorganischen Bindemittel, einem oder mehreren Festschmierstoffen und Additiven. Als Festschmierstoff kommen insbesondere MoS2, Graphit oder PTFE einzeln oder in Kombination in Frage. Vor dem Beschichten mit dem Gleitlack wird die zu beschichtende Oberfläche vorbehandelt, indem auf der zu beschichtenden Oberfläche zweckmäßigerweise eine Phosphatschicht gebildet wird. Ein besonderer Gleitlack ist Ferroprint, der als Festschmierstoff feine Stahlplättchen enthält.Bonded coatings are also suitable sliding materials, whereby it also applies to bonded coatings that although a reduction in wear is achieved when only one of the sliding partners is coated, preference is given to a bonded coating of both sliding partners of the friction system. A combination of a sliding varnish for one and a plastic material for the other sliding partner is also an advantageous solution. The bonded coating consists of an organic or inorganic binder, one or more solid lubricants and additives. Particularly suitable solid lubricants are MoS 2 , graphite or PTFE, individually or in combination. Before coating with the bonded varnish, the surface to be coated is pretreated, in that a phosphate layer is expediently formed on the surface to be coated. A special anti-friction coating is Ferroprint, which contains fine steel plates as a solid lubricant.

Falls eine Nano-Beschichtung das Gleitmaterial bildet, können insbesondere Nano-Phosphorverbindungen die Gleitschicht bilden.If a nano-coating forms the sliding material, nano-phosphorus compounds in particular can form the sliding layer.

Vorteilhafte Merkmale der Erfindung werden auch in den Unteransprüchen und deren Kombinationen beschrieben. Die dort beschriebenen Merkmale und die vorstehend beschriebenen ergeben weitere vorteilhafte Merkmalskombinationen.Advantageous features of the invention are also described in the subclaims and their combinations. The features described there and those described above result in further advantageous combinations of features.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Figuren erläutert. An den Ausführungsbeispielen offenbar werdende Merkmale bilden je einzeln und in jeder Kombination von Merkmalen, die sich nicht gegenseitig ausschließen, die Gegenstände der Ansprüche und auch die vorstehend beschriebenen Ausgestaltungen vorteilhaft weiter. Es zeigen:

Figur 1
eine Förderkammer einer Außenzahnradpumpe mit zwei in Zahneingriff befindlichen Förderrotoren und
Figur 2
die Außenzahnradpumpe in einem Längsschnitt.
Exemplary embodiments of the invention are explained below with reference to figures. Features that become apparent in the exemplary embodiments, each individually and in any combination of features that are not mutually exclusive, advantageously further develop the subject matter of the claims and also the embodiments described above. Show it:
Figure 1
a delivery chamber of an external gear pump with two meshing delivery rotors and
Figure 2
the external gear pump in a longitudinal section.

Figur 1 zeigt eine Außenzahnradpumpe in einem Querschnitt. In einem Pumpengehäuse, das ein Gehäuseteil 3 und einen Deckel 6 (Figur 2) umfasst, ist eine Förderkammer gebildet, in der zwei außenverzahnte Förderrotoren 1 und 2 in Form von außen verzahnten Zahnrädern um parallele Drehachsen R1 und R2 drehbar gelagert sind. Der Förderrotor 1 wird drehangetrieben, beispielsweise von der Kurbelwelle eines Verbrennungsmotors eines Kraftfahrzeugs. Die Förderrotoren 1 und 2 sind miteinander in einem Zahneingriff, so dass bei einem Drehantrieb des Förderrotors 1 der damit kämmende Förderrotor 2 ebenfalls drehangetrieben wird. In die Förderkammer münden auf einer Niederdruckseite ein Einlass 4 und auf einer Hochdruckseite ein Auslass 5 für ein zu förderndes Fluid, vorzugsweise Schmieröl für einen Verbrennungsmotor. Das Gehäuseteil 3 bildet den Förderrotoren 1 und 2 in radialer Richtung zugewandt jeweils eine radiale Dichtfläche 9, die den jeweiligen Förderrotor 1 oder 2 umfangsseitig unter Ausbildung eines engen radialen Dichtspalts umschlingt. Für den Förderrotor 1 bildet das Gehäuse 3, 6 ferner an jeder Stirnseite des Förderrotors 1 und diesem axial zugewandt eine axiale Dichtfläche, von denen in Figur 1 die Dichtfläche 7 zu erkennen ist. Dem Förderrotor 2 ist an dessen beiden Stirnseiten axial zugewandt je eine weitere axiale Dichtfläche gebildet, von denen im Querschnitt der Figur 1 die Dichtfläche 17 zu erkennen ist. Figure 1 shows an external gear pump in a cross section. In a pump housing, which has a housing part 3 and a cover 6 ( Figure 2 ), a conveyor chamber is formed in which two externally toothed conveyor rotors 1 and 2 in the form of externally toothed gears are rotatably mounted about parallel axes of rotation R 1 and R 2. The conveyor rotor 1 is driven in rotation, for example by the crankshaft of an internal combustion engine of a motor vehicle. The conveying rotors 1 and 2 are in meshing engagement with one another, so that when the conveying rotor 1 is driven in rotation, the conveying rotor 2 meshing therewith is also driven in rotation. An inlet 4 opens into the delivery chamber on a low-pressure side and an outlet 5 for a fluid to be delivered, preferably lubricating oil for an internal combustion engine, on a high-pressure side. The housing part 3, facing the conveyor rotors 1 and 2 in the radial direction, forms a radial sealing surface 9 which wraps around the respective conveyor rotor 1 or 2 on the circumferential side, forming a narrow radial sealing gap. For the conveyor rotor 1, the housing 3, 6 also forms an axial sealing surface on each end face of the conveyor rotor 1 and facing axially therefrom, of which in FIG Figure 1 the sealing surface 7 can be seen. The conveying rotor 2 is formed on its two end faces facing axially in each case a further axial sealing surface, of which in cross section the Figure 1 the sealing surface 17 can be seen.

