EP1847713B1 - Adjustable wear-resistant rotary pump - Google Patents

Adjustable wear-resistant rotary pump Download PDF

Info

Publication number
EP1847713B1
EP1847713B1 EP07106407A EP07106407A EP1847713B1 EP 1847713 B1 EP1847713 B1 EP 1847713B1 EP 07106407 A EP07106407 A EP 07106407A EP 07106407 A EP07106407 A EP 07106407A EP 1847713 B1 EP1847713 B1 EP 1847713B1
Authority
EP
European Patent Office
Prior art keywords
sliding
rotary pump
actuating member
pump according
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07106407A
Other languages
German (de)
French (fr)
Other versions
EP1847713A3 (en
EP1847713A2 (en
Inventor
Christof Dr. Lamparski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38283219&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1847713(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Priority to PL07106407T priority Critical patent/PL1847713T3/en
Priority to EP10178105.2A priority patent/EP2327881B1/en
Priority to EP18170712.6A priority patent/EP3376031B1/en
Publication of EP1847713A2 publication Critical patent/EP1847713A2/en
Publication of EP1847713A3 publication Critical patent/EP1847713A3/en
Application granted granted Critical
Publication of EP1847713B1 publication Critical patent/EP1847713B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0865Oxide ceramics
    • F05C2203/0869Aluminium oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/04PTFE [PolyTetraFluorEthylene]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/06Polyamides, e.g. NYLON
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/12Polyetheretherketones, e.g. PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/10Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/14Self lubricating materials; Solid lubricants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making
    • Y10T29/49242Screw or gear type, e.g., Moineau type

Definitions

  • the invention relates to a rotary pump with adjustable delivery volume and a method for their preparation.
  • the rotary pump can be used in particular as a lubricating oil pump for the lubricating oil supply of an internal combustion engine, in particular a motor vehicle engine.
  • Automotive fuel oil pumping is driven as a function of the speed of the engine to be supplied with lubricating oil, usually directly or via a mechanical transmission from the engine.
  • the speed of the pump increases accordingly with the speed of the motor.
  • rotary pumps have a constant specific delivery volume, ie deliver substantially the same amount of fluid per revolution at each speed, the delivery volume increases proportionally with the pump speed.
  • the demand of the engine increases up to a certain limit speed also approximately proportional to the engine speed, but kinks after reaching the limit speed or at least flattens, so that the rotary pump promotes exceeding the limit speed above demand.
  • adjustable rotary pumps have been developed.
  • adjustable rotary pumps are internal and external gear pumps from the DE 102 22 131 B4 known as the closest prior art.
  • adjustable vane pumps are known.
  • the pumps each include a reciprocable actuator.
  • the conveying rotor is either a gear wheel or an impeller.
  • the axial engagement length of two gears is adjusted.
  • the respective actuator is subjected to a force, for example, directly with the high pressure fluid. The actuating force counteracts a spring member.
  • pumps of the type mentioned in Increasingly made of light metal alloys, especially Al alloys are surprisingly subject to the frictional contact surfaces of the pump housing and the actuator a special wear and determine the life of the pump.
  • a friction wear-reducing coating of a moving component known, which is formed by a lubricating varnish or a soluble ladder polymer.
  • a soluble conductive polymer is called Polybenzoylphenylen.
  • the coating may contain solid lubricants, such as graphite or PTFE.
  • the ladder polymer or bonded coating may also be mixed with hard microparticles or nanoparticles.
  • the coated component is not specified by type, but only piston of internal combustion engines are exemplified.
  • the DE 42 00 305 A1 proposes the example of a vane pump to reduce wear, the insertion of a sheet of spring steel.
  • the DE 35 28 651 A1 proposes to relieve lateral forces and thus also as a wear-reducing measure to provide pocket-shaped recesses in an actuating piston to adjust over this auxiliary measure a uniform over the circumference of the actuating piston pressure.
  • the invention is based on a rotary pump of the positive displacement type, which comprises a housing with a delivery chamber, a delivery rotor which can be rotated in the delivery chamber about a rotation axis and at least one actuator which can be moved back and forth in the housing.
  • the actuator may surround the conveyor rotor or preferably be arranged to an end face of the conveyor rotor.
  • An actuator surrounding the conveyor rotor can in particular with innenachsigen pumps, such as gerotor pumps and vane pumps, provided as a rotatably mounted eccentric ring as shown in DE 102 22 131 B4 or the EP 0 846 861 B1 be known or formed as a cam ring.
  • an actuator as known from external gear pumps, for example the DE 102 22 131 B4 , Is arranged to a front side of the conveyor rotor and axially seals the delivery chamber at the respective end face.
  • Such an actuator forms an actuating piston which is axially movable back and forth along the axis of rotation of the feed wheel.
  • An actuator surrounding the conveyor rotor is rotatably or pivotally mounted, but may alternatively be mounted linearly movable.
  • the delivery chamber has a low pressure side and a high pressure side. At least one inlet is located on the low-pressure side and at least one outlet for a fluid to be delivered is arranged on the high-pressure side.
  • the low pressure side of the delivery chamber and the entire upstream part of the system where the pump is installed form the low pressure side of the pump.
  • the high pressure side of the delivery chamber and the entire adjoining downstream part of the system form the high pressure side of the pump.
  • the low pressure side extends to a reservoir for the fluid, and the high pressure side extends to at least the most downstream point of use, which requires high fluid pressure.
  • the actuator is acted upon in the direction of its mobility with a force that depends on the pressure of the fluid of the high-pressure side of the pump or other relevant for the needs of the size of the system.
  • the pressure can be directly at the outlet of the Delivery chamber or a downstream pump outlet or from a further downstream located in the system, for example, the last point of consumption, be removed.
  • the actuating force instead of the pressure or in addition to the pressure, for example, the temperature of the fluid or a component in the system in which the pump is installed, for example, an engine temperature.
  • other or further physical quantities are used to determine the actuating force.
  • the actuating force can be generated by means of an additional actuator, for example an electric motor.
  • the actuator is directly acted upon by the pressure of the fluid, ie it is acted upon by the pressurized fluid during operation of the pump.
  • the actuator is applied in preferred embodiments, in particular in embodiments in which it is acted upon by the pressure fluid, counteracting the adjusting force with a elasticity force.
  • the elasticity force is generated by a elastic member, preferably by a mechanical spring.
  • the actuator is in sliding contact with the housing in that the housing forms a raceway and the actuator form an actuator sliding surface and the actuator is guided by means of its sliding surface of the raceway in the sliding contact.
  • the actuator may additionally be performed otherwise, for example in a pivot joint, but more preferably it is only guided by the track.
  • the actuator sliding surface or the raceway is or are formed from a sliding material.
  • the sliding material is a plastic.
  • the sliding material may form a surface coating.
  • the relevant component, ie, a housing part forming the raceway or the actuator may consist exclusively or at least substantially of the sliding material.
  • both the actuator sliding surface and the raceway are made of a sliding material, either the same or each of a different sliding material. Wear reductions, however, are already achieved when either only the actuator sliding surface or only the raceway is made of the sliding material, with the preference given to the use of the sliding material for the actuator sliding surface.
  • Adhesion may be the wear-determining friction mechanism, in particular, when the frictionally engaged friction partners are so smooth that the friction mechanism of the furrowing or abrasion fades into the background.
  • the sliding partners i. H. the sliding surface of the actuator or the plurality of actuators and the raceway or multiple raceways of the housing, designed so that the adhesion tendency is significantly reduced in the friction system compared to the usual surfaces for the sliding of aluminum alloys.
  • the sliding material is advantageously chosen so that it has an adhesive energy or free surface energy which is at most half as large as the adhesion energy of pure aluminum. This condition is met in particular by plastic materials.
  • the adhesion energy or free binding energy increases with the density of the free electrons. The requirement for a low adhesion energy therefore meet materials with a low density of free electrons.
  • a material group which is particularly suitable as a sliding material are temperature-resistant thermoplastics.
  • the polymer or optionally a plurality of polymers of the plastic sliding material are advantageously slip-modified, ie the plastic contains a slip additive which improves the sliding properties.
  • Such a sliding material is also ideally suited in cases where only one of the sliding partners of the friction system consists of sliding material.
  • a preferred slip additive is graphite.
  • a preferred example from this group is polytetrafluoroethylene (PTFE).
  • both graphite and at least one fluoropolymer are admixed to the polymer, copolymer, the polymer mixture or the polymer blend as a slip additive.
  • the amount of slip additive should be at least 10% by weight in total, more preferably the slip additive is 20% ⁇ 5% in total. If different materials form the slip additive, the individual components should at least be substantially equal.
  • plastic lubricants containing 10 ⁇ 2 wt% graphite and 10 ⁇ 2 wt% fluoropolymer are preferred.
  • the addition of fiber material is also considered to be advantageous, carbon fibers being preferred as the fiber material.
  • the plastic slip material preferably contains 10 ⁇ 5 wt .-%, more preferably 10 ⁇ 3 wt .-% fiber material.
  • the actuator is formed in preferred first embodiments of the Kunststoffgleitmaterial, preferably by injection molding.
  • it consists of the plastic.
  • inserts can be embedded in the plastic;
  • the actuator consists at least substantially of the plastic sliding material.
  • the actuator may also be a housing part which forms the raceway, be formed from the Kunststoffgleitmaterial, preferably in the injection molding and solely from the plastic or in the above sense, at least substantially consist of the plastic.
  • the housing is formed of a metal, preferably a light metal, and the track is formed by an existing of the Kunststoffgleitmaterial insert part, preferably a bushing.
  • the actuator and a housing part forming the raceway, in particular insert part can each be formed from the plastic sliding material.
  • the actuator consists at least substantially of the Kunststoffgleitmaterial
  • the career is formed by a Kunststoffgleitmaterial or possibly another sliding material only as a surface coating or as an uncoated metal surface.
  • At least one of the sliding contact surfaces is formed by a thin sliding layer.
  • the actuator or the housing forming the raceway consists or consist of the superficial sliding layer of a different material, namely a carrier material.
  • the carrier material may in particular be a metal, preferably a light metal.
  • Candidates for light metals are mainly aluminum, aluminum alloys and magnesium alloys.
  • both sliding surfaces are preferably formed as superficial sliding layers each made of a plastic sliding material with a significantly lower adhesion energy than aluminum or magnesium. If only one of the sliding surfaces of the two sliding partners consists of the sliding material, it is preferably the sliding surface of the actuator.
  • the superficial sliding layer can be formed by applying the sliding material.
  • Plastic sliding material is applied, preferably the blank formed from the carrier material is encapsulated with the plastic.
  • the plastic sliding material should have a thermal elongation that comes as close as possible to the elongation of the carrier material.
  • conversion of light-metal carrier materials results in a metal oxide-ceramic sliding layer or a nitride layer.
  • the support material is aluminum or an aluminum alloy
  • the sliding layer is preferably obtained by anodization. By anodizing, it is possible in particular to form a so-called Hardcoat® sliding layer (HC layer) or more preferably a so-called Hardcoat® smooth sliding layer (HC-GL layer).
  • Hardcoat® smooth electrolytes consist of a mixture of oxalic acid and additives.
  • sulfuric acid H 2 SO 4
  • magnesium and magnesium alloys as support material anodic oxidation processes are known for providing a metal-ceramic sliding layer comparable with Al 2 O 3 sliding layers, for example the so-called DOW method.
  • the ceramic sliding layer is preferably distributed PTFE, the ceramic is impregnated with PTFE, so to speak. Such a sliding layer may be provided as a friction partner for the plastic sliding layer.
  • the housing or else just one housing part forming the raceway can be shaped in particular from aluminum or an aluminum alloy.
  • the housing or the relevant housing part is preferably cast.
  • the aluminum alloy is therefore preferably an Al casting alloy.
  • the actuator does not consist at least substantially of plastic sliding material, it is preferably formed from aluminum or an aluminum alloy, preferably a casting alloy, preferably by casting and subsequent extruding or by sintering and calibrating.
  • the particular aluminum alloy preferably contains 10 ⁇ 2% by weight of silicon.
  • the respective alloy also contains copper, but with a proportion of at most 4 wt .-%, preferably at most 3 wt .-%. Furthermore, she can do one smaller proportion of iron.
  • the housing part preferably also other parts of the housing, is or are preferably molded in sand casting or die-casting, with the die cast offering primarily for larger and the sand casting for smaller series.
  • chill casting can also be used.
  • a particularly preferred alloy for the housing part and also for the housing as a whole is AlSi8Cu3, if it is formed by sand casting or chill casting, and AlSi9Cu3 plus a low Fe content, if it is diecast.
  • Nitrides preferred as the sliding material are titanium carbonitride (TiCN) and in particular nitrided steel. Steels with a high chromium content, preferably with molybdenum content and also preferably with vanadium, are used as nitrided steels, for example 30CrMoV9. TiCN is used as a surface coating on a light metal carrier material. If nitrided steel forms the sliding material, the corresponding steel is preferably the carrier material. In particular, the actuator may be formed from the steel and the actuator slide surface may be nitrided steel.
  • a DLC coating ( D iamond L ike C arbon), and in particular a tungsten carbide (WC) coating, also has a wear-reducing effect.
  • a DLC sliding layer can be produced in particular by plasma coating.
  • Bonded coatings are also suitable sliding materials, namely for a combination of a lubricating varnish in one and a plastic material in the other sliding partner.
  • the bonded coating consists of an organic or inorganic binder, one or more solid lubricants and Additives.
  • a solid lubricant in particular MoS 2 , graphite or PTFE are used individually or in combination.
  • the surface to be coated is pretreated by secondarily forming a phosphate layer on the surface to be coated.
  • a special anti-friction varnish is Ferroprint, which contains fine steel flakes as a solid lubricant.
  • FIG. 1 shows an external gear pump in a cross section.
  • a delivery chamber is formed in which two externally toothed conveyor rotors 1 and 2 in the form of externally toothed gears rotatably mounted about parallel axes of rotation R 1 and R 2 .
  • the conveying rotor 1 is rotationally driven, for example, by the crankshaft of an internal combustion engine of a motor vehicle.
  • the conveyor rotors 1 and 2 are meshed with each other, so that in a rotary drive of the conveyor rotor 1 of the thus meshing conveyor rotor 2 is also rotationally driven.
  • the housing part 3 forms the conveying rotors 1 and 2 facing in the radial direction in each case a radial sealing surface 9, which wraps around the respective conveying rotor 1 or 2 on the circumference, forming a narrow radial sealing gap.
  • the housing 3, 6 further forms on each end side of the conveyor rotor 1 and this axially facing an axial sealing surface, of which in FIG. 1 the sealing surface 7 can be seen.
  • the conveying rotor 2 is axially facing at its two end faces each formed a further axial sealing surface, of which in cross section of FIG. 1 the sealing surface 17 can be seen.
  • the conveyor rotor 2 is axially movable relative to the conveyor rotor 1, ie, along its axis of rotation R 2 , so that the engagement length of the conveyor rotors 1 and 2 and, correspondingly, the delivery rate can be changed.
  • the conveyor rotor 2 assumes an axial position with an axial overlap, ie engagement length, which is already reduced in comparison to the maximum engagement length.
  • the conveyor rotor 2 is part of an adjustment consisting of a bearing pin 14, an actuator 15, an actuator 16 and the rotatably mounted between the actuators 15 and 16 on the bearing pin 14 conveyor rotor 2.
  • the bearing pin 14 connects the actuators 15 and 16 torsionally rigid with each other.
  • the actuator 16 forms the conveying rotor 2 facing the axial sealing surface 17.
  • the actuator 15 forms the other axial sealing surface 18.
  • the entire adjustment is mounted in a sliding chamber of the pump housing 3, 6 axially displaceable back and forth against rotation.
  • the housing is formed by the housing part 3 and the housing cover 6 firmly connected thereto.
  • the housing cover 6 is formed with a base, whose end surface facing the conveying rotor 1 forms the sealing surface 7.
  • the housing part 3 forms on the opposite end side of the conveyor rotor 1 axially facing the fourth axial sealing surface 8.
  • the sealing surface 8 is provided on its side facing the adjusting unit with a circular segment-shaped cutout for the actuator 15.
  • the actuator 16 is provided on its side facing the conveyor rotor 1 with a circular segment-shaped cutout for the sealing surface 7 forming the base 6.
  • the sealing surface 7 corresponds to the sealing surface 8 and corresponds to the sealing surface 17 of the sealing surface 18th
  • the adjusting members 15 and 16 of the embodiment are adjusting piston.
  • the sliding chamber in which the adjusting unit is axially movable back and forth, comprises a limited from the back of the actuator 15 subspace 10 and a limited from the back of the actuator 16 subspace 11.
  • the subspace 11 is connected to the high pressure side of the pump and is constantly pressurized there with branched pressure fluid, which thus acts on the back of the actuator 16.
  • a mechanical compression spring is arranged as the elastic member 12, the elastic force acts on the back of the actuator 15.
  • the elastic member 12 counteracts acting in the subspace 11 on the actuator 16 pressing force.
  • the regulation of such external gear pumps is known and therefore needs no explanation.
  • the regulation may in particular be in accordance with DE 102 22 1.31 B4 be designed.
  • the sealing surfaces 7, 8, 17 and 18 are each provided on the high pressure side with a discharge pocket.
  • the housing part 3 guides the actuators 15 and 16 in sliding contact.
  • the housing part 3 form a raceway 3a and the housing part 3 together with the cover 6 a raceway 3b, 6b.
  • the actuators 15 and 16 each form an actuator slide surface 15a and 16a on its outer peripheral surface. More specifically, in the sliding contact, the raceway 3a and the actuator sliding surface 15a on the one hand, and the raceway 3b, 6b and the actuator sliding surface 16a on the other hand.
  • a special sliding material forms at least one of the sliding partners of the relevant friction system.
  • either the raceway 3a or the actuator slide surface 15a may be formed by the sliding material.
  • the same sliding material may further constitute both the raceway 3a and the actuator sliding surface 15a.
  • the two sliding surfaces 3a and 15a can each be formed by a different sliding material. The same applies with respect to the other friction system 3b, 6b / 16a. If only one of the sliding partners of the respective friction system consists of the sliding material, the same sliding material is expediently used in each case. If both friction partners consist of a sliding material, the actuator sliding surfaces 15a and 16a are each formed by the same sliding material or the raceways 3a, 3b and 6b are each formed by the same sliding material.
  • one of the sliding partners may consist of a metal alloy, preferably a light metal alloy, it corresponds to preferred exemplary embodiments if each of the sliding partners is formed by a special sliding material of low adhesion energy.
  • the sliding material of the sliding partner of the respective friction system may be the same or different.
  • the actuators 15 and 16 may be formed as a whole from the sliding material or from a carrier material, preferably a light metal alloy, and superficially each have a sliding layer of the sliding material.
  • the housing, in the embodiment, the housing part 3 and the cover 6, may also be formed of plastic, in preferred embodiments, however, at least the housing part 3, preferably also the cover 6, cast from a metal alloy, preferably a light metal alloy. As a light metal in particular aluminum alloys in question. The following are preferred examples:
  • Housing part 3 and cover 6 each made of AlSi9Cu3 (Fe) die cast Actuators 15 and 16: PES compound: 10% by weight of carbon fibers, 10% by weight of graphite, 10% by weight of PTFE, remainder PES (eg ULTRASON®)
  • Example 1 the housing part 3 and the lid 6 are each die-cast from the same aluminum alloy, namely AlSi9Cu3.
  • the alloy may contain a small amount of Fe.
  • the raceways 3a, 3b and 6b are obtained by mechanical machining accurately.
  • the actuators 15 and 16 are each molded as a whole from the specified plastic sliding material.
  • the sliding surfaces 15a and 16a are accurately produced by mechanical processing.
  • Housing part 3 and cover 6 each made of AlSi9Cu3 (Fe) die cast Actuators 15 and 16: PES compound: 10% by weight of carbon fibers, 10% by weight of graphite, 10% by weight of PTFE, remainder PES (eg ULTRASON®) Runways 3a, 3b and 6b: coated with slip-modified plastic or lubricating varnish
  • example 2 corresponds to example 1.
  • a sliding layer of plastic sliding material or bonded coating forms the raceways 3a, 3b and 6b.
  • the plastic sliding material may in particular be the material of the actuators 15 and 16.
  • Housing part 3 and cover 6 each made of AlSi9Cu3 (Fe) die cast Actuators 15 and 16: Extruded parts of semi-finished aluminum casting as support material, for example AlSi8Cu3 Sliding surfaces 15a and 16a: PES compound: 10% by weight of carbon fibers, 10% by weight of graphite, 10% by weight of PTFE, balance PES (for example ULTRASON®)
  • the housing part 3 and the cover 6 correspond to Example 1.
  • the actuators 15 and 16 each consist of the same Al alloy, preferably AlSi8Cu3. They are formed from a cast semi-finished aluminum alloy by extrusion. Subsequently, at least the circumferential surfaces are each provided with a sliding layer of the plastic sliding material. Instead of molding the blanks of the actuators 15 and 16 by extrusion, the blanks can be formed by sintering and calibrating. The extruded or calibrated blanks are heated and overmolded in a mold with the plastic sliding material, preferably completely enveloped.

Description

Die Erfindung betrifft eine Rotationspumpe mit regelbarem Fördervolumen und ein Verfahren zu deren Herstellung. Die Rotationspumpe kann insbesondere als Schmierölpumpe für die Schmierölversorgung eines Verbrennungsmotors, insbesondere eines Kraftfahrzeugsmotors, verwendet werden.The invention relates to a rotary pump with adjustable delivery volume and a method for their preparation. The rotary pump can be used in particular as a lubricating oil pump for the lubricating oil supply of an internal combustion engine, in particular a motor vehicle engine.

Schmierölpumpen von Kraftfahrzeugen werden in Abhängigkeit von der Drehzahl des mit Schmieröl zu versorgenden Motors angetrieben, üblicherweise direkt oder über ein mechanisches Getriebe vom Motor. Die Drehzahl der Pumpe steigt dementsprechend mit der Drehzahl des Motors. Da Rotationspumpen ein konstantes spezifisches Fördervolumen haben, d. h. pro Umdrehung bei jeder Drehzahl im Wesentlichen die gleiche Flüssigkeitsmenge fördern, steigt das Fördervolumen proportional mit der Pumpendrehzahl. Der Bedarf des Motors steigt bis zu einer gewissen Grenzdrehzahl ebenfalls in etwa proportional zur Motordrehzahl, knickt nach Erreichen der Grenzdrehzahl jedoch ab oder flacht zumindest ab, so dass die Rotationspumpe bei Überschreiten der Grenzdrehzahl über den Bedarf fördert. Um die überschüssige Fördermenge nicht verlustbehaftet in ein Reservoir leiten zu müssen, wurden verstellbare Rotationspumpen entwickelt. Als Beispiele verstellbarer Rotationspumpen sind innenachsige und außenachsige Zahnradpumpen aus der DE 102 22 131 B4 bekannt, die als nächstliegenden Stand der Technik angesehen wird. Des Weiteren sind verstellbare Flügelzellenpumpen bekannt. Die Pumpen umfassen jeweils ein hin und her bewegbares Stellglied. In den genannten Beispielfällen ist der Förderrotor entweder ein Zahnrad oder ein Flügelrad. Bei den bekannten innenachsigen Zahnradpumpen und Flügelzellenpumpen wird durch die Bewegung des Verstellglieds die Exzentrizität zwischen zwei miteinander kämmenden Zahnrädern oder die Exzentrizität zwischen dem Flügelrad und dem Stellglied entsprechend dem Bedarf des Verbrauchers verstellt. Bei außenachsigen Zahnradpumpen wird die axiale Eingriffslänge zweier Zahnräder verstellt. Für die Verstellung wird das jeweilige Stellglied mit einer Stellkraft beaufschlagt, beispielsweise unmittelbar mit der Hochdruckflüssigkeit. Der Stellkraft wirkt ein Federglied entgegen. Bei Pumpen der genannten Art, die in zunehmendem Maße aus Leichtmetalllegierungen, insbesondere Al-Legierungen hergestellt werden, unterliegen überraschenderweise die in Reibkontakt stehenden Flächen des Pumpengehäuses und des Stellglieds einem besonderen Verschleiß und bestimmen die Lebensdauer der Pumpe.Automotive fuel oil pumping is driven as a function of the speed of the engine to be supplied with lubricating oil, usually directly or via a mechanical transmission from the engine. The speed of the pump increases accordingly with the speed of the motor. Since rotary pumps have a constant specific delivery volume, ie deliver substantially the same amount of fluid per revolution at each speed, the delivery volume increases proportionally with the pump speed. The demand of the engine increases up to a certain limit speed also approximately proportional to the engine speed, but kinks after reaching the limit speed or at least flattens, so that the rotary pump promotes exceeding the limit speed above demand. In order to manage the excess flow rate lossy in a reservoir, adjustable rotary pumps have been developed. As examples of adjustable rotary pumps are internal and external gear pumps from the DE 102 22 131 B4 known as the closest prior art. Furthermore, adjustable vane pumps are known. The pumps each include a reciprocable actuator. In the example cases mentioned, the conveying rotor is either a gear wheel or an impeller. In the known internal gear pumps and vane pumps is adjusted by the movement of the adjusting the eccentricity between two meshing gears or the eccentricity between the impeller and the actuator according to the needs of the consumer. For external gear pumps, the axial engagement length of two gears is adjusted. For adjusting the respective actuator is subjected to a force, for example, directly with the high pressure fluid. The actuating force counteracts a spring member. For pumps of the type mentioned in Increasingly made of light metal alloys, especially Al alloys, are surprisingly subject to the frictional contact surfaces of the pump housing and the actuator a special wear and determine the life of the pump.