Durch Drehantrieb der Förderrotoren 1 und 2 wird Fluid durch den Einlass 4 in die Förderkammer gesogen und in den Zahnlücken der Förderrotoren 1 und 2 durch die jeweilige Umschlingung auf die Hochdruckseite der Förderkammer und dort durch den Auslass 5 zu dem Verbraucher, im angenommenen Beispielfall der Verbrennungsmotor, gefördert. Während der Fördertätigkeit trennen die zwischen den Förderrotoren 1 und 2 und den genannten Dichtflächen gebildeten Dichtspalte und der Zahneingriff der Förderrotoren 1 und 2 die Hochdruckseite von der Niederdruckseite. Die Förderrate der Pumpe steigt proportional mit der Drehzahl der Förderrotoren 1 und 2. Da ein beispielhaft als Verbraucher angenommener Verbrennungsmotor ab einer gewissen Grenzdrehzahl weniger Schmieröl aufnimmt als die Pumpe entsprechend ihrer proportional mit der Drehzahl steigenden Kennlinie fördern würde, wird die Förderrate der Pumpe ab der Grenzdrehzahl abgeregelt. Für die Abregelung ist der Förderrotor 2 relativ zu dem Förderrotor 1 axial, d.h. längs seiner Drehachse R2 hin und her bewegbar, so dass die Eingriffslänge der Förderrotoren 1 und 2 und entsprechend die Förderrate verändert werden können.By rotating the conveyor rotors 1 and 2, fluid is sucked through the inlet 4 into the conveyor chamber and into the tooth gaps of the conveyor rotors 1 and 2 through the respective wrap on the high pressure side of the delivery chamber and there through the outlet 5 to the consumer, in the assumed example the internal combustion engine. During the conveying activity, the sealing gaps formed between the conveying rotors 1 and 2 and the aforementioned sealing surfaces and the meshing of the conveying rotors 1 and 2 separate the high pressure side from the low pressure side. The delivery rate of the pump increases proportionally with the speed of the delivery rotors 1 and 2. Since an internal combustion engine, assumed as a consumer as an example, takes in less lubricating oil from a certain limit speed than the pump would deliver according to its characteristic curve, which increases proportionally with the speed, the delivery rate of the pump is from the Limit speed governed. For the limitation, the feed rotor 2 can be moved axially relative to the feed rotor 1, ie along its axis of rotation R 2 , so that the length of engagement of the feed rotors 1 and 2 and, accordingly, the feed rate can be changed.

In Figur 2 nimmt der Förderrotor 2 eine axiale Position mit einer axialen Überdeckung, d.h. Eingriffslänge, ein, die im Vergleich zu der maximalen Eingriffslänge bereits reduziert ist. Der Förderrotor 2 ist Bestandteil einer Verstelleinheit bestehend aus einem Lagerzapfen 14, einem Stellglied 15, einem Stellglied 16 und dem zwischen den Stellgliedern 15 und 16 drehbar auf dem Lagerzapfen 14 gelagerten Förderrotor 2. Der Lagerzapfen 14 verbindet die Stellglieder 15 und 16 drehsteif miteinander. Das Stellglied 16 bildet dem Förderrotor 2 zugewandt die axiale Dichtfläche 17. Das Stellglied 15 bildet die andere axiale Dichtfläche 18. Die gesamte Verstelleinheit ist in einem Verschieberaum des Pumpengehäuses 3, 6 axial hin und her verschiebbar verdrehgesichert gelagert.In Figure 2 the conveyor rotor 2 assumes an axial position with an axial overlap, ie engagement length, which is already reduced in comparison to the maximum engagement length. The conveyor rotor 2 is part of an adjustment unit consisting of a bearing pin 14, an actuator 15, an actuator 16 and the conveyor rotor 2 rotatably mounted on the bearing pin 14 between the actuators 15 and 16. The bearing pin 14 connects the actuators 15 and 16 to one another in a torsionally rigid manner. The actuator 16 forms the axial sealing surface 17 facing the feed rotor 2. The actuator 15 forms the other axial sealing surface 18. The entire adjustment unit is mounted in a displacement chamber of the pump housing 3, 6 so as to be axially displaceable back and forth.

Das Gehäuse wird von dem Gehäuseteil 3 und dem damit fest verbundenen Gehäusedeckel 6 gebildet. Der Gehäusedeckel 6 ist mit einem Sockel geformt, dessen dem Förderrotor 1 zugewandte Stirnfläche die Dichtfläche 7 bildet. Das Gehäuseteil 3 bildet auf der gegenüberliegenden Stirnseite dem Förderrotor 1 axial zugewandt die vierte axiale Dichtfläche 8. Die Dichtfläche 8 ist an ihrer der Verstelleinheit zugewandten Seite mit einem kreissegmentförmigen Ausschnitt für das Stellglied 15 versehen. Das Stellglied 16 ist an seiner zum Förderrotor 1 gewandten Seite mit einem kreissegmentförmigen Ausschnitt für den die Dichtfläche 7 bildenden Sockel 6 versehen. Von dem jeweiligen Ausschnitt abgesehen entspricht die Dichtfläche 7 der Dichtfläche 8 und entspricht die Dichtfläche 17 der Dichtfläche 18.The housing is formed by the housing part 3 and the housing cover 6 firmly connected to it. The housing cover 6 is shaped with a base, the end face of which facing the conveyor rotor 1 forms the sealing surface 7. The housing part 3 forms the fourth axial sealing surface 8 on the opposite end face facing the conveyor rotor 1 axially. The actuator 16 is provided on its side facing the conveyor rotor 1 with a circular segment-shaped cutout for the base 6 forming the sealing surface 7. Apart from the respective cutout, the sealing surface 7 corresponds to the sealing surface 8 and the sealing surface 17 corresponds to the sealing surface 18.

Die Verstellglieder 15 und 16 des Ausführungsbeispiels sind Verstellkolben. Der Verschieberaum, in dem die Verstelleinheit axial hin und her beweglich ist, umfasst einen von der Rückseite des Stellglieds 15 begrenzten Teilraum 10 und einen von der Rückseite des Stellglieds 16 begrenzten Teilraum 11. Der Teilraum 11 ist mit der Hochdruckseite der Pumpe verbunden und wird ständig mit dort abgezweigtem Druckfluid beaufschlagt, das somit auf die Rückseite des Stellglieds 16 wirkt. In dem Raum 10 ist eine mechanische Druckfeder als Elastizitätsglied 12 angeordnet, dessen Elastizitätskraft auf die Rückseite des Stellglieds 15 wirkt. Das Elastizitätsglied 12 wirkt der im Teilraum 11 auf das Stellglied 16 wirkenden Druckkraft entgegen. Die Regelung derartiger Außenzahnradpumpen ist bekannt und bedarf daher keiner Erläuterung. Die Regelung kann insbesondere entsprechend der DE 102 22 131 B4 gestaltet sein.The adjusting members 15 and 16 of the exemplary embodiment are adjusting pistons. The displacement space, in which the adjustment unit is axially movable back and forth, comprises a subchamber 10 delimited by the rear side of the actuator 15 and a subchamber 11 delimited by the rear side of the actuator 16. The subchamber 11 is connected to the high pressure side of the pump and is constantly pressurized fluid branched off there, which thus acts on the rear side of the actuator 16. In the space 10, a mechanical compression spring is arranged as an elasticity member 12, the elasticity of which acts on the rear side of the actuator 15. The elasticity member 12 counteracts the pressure force acting on the actuator 16 in the subspace 11. The regulation of such external gear pumps is known and therefore does not require any explanation. The regulation can in particular according to the DE 102 22 131 B4 be designed.

Wären die axialen Dichtflächen 7, 8 und 17, 18 umlaufend glatt und die axialen Dichtspalte dementsprechend umlaufend eng, würde im Eingriffsbereich der Förderrotoren 1 und 2 Fluid der Hochdruckseite gequetscht, d.h. noch über den Druck der Hochdruckseite hinaus komprimiert und auf die Niederdruckseite gefördert werden. Für das Quetschen des Fluids wird Antriebsleistung verbraucht und ferner ist mit der besonderen Kompression des Fluids und dem Transport durch den Zahneingriff hindurch eine Förderstrompulsation verbunden.If the axial sealing surfaces 7, 8 and 17, 18 were smooth all round and the axial sealing gaps were correspondingly narrow all round, fluid on the high pressure side would be squeezed in the engagement area of the feed rotors 1 and 2, i.e. it would be compressed beyond the pressure on the high pressure side and conveyed to the low pressure side. Drive power is used to squeeze the fluid, and the particular compression of the fluid and the transport through the meshing of the teeth are associated with a flow pulsation.

Zur Vermeidung der genannten Nachteile sind die Dichtflächen 7, 8, 17 und 18 auf der Hochdruckseite je mit einer Entlastungstasche versehen. Von den vier Taschen sind in Figur 1 die Taschen 7a und 17a zu erkennen. Entlastungstaschen sind nur auf der Hochdruckseite gebildet.To avoid the disadvantages mentioned, the sealing surfaces 7, 8, 17 and 18 are each provided with a relief pocket on the high pressure side. Of the four pockets are in Figure 1 to recognize the pockets 7a and 17a. Relief pockets are only formed on the high pressure side.

Das Gehäuseteil 3 führt die Stellglieder 15 und 16 in einem Gleitkontakt. Für den Gleitkontakt bilden das Gehäuseteil 3 eine Laufbahn 3a und das Gehäuseteil 3 gemeinsam mit dem Deckel 6 eine Laufbahn 3b, 6b. Die Stellglieder 15 und 16 bilden an ihrer äußeren Umfangsfläche je eine Stellglied-Gleitfläche 15a und 16a. In dem Gleitkontakt stehen genauer gesagt die Laufbahn 3a und die Stellglied-Gleitfläche 15a einerseits und die Laufbahn 3b, 6b und die Stellglied-Gleitfläche 16a andererseits. Im Stand der Technik ist es üblich, die Gehäuse 3, 6 und die Stellglieder 15 und 16 aus Leichtmetalllegierungen zu fertigen. In den aus den Laufbahnen 3a und 3b, 6b einerseits und den Stellglied-Gleitflächen 15a und 16a andererseits gebildeten Reibsystemen bildet ein besonderes Gleitmaterial je wenigstens einen der Gleitpartner des betreffenden Reibsystems. Dabei kann in dem Reibsystem 3a/15a entweder die Laufbahn 3a oder die Stellglied-Gleitfläche 15a von dem Gleitmaterial gebildet werden. Das gleiche Gleitmaterial kann ferner sowohl die Laufbahn 3a als auch die Stellglied-Gleitfläche 15a bilden. Schließlich können die beiden Gleitflächen 3a und 15a jeweils von einem anderen Gleitmaterial gebildet werden. Das Gleiche gilt in Bezug auf das andere Reibungssystem 3b, 6b/16a. Falls nur einer der Gleitpartner des jeweiligen Reibsystems aus dem Gleitmaterial besteht, kommt zweckmäßigerweise jeweils das gleiche Gleitmaterial zum Einsatz. Bestehen beide Reibpartner aus einem Gleitmaterial, werden die Stellglied-Gleitflächen 15a und 16a je vom gleichen Gleitmaterial oder die Laufbahnen 3a, 3b und 6b je vom gleichen Gleitmaterial gebildet.The housing part 3 guides the actuators 15 and 16 in sliding contact. For the sliding contact, the housing part 3 forms a raceway 3a and the housing part 3 together with the cover 6 forms a raceway 3b, 6b. The actuators 15 and 16 each form an actuator sliding surface 15a and 16a on their outer circumferential surface. More precisely, the raceway 3a and the actuator sliding surface 15a on the one hand and the raceway 3b, 6b and the actuator sliding surface 16a on the other hand are in the sliding contact. In the prior art, it is customary to manufacture the housings 3, 6 and the actuators 15 and 16 from light metal alloys. In the friction systems formed from the raceways 3a and 3b, 6b on the one hand and the actuator sliding surfaces 15a and 16a on the other hand, a special sliding material forms at least one of the sliding partners of the relevant friction system. Here, in the friction system 3a / 15a, either the raceway 3a or the actuator sliding surface 15a of the Sliding material are formed. The same sliding material can also form both the raceway 3a and the actuator sliding surface 15a. Finally, the two sliding surfaces 3a and 15a can each be formed from a different sliding material. The same applies to the other friction system 3b, 6b / 16a. If only one of the sliding partners of the respective friction system consists of the sliding material, the same sliding material is expediently used in each case. If both friction partners are made of a sliding material, the actuator sliding surfaces 15a and 16a are each made of the same sliding material or the raceways 3a, 3b and 6b are each made of the same sliding material.