Aus der DE 10 2004 033 968 A1 ist eine den Reibverschleiß vermindernde Beschichtung eines bewegten Bauteils bekannt, die von einem Gleitlack oder einem löslichen Leiterpolymer gebildet wird. Als Beispiel für ein lösliches Leitpolymer wird Polybenzoylphenylen genannt. Die Beschichtung kann Festschmierstoffe enthalten, beispielsweise Graphit oder PTFE. Dem Leiterpolymer oder Gleitlack können auch harte Mikro- oder Nanopartikel beigemischt sein. Das beschichtete Bauteil wird der Art nach nicht konkretisiert, beispielhaft werden jedoch nur Kolben von Brennkraftmaschinen genannt.From the DE 10 2004 033 968 A1 is a friction wear-reducing coating of a moving component known, which is formed by a lubricating varnish or a soluble ladder polymer. As an example of a soluble conductive polymer is called Polybenzoylphenylen. The coating may contain solid lubricants, such as graphite or PTFE. The ladder polymer or bonded coating may also be mixed with hard microparticles or nanoparticles. The coated component is not specified by type, but only piston of internal combustion engines are exemplified.

Neben der DE 102 22 131 B4 werden gattungsgemäße Pumpen auch in der DE 42 00 305 A1 und der DE 35 28 651 beschrieben. Die DE 42 00 305 A1 schlägt am Beispiel einer Flügelzellenpumpe zur Verschleißminderung das Einlegen eines Blechs aus Federstahl vor. Die DE 35 28 651 A1 schlägt zur Entlastung von Querkräften und somit ebenfalls als verschleißmindemde Maßnahme vor, in einem Stellkolben taschenförmige Ausnehmungen vorzusehen, um über diese Hilfsmaßnahme einen über den Umfang des Stellkolbens gleichmäßigen Druck einzustellen.In addition to the DE 102 22 131 B4 are generic pumps in the DE 42 00 305 A1 and the DE 35 28 651 described. The DE 42 00 305 A1 proposes the example of a vane pump to reduce wear, the insertion of a sheet of spring steel. The DE 35 28 651 A1 proposes to relieve lateral forces and thus also as a wear-reducing measure to provide pocket-shaped recesses in an actuating piston to adjust over this auxiliary measure a uniform over the circumference of the actuating piston pressure.

Es ist eine Aufgabe der Erfindung, die Lebensdauer von verstellbaren Rotationspumpen des Verdrängertyps zu verlängern, indem Schwingreibverschleiß als eine maßgebliche Verschleißursache identifiziert wird.It is an object of the invention to extend the life of variable displacement rotary pumps by identifying vibratory wear as a significant cause of wear.

Die Erfindung geht von einer Rotationspumpe vom Verdrängertyp aus, die ein Gehäuse mit einer Förderkammer, einen in der Förderkammer um eine Drehachse drehbaren Förderrotor und wenigstens ein in dem Gehäuse hin und her bewegbares Stellglied umfasst. Das Stellglied kann den Förderrotor umgeben oder vorzugsweise zu einer Stirnseite des Förderrotors angeordnet sein. Ein den Förderrotor umgebendes Stellglied kann insbesondere bei innenachsigen Pumpen, beispielsweise Zahnringpumpen und Flügelzellenpumpen, vorgesehen und als drehbar gelagerter Exzenterring wie aus der DE 102 22 131 B4 oder der EP 0 846 861 B1 bekannt oder als Hubring gebildet sein. Bevorzugt wird jedoch ein Stellglied, das wie von Außenzahnradpumpen bekannt, beispielsweise der DE 102 22 131 B4 , zu einer Stirnseite des Förderrotors angeordnet ist und die Förderkammer an der betreffenden Stirnseite axial abdichtet. Ein derartiges Stellglied bildet einen Stellkolben, der längs der Drehachse des Förderrads hin und her axial bewegbar ist. Ein den Förderrotor umgebendes Stellglied ist drehbar oder schwenkbar gelagert, kann aber alternativ auch linear bewegbar gelagert sein. Die Förderkammer weist eine Niederdruckseite und eine Hochdruckseite auf. Auf der Niederdruckseite ist wenigstens ein Einlass und auf der Hochdruckseite ist wenigstens ein Auslass für ein zu förderndes Fluid angeordnet. Die Niederdruckseite der Förderkammer und der gesamte stromaufwärtige Teil des Systems, in dem die Pumpe eingebaut ist, bilden die Niederdruckseite der Pumpe. Die Hochdruckseite der Förderkammer und der gesamte sich daran anschließende, stromabwärtige Teil des Systems bilden die Hochdruckseite der Pumpe. Die Niederdruckseite erstreckt sich bis zu einem Reservoir für das Fluid, und die Hochdruckseite erstreckt sich bis wenigstens zu der stromabwärtigsten Verbrauchsstelle, die hohen Fluiddruck benötigt.The invention is based on a rotary pump of the positive displacement type, which comprises a housing with a delivery chamber, a delivery rotor which can be rotated in the delivery chamber about a rotation axis and at least one actuator which can be moved back and forth in the housing. The actuator may surround the conveyor rotor or preferably be arranged to an end face of the conveyor rotor. An actuator surrounding the conveyor rotor can in particular with innenachsigen pumps, such as gerotor pumps and vane pumps, provided as a rotatably mounted eccentric ring as shown in DE 102 22 131 B4 or the EP 0 846 861 B1 be known or formed as a cam ring. However, preferred is an actuator, as known from external gear pumps, for example the DE 102 22 131 B4 , Is arranged to a front side of the conveyor rotor and axially seals the delivery chamber at the respective end face. Such an actuator forms an actuating piston which is axially movable back and forth along the axis of rotation of the feed wheel. An actuator surrounding the conveyor rotor is rotatably or pivotally mounted, but may alternatively be mounted linearly movable. The delivery chamber has a low pressure side and a high pressure side. At least one inlet is located on the low-pressure side and at least one outlet for a fluid to be delivered is arranged on the high-pressure side. The low pressure side of the delivery chamber and the entire upstream part of the system where the pump is installed form the low pressure side of the pump. The high pressure side of the delivery chamber and the entire adjoining downstream part of the system form the high pressure side of the pump. The low pressure side extends to a reservoir for the fluid, and the high pressure side extends to at least the most downstream point of use, which requires high fluid pressure.

Das Stellglied ist in Richtung seiner Bewegbarkeit mit einer Stellkraft beaufschlagbar, die von dem Druck des Fluids der Hochdruckseite der Pumpe abhängt oder einer anderen für den Bedarf maßgeblichen Größe des Systems. Der Druck kann unmittelbar an dem Auslass der Förderkammer oder einem nachgelagerten Pumpenauslass oder von einer weiter stromabwärts im System gelegenen Stelle, beispielsweise der letzten Verbrauchsstelle, abgenommen werden. In die Bildung der Stellkraft kann statt des Drucks oder zusätzlich zu dem Druck beispielsweise die Temperatur des Fluids einfließen oder einer Komponente im System, in dem die Pumpe eingebaut ist, beispielsweise eine Motortemperatur. Gegebenenfalls werden andere oder weitere physikalische Größen für die Bestimmung der Stellkraft herangezogen. Die Stellkraft kann mittels eines zusätzlichen Stellglieds, beispielsweise eines Elektromotors, erzeugt werden. Bevorzugter ist jedoch das Stellglied unmittelbar mit dem Druck des Fluids beaufschlagbar, d. h. es wird im Betrieb der Pumpe mit dem Druckfluid beaufschlagt. Das Stellglied wird in bevorzugten Ausführungen, insbesondere in Ausführungen, in denen es mit dem Druckfluid beaufschlagt wird, der Stellkraft entgegenwirkend mit einer Elastizitätskraft beaufschlagt. Die Elastizitätskraft wird von einem Elastizitätsglied erzeugt, vorzugsweise von einer mechanischen Feder.The actuator is acted upon in the direction of its mobility with a force that depends on the pressure of the fluid of the high-pressure side of the pump or other relevant for the needs of the size of the system. The pressure can be directly at the outlet of the Delivery chamber or a downstream pump outlet or from a further downstream located in the system, for example, the last point of consumption, be removed. In the formation of the actuating force, instead of the pressure or in addition to the pressure, for example, the temperature of the fluid or a component in the system in which the pump is installed, for example, an engine temperature. Optionally, other or further physical quantities are used to determine the actuating force. The actuating force can be generated by means of an additional actuator, for example an electric motor. More preferably, however, the actuator is directly acted upon by the pressure of the fluid, ie it is acted upon by the pressurized fluid during operation of the pump. The actuator is applied in preferred embodiments, in particular in embodiments in which it is acted upon by the pressure fluid, counteracting the adjusting force with a elasticity force. The elasticity force is generated by a elastic member, preferably by a mechanical spring.

Das Stellglied steht mit dem Gehäuse in einem Gleitkontakt, indem das Gehäuse eine Laufbahn und das Stellglied eine Stellglied-Gleitfläche bilden und das Stellglied mittels seiner Gleitfläche von der Laufbahn in dem Gleitkontakt geführt wird. Das Stellglied kann zusätzlich noch anderweitig geführt werden, beispielsweise in einem Schwenkgelenk, bevorzugter wird es jedoch nur von der Laufbahn geführt.The actuator is in sliding contact with the housing in that the housing forms a raceway and the actuator form an actuator sliding surface and the actuator is guided by means of its sliding surface of the raceway in the sliding contact. The actuator may additionally be performed otherwise, for example in a pivot joint, but more preferably it is only guided by the track.

Nach der Erfindung wird oder werden die Stellglied-Gleitfläche oder die Laufbahn aus einem Gleitmaterial gebildet. Das Gleitmaterial ist ein Kunststoff. Das Gleitmaterial kann eine Oberflächenbeschichtung bilden. Das betreffende Bauteil, d.h. ein die Laufbahn bildendes Gehäuseteil oder das Stellglied, kann ausschließlich oder doch zumindest im Wesentlichen aus dem Gleitmaterial bestehen. In bevorzugten Ausführungen besteht sowohl die Stellglied-Gleitfläche als auch die Laufbahn aus einem Gleitmaterial, entweder je dem gleichen oder jeweils aus einem anderen Gleitmaterial. Verschleißminderungen werden jedoch auch bereits erzielt, wenn entweder nur die Stellglied-Gleitfläche oder nur die Laufbahn aus dem Gleitmaterial besteht, wobei der Verwendung des Gleitmaterials für die Stellglied-Gleitfläche der Vorzug gegeben wird.According to the invention, the actuator sliding surface or the raceway is or are formed from a sliding material. The sliding material is a plastic. The sliding material may form a surface coating. The relevant component, ie, a housing part forming the raceway or the actuator, may consist exclusively or at least substantially of the sliding material. In preferred embodiments, both the actuator sliding surface and the raceway are made of a sliding material, either the same or each of a different sliding material. Wear reductions, however, are already achieved when either only the actuator sliding surface or only the raceway is made of the sliding material, with the preference given to the use of the sliding material for the actuator sliding surface.

Die Erfindung beruht auf der Erkenntnis, dass für den Verschleiß Furchung, andererseits aber auch Adhäsion maßgeblich sein kann. Adhäsion kann insbesondere dann der Verschleiß bestimmende Reibmechanismus sein, wenn die im Gleitkontakt stehenden Reibpartner so glatt sind, dass der Reibmechanismus der Furchung oder Abrasion in den Hintergrund tritt. So wurde bei verstellbaren Außenzahnradpumpen festgestellt, dass die zu den Stirnseiten des axial bewegbaren Förderrotors angeordneten Stellglieder, nämlich die beiden Stellkolben, einem beachtlichen Schwingreibverschleiß unterliegen. Die für die Einstellung des Fördervolumens erforderlichen Verstellbewegungen können den Schwingreibverschleiß nicht verursachen. Die Verstellbewegungen sind zu langsam. Den Verstellbewegungen sind jedoch Oszillationen mit im Vergleich zu den Regelbewegungen kurzen Hüben und weitaus höherer Frequenz überlagert. Zwischen den Gleitflächen der Stellglieder und der Laufbahn des Pumpengehäuses kommt es daher zur Adhäsion mit der Folge, dass örtlich Materialverschweißungen auftreten, die durch die Verstellbewegungen losgebrochen werden. Nach der Erfindung werden die Gleitpartner, d. h. die Gleitfläche des Stellglieds oder der mehreren Stellglieder und die Laufbahn oder mehreren Laufbahnen des Gehäuses, so gestaltet, dass die Adhäsionsneigung im Reibungssystem im Vergleich zu den für die Gleitpartner üblichen Oberflächen aus Aluminiumlegierungen deutlich verringert wird. Das Gleitmaterial ist vorteilhafterweise so gewählt, dass es eine Adhäsionsenergie bzw. freie Oberflächenenergie aufweist, die höchstens halb so groß wie die Adhäsionsenergie von reinem Aluminium ist. Diese Bedingung wird insbesondere von Kunststoffmaterialien erfüllt. Die Adhäsionsenergie oder freie Bindungsenergie nimmt mit der Dichte der freien Elektronen zu. Die Forderung nach einer niedrigen Adhäsionsenergie erfüllen demnach Materialien mit einer niedrigen Dichte freier Elektronen.The invention is based on the recognition that for the wear furrow, on the other hand, but also adhesion can be decisive. Adhesion may be the wear-determining friction mechanism, in particular, when the frictionally engaged friction partners are so smooth that the friction mechanism of the furrowing or abrasion fades into the background. Thus, it has been found in adjustable external gear pumps that the arranged to the end faces of the axially movable conveyor rotor actuators, namely the two adjusting pistons, subject to a considerable Schwingreibverschleiß. The adjustment movements required for setting the delivery volume can not cause the vibration friction wear. The adjustment movements are too slow. The adjustment movements, however, are superimposed on oscillations with short strokes compared to the control movements and a much higher frequency. Between the sliding surfaces of the actuators and the raceway of the pump housing, therefore, there is an adhesion with the result that local material welds occur, which are broken by the adjustment movements. According to the invention, the sliding partners, i. H. the sliding surface of the actuator or the plurality of actuators and the raceway or multiple raceways of the housing, designed so that the adhesion tendency is significantly reduced in the friction system compared to the usual surfaces for the sliding of aluminum alloys. The sliding material is advantageously chosen so that it has an adhesive energy or free surface energy which is at most half as large as the adhesion energy of pure aluminum. This condition is met in particular by plastic materials. The adhesion energy or free binding energy increases with the density of the free electrons. The requirement for a low adhesion energy therefore meet materials with a low density of free electrons.

Eine als Gleitmaterial besonders geeignete Materialgruppe sind temperaturfeste Thermoplaste. Das Polymer oder die gegebenenfalls mehreren Polymere des Kunststoffgleitmaterials sind vorteilhafterweise gleitmodifiziert, d.h. der Kunststoff enthält einen Gleitzusatz, durch den die Gleiteigenschaften verbessert werden. Solch ein Gleitmaterial ist auch bestens in den Fällen geeignet, in denen nur einer der Gleitpartner des Reibsystems aus Gleitmaterial besteht. Ein bevorzugter Gleitzusatz ist Graphit. Alternativ kommt als Gleitzusatz vor allem ein Polymer aus der Gruppe der Fluorpolymere in Frage. Ein bevorzugtes Beispiel aus dieser Gruppe ist Polytetrafluorethylen (PTFE). Besonders bevorzugt sind dem Polymer, Copolymer, der Polymermischung oder dem Polymerblend als Gleitzusatz sowohl Graphit als auch wenigstens ein Fluorpolymer, bevorzugt PTFE, beigemischt. Der Anteil des Gleitzusatzes sollte wenigstens 10 Gew.-% insgesamt betragen, bevorzugter beträgt der Anteil des Gleitzusatzes insgesamt 20 % ± 5 %. Falls unterschiedliche Materialien den Gleitzusatz bilden, sollten die einzelnen Anteile zumindest im Wesentlichen gleich sein. So werden Kunststoffgleitmaterialien bevorzugt, die 10 ± 2 Gew.-% Graphit und 10 ± 2 Gew.-% Fluorpolymer enthalten. Als vorteilhaft wird auch die Zugabe von Fasermaterial angesehen, wobei als Fasermaterial Carbonfasern der Vorzug gegeben wird. Glasfasern sollten nicht zugegeben werden, da sie an der Oberfläche der aus dem Gleitmaterial gebildeten Gleitschicht feine Nadelspitzen bilden können und daher die Gleiteigenschaften verschlechtern. Das Kunststoffgleitmaterial enthält vorzugsweise 10 ± 5 Gew.-%, bevorzugter 10 ± 3 Gew.-% Fasermaterial.A material group which is particularly suitable as a sliding material are temperature-resistant thermoplastics. The polymer or optionally a plurality of polymers of the plastic sliding material are advantageously slip-modified, ie the plastic contains a slip additive which improves the sliding properties. Such a sliding material is also ideally suited in cases where only one of the sliding partners of the friction system consists of sliding material. A preferred slip additive is graphite. Alternatively comes as slip additive above all a polymer from the group of fluoropolymers in question. A preferred example from this group is polytetrafluoroethylene (PTFE). Particularly preferably, both graphite and at least one fluoropolymer, preferably PTFE, are admixed to the polymer, copolymer, the polymer mixture or the polymer blend as a slip additive. The amount of slip additive should be at least 10% by weight in total, more preferably the slip additive is 20% ± 5% in total. If different materials form the slip additive, the individual components should at least be substantially equal. Thus, plastic lubricants containing 10 ± 2 wt% graphite and 10 ± 2 wt% fluoropolymer are preferred. The addition of fiber material is also considered to be advantageous, carbon fibers being preferred as the fiber material. Glass fibers should not be added because they can form fine needle tips on the surface of the sliding layer formed of the sliding material, and therefore deteriorate the sliding properties. The plastic slip material preferably contains 10 ± 5 wt .-%, more preferably 10 ± 3 wt .-% fiber material.

Als Gleitmaterial bevorzugte Kunststoffe enthalten 70 ± 10 Gew.-% Polymermaterial. Obgleich grundsätzlich Polymermischungen oder Polymerblends als Basismaterial in Frage kommen, enthält das Kunststoffgleitmaterial bevorzugt nur eine Art von Polymer. Polymere mit ihren langen Kohlenwasserstoffketten haben eine sehr geringe Dichte freier Elektronen und auch entsprechend wenig freie Plätze für freie Elektronen des Gleitpartners. In dieser Hinsicht sind amorphe Polymere mit ihren verknäulten Molekülketten besonders vorteilhaft. Der Kristallinitätsgrad des Polymermaterials sollte möglichst niedrig sein. Andererseits sollte das Polymermaterial keine praktisch ins Gewicht fallende Entropieelastizität haben. Die untere Einsatztemperatur sollte bei -40 °C, besser darunter liegen. Die Dauergebrauchstemperatur sollte wenigstens +150 °C betragen. Innerhalb dieses Gebrauchstemperaturbereichs sind eine geringe Kriechneigung, ausreichende mechanische Festigkeit und Formstabilität gefordert. Für den Einsatz im Fahrzeugbau sollte das Kunststoffgleitmaterial ferner resistent gegen Kraftstoffe sein. Generell ist Resistenz gegen das geförderte Fluid zu fordern. Von Vorteil ist ferner, wenn das Gleitmaterial auch harte Partikel einbetten kann, die durch Furchung, d. h. Abrieb, entstehen können. Bevorzugte Polymermaterialien sind:

  • Polysulfon (PSU) oder insbesondere Polyethersulfon (PES), auch Copolymerisate aus PES und Polysulfon (PSU),
  • Polyphenylensulfid (PPS)
  • Polyetherketone, nämlich PAEK, PEK oder insbesondere PEEK
  • Polyphtalamid (PPA)
  • und Polyamid (PA)
Preferred as a sliding material plastics contain 70 ± 10 wt .-% polymer material. Although in principle polymer blends or polymer blends come as a base material in question, the plastic sliding preferably contains only one type of polymer. Polymers with their long hydrocarbon chains have a very low density of free electrons and correspondingly little free space for free electrons of the sliding partner. In this regard, amorphous polymers with their entangled molecular chains are particularly advantageous. The degree of crystallinity of the polymer material should be as low as possible. On the other hand, the polymer material should not have any significant entropy elasticity. The lower service temperature should be at -40 ° C, better below. The continuous service temperature should be at least +150 ° C. Within this service temperature range low creep, sufficient mechanical strength and dimensional stability are required. For use in vehicle construction, the plastic sliding material should also be resistant to fuels. In general, resistance to the pumped fluid is required. It is also advantageous if the sliding material can also embed hard particles, which can result from cleavage, ie abrasion. Preferred polymeric materials are:
  • Polysulfone (PSU) or in particular polyethersulfone (PES), also copolymers of PES and polysulfone (PSU),
  • Polyphenylene sulfide (PPS)
  • Polyether ketones, namely PAEK, PEK or in particular PEEK
  • Polyphthalamide (PPA)
  • and polyamide (PA)

Das Stellglied ist in bevorzugten ersten Ausführungsformen aus dem Kunststoffgleitmaterial geformt, vorzugsweise im Spritzguss. Vorzugsweise besteht es in derartigen Ausführungen aus dem Kunststoff. Grundsätzlich können in dem Kunststoff jedoch Einlegeteile eingebettet sein; in diesem Sinne besteht das Stellglied zumindest im Wesentlichen aus dem Kunststoffgleitmaterial. Anstatt des Stellglieds kann auch ein Gehäuseteil, das die Laufbahn bildet, aus dem Kunststoffgleitmaterial geformt sein, vorzugsweise im Spritzguss und allein aus dem Kunststoff oder im vorstehenden Sinne zumindest im Wesentlichen aus dem Kunststoff bestehen. In einer demgegenüber bevorzugten Variante ist das Gehäuse aus einem Metall, vorzugsweise einem Leichtmetall geformt, und die Laufbahn wird von einem aus dem Kunststoffgleitmaterial bestehenden Einsatzteil, vorzugsweise einer Laufbuchse, gebildet. Grundsätzlich können auch das Stellglied und ein die Laufbahn bildendes Gehäuseteil, insbesondere Einsatzteil, jeweils aus dem Kunststoffgleitmaterial geformt sein. Im Rahmen der ersten Ausführungsformen wird es besonders bevorzugt, wenn nur das Stellglied zumindest im Wesentlichen aus dem Kunststoffgleitmaterial besteht, die Laufbahn hingegen von einem Kunststoffgleitmaterial oder gegebenenfalls einem anderen Gleitmaterial nur als Oberflächenbeschichtung oder als unbeschichtete Metalloberfläche gebildet wird.The actuator is formed in preferred first embodiments of the Kunststoffgleitmaterial, preferably by injection molding. Preferably, in such embodiments, it consists of the plastic. Basically, however, inserts can be embedded in the plastic; In this sense, the actuator consists at least substantially of the plastic sliding material. Instead of the actuator may also be a housing part which forms the raceway, be formed from the Kunststoffgleitmaterial, preferably in the injection molding and solely from the plastic or in the above sense, at least substantially consist of the plastic. In a contrast preferred variant, the housing is formed of a metal, preferably a light metal, and the track is formed by an existing of the Kunststoffgleitmaterial insert part, preferably a bushing. In principle, the actuator and a housing part forming the raceway, in particular insert part, can each be formed from the plastic sliding material. In the context of the first embodiments, it is particularly preferred if only the actuator consists at least substantially of the Kunststoffgleitmaterial, the career, however, is formed by a Kunststoffgleitmaterial or possibly another sliding material only as a surface coating or as an uncoated metal surface.

In bevorzugten zweiten Ausführungsformen wird wenigstens eine der in Gleitkontakt stehenden Gleitflächen von einer dünnen Gleitschicht gebildet. Das Stellglied oder das die Laufbahn bildende Gehäuseteil besteht oder bestehen unter der oberflächlichen Gleitschicht aus einem anderen Material, nämlich einem Trägermaterial. Das Trägermaterial kann insbesondere ein Metall, vorzugsweise ein Leichtmetall sein. Kandidaten für Leichtmetalle sind vor allem Aluminium, Aluminiumlegierungen und Magnesiumlegierungen. In den zweiten Ausführungsformen sind vorzugsweise beide Gleitflächen als oberflächliche Gleitschichten aus je einem Kunststoffgleitmaterial mit gegenüber Aluminium oder Magnesium deutlich geringerer Adhäsionsenergie gebildet . Falls nur eine der Gleitflächen der beiden Gleitpartner aus dem Gleitmaterial besteht, handelt es sich vorzugsweise um die Gleitfläche des Stellglieds. Vorteilhaft ist auch eine Kombination einer ersten und einer zweiten Ausführungsform, bei der das Stellglied oder das die Laufbahn bildende Gehäuseteil, vorzugsweise Einsatzteil, zumindest im Wesentlichen aus Kunststoff besteht und das andere Teil eine Oberflächenschicht aus dem Gleitmaterial, beispielsweise ebenfalls aus Kunststoff oder einem keramischen Material aufweist.In preferred second embodiments, at least one of the sliding contact surfaces is formed by a thin sliding layer. The actuator or the housing forming the raceway consists or consist of the superficial sliding layer of a different material, namely a carrier material. The carrier material may in particular be a metal, preferably a light metal. Candidates for light metals are mainly aluminum, aluminum alloys and magnesium alloys. In the second embodiments, both sliding surfaces are preferably formed as superficial sliding layers each made of a plastic sliding material with a significantly lower adhesion energy than aluminum or magnesium. If only one of the sliding surfaces of the two sliding partners consists of the sliding material, it is preferably the sliding surface of the actuator. Also advantageous is a combination of a first and a second embodiment, wherein the actuator or the raceway forming housing part, preferably insert part, at least substantially consists of plastic and the other part has a surface layer of the sliding material, for example also made of plastic or a ceramic material.