Obgleich grundsätzlich im jeweiligen Reibsystem einer der Gleitpartner aus einer Metalllegierung, vorzugsweise einer Leichtmetalllegierung, bestehen kann, entspricht es bevorzugten Ausführungsbeispielen, wenn jeder der Gleitpartner von einem besonderen Gleitmaterial niedriger Adhäsionsenergie gebildet wird. Das Gleitmaterial der Gleitpartner des jeweiligen Reibsystems kann gleich oder unterschiedlich sein. Die Stellglieder 15 und 16 können insgesamt aus dem Gleitmaterial geformt sein oder aus einem Trägermaterial, vorzugsweise einer Leichtmetalllegierung, und oberflächlich je eine Gleitschicht aus dem Gleitmaterial aufweisen. Das Gehäuse, im Ausführungsbeispiel das Gehäuseteil 3 und der Deckel 6, können ebenfalls aus Kunststoff geformt sein, in bevorzugten Ausführungsbeispielen wird jedoch zumindest das Gehäuseteil 3, vorzugsweise auch der Deckel 6, aus einer Metalllegierung gegossen, vorzugsweise einer Leichtmetalllegierung. Als Leichtmetall kommen insbesondere Aluminiumlegierungen in Frage. Nachfolgend werden bevorzugte Beispiele angegeben:Although in principle one of the sliding partners in the respective friction system can consist of a metal alloy, preferably a light metal alloy, it corresponds to preferred exemplary embodiments if each of the sliding partners is formed by a special sliding material with low adhesion energy. The sliding material of the sliding partners of the respective friction system can be the same or different. The actuators 15 and 16 can be formed entirely from the sliding material or from a carrier material, preferably a light metal alloy, and on the surface each have a sliding layer made from the sliding material. The housing, in the exemplary embodiment the housing part 3 and the cover 6, can also be molded from plastic, but in preferred exemplary embodiments at least the housing part 3, preferably also the cover 6, is cast from a metal alloy, preferably a light metal alloy. Aluminum alloys are particularly suitable as light metals. Preferred examples are given below:

Beispiel 1example 1

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6:
jeweils aus AlSi9Cu3 (Fe) Druckgusseach made of AlSi9Cu3 (Fe) die-cast
Stellglieder 15 und 16:Actuators 15 and 16:
PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)PES compound: 10% by weight carbon fibers, 10% by weight graphite, 10% by weight PTFE, the remainder PES (e.g. ULTRASON ® )

Im Beispiel 1 werden das Gehäuseteil 3 und der Deckel 6 je aus der gleichen Aluminiumlegierung, nämlich AISi9Cu3 im Druckguss geformt. Die Legierung kann einen geringen Fe-Anteil enthalten. Die Laufbahnen 3a, 3b und 6b werden durch mechanische Bearbeitung passgenau erhalten. Die Stellglieder 15 und 16 werden jeweils im Ganzen aus dem spezifizierten Kunststoffgleitmaterial geformt. Die Gleitflächen 15a und 16a werden durch mechanische Bearbeitung passgenau erzeugt.In example 1, the housing part 3 and the cover 6 are each formed from the same aluminum alloy, namely AISi9Cu3, by die casting. The alloy can contain a small amount of Fe. The raceways 3a, 3b and 6b are obtained with a precise fit by mechanical processing. The actuators 15 and 16 are each molded as a whole from the specified plastic sliding material. The sliding surfaces 15a and 16a are produced with a precise fit by mechanical processing.

Beispiel 2Example 2

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6:
jeweils aus AlSi9Cu3(Fe) Druckgusseach made of AlSi9Cu3 (Fe) die-cast
Stellglieder 15 und 16:Actuators 15 and 16:
PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)PES compound: 10% by weight carbon fibers, 10% by weight graphite, 10% by weight PTFE, the remainder PES (e.g. ULTRASON ® )
Laufbahnen 3a, 3b und 6b:Career paths 3a, 3b and 6b:
mit gleitmodifiziertem Kunststoff oder Gleitlack beschichtetcoated with slide-modified plastic or bonded varnish

Das Beispiel 2 entspricht mit Ausnahme der Laufbahnen 3a, 3b und 6b dem Beispiel 1. Im Unterschied zum Beispiel 1 bildet jedoch jeweils eine Gleitschicht aus Kunststoffgleitmaterial oder Gleitlack die Laufbahnen 3a, 3b und 6b. Das Kunststoffgleitmaterial kann insbesondere das Material der Stellglieder 15 und 16 sein.With the exception of raceways 3a, 3b and 6b, example 2 corresponds to example 1. In contrast to example 1, however, a sliding layer made of plastic sliding material or sliding varnish forms raceways 3a, 3b and 6b. The plastic sliding material can in particular be the material of the actuators 15 and 16.

Beispiel 3Example 3

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6:
jeweils aus AlSi9Cu3(Fe) Druckgusseach made of AlSi9Cu3 (Fe) die-cast
Stellglieder 15 und 16:Actuators 15 and 16:
fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3Extruded parts made of cast aluminum as a carrier material, for example AlSi8Cu3
Gleitflächen 15a und 16a:Sliding surfaces 15a and 16a:
PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)PES compound: 10% by weight carbon fibers, 10% by weight graphite, 10% by weight PTFE, the remainder PES (e.g. ULTRASON ® )

Das Gehäuseteil 3 und der Deckel 6 entsprechen dem Beispiel 1. Die Stellglieder 15 und 16 bestehen je aus der gleichen Al-Legierung, vorzugsweise AlSi8Cu3. Sie werden aus einem gegossenen Halbzeug der Aluminiumlegierung durch Fließpressen geformt. Anschließend werden zumindest die Umfangsflächen je mit einer Gleitschicht aus dem Kunststoffgleitmaterial versehen. Anstatt die Rohlinge der Stellglieder 15 und 16 durch Fließpressen zu formen, können die Rohlinge durch Sintern und Kalibrieren geformt werden. Die fließgepressten oder kalibrierten Rohlinge werden angewärmt und in einer Form mit dem Kunststoffgleitmaterial umspritzt, vorzugsweise komplett umhüllt.The housing part 3 and the cover 6 correspond to example 1. The actuators 15 and 16 each consist of the same Al alloy, preferably AlSi8Cu3. They are formed from a cast semi-finished aluminum alloy by extrusion. Then at least the circumferential surfaces are each provided with a sliding layer made of the plastic sliding material. Instead of forming the blanks of the actuators 15 and 16 by extrusion, the blanks can be formed by sintering and sizing. The extruded or calibrated blanks are heated and encapsulated in a mold with the plastic sliding material, preferably completely encased.