Die oberflächliche Gleitschicht kann durch Auftragen des Gleitmaterials gebildet werden. Kunststoffgleitmaterial wird aufgetragen, vorzugsweise wird der aus dem Trägermaterial geformte Rohling mit dem Kunststoff umspritzt. Das Kunststoffgleitmaterial sollte eine thermische Längendehnung aufweisen, die der Längendehnung des Trägermaterials möglichst nahe kommt. Durch Umwandlung leichtmetallischer Trägermaterialien entsteht hingegen eine metalloxidkeramische Gleitschicht oder eine Nitridschicht. Ist das Trägermaterial Aluminium oder eine Aluminiumlegierung, wird die Gleitschicht vorzugsweise durch Eloxieren erhalten. Durch Eloxieren kann insbesondere eine so genannte Hardcoat®-Gleitschicht (HC-Schicht) oder bevorzugter eine so genannte Hardcoat®-Glatt-Gleitschicht (HC-GL-Schicht) gebildet werden. Hardcoat®-Glatt-Elektrolyte bestehen aus einer Mischung von Oxalsäure und Additiven. Zur Herstellung von Hardcoat®-Schichten wird in der Regel Schwefelsäure (H2SO4) verwendet. Auch für Magnesium und Magnesiumlegierungen als Trägermaterial sind anodische Oxidationsverfahren zur Schaffung einer mit Al2O3-Gleitschichten vergleichbaren metallkeramischen Gleitschicht bekannt, beispielsweise das so genannte DOW-Verfahren. In der keramischen Gleitschicht ist vorzugsweise PTFE verteilt, die Keramik ist sozusagen mit PTFE imprägniert. Solch eine Gleitschicht kann als Reibungspartner für die Kunststoffgleitschicht vorgesehen sein.The superficial sliding layer can be formed by applying the sliding material. Plastic sliding material is applied, preferably the blank formed from the carrier material is encapsulated with the plastic. The plastic sliding material should have a thermal elongation that comes as close as possible to the elongation of the carrier material. On the other hand, conversion of light-metal carrier materials results in a metal oxide-ceramic sliding layer or a nitride layer. If the support material is aluminum or an aluminum alloy, the sliding layer is preferably obtained by anodization. By anodizing, it is possible in particular to form a so-called Hardcoat® sliding layer (HC layer) or more preferably a so-called Hardcoat® smooth sliding layer (HC-GL layer). Hardcoat® smooth electrolytes consist of a mixture of oxalic acid and additives. For the production of Hardcoat® layers sulfuric acid (H 2 SO 4 ) is usually used. Also for magnesium and magnesium alloys as support material anodic oxidation processes are known for providing a metal-ceramic sliding layer comparable with Al 2 O 3 sliding layers, for example the so-called DOW method. In the ceramic sliding layer is preferably distributed PTFE, the ceramic is impregnated with PTFE, so to speak. Such a sliding layer may be provided as a friction partner for the plastic sliding layer.

Das Gehäuse oder auch nur ein die Laufbahn bildendes Gehäuseteil kann wie bereits erwähnt insbesondere aus Aluminium oder einer Aluminiumlegierung geformt sein. Das Gehäuse oder das betreffende Gehäuseteil wird vorzugsweise gegossen. Die Aluminiumlegierung ist daher bevorzugt eine Al-Gusslegierung. Falls das Stellglied nicht zumindest im Wesentlichen aus Kunststoffgleitmaterial besteht, wird es bevorzugt aus Aluminium oder einer Aluminiumlegierung, vorzugsweise einer Gusslegierung geformt, bevorzugt durch Gießen und anschließendes Fließpressen oder durch Sintern und Kalibrieren. Sowohl für das Gehäuseteil als auch das Stellglied gilt, dass die jeweilige Aluminiumlegierung vorzugsweise 10 ± 2 Gew.-% Silizium enthält. Bevorzugt enthält die jeweilige Legierung auch Kupfer, allerdings mit einem Anteil von höchstens 4 Gew.-%, bevorzugt höchstens 3 Gew.-%. Des Weiteren kann sie einen kleineren Anteil Eisen enthalten. Das Gehäuseteil, vorzugsweise auch weitere Teile des Gehäuses, ist oder sind vorzugsweise im Sandguss oder Druckguss geformt, wobei sich der Druckguss in erster Linie für größere und der Sandguss für kleinere Serien anbieten. Statt Sandguss kann auch Kokillenguss zur Anwendung gelangen. Eine besonders bevorzugte Legierung für das Gehäuseteil und auch für das Gehäuse insgesamt ist AlSi8Cu3, falls es im Sandguss oder Kokillenguss geformt wird, und AlSi9Cu3 zuzüglich eines geringen Fe-Anteils, falls es im Druckguss geformt wird.As already mentioned, the housing or else just one housing part forming the raceway can be shaped in particular from aluminum or an aluminum alloy. The housing or the relevant housing part is preferably cast. The aluminum alloy is therefore preferably an Al casting alloy. If the actuator does not consist at least substantially of plastic sliding material, it is preferably formed from aluminum or an aluminum alloy, preferably a casting alloy, preferably by casting and subsequent extruding or by sintering and calibrating. For both the housing part and the actuator, the particular aluminum alloy preferably contains 10 ± 2% by weight of silicon. Preferably, the respective alloy also contains copper, but with a proportion of at most 4 wt .-%, preferably at most 3 wt .-%. Furthermore, she can do one smaller proportion of iron. The housing part, preferably also other parts of the housing, is or are preferably molded in sand casting or die-casting, with the die cast offering primarily for larger and the sand casting for smaller series. Instead of sand casting, chill casting can also be used. A particularly preferred alloy for the housing part and also for the housing as a whole is AlSi8Cu3, if it is formed by sand casting or chill casting, and AlSi9Cu3 plus a low Fe content, if it is diecast.

Als Gleitmaterial bevorzugte Nitride sind Titancarbonitrid (TiCN) und insbesondere nitrierter Stahl. Als nitrierte Stähle kommen insbesondere Stähle mit hohem Chromgehalt, vorzugsweise mit Molybdänanteil und ebenfalls bevorzugt mit Vanadiumanteil zum Einsatz, beispielsweise 30CrMoV9, TiCN gelangt als Oberflächenbeschichtung auf einem Leichtmetall-Trägermaterial zum Einsatz. Falls nitrierter Stahl das Gleitmaterial bildet, ist der entsprechende Stahl vorzugsweise das Trägermaterial. So kann insbesondere das Stellglied aus dem Stahl geformt und die Stellglied-Gleitfläche aus dem nitriertem Stahl bestehen.Nitrides preferred as the sliding material are titanium carbonitride (TiCN) and in particular nitrided steel. Steels with a high chromium content, preferably with molybdenum content and also preferably with vanadium, are used as nitrided steels, for example 30CrMoV9. TiCN is used as a surface coating on a light metal carrier material. If nitrided steel forms the sliding material, the corresponding steel is preferably the carrier material. In particular, the actuator may be formed from the steel and the actuator slide surface may be nitrided steel.

Verschleiß mindernd wirkt sich auch eine DLC-Beschichtung (Diamond Like Carbon) und hier insbesondere eine Wolframcarbid(WC)-Beschichtung aus. Eine DLC-Gleitschicht kann insbesondere durch Plasmabeschichten erzeugt werden.A DLC coating ( D iamond L ike C arbon), and in particular a tungsten carbide (WC) coating, also has a wear-reducing effect. A DLC sliding layer can be produced in particular by plasma coating.

Gleitlacke sind ebenfalls geeignete Gleitmaterialien, nämlich für eine Kombination eines Gleitlacks bei dem einen und eines Kunststoffmaterials bei dem anderen Gleitpartner. Der Gleitlack besteht aus einem organischen oder anorganischen Bindemittel, einem oder mehreren Festschmierstoffen und Additiven. Als Festschmierstoff kommen insbesondere MoS2, Graphit oder PTFE einzeln oder in Kombination in Frage. Vor dem Beschichten mit dem Gleitlack wird die zu beschichtende Oberfläche vorbehandelt, indem auf der zu beschichtenden Oberfläche zweclcmäßigerweise eine Phosphatschicht gebildet wird. Ein besonderer Gleitlack ist Ferroprint, der als Festschmierstoff feine Stahlplättchen enthält.Bonded coatings are also suitable sliding materials, namely for a combination of a lubricating varnish in one and a plastic material in the other sliding partner. The bonded coating consists of an organic or inorganic binder, one or more solid lubricants and Additives. As a solid lubricant in particular MoS 2 , graphite or PTFE are used individually or in combination. Before coating with the lubricating varnish, the surface to be coated is pretreated by secondarily forming a phosphate layer on the surface to be coated. A special anti-friction varnish is Ferroprint, which contains fine steel flakes as a solid lubricant.

Vorteilhafte Merkmale der Erfindung werden auch in den Unteransprüchen und deren Kombinationen beschrieben. Die dort beschriebenen Merkmale und die vorstehend beschriebenen ergeben weitere vorteilhafte Merkmalskombinationen.Advantageous features of the invention are also described in the subclaims and their combinations. The features described therein and those described above provide further advantageous feature combinations.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Figuren erläutert. An den Ausführungsbeispielen offenbar werdende Merkmale bilden je einzeln und in jeder Kombination von Merkmalen, die sich nicht gegenseitig ausschließen, die Gegenstände der Ansprüche und auch die vorstehend beschriebenen Ausgestaltungen vorteilhaft weiter. Es zeigen:

Figur 1
eine Förderkammer einer Außenzahnradpumpe mit zwei in Zahneingriff befindlichen Förderrotoren und
Figur 2
die Außenzahnradpumpe in einem Längsschnitt.
Hereinafter, embodiments of the invention will be explained with reference to figures. Characteristics disclosed in the exemplary embodiments form each individually and in any combination of features that are not mutually exclusive, the subject-matter of the claims, and also the embodiments described above. Show it:
FIG. 1
a delivery chamber of an external gear pump with two meshing located conveyor rotors and
FIG. 2
the external gear pump in a longitudinal section.

Figur 1 zeigt eine Außenzahnradpumpe in einem Querschnitt. In einem Pumpengehäuse, das ein Gehäuseteil 3 und einen Deckel 6 (Figur 2) umfasst, ist eine Förderkammer gebildet, in der zwei außenverzahnte Förderrotoren 1 und 2 in Form von außen verzahnten Zahnrädern um parallele Drehachsen R1 und R2 drehbar gelagert sind. Der Förderrotor 1 wird drehangetrieben, beispielsweise von der Kurbelwelle eines Verbrennungsmotors eines Kraftfahrzeugs. Die Förderrotoren 1 und 2 sind miteinander in einem Zahneingriff, so dass bei einem Drehantrieb des Förderrotors 1 der damit kämmende Förderrotor 2 ebenfalls drehangetrieben wird. In die Förderkammer münden auf einer Niederdruckseite ein Einlass 4 und auf einer Hochdruckseite ein Auslass 5 für ein zu förderndes Fluid, vorzugsweise Schmieröl für einen Verbrennungsmotor. Das Gehäuseteil 3 bildet den Förderrotoren 1 und 2 in radialer Richtung zugewandt jeweils eine radiale Dichtfläche 9, die den jeweiligen Förderrotor 1 oder 2 umfangsseitig unter Ausbildung eines engen radialen Dichtspalts umschlingt. Für den Förderrotor 1 bildet das Gehäuse 3, 6 ferner an jeder Stirnseite des Förderrotors 1 und diesem axial zugewandt eine axiale Dichtfläche, von denen in Figur 1 die Dichtfläche 7 zu erkennen ist. Dem Förderrotor 2 ist an dessen beiden Stirnseiten axial zugewandt je eine weitere axiale Dichtfläche gebildet, von denen im Querschnitt der Figur 1 die Dichtfläche 17 zu erkennen ist. FIG. 1 shows an external gear pump in a cross section. In a pump housing which has a housing part 3 and a cover 6 (FIG. FIG. 2 ), a delivery chamber is formed in which two externally toothed conveyor rotors 1 and 2 in the form of externally toothed gears rotatably mounted about parallel axes of rotation R 1 and R 2 . The conveying rotor 1 is rotationally driven, for example, by the crankshaft of an internal combustion engine of a motor vehicle. The conveyor rotors 1 and 2 are meshed with each other, so that in a rotary drive of the conveyor rotor 1 of the thus meshing conveyor rotor 2 is also rotationally driven. In the delivery chamber open on a low pressure side inlet 4 and on a high pressure side an outlet 5 for a fluid to be conveyed, preferably lubricating oil for an internal combustion engine. The housing part 3 forms the conveying rotors 1 and 2 facing in the radial direction in each case a radial sealing surface 9, which wraps around the respective conveying rotor 1 or 2 on the circumference, forming a narrow radial sealing gap. For the conveyor rotor 1, the housing 3, 6 further forms on each end side of the conveyor rotor 1 and this axially facing an axial sealing surface, of which in FIG. 1 the sealing surface 7 can be seen. The conveying rotor 2 is axially facing at its two end faces each formed a further axial sealing surface, of which in cross section of FIG. 1 the sealing surface 17 can be seen.