Beispiel 4Example 4

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6:
jeweils aus AlSi9Cu3(Fe) Druckgusseach made of AlSi9Cu3 (Fe) die-cast
Laufbahnen 3a, 3b und 6b:Career paths 3a, 3b and 6b:
Hardcoat®-Glatt (HC-GL-Gleitschicht, vorzugsweise mit PTFE-Imprägnierung)Hardcoat ® -glatt (HC-GL sliding layer, preferably with PTFE impregnation)
Stellglieder 15 und 16:Actuators 15 and 16:
fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3Extruded parts made of cast aluminum as a carrier material, for example AlSi8Cu3
Gleitflächen 15a und 16a:Sliding surfaces 15a and 16a:
Hardcoat®-Glatt (HC-GL-Gleitschicht, vorzugsweise mit PTFE-Imprägnierung)Hardcoat ® -glatt (HC-GL sliding layer, preferably with PTFE impregnation)

Das Gehäuseteil 3 und der Deckel 6 entsprechen dem Beispiel 1. Die Stellglieder 15 und 16 bestehen je aus der gleichen Aluminiumlegierung, vorzugsweise AlSi8Cu3. Sie werden entweder aus einem Gusshalbzeug durch Fließpressen geformt oder alternativ durch Sintern und Kalibrieren. Anschließend werden die Stellglied-Rohlinge zumindest an ihrer jeweils die Gleitfläche 15a und 16a bildenden Umfangsfläche eloxiert. Als Elektrolyt wird eine Mischung aus Oxalsäure und Additiven verwendet, so dass sich an den äußeren Umfangsflächen je eine Gleitschicht aus Al2O3―Hardcoat®-Glatt bildet. Vorzugsweise ist die Gleitschicht mit PTFE imprägniert. Die Laufbahnen 3a, 3b und 6b werden in gleicher Weise ebenfalls je als HC-GL-Gleitschicht, vorzugsweise als PTFE-imprägnierte Gleitschicht gebildet.The housing part 3 and the cover 6 correspond to example 1. The actuators 15 and 16 each consist of the same aluminum alloy, preferably AlSi8Cu3. They are either formed from a cast semi-finished product by extrusion or alternatively by sintering and calibrating. The actuator blanks are then anodized at least on their circumferential surface which forms the sliding surface 15a and 16a. A mixture of oxalic acid and additives is used as the electrolyte, so that a sliding layer of Al 2 O 3 ―Hardcoat ® smooth is formed on each of the outer circumferential surfaces. The sliding layer is preferably impregnated with PTFE. The raceways 3a, 3b and 6b are also each formed in the same way as an HC-GL sliding layer, preferably as a PTFE-impregnated sliding layer.

In einer Abwandlung kann einer der beiden Gleitpartner oder können auch beide Gleitpartner je als HC-Gleitschicht gebildet sein, ebenfalls bevorzugt als PTFE-imprägnierte Gleitschicht.In a modification, one of the two sliding partners or both sliding partners can each be formed as an HC sliding layer, likewise preferably as a PTFE-impregnated sliding layer.

Beispiel 5Example 5

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6:
jeweils aus AlSi9Cu3(Fe) Druckgusseach made of AlSi9Cu3 (Fe) die-cast
Laufbahnen 3a, 3b und 6b:Career paths 3a, 3b and 6b:
HC-GleitschichtHC sliding layer
Stellglieder 15 und 16:Actuators 15 and 16:
Stahl, beispielsweise 30CrMoV9, als TrägermaterialSteel, for example 30CrMoV9, as the carrier material
Gleitflächen 15a und 16a:Sliding surfaces 15a and 16a:
nitrierter Stahlnitrided steel

Das Gehäuseteil 3 und der Deckel 6 entsprechen dem Beispiel 1 und werden nach dem Formen eloxiert, so dass die Laufbahnen 3a, 3b und 6b als Al2O3―Hardcoat® (HC-Gleitschicht) erhalten werden. Die HC-Gleitschicht kann mit PTFE imprägniert sein. Die Stellglieder 15 und 16 werden aus Stahl geformt und an der Oberfläche, zumindest an den äußeren Umfangsflächen, nitriert.The housing part 3 and the cover 6 correspond to Example 1 and anodized after molding, so that the raceways 3a, 3b and 6b as Al 2 O 3 -Hardcoat ® (HC-slip layer) can be obtained. The HC sliding layer can be impregnated with PTFE. The actuators 15 and 16 are formed from steel and nitrided on the surface, at least on the outer peripheral surfaces.

Beispiel 6Example 6

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6:
AlSi8Cu3 Sandguss oder KokillengussAlSi8Cu3 sand casting or permanent mold casting
Stellglieder 15 und 16:Actuators 15 and 16:
fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3Extruded parts made of cast aluminum as a carrier material, for example AlSi8Cu3
Gleitflächen 15a und 16a:Sliding surfaces 15a and 16a:
Hardcoat®-Glatt (HC-GL-Gleitschicht)Hardcoat ® -glatt (HC-GL sliding layer)

Das Gehäuseteil 3 und der Deckel 6 werden je aus AlSi8Cu3 im Sandguss oder Kokillenguss geformt. Die Laufbahnen 3a, 3b und 6b werden durch mechanische Bearbeitung passgenau erzeugt. Die Stellglieder 15 und 16 werden je aus gegossenem Aluminiumhalbzeug durch Fließpressen geformt und eloxiert. Als Elektrolyt wird eine Mischung aus Oxalsäure und Additiven verwendet, so dass sich an den äußeren Umfangsflächen je eine Gleitschicht aus Al2O3-Hardcoat®-Glatt bildet (HC-GL-Gleitschicht). Die HC-GL-Gleitschicht enthält vorzugsweise PTFE.The housing part 3 and the cover 6 are each molded from AlSi8Cu3 by sand casting or permanent mold casting. The raceways 3a, 3b and 6b are produced with a precise fit by mechanical processing. The actuators 15 and 16 are each formed from cast aluminum by extrusion and anodized. A mixture of oxalic acid and additives is used as the electrolyte, so that a sliding layer of Al 2 O 3 -Hardcoat ® smooth (HC-GL sliding layer) is formed on each of the outer circumferential surfaces. The HC-GL sliding layer preferably contains PTFE.

In einer Modifikation bildet HC-Keramik oder HC-Glatt-Keramik auch die Laufbahnen 3a, 3b und 6b, wobei auch dort die Keramik vorteilhafterweise mit PTFE imprägniert sein kann.In a modification, HC ceramic or HC smooth ceramic also forms the raceways 3a, 3b and 6b, the ceramic there also being advantageously impregnated with PTFE.