Durch Drehantrieb der Förderrotoren 1 und 2 wird Fluid durch den Einlass 4 in die Förderkammer gesogen und in den Zahnlücken der Förderrotoren 1 und 2 durch die jeweilige Umschlingung auf die Hochdruckseite der Förderkammer und dort durch den Auslass 5 zu dem Verbraucher, im angenommenen Beispielfall der Verbrennungsmotor, gefördert. Während der Fördertätigkeit trennen die zwischen den Förderrotoren 1 und 2 und den genannten Dichtflächen gebildeten Dichtspalte und der Zahneingriff der Förderrotoren 1 und 2 die Hochdruckseite von der Niederdruckseite. Die Förderrate der Pumpe steigt proportional mit der Drehzahl der Förderrotoren 1 und 2. Da ein beispielhaft als Verbraucher angenommener Verbrennungsmotor ab einer gewissen Grenzdrehzahl weniger Schmieröl aufnimmt als die Pumpe entsprechend ihrer proportional mit der Drehzahl steigenden Kennlinie fördern würde, wird die Förderrate der Pumpe ab der Grenzdrehzahl abgeregelt. Für die Abregelung ist der Förderrotor 2 relativ zu dem Förderrotor 1 axial, d.h. längs seiner Drehachse R2 hin und her bewegbar, so dass die Eingriffslänge der Förderrotoren 1 und 2 und entsprechend die Förderrate verändert werden können.By rotational drive of the conveyor rotors 1 and 2, fluid is sucked through the inlet 4 in the delivery chamber and in the tooth gaps of the conveyor rotors 1 and 2 by the respective wrap on the high pressure side of the delivery chamber and there through the outlet 5 to the consumer, in the example assumed the internal combustion engine , promoted. During the conveying activity, the sealing gaps formed between the conveying rotors 1 and 2 and the said sealing surfaces and the tooth engagement of the conveying rotors 1 and 2 separate the high-pressure side from the low-pressure side. The delivery rate of the pump increases proportionally with the speed of the conveyor rotors 1 and 2. Since an example assumed as a consumer engine from a certain limit speed less lubricating oil absorbs as the pump according to their proportionally with the speed increasing characteristic curve would promote the delivery rate of the pump from the Limiting speed limited. For the shutdown, the conveyor rotor 2 is axially movable relative to the conveyor rotor 1, ie, along its axis of rotation R 2 , so that the engagement length of the conveyor rotors 1 and 2 and, correspondingly, the delivery rate can be changed.

In Figur 2 nimmt der Förderrotor 2 eine axiale Position mit einer axialen Überdeckung, d.h. Eingriffslänge, ein, die im Vergleich zu der maximalen Eingriffslänge bereits reduziert ist. Der Förderrotor 2 ist Bestandteil einer Verstelleinheit bestehend aus einem Lagerzapfen 14, einem Stellglied 15, einem Stellglied 16 und dem zwischen den Stellgliedern 15 und 16 drehbar auf dem Lagerzapfen 14 gelagerten Förderrotor 2. Der Lagerzapfen 14 verbindet die Stellglieder 15 und 16 drehsteif miteinander. Das Stellglied 16 bildet dem Förderrotor 2 zugewandt die axiale Dichtfläche 17. Das Stellglied 15 bildet die andere axiale Dichtfläche 18. Die gesamte Verstelleinheit ist in einem Verschieberaum des Pumpengehäuses 3, 6 axial hin und her verschiebbar verdrehgesichert gelagert.In FIG. 2 the conveyor rotor 2 assumes an axial position with an axial overlap, ie engagement length, which is already reduced in comparison to the maximum engagement length. The conveyor rotor 2 is part of an adjustment consisting of a bearing pin 14, an actuator 15, an actuator 16 and the rotatably mounted between the actuators 15 and 16 on the bearing pin 14 conveyor rotor 2. The bearing pin 14 connects the actuators 15 and 16 torsionally rigid with each other. The actuator 16 forms the conveying rotor 2 facing the axial sealing surface 17. The actuator 15 forms the other axial sealing surface 18. The entire adjustment is mounted in a sliding chamber of the pump housing 3, 6 axially displaceable back and forth against rotation.

Das Gehäuse wird von dem Gehäuseteil 3 und dem damit fest verbundenen Gehäusedeckel 6 gebildet. Der Gehäusedeckel 6 ist mit einem Sockel geformt, dessen dem Förderrotor 1 zugewandte Stirnfläche die Dichtfläche 7 bildet. Das Gehäuseteil 3 bildet auf der gegenüberliegenden Stirnseite dem Förderrotor 1 axial zugewandt die vierte axiale Dichtfläche 8. Die Dichtfläche 8 ist an ihrer der Verstelleinheit zugewandten Seite mit einem kreissegmentförmigen Ausschnitt für das Stellglied 15 versehen. Das Stellglied 16 ist an seiner zum Förderrotor 1 gewandten Seite mit einem kreissegmentförmigen Ausschnitt für den die Dichtfläche 7 bildenden Sockel 6 versehen. Von dem jeweiligen Ausschnitt abgesehen entspricht die Dichtfläche 7 der Dichtfläche 8 und entspricht die Dichtfläche 17 der Dichtfläche 18.The housing is formed by the housing part 3 and the housing cover 6 firmly connected thereto. The housing cover 6 is formed with a base, whose end surface facing the conveying rotor 1 forms the sealing surface 7. The housing part 3 forms on the opposite end side of the conveyor rotor 1 axially facing the fourth axial sealing surface 8. The sealing surface 8 is provided on its side facing the adjusting unit with a circular segment-shaped cutout for the actuator 15. The actuator 16 is provided on its side facing the conveyor rotor 1 with a circular segment-shaped cutout for the sealing surface 7 forming the base 6. Apart from the respective section, the sealing surface 7 corresponds to the sealing surface 8 and corresponds to the sealing surface 17 of the sealing surface 18th

Die Verstellglieder 15 und 16 des Ausführungsbeispiels sind Verstellkolben. Der Verschieberaum, in dem die Verstelleinheit axial hin und her beweglich ist, umfasst einen von der Rückseite des Stellglieds 15 begrenzten Teilraum 10 und einen von der Rückseite des Stellglieds 16 begrenzten Teilraum 11. Der Teilraum 11 ist mit der Hochdruckseite der Pumpe verbunden und wird ständig mit dort abgezweigtem Druckfluid beaufschlagt, das somit auf die Rückseite des Stellglieds 16 wirkt. In dem Raum 10 ist eine mechanische Druckfeder als Elastizitätsglied 12 angeordnet, dessen Elastizitätskraft auf die Rückseite des Stellglieds 15 wirkt. Das Elastizitätsglied 12 wirkt der im Teilraum 11 auf das Stellglied 16 wirkenden Druckkraft entgegen. Die Regelung derartiger Außenzahnradpumpen ist bekannt und bedarf daher keiner Erläuterung. Die Regelung kann insbesondere entsprechend der DE 102 22 1.31 B4 gestaltet sein.The adjusting members 15 and 16 of the embodiment are adjusting piston. The sliding chamber, in which the adjusting unit is axially movable back and forth, comprises a limited from the back of the actuator 15 subspace 10 and a limited from the back of the actuator 16 subspace 11. The subspace 11 is connected to the high pressure side of the pump and is constantly pressurized there with branched pressure fluid, which thus acts on the back of the actuator 16. In the space 10, a mechanical compression spring is arranged as the elastic member 12, the elastic force acts on the back of the actuator 15. The elastic member 12 counteracts acting in the subspace 11 on the actuator 16 pressing force. The regulation of such external gear pumps is known and therefore needs no explanation. The regulation may in particular be in accordance with DE 102 22 1.31 B4 be designed.

Wären die axialen Dichtflächen 7, 8 und 17, 18 umlaufend glatt und die axialen Dichtspalte dementsprechend umlaufend eng, würde im Eingriffsbereich der Förderrotoren 1 und 2 Fluid der Hochdruckseite gequetscht, d.h. noch über den Druck der Hochdruckseite hinaus komprimiert und auf die Niederdruckseite gefördert werden. Für das Quetschen des Fluids wird Antriebsleistung verbraucht und ferner ist mit der besonderen Kompression des Fluids und dem Transport durch den Zahneingriff hindurch eine Förderstrompulsation verbunden.If the axial sealing surfaces 7, 8 and 17, 18 circumferentially smooth and the axial sealing gaps accordingly circumferentially tight, would be squeezed in the engagement region of the conveyor rotors 1 and 2 high-pressure fluid, i. still compressed beyond the pressure of the high pressure side and conveyed to the low pressure side. For the squeezing of the fluid drive power is consumed and further connected to the special compression of the fluid and the transport through the meshing through a delivery flow pulsation.

Zur Vermeidung der genannten Nachteile sind die Dichtflächen 7, 8, 17 und 18 auf der Hochdruckseite je mit einer Entlastungstasche versehen. Von den vier Taschen sind in Figur 1 die Taschen 7a und 17a zu erkennen. Entlastungstaschen sind nur auf der Hochdruckseite gebildet.To avoid the disadvantages mentioned, the sealing surfaces 7, 8, 17 and 18 are each provided on the high pressure side with a discharge pocket. Of the four bags are in FIG. 1 the To recognize pockets 7a and 17a. Relief pockets are formed only on the high pressure side.

Das Gehäuseteil 3 führt die Stellglieder 15 und 16 in einem Gleitkontakt. Für den Gleitkontakt bilden das Gehäuseteil 3 eine Laufbahn 3a und das Gehäuseteil 3 gemeinsam mit dem Deckel 6 eine Laufbahn 3b, 6b. Die Stellglieder 15 und 16 bilden an ihrer äußeren Umfangsfläche je eine Stellglied-Gleitfläche 15a und 16a. In dem Gleitkontakt stehen genauer gesagt die Laufbahn 3a und die Stellglied-Gleitfläche 15a einerseits und die Laufbahn 3b, 6b und die Stellglied-Gleitfläche 16a andererseits. Im Stand der Technik ist es üblich, die Gehäuse 3, 6 und die Stellglieder 15 und 16 aus Leichtmetallegierungen zu fertigen. In den aus den Laufbahnen .3a und 3b, 6b einerseits und den Stellglied-Gleitflächen 15a und 16a andererseits gebildeten Reibsystemen bildet ein besonderes Gleitmaterial je wenigstens einen der Gleitpartner des betreffenden Reibsystems. Dabei kann in dem Reibsystem 3a/15a entweder die Laufbahn 3a oder die Stellglied-Gleitfläche 15a von dem Gleitmaterial gebildet werden. Das gleiche Gleitmaterial kann ferner sowohl die Laufbahn 3a als auch die Stellglied-Gleitfläche 15a bilden. Schließlich können die beiden Gleitflächen 3a und 15a jeweils von einem anderen Gleitmaterial gebildet werden. Das Gleiche gilt in Bezug auf das andere Reibungssystem 3b, 6b/16a. Falls nur einer der Gleitpartner des jeweiligen Reibsystems aus dem Gleitmaterial besteht, kommt zweckmäßigerweise jeweils das gleiche Gleitmaterial zum Einsatz. Bestehen beide Reibpartner aus einem Gleitmaterial, werden die Stellglied-Gleitflächen 15a und 16a je vom gleichen Gleitmaterial oder die Laufbahnen 3a, 3b und 6b je vom gleichen Gleitmaterial gebildet.The housing part 3 guides the actuators 15 and 16 in sliding contact. For the sliding contact, the housing part 3 form a raceway 3a and the housing part 3 together with the cover 6 a raceway 3b, 6b. The actuators 15 and 16 each form an actuator slide surface 15a and 16a on its outer peripheral surface. More specifically, in the sliding contact, the raceway 3a and the actuator sliding surface 15a on the one hand, and the raceway 3b, 6b and the actuator sliding surface 16a on the other hand. In the prior art, it is customary to manufacture the housings 3, 6 and the actuators 15 and 16 from light metal alloys. In the friction systems formed from the raceways .3a and 3b, 6b, on the one hand, and the actuator sliding surfaces 15a and 16a, on the other hand, a special sliding material forms at least one of the sliding partners of the relevant friction system. Incidentally, in the friction system 3a / 15a, either the raceway 3a or the actuator slide surface 15a may be formed by the sliding material. The same sliding material may further constitute both the raceway 3a and the actuator sliding surface 15a. Finally, the two sliding surfaces 3a and 15a can each be formed by a different sliding material. The same applies with respect to the other friction system 3b, 6b / 16a. If only one of the sliding partners of the respective friction system consists of the sliding material, the same sliding material is expediently used in each case. If both friction partners consist of a sliding material, the actuator sliding surfaces 15a and 16a are each formed by the same sliding material or the raceways 3a, 3b and 6b are each formed by the same sliding material.