Die Herstellungsweise und Materialwahl des letzten Ausführungsbeispiels eignet sich insbesondere für kleinere Serien, während die Formung der Gehäuseteile 3 und 6 im Druckguss für Großserien die bessere Wahl ist. Metallkeramische Gleitschichten eignen sich insbesondere für den Einsatz in Reibungssystemen mit Leichtmetall-Sandgussgefüge oder - Kokillengussgefüge oder generell Leichtmetall-Gusslegierungen, die im thermodynamischen Gleichgewicht oder nahe dem thermodynamischen Gleichgewicht erstarrt sind. In Verbindung mit Druckgussteilen als Gleitpartner bereiten die wegen der kürzeren Auskühlzeit kleineren α-Mischkristalle, beispielsweise AISi, des Druckgussgefüges Probleme, die für metalloxidkeramische Gleitschichten wie feine Schmirgelkörner wirken. Weist einer der Gleitpartner an seiner Gleitfläche ein Druckgussgefüge oder generell eine metastabile Phase auf, sind gleitmodifizierte, temperaturfeste Thermoplaste die bessere Wahl, oder es sollten je beide Gleitpartner eine HC- oder HC-GL-Gleitschicht aufweisen. Vorzugsweise bestehen jedoch auch bei Sandguss- oder Kokillengussgefügen beide Gleitpartner aus einem Gleitmaterial niedriger Adhäsionsenergie.The method of manufacture and choice of materials in the last exemplary embodiment is particularly suitable for smaller series, while the die-casting of the housing parts 3 and 6 is the better choice for large series. Metal-ceramic sliding layers are particularly suitable for use in friction systems with light metal sand cast structures or chill cast structures or generally light metal cast alloys that have solidified in thermodynamic equilibrium or close to thermodynamic equilibrium. In connection with die-cast parts as sliding partners, the smaller α-mixed crystals, for example AISi, of the die-cast structure because of the shorter cooling time cause problems that act like fine emery grains for metal-oxide-ceramic sliding layers. If one of the sliding partners has a die-cast structure or generally a metastable phase on its sliding surface, sliding-modified, temperature-resistant thermoplastics are the better choice, or both sliding partners should each have an HC or HC-GL sliding layer. In the case of sand cast or chill cast structures, however, both sliding partners are preferably made of a sliding material with low adhesion energy.

Claims (17)

  1. A rotary pump having a variable delivery volume, comprising:
    a) a casing (3, 6);
    b) a delivery chamber formed in the casing (3, 6) and comprising an inlet (4) for a fluid on a low-pressure side and an outlet (5) for the fluid on a high-pressure side of the pump;
    c) at least one delivery rotor (2) which can be rotated in the delivery chamber about a rotational axis (R2);
    d) an actuating member (15) which is arranged facing a front face of the delivery rotor (2) or surrounds the delivery rotor (2) and can be moved back and forth in the casing (3, 6) for adjusting the delivery volume,
    e) wherein the actuating member (15) can be charged, in the direction of its mobility, with an actuating force which is dependent on the requirement of a consumer which is to be supplied with the fluid;
    f) and a track (3a) which is formed in the casing (3, 6) and guides the actuating member (15) on an actuating member sliding surface (15a) in a sliding contact,
    g) wherein a sliding material, which forms the actuating member sliding surface (15a), consists of plastic,
    h) wherein the actuating member (15) at least substantially consists of the plastic sliding material.
  2. The rotary pump according to claim 1, wherein an insert is embedded in the plastic sliding material.
  3. The rotary pump according to any one of the preceding two claims, wherein a sliding material which forms the track (3a) consists of at least one of the plastic, ceramic, nitride, a nickel-phosphorus compound or a sliding varnish or is formed by a DLC coating, a Ferroprint coating or a nano-coating.
  4. The rotary pump according to the preceding claim, wherein:
    - the actuating member (15), another actuating member (16) and the delivery rotor (2) are part of an adjusting unit (2, 15, 16) which can be moved as a whole back and forth in the casing (3, 6);
    - the actuating members (15, 16) are each arranged facing one of the front faces of the delivery rotor (2), and another track (3b, 6b) is formed in the casing (3, 6) which guides the other actuating member (16) on its actuating member sliding surface (16a) in a sliding contact;
    - and wherein at least one of the other track (3b, 6b) and the actuating member sliding surface (16a) of the other actuating member (16) consists of the sliding material.
  5. The rotary pump according to any one of the preceding claims, wherein the sliding material is a thermoplast modified for sliding and/or a polymer compound of at least one heat-resistant polymer filled with fibrous material and a sliding additive.
  6. The rotary pump according to the preceding claim, wherein the sliding additive comprises at least one of graphite and a fluoropolymer, and/or wherein the fibrous material comprises or consists of carbon fibres.
  7. The rotary pump according to any one of the preceding two claims, wherein the sliding material fulfils at least one of the following features:
    - the proportion of polymer is at least 60% by weight and at most 80% by weight;
    - the proportion of the sliding additive is at least 10% by weight and at most 30% by weight;
    - the proportion of the fibrous material is at least 5% by weight and at most 15% by weight.
  8. The rotary pump according to any one of the preceding claims, wherein the sliding material is a plastic, and a base material of the plastic is a polymer including copolymer, a mixture of polymers or a polymer blend from the group consisting of polyether sulphone (PES), polysulphone (PSU), polyphenylene sulphide (PPS), polyether ketones (PAEK, PEK, PEEK), polyamide (PA) and polyphthalamide (PPA).
  9. The rotary pump according to any one of the preceding five claims, wherein at least one of the actuating member sliding surface (16a) and the other track (3b, 6b) is formed by a metal-ceramic layer, wherein the layer is preferably a Hardcoat® layer or a Hardcoat® smooth layer and preferably contains PTFE.
  10. The rotary pump according to any one of the preceding six claims, wherein nitrided steel or TiCN forms one of the other track (3b, 6b) and the actuating member sliding surface (16a).
  11. The rotary pump according to any one of the preceding claims, wherein a casing portion (3, 6) comprising the track (3a, 3b, 6b) at least substantially consists of metal or is formed from a metal as a substrate material and a sliding layer of the sliding material forming the track (3a, 3b, 6b) is applied to the substrate material or is formed by modifying the substrate material, wherein a casting material, preferably a die casting material, a chill casting material or a sand casting material exhibiting a corresponding structure, can in particular form the casing portion (3, 6) or the substrate material of the casing portion (3, 6).
  12. The rotary pump according to any one of the preceding eight claims, wherein the other actuating member (16) including the actuating member sliding surface (16a) at least substantially consists of metal or light metal or is formed from a metal or light metal as a substrate material, and a sliding layer of the sliding material forming the actuating member sliding surface (16a) is applied to the substrate material or is formed by modifying the substrate material.
  13. The rotary pump according to any one of the preceding nine claims, wherein the other actuating member (16) is formed from the sliding material.
  14. The rotary pump according to any one of the preceding ten claims, wherein the casing (3, 6) or at least a casing portion (3) which forms the track (3a, 3b) is formed from the sliding material.
  15. The rotary pump according to any one of the preceding claims, wherein an elasticity member (12) is arranged to counteract the actuating force, and/or the actuating member (15, 16) is an actuating piston which can be charged with the fluid of the high-pressure side.
  16. The rotary pump according to any one of the preceding claims, wherein a casing portion (3, 6) forming the track consists of a substrate material below a superficial sliding layer, and a plastic sliding material is applied to the substrate material, wherein the plastic sliding material is injection-moulded around the blank formed from the substrate material.
  17. A method for manufacturing the rotary pump according to any one of the preceding claims, wherein:
    a) a casing portion (3, 6) forming the track (3a, 3b, 6b) is formed from a light metal;
    b) the actuating member (15, 16) is formed from a plastic sliding material; and
    c) the casing portion (3, 6) for producing the track (3a, 3b, 6b) is coated with the sliding material, or
    the light metal of the casing portion (3, 6) is modified at the surface into the sliding material.
EP18170712.6A 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump Active EP3376031B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006018124A DE102006018124A1 (en) 2006-04-19 2006-04-19 Adjustable rotary pump with wear reduction
EP07106407A EP1847713B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10178105.2A Division EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP07106407A Division EP1847713B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Publications (2)

Publication Number Publication Date
EP3376031A1 EP3376031A1 (en) 2018-09-19
EP3376031B1 true EP3376031B1 (en) 2021-12-22

Family

ID=38283219

Family Applications (3)

Application Number Title Priority Date Filing Date
EP18170712.6A Active EP3376031B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP07106407A Active EP1847713B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A Active EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP07106407A Active EP1847713B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A Active EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Country Status (7)

Country Link
US (3) US20070248481A1 (en)
EP (3) EP3376031B1 (en)
JP (1) JP4662559B2 (en)
AT (2) ATE500423T1 (en)
DE (4) DE102006018124A1 (en)
HU (1) HUE040650T2 (en)
PL (1) PL1847713T3 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018124A1 (en) * 2006-04-19 2007-10-25 Schwäbische Hüttenwerke Automotive GmbH & Co. KG Adjustable rotary pump with wear reduction
JP5064886B2 (en) * 2007-05-21 2012-10-31 株式会社Tbk Gear pump
WO2010001764A1 (en) * 2008-07-03 2010-01-07 株式会社小松製作所 Variable displacement gear pump
DE102009026964A1 (en) * 2009-06-16 2010-12-23 Robert Bosch Gmbh fuel pump
DE102010004594B4 (en) * 2010-01-14 2017-05-24 Audi Ag Usually oil pump
DE102010005984B4 (en) * 2010-01-28 2013-11-28 Audi Ag Usually oil pump
DE102010020356A1 (en) 2010-05-12 2011-11-17 Audi Ag Lubricant pump, control piston
DE102010038430B4 (en) * 2010-07-26 2012-12-06 Schwäbische Hüttenwerke Automotive GmbH Positive displacement pump with suction groove
DE102010046941A1 (en) * 2010-09-29 2012-03-29 Wittenstein Ag Device, preferably tri-bological system, useful for power transmission, comprises first body and second body adapted to stand with the first body in sliding-rolling contact
DE102011104049A1 (en) 2011-06-11 2012-12-27 Volkswagen Aktiengesellschaft pump
US9429149B2 (en) * 2012-05-15 2016-08-30 Sabic Global Technologies B.V. Polyetherimide pump
KR102003107B1 (en) * 2015-08-12 2019-07-24 장순길 Variable displacement pump
DE102017117787A1 (en) * 2017-08-04 2019-02-07 Schwäbische Hüttenwerke Automotive GmbH Adjustable external gear pump
DE102019106660A1 (en) * 2019-03-15 2020-09-17 Wagner Gmbh & Co. Kg Control valve with a connection surface for several valve ports
CN112518239B (en) 2020-11-13 2022-02-08 浙江海洋大学 Screw pump rotor rotary die extrusion forming process