Obgleich grundsätzlich im jeweiligen Reibsystem einer der Gleitpartner aus einer Metalllegierung, vorzugsweise einer Leichtmetalllegierung, bestehen kann, entspricht es bevorzugten Ausführungsbeispielen, wenn jeder der Gleitpartner von einem besonderen Gleitmaterial niedriger Adhäsionsenergie gebildet wird. Das Gleitmaterial der Gleitpartner des jeweiligen Reibsystems kann gleich oder unterschiedlich sein. Die Stellglieder 15 und 16 können insgesamt aus dem Gleitmaterial geformt sein oder aus einem Trägermaterial, vorzugsweise einer Leichtmetalllegierung, und oberflächlich je eine Gleitschicht aus dem Gleitmaterial aufweisen. Das Gehäuse, im Ausführungsbeispiel das Gehäuseteil 3 und der Deckel 6, können ebenfalls aus Kunststoff geformt sein, in bevorzugten Ausführungsbeispielen wird jedoch zumindest das Gehäuseteil 3, vorzugsweise auch der Deckel 6, aus einer Metalllegierung gegossen, vorzugsweise einer Leichtmetalllegierung. Als Leichtmetall kommen insbesondere Aluminiumlegierungen in Frage. Nachfolgend werden bevorzugte Beispiele angegeben:Although, in principle, in the respective friction system, one of the sliding partners may consist of a metal alloy, preferably a light metal alloy, it corresponds to preferred exemplary embodiments if each of the sliding partners is formed by a special sliding material of low adhesion energy. The sliding material of the sliding partner of the respective friction system may be the same or different. The actuators 15 and 16 may be formed as a whole from the sliding material or from a carrier material, preferably a light metal alloy, and superficially each have a sliding layer of the sliding material. The housing, in the embodiment, the housing part 3 and the cover 6, may also be formed of plastic, in preferred embodiments, however, at least the housing part 3, preferably also the cover 6, cast from a metal alloy, preferably a light metal alloy. As a light metal in particular aluminum alloys in question. The following are preferred examples:

Beispiel 1example 1

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6: jeweils aus AlSi9Cu3 (Fe) Druckgusseach made of AlSi9Cu3 (Fe) die cast Stellglieder 15 und 16:Actuators 15 and 16: PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)PES compound: 10% by weight of carbon fibers, 10% by weight of graphite, 10% by weight of PTFE, remainder PES (eg ULTRASON®)

Im Beispiel 1 werden das Gehäuseteil 3 und der Deckel 6 je aus der gleichen Aluminiumlegierung, nämlich AlSi9Cu3 im Druckguss geformt. Die Legierung kann einen geringen Fe-Anteil enthalten. Die Laufbahnen 3a, 3b und 6b werden durch mechanische Bearbeitung passgenau erhalten. Die Stellglieder 15 und 16 werden jeweils im Ganzen aus dem spezifizierten Kunststoffgleitmaterial geformt. Die Gleitflächen 15a und 16a werden durch mechanische Bearbeitung passgenau erzeugt.In Example 1, the housing part 3 and the lid 6 are each die-cast from the same aluminum alloy, namely AlSi9Cu3. The alloy may contain a small amount of Fe. The raceways 3a, 3b and 6b are obtained by mechanical machining accurately. The actuators 15 and 16 are each molded as a whole from the specified plastic sliding material. The sliding surfaces 15a and 16a are accurately produced by mechanical processing.

Beispiel 2Example 2

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6: jeweils aus AlSi9Cu3(Fe) Druckgusseach made of AlSi9Cu3 (Fe) die cast Stellglieder 15 und 16:Actuators 15 and 16: PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z. B. ULTRASON®)PES compound: 10% by weight of carbon fibers, 10% by weight of graphite, 10% by weight of PTFE, remainder PES (eg ULTRASON®) Laufbahnen 3a, 3b und 6b:Runways 3a, 3b and 6b: mit gleitmodifiziertem Kunststoff oder Gleitlack beschichtetcoated with slip-modified plastic or lubricating varnish

Das Beispiel 2 entspricht mit Ausnahme der Laufbahnen 3a, 3b und 6b dem Beispiel 1. Im Unterschied zum Beispiel 1 bildet jedoch jeweils eine Gleitschicht aus Kunststoffgleitmaterial oder Gleitlack die Laufbahnen .3a, 3b und 6b. Das Kunststoffgleitmaterial kann insbesondere das Material der Stellglieder 15 und 16 sein.With the exception of raceways 3a, 3b and 6b, example 2 corresponds to example 1. In contrast to example 1, however, a sliding layer of plastic sliding material or bonded coating forms the raceways 3a, 3b and 6b. The plastic sliding material may in particular be the material of the actuators 15 and 16.

Beispiel 3Example 3

Gehäuseteil 3 und Deckel 6:Housing part 3 and cover 6: jeweils aus AlSi9Cu3(Fe) Druckgusseach made of AlSi9Cu3 (Fe) die cast Stellglieder 15 und 16:Actuators 15 and 16: Fließgepresste Teile aus Aluminiumgusshalbzeug als Trägermaterial, beispielsweise AlSi8Cu3Extruded parts of semi-finished aluminum casting as support material, for example AlSi8Cu3 Gleitflächen 15a und 16a:Sliding surfaces 15a and 16a: PES-Compound: 10 Gew.-% Carbonfasern, 10 Gew.-% Graphit, 10 Gew.-% PTFE, Rest PES (z.B. ULTRASON®)PES compound: 10% by weight of carbon fibers, 10% by weight of graphite, 10% by weight of PTFE, balance PES (for example ULTRASON®)

Das Gehäuseteil 3 und der Deckel 6 entsprechen dem Beispiel 1. Die Stellglieder 15 und 16 bestehen je aus der gleichen Al-Legierung, vorzugsweise AlSi8Cu3. Sie werden aus einem gegossenen Halbzeug der Aluminiumlegierung durch Fließpressen geformt. Anschließend werden zumindest die Umfangsflächen je mit einer Gleitschicht aus dem Kunststoffgleitmaterial versehen. Anstatt die Rohlinge der Stellglieder 15 und 16 durch Fließpressen zu formen, können die Rohlinge durch Sintern und Kalibrieren geformt werden. Die fließgepressten oder kalibrierten Rohlinge werden angewärmt und in einer Form mit dem Kunststoffgleitmaterial umspritzt, vorzugsweise komplett umhüllt.The housing part 3 and the cover 6 correspond to Example 1. The actuators 15 and 16 each consist of the same Al alloy, preferably AlSi8Cu3. They are formed from a cast semi-finished aluminum alloy by extrusion. Subsequently, at least the circumferential surfaces are each provided with a sliding layer of the plastic sliding material. Instead of molding the blanks of the actuators 15 and 16 by extrusion, the blanks can be formed by sintering and calibrating. The extruded or calibrated blanks are heated and overmolded in a mold with the plastic sliding material, preferably completely enveloped.

Claims (28)

  1. A rotary pump having a variable delivery volume, comprising:
    a) a casing (3, 6);
    b) a delivery chamber formed in the casing (3, 6) and comprising an inlet (4) for a fluid on a low-pressure side and an outlet (5) for the fluid on a high-pressure side of the pump;
    c) at least one delivery rotor (2) which can be rotated in the delivery chamber about a rotational axis (R2);
    d) an actuating member (15) which is arranged on a front face of the delivery rotor (2) or surrounds the delivery rotor, and can be moved back and forth in the casing (3, 6) for adjusting the delivery volume;
    e) wherein the actuating member (15) can be charged, in the direction of its mobility, with an actuating force which is dependent on the requirement of a consumer which is to be supplied with the fluid;
    f) and a track (3a) which is formed in the casing (3, 6) and guides the actuating member (15) on an actuating member sliding surface (15a) in a sliding contact;
    g) wherein a sliding material, which forms at least one of the track (3a) and the actuating member sliding surface (15a), is a plastic, such that oscillating frictional wear is counteracted.
  2. The rotary pump according to the preceding claim, wherein the sliding material exhibits an adhesion energy which is at most half the adhesion energy of aluminium.
  3. The rotary pump according to any one of the preceding claims, wherein:
    - the actuating member (15), another actuating member (16) and the delivery rotor (2) are part of an adjusting unit (2, 15, 16) which can be moved as a whole back and forth in the casing (3, 6);
    - the actuating members (15, 16) are each arranged on one of the front faces of the delivery rotor (2), and another track (3b, 6b) is formed in the casing (3, 6) and guides the other actuating member (16) on its actuating member sliding surface (16a) in a sliding contact;
    - and wherein at least one of the other track (3b, 6b) and the actuating member sliding surface (16a) of the other actuating member (16) consists of the sliding material.
  4. The rotary pump according to any one of the preceding claims, wherein the sliding material is a lubricated thermoplast.
  5. The rotary pump according to any one of the preceding claims, wherein the sliding material is a polymer compound of at least one heat-resistant polymer filled with fibrous material and a sliding additive.
  6. The rotary pump according to the preceding claim, wherein the sliding additive comprises at least one of graphite and a fluoropolymer, preferably PTFE.
  7. The rotary pump according to any one of the preceding two claims, wherein the fibrous material comprises or consists of carbon fibres.
  8. The rotary pump according to any one of the preceding three claims, wherein the sliding material fulfils at least one of the following features:
    - the proportion of polymer is at least 60% by weight and at most 80% by weight;
    - the proportion of the sliding additive is at least 10% by weight and at most 30% by weight;
    - the proportion of the fibrous material is at least 5% by weight and at most 15% by weight.
  9. The rotary pump according to any one of the preceding claims, wherein the sliding material is a plastic, and a base material of the plastic is a polymer including copolymer, a mixture of polymers or a polymer blend from the group consisting of polyether sulphone (PES), polysulphone (PSU), polyphenylene sulphide (PPS), polyether ketones (PAEK, PEK, PEEK), polyamide (PA) and polyphthalamide (PPA).
  10. The rotary pump according to any one of the preceding claims, wherein the other of the actuating member sliding surface (15a, 16a) and the track (3a, 3b, 6b) is formed by a metal-ceramic layer.
  11. The rotary pump according to the preceding claim, wherein the layer is a Hardcoat® layer or a Hardcoat® smooth layer and preferably contains PTFE.
  12. The rotary pump according to any one of the preceding claims, wherein nitrided steel or TiCN forms the other of the track (3a, 3b, 6b) and the actuating member sliding surface (15a, 16a).
  13. The rotary pump according to any one of the preceding claims, wherein a casing portion (3, 6) comprising the track (3a, 3b, 6b) at least substantially consists of metal or is formed from a metal as a substrate material and a sliding layer of the sliding material forming the track (3a, 3b, 6b) is applied to the substrate material.
  14. The rotary pump according to the preceding claim, wherein a casting material, preferably a die casting material, a chill casting material or a sand casting material exhibiting a corresponding structure forms the casing portion (3, 6) or the substrate material of the casing portion (3, 6).
  15. The rotary pump according to any one of the preceding claims, wherein the actuating member (15, 16) including the actuating member sliding surface (15a, 16a) is formed from a metal as a substrate material and a sliding layer of the sliding material forming the actuating member sliding surface (15a, 16a) is applied to the substrate material.
  16. The rotary pump according to a combination of claims 13 and 15, wherein the metal of the casing portion (3, 6) and the metal of the actuating member (15, 16) contain the same metallic element at least as their main constituent.
  17. The rotary pump according to any one of the preceding four claims, wherein the metal is a light metal, preferably aluminium or an aluminium-based alloy.
  18. The rotary pump according to any one of the preceding five claims, wherein the metal is aluminium or an aluminium-based alloy which contains silicon and preferably at least one of copper and iron.
  19. The rotary pump according to any one of claims 1 to 14 or 16 to 18, wherein the actuating member (15, 16) is formed from the sliding material.
  20. The rotary pump according to any one of claims 1 to 12 or 15 to 19, wherein the casing (3, 6) or at least a casing portion (3) which forms the track (3a, 3b) is formed from the sliding material.
  21. The rotary pump according to any one of the preceding claims, wherein the actuating force is arranged to counteract an elasticity member (12).
  22. The rotary pump according to any one of the preceding claims, wherein the actuating member (15, 16) is an actuating piston which can be charged with the fluid of the high-pressure side.
  23. The rotary pump according to any one of the preceding claims, wherein the delivery rotor (2) and the actuating member (15, 16) can be axially moved in relation to the rotational axis (R2).
  24. The rotary pump according to any one of the preceding claims, comprising another delivery rotor (1) which can be rotated in the delivery chamber about another rotational axis (R1), wherein the delivery rotors (1, 2) are in delivery engagement with each other.
  25. The rotary pump according to any one of the preceding claims, being an external-axle rotary pump and preferably an external toothed wheel pump.
  26. A method for manufacturing the rotary pump according to any one of the preceding claims, wherein:
    a) a casing portion (3, 6) forming the track (3a, 3b, 6b) is formed from a light metal;
    b) the actuating member (15, 16) is formed from the same or a different light metal; and
    c) the casing portion (3, 6) for producing the track (3a, 3b, 6b), or the actuating member (15, 16) for producing the actuating member sliding surface (15a, 16a), is coated with the sliding material, i.e. provided with a plastic coating, in order to counteract oscillating frictional wear.
  27. The method according to the preceding claim, wherein the casing portion (3) is formed from an aluminium-based alloy by sand casting, chill casting or die casting, and the track (3a, 3b, 6b) is preferably formed by mechanically machining the casting material.
  28. The method according to any one of the preceding two claims, wherein the actuating member (15, 16) for forming the actuating member sliding surface (15a, 16a) is coated with a lubricated plastic.
EP07106407A 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump Active EP1847713B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL07106407T PL1847713T3 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP18170712.6A EP3376031B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006018124A DE102006018124A1 (en) 2006-04-19 2006-04-19 Adjustable rotary pump with wear reduction

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP18170712.6A Division EP3376031B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A Division EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A Previously-Filed-Application EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2 Division-Into 2010-09-21