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE838826C (en) * 1949-02-23 1952-05-12 Bayer Ag Process for the production of molded articles
US2621166A (en) * 1949-02-23 1952-12-09 Bayer Ag Synthetic polymers
DE831772C (en) * 1952-11-18 1952-02-18 Bayer Ag Process for the production of high molecular weight crosslinked plastics
US2879248A (en) * 1954-04-13 1959-03-24 Bayer Ag Method of making copolymer of diisocyanate modified polyester and vinylidene monomer
US2897248A (en) 1956-06-06 1959-07-28 Standard Oil Co Alkylation
US3015283A (en) * 1958-11-24 1962-01-02 Bayer Ag Gear pumps and motors
US4222718A (en) * 1978-03-09 1980-09-16 Rexnord Inc. Linear motion thrust block for hydraulic pumps and motors
DE3018974A1 (en) * 1980-05-17 1981-11-26 Karl Schmidt Gmbh, 7107 Neckarsulm SLIDING BEARING MATERIAL
JPS60197880A (en) * 1984-03-19 1985-10-07 Aisin Seiki Co Ltd Composite plated sliding surface
SE463829B (en) * 1985-03-15 1991-01-28 Svenska Rotor Maskiner Ab AATMINSTONE SCREWING MACHINE A ROTOR CONTAINING PLASTIC MATERIAL
JPS61266451A (en) * 1985-05-21 1986-11-26 Daido Metal Kogyo Kk Composition for sliding member
DE3528651A1 (en) * 1985-08-09 1987-02-19 Rohs Hans Guenther Prof Dr Ing GEAR PUMP
DE3534242A1 (en) * 1985-09-26 1987-03-26 Kolbenschmidt Ag MAINTENANCE-FREE MULTI-LAYER SLIDING BEARING MATERIAL
JP2967245B2 (en) * 1991-08-22 1999-10-25 株式会社日立製作所 Waterless pump
US5165881A (en) * 1991-09-16 1992-11-24 Opcon Autorotor Ab Rotor for a screw rotor machine
DE4200305C2 (en) * 1992-01-09 1995-06-08 Glyco Metall Werke Adjustable vane pump in a compact design
JPH05230283A (en) * 1992-02-20 1993-09-07 Bando Chem Ind Ltd Sliding member for pneumatic dynamic-pressure apparatus
US5554020A (en) * 1994-10-07 1996-09-10 Ford Motor Company Solid lubricant coating for fluid pump or compressor
EP0718256B1 (en) * 1994-12-23 1999-06-30 Maruwa Ceramic Co., Ltd. Ceramic sliding member and process of fabricating the same
US5879791A (en) * 1995-10-02 1999-03-09 Daido Metal Company Ltd. Wet type sliding apparatus comprising thrust bearing
US6461128B2 (en) * 1996-04-24 2002-10-08 Steven M. Wood Progressive cavity helical device
EP0846861B1 (en) 1996-12-04 2003-03-19 Siegfried A. Dipl.-Ing. Eisenmann Continuously variable annular gear pump
DE19847132C2 (en) * 1998-10-13 2001-05-31 Schwaebische Huettenwerke Gmbh External gear pump with delivery volume limitation
US20010024618A1 (en) * 1999-12-01 2001-09-27 Winmill Len F. Adjustable-displacement gear pump
DE20020695U1 (en) * 2000-12-06 2001-02-22 Breed Automotive Tech Device for moving an actuator
JP2002242852A (en) 2001-02-19 2002-08-28 Mitsubishi Rayon Co Ltd Gear pump
US6604922B1 (en) * 2002-03-14 2003-08-12 Schlumberger Technology Corporation Optimized fiber reinforced liner material for positive displacement drilling motors
DE10222131C5 (en) * 2002-05-17 2011-08-11 Schwäbische Hüttenwerke Automotive GmbH & Co. KG, 73433 Positive displacement pump with delivery volume adjustment
JP4285634B2 (en) * 2003-02-20 2009-06-24 大同メタル工業株式会社 Sliding member
US6867532B2 (en) * 2003-07-17 2005-03-15 The Brady Group Inc. Long life piezoelectric drive and components
KR101222882B1 (en) * 2003-09-03 2013-01-17 가부시키가이샤 고마쓰 세이사쿠쇼 Sintered sliding material, sliding member, connection device and device provided with sliding member
DE102004012726A1 (en) * 2004-03-16 2005-10-06 Voigt, Dieter, Dipl.-Ing. Pressure regulator for automotive oil pump has first piston operating in conjunction with a second variable-pressure piston
DE102004030321A1 (en) * 2004-06-23 2006-01-19 Volkswagen Ag Toothed wheel pump for supplying lubricating oil to an I.C. engine comprises a pump housing made from die cast aluminum and toothed wheels made from a highly alloyed aluminum-silicon alloy containing copper
DE102004033968B4 (en) * 2004-07-14 2012-02-02 Ks Kolbenschmidt Gmbh Use of a coating for coating heavy-duty tribological surfaces of moving components
US20060111501A1 (en) * 2004-11-19 2006-05-25 General Electric Company Thermoplastic wear resistant compositions, methods of manufacture thereof and articles containing the same
DE102006018124A1 (en) * 2006-04-19 2007-10-25 Schwäbische Hüttenwerke Automotive GmbH & Co. KG Adjustable rotary pump with wear reduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL1847713T3 (en) 2011-06-30
HUE040650T2 (en) 2019-03-28
JP2007285300A (en) 2007-11-01
US20070248481A1 (en) 2007-10-25
US20110182760A1 (en) 2011-07-28
EP2327881B1 (en) 2018-05-30
EP2327881A2 (en) 2011-06-01
JP4662559B2 (en) 2011-03-30
EP1847713B1 (en) 2011-03-02
DE102006018124A1 (en) 2007-10-25
US20120219448A1 (en) 2012-08-30
DE10178105T1 (en) 2012-09-06
ATE500423T1 (en) 2011-03-15
EP1847713A2 (en) 2007-10-24
EP3376031A1 (en) 2018-09-19
EP2327881A3 (en) 2014-03-26
DE502007006577D1 (en) 2011-04-14
EP1847713A3 (en) 2008-06-11
AT11651U1 (en) 2011-02-15
DE10178105T8 (en) 2013-04-25
US8770955B2 (en) 2014-07-08
US8186982B2 (en) 2012-05-29
DE202007018987U1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
EP3376031B1 (en) Adjustable wear-resistant rotary pump
AT502630B1 (en) COMPONENT, PARTICULARLY FORM PART, WITH A COATING
EP3087147A1 (en) Anti-friction lacquer and sliding bearing laminate comprising same
DE2750137A1 (en) CENTRIFUGAL PUMP OR -COMPRESSOR
DE4200305C2 (en) Adjustable vane pump in a compact design
AT501811B1 (en) Bearing element for motor, has metallic support material, bearing metal layer provided on support, and polymer layer consisting of preset amount of polyimide resin, molybdenum sulfide and graphite measured
EP2913530A1 (en) Rotary pump with plastic composite structure
DE102020101315A1 (en) Orbiter vacuum pump with optimized storage
DE10033950A1 (en) Pump with magnetic coupling
WO2004076708A1 (en) Method for producing a sliding surface
DE102015223452A1 (en) Vane pump
DE102008031730A1 (en) Bearing housing for exhaust gas turbo charger of internal-combustion engine, has bearing surface for mounting shaft, by which turbine wheel and compressor wheel are coupled with one another
DE102020101312B3 (en) Orbiter vacuum pump capable of running dry
EP2249039A2 (en) External gear pump with improved bearing lubrication
EP3617512B1 (en) Rotary vane vacuum pump
EP0900610B1 (en) Process for preparing a bearing of sintered metal for ceramic shafts and bearing produced thereby
DE102015212724B4 (en) Outer rotor pump
DE2303489A1 (en) MULTI-LAYER SLIDING BEARING BUSH
DE102009038326A1 (en) Piston for axial piston pump of high pressure cleaner, has cover arranged at front side of cylindrical body for contacting swash plate of axial piston pump, where cover and body are made of non-metallic base material e.g. polymer
EP1629203A1 (en) Gear pump
DE102017117787A1 (en) Adjustable external gear pump
EP3910206A1 (en) Sliding bearing, sliding bearing arrangement, transmission and drive train for wind turbine
DE3015040A1 (en) Rotary displacement pump esp. automobile fuel pump - has plastics rollers and aluminium alloy casing treated for wear resistance
DE102017128787A1 (en) rotary pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180503

AC Divisional application: reference to earlier application

Ref document number: 1847713

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2327881

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210720

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1847713

Country of ref document: EP

Kind code of ref document: P

Ref document number: 2327881

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016973

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1457250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016973

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

26N No opposition filed

Effective date: 20220923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220418

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220418

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220418

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220418

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 17

Ref country code: DE

Payment date: 20230420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230420

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222