Publications (3)

Publication Number Publication Date
EP1847713A2 EP1847713A2 (en) 2007-10-24
EP1847713A3 EP1847713A3 (en) 2008-06-11
EP1847713B1 true EP1847713B1 (en) 2011-03-02

Family

ID=38283219

Family Applications (3)

Application Number Title Priority Date Filing Date
EP18170712.6A Active EP3376031B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A Active EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP07106407A Active EP1847713B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP18170712.6A Active EP3376031B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump
EP10178105.2A Active EP2327881B1 (en) 2006-04-19 2007-04-18 Adjustable wear-resistant rotary pump

Country Status (7)

Country Link
US (3) US20070248481A1 (en)
EP (3) EP3376031B1 (en)
JP (1) JP4662559B2 (en)
AT (2) ATE500423T1 (en)
DE (4) DE102006018124A1 (en)
HU (1) HUE040650T2 (en)
PL (1) PL1847713T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708837A1 (en) 2019-03-15 2020-09-16 Wagner GmbH & Co. KG Control valve with a connection surface for a plurality of valve ports

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018124A1 (en) * 2006-04-19 2007-10-25 Schwäbische Hüttenwerke Automotive GmbH & Co. KG Adjustable rotary pump with wear reduction
JP5064886B2 (en) * 2007-05-21 2012-10-31 株式会社Tbk Gear pump
WO2010001764A1 (en) * 2008-07-03 2010-01-07 株式会社小松製作所 Variable displacement gear pump
DE102009026964A1 (en) * 2009-06-16 2010-12-23 Robert Bosch Gmbh fuel pump
DE102010004594B4 (en) * 2010-01-14 2017-05-24 Audi Ag Usually oil pump
DE102010005984B4 (en) * 2010-01-28 2013-11-28 Audi Ag Usually oil pump
DE102010020356A1 (en) * 2010-05-12 2011-11-17 Audi Ag Lubricant pump, control piston
DE102010038430B4 (en) * 2010-07-26 2012-12-06 Schwäbische Hüttenwerke Automotive GmbH Positive displacement pump with suction groove
DE102010046941A1 (en) * 2010-09-29 2012-03-29 Wittenstein Ag Device, preferably tri-bological system, useful for power transmission, comprises first body and second body adapted to stand with the first body in sliding-rolling contact
DE102011104049A1 (en) 2011-06-11 2012-12-27 Volkswagen Aktiengesellschaft pump
US9429149B2 (en) * 2012-05-15 2016-08-30 Sabic Global Technologies B.V. Polyetherimide pump
KR102003107B1 (en) * 2015-08-12 2019-07-24 장순길 Variable displacement pump
DE102017117787A1 (en) * 2017-08-04 2019-02-07 Schwäbische Hüttenwerke Automotive GmbH Adjustable external gear pump
CN112518239B (en) 2020-11-13 2022-02-08 浙江海洋大学 Screw pump rotor rotary die extrusion forming process

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621166A (en) * 1949-02-23 1952-12-09 Bayer Ag Synthetic polymers
DE838826C (en) * 1949-02-23 1952-05-12 Bayer Ag Process for the production of molded articles
DE831772C (en) * 1952-11-18 1952-02-18 Bayer Ag Process for the production of high molecular weight crosslinked plastics
US2879248A (en) * 1954-04-13 1959-03-24 Bayer Ag Method of making copolymer of diisocyanate modified polyester and vinylidene monomer
US2897248A (en) 1956-06-06 1959-07-28 Standard Oil Co Alkylation
US3015283A (en) * 1958-11-24 1962-01-02 Bayer Ag Gear pumps and motors
US4222718A (en) * 1978-03-09 1980-09-16 Rexnord Inc. Linear motion thrust block for hydraulic pumps and motors
DE3018974A1 (en) * 1980-05-17 1981-11-26 Karl Schmidt Gmbh, 7107 Neckarsulm SLIDING BEARING MATERIAL
JPS60197880A (en) * 1984-03-19 1985-10-07 Aisin Seiki Co Ltd Composite plated sliding surface
SE463829B (en) * 1985-03-15 1991-01-28 Svenska Rotor Maskiner Ab AATMINSTONE SCREWING MACHINE A ROTOR CONTAINING PLASTIC MATERIAL
JPS61266451A (en) * 1985-05-21 1986-11-26 Daido Metal Kogyo Kk Composition for sliding member
DE3528651A1 (en) * 1985-08-09 1987-02-19 Rohs Hans Guenther Prof Dr Ing GEAR PUMP
DE3534242A1 (en) * 1985-09-26 1987-03-26 Kolbenschmidt Ag MAINTENANCE-FREE MULTI-LAYER SLIDING BEARING MATERIAL
JP2967245B2 (en) * 1991-08-22 1999-10-25 株式会社日立製作所 Waterless pump
US5165881A (en) * 1991-09-16 1992-11-24 Opcon Autorotor Ab Rotor for a screw rotor machine
DE4200305C2 (en) * 1992-01-09 1995-06-08 Glyco Metall Werke Adjustable vane pump in a compact design
JPH05230283A (en) * 1992-02-20 1993-09-07 Bando Chem Ind Ltd Sliding member for pneumatic dynamic-pressure apparatus
US5554020A (en) * 1994-10-07 1996-09-10 Ford Motor Company Solid lubricant coating for fluid pump or compressor
DE69510526T2 (en) * 1994-12-23 1999-12-30 Maruwa Ceramic Co Sliding component and method for its production
US5879791A (en) * 1995-10-02 1999-03-09 Daido Metal Company Ltd. Wet type sliding apparatus comprising thrust bearing
US6461128B2 (en) * 1996-04-24 2002-10-08 Steven M. Wood Progressive cavity helical device
EP0846861B1 (en) 1996-12-04 2003-03-19 Siegfried A. Dipl.-Ing. Eisenmann Continuously variable annular gear pump
DE19847132C2 (en) * 1998-10-13 2001-05-31 Schwaebische Huettenwerke Gmbh External gear pump with delivery volume limitation
US20010024618A1 (en) * 1999-12-01 2001-09-27 Winmill Len F. Adjustable-displacement gear pump
DE20020695U1 (en) * 2000-12-06 2001-02-22 Breed Automotive Tech Device for moving an actuator
JP2002242852A (en) 2001-02-19 2002-08-28 Mitsubishi Rayon Co Ltd Gear pump
US6604922B1 (en) * 2002-03-14 2003-08-12 Schlumberger Technology Corporation Optimized fiber reinforced liner material for positive displacement drilling motors
DE10222131C5 (en) * 2002-05-17 2011-08-11 Schwäbische Hüttenwerke Automotive GmbH & Co. KG, 73433 Positive displacement pump with delivery volume adjustment
JP4285634B2 (en) * 2003-02-20 2009-06-24 大同メタル工業株式会社 Sliding member
US6867532B2 (en) * 2003-07-17 2005-03-15 The Brady Group Inc. Long life piezoelectric drive and components
KR101222882B1 (en) * 2003-09-03 2013-01-17 가부시키가이샤 고마쓰 세이사쿠쇼 Sintered sliding material, sliding member, connection device and device provided with sliding member
DE102004012726A1 (en) * 2004-03-16 2005-10-06 Voigt, Dieter, Dipl.-Ing. Pressure regulator for automotive oil pump has first piston operating in conjunction with a second variable-pressure piston
DE102004030321A1 (en) * 2004-06-23 2006-01-19 Volkswagen Ag Toothed wheel pump for supplying lubricating oil to an I.C. engine comprises a pump housing made from die cast aluminum and toothed wheels made from a highly alloyed aluminum-silicon alloy containing copper
DE102004033968B4 (en) * 2004-07-14 2012-02-02 Ks Kolbenschmidt Gmbh Use of a coating for coating heavy-duty tribological surfaces of moving components
US20060111501A1 (en) * 2004-11-19 2006-05-25 General Electric Company Thermoplastic wear resistant compositions, methods of manufacture thereof and articles containing the same
DE102006018124A1 (en) * 2006-04-19 2007-10-25 Schwäbische Hüttenwerke Automotive GmbH & Co. KG Adjustable rotary pump with wear reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3708837A1 (en) 2019-03-15 2020-09-16 Wagner GmbH & Co. KG Control valve with a connection surface for a plurality of valve ports
DE102019106660A1 (en) * 2019-03-15 2020-09-17 Wagner Gmbh & Co. Kg Control valve with a connection surface for several valve ports

Also Published As

Publication number Publication date
PL1847713T3 (en) 2011-06-30
DE102006018124A1 (en) 2007-10-25
US20110182760A1 (en) 2011-07-28
EP2327881A2 (en) 2011-06-01
EP1847713A3 (en) 2008-06-11
AT11651U1 (en) 2011-02-15
DE10178105T8 (en) 2013-04-25
US8186982B2 (en) 2012-05-29
DE10178105T1 (en) 2012-09-06
JP2007285300A (en) 2007-11-01
DE202007018987U1 (en) 2010-05-27
EP3376031B1 (en) 2021-12-22
DE502007006577D1 (en) 2011-04-14
US20120219448A1 (en) 2012-08-30
EP2327881B1 (en) 2018-05-30
US8770955B2 (en) 2014-07-08
US20070248481A1 (en) 2007-10-25
ATE500423T1 (en) 2011-03-15
EP2327881A3 (en) 2014-03-26
EP1847713A2 (en) 2007-10-24
HUE040650T2 (en) 2019-03-28
JP4662559B2 (en) 2011-03-30
EP3376031A1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
EP1847713B1 (en) Adjustable wear-resistant rotary pump
AT502630B1 (en) COMPONENT, PARTICULARLY FORM PART, WITH A COATING
DE2750137A1 (en) CENTRIFUGAL PUMP OR -COMPRESSOR
AT501811B1 (en) Bearing element for motor, has metallic support material, bearing metal layer provided on support, and polymer layer consisting of preset amount of polyimide resin, molybdenum sulfide and graphite measured
EP3087147A1 (en) Anti-friction lacquer and sliding bearing laminate comprising same
DE4111110A1 (en) ROTATING PISTON MACHINE IN SCREW DESIGN AND METHOD FOR THE SURFACE TREATMENT OF YOUR ROTORS
DE102012223042A1 (en) Plain bearing composite material
DE102014102643A1 (en) Rotary pump with plastic composite structure
WO2007009664A1 (en) Cam ring for an injection pump
DE102011014591B4 (en) Vane pump with pump control ring
DE102015223452A1 (en) Vane pump
DE102008031730A1 (en) Bearing housing for exhaust gas turbo charger of internal-combustion engine, has bearing surface for mounting shaft, by which turbine wheel and compressor wheel are coupled with one another
DE102020101312B3 (en) Orbiter vacuum pump capable of running dry
DE102012101585B4 (en) High-pressure fuel pump
EP2161453A2 (en) Rotor set and rotor pump
DE102011009732A1 (en) Slide bearing assembly and method of manufacture
DE202007017339U1 (en) piston engine
DE2303489A1 (en) MULTI-LAYER SLIDING BEARING BUSH
DE102010004594B4 (en) Usually oil pump
DE102009038326A1 (en) Piston for axial piston pump of high pressure cleaner, has cover arranged at front side of cylindrical body for contacting swash plate of axial piston pump, where cover and body are made of non-metallic base material e.g. polymer
EP1629203A1 (en) Gear pump
EP3536961B1 (en) Sealing element vacuum pump
DE102017117787A1 (en) Adjustable external gear pump
DE3015040A1 (en) Rotary displacement pump esp. automobile fuel pump - has plastics rollers and aluminium alloy casing treated for wear resistance
DE19924834A1 (en) Hydrostatic axial piston engine has cylinder body with spherical concave control surface coated with thin layer of tin bearing material and interacting with convex control surface of fixed control mirror made from treated steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRCL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

EL Fr: translation of claims filed
17P Request for examination filed

Effective date: 20081028

17Q First examination report despatched

Effective date: 20081127

AKX Designation fees paid

Designated state(s): DE ES FR GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006577

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006577

Country of ref document: DE

Effective date: 20110414

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110613

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110603

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010953

Country of ref document: HU

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: SCHWABISCHE HUTTENWERKE AUTOMOTIVE G.M.B.H.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110702

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: VOLKSWAGEN AKTIENGESELLSCHAFT

Effective date: 20111123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

R26 Opposition filed (corrected)

Opponent name: VOLKSWAGEN AKTIENGESELLSCHAFT

Effective date: 20111123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007006577

Country of ref document: DE

Effective date: 20111123

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VOLKSWAGEN AG

Effective date: 20111123

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VOLKSWAGEN AG

Effective date: 20111123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110418

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20140316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230321

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 17

Ref country code: FR

Payment date: 20230420

Year of fee payment: 17

Ref country code: DE

Payment date: 20230420

Year of fee payment: 17

Ref country code: CZ

Payment date: 20230412

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230417

Year of fee payment: 17

Ref country code: SE

Payment date: 20230420

Year of fee payment: 17

Ref country code: HU

Payment date: 20230421

Year of fee payment: 17

Ref country code: AT

Payment date: 20230420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 17