EP3017123B1 - Verfahren zum herstellen eines betonbauteils, vorgefertigtes bauelement eines betonbauteils sowie betonbauteil - Google Patents

Verfahren zum herstellen eines betonbauteils, vorgefertigtes bauelement eines betonbauteils sowie betonbauteil Download PDF

Info

Publication number
EP3017123B1
EP3017123B1 EP14734108.5A EP14734108A EP3017123B1 EP 3017123 B1 EP3017123 B1 EP 3017123B1 EP 14734108 A EP14734108 A EP 14734108A EP 3017123 B1 EP3017123 B1 EP 3017123B1
Authority
EP
European Patent Office
Prior art keywords
concrete
structural element
elements
prefabricated structural
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14734108.5A
Other languages
English (en)
French (fr)
Other versions
EP3017123A1 (de
Inventor
Roland Karle
Hans Kromer
Johann Pfaff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Groz Beckert KG
Original Assignee
Groz Beckert KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Groz Beckert KG filed Critical Groz Beckert KG
Publication of EP3017123A1 publication Critical patent/EP3017123A1/de
Application granted granted Critical
Publication of EP3017123B1 publication Critical patent/EP3017123B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/003Machines or methods for applying the material to surfaces to form a permanent layer thereon to insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0046Machines or methods for applying the material to surfaces to form a permanent layer thereon to plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0062Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects forcing the elements into the cast material, e.g. hooks into cast concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/028Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members for double - wall articles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material

Definitions

  • the present invention is a method for producing a concrete component, a prefabricated structural element of a concrete component and a corresponding concrete component.
  • Concrete components and their production are known. For quite some time it has been known to provide such concrete components with insulation elements as they are being manufactured.
  • the concrete components are often plate-shaped, so that it often comes to connections between insulation panels and concrete slabs.
  • so-called sandwich panels are produced in which the insulation layer of two concrete layers edged (“sandwiched") is.
  • the US20040065034A1 shows a sandwich element having for this purpose a woven carbon fiber grating connecting the two outer concrete slabs through the insulating layer.
  • the carbon fiber grating is integrated into elongated insulating elements and extends only in a plane which is perpendicular to the surface of the concrete component.
  • the method for producing the sandwich elements is intended to essentially maintain existing production processes in order to be able to manufacture sandwich elements in large numbers in a flexible and cost-effective manner.
  • the US20040206032A1 is a continuation-in-part of US20040065034A1 , In training of US20040065034A1 the focus is in the US20040206032A1 on Possibilities of connecting said concrete components to each other or to parts of buildings.
  • the carbon fiber reinforcing grids used are the same (see corresponding brand name of the grids used) as in US20040065034A1 ,
  • the EP0532140A1 shows sandwich panels, where the two outer concrete slabs are joined by fiber-reinforced plastic parts.
  • the connecting parts are fixed in the formwork to prestressed steel cables.
  • the elongated, mostly in a surface lying connecting parts are integrated in an insulating material.
  • the method of manufacturing the sandwich elements describes separate and independent steps for the introduction of the reinforcements of the concrete slabs and for the introduction of the elongated connecting parts.
  • the DE 100 07 100 B4 is dedicated to this problem. It shows a method in which first a first concrete layer is formed. Elements for connecting the first concrete layer with the second concrete layer to be applied later are applied to this layer. These protrude perpendicular to the second layer. They pierce the insulation layer when it is applied to the first concrete layer. To re-seal the puncture point, it is foamed with PU foam. Finally, the second concrete layer is applied to the insulating layer.
  • the above-mentioned low mass can cause reinforcing material, to which a concrete layer is added, to float, and therefore does not make intimate contact with the concrete matrix.
  • One way out of this problem is to weigh the fragile reinforcing material with stones or metal at its top and to ensure that reinforcing parts remain in the concrete matrix during setting.
  • the reinforcement parts are located too close to the bottom of the formwork (the reinforcement sinks too low due to their weighting), so that the reinforcing elements later show through the finished concrete layer. This is undesirable especially with facade components. Therefore, the spacing is often adjusted by placing reinforcing components on spacers that rest on the bottom of the formwork.
  • the present invention has for its object to propose a manufacturing method for a concrete component, in which the aforementioned disadvantages are reduced.
  • concrete is first given in a preferably flat formwork.
  • a prefabricated component is lowered.
  • This prefabricated component comprises first textile reinforcing elements and first insulation elements.
  • the insulation elements give the reinforcement structures, inter alia, a considerable mass that avoids a complete floating of the same on the concrete.
  • the specific gravity - or its density - much lower than that of concrete, so that the insulation elements can avoid a complete lowering of the reinforcing elements. Therefore, the vertical position of the prefabricated component to the concrete layer is set in a desired manner, so that the aforementioned disadvantages of the prior art are avoided.
  • Another advantage of using the prefabricated component is that the often soft but relatively voluminous insulation material, which at least partially surrounds the brittle reinforcing structure during the entire transport to and storage on the construction site, thus protects or stabilizes it.
  • a sandwich element can be produced in an advantageous manner, although on the side facing away from the first concrete layer side of the prefabricated component another second concrete layer is applied. This is best done while the first concrete layer and the prefabricated structural element are still in the form of a formwork.
  • the application of the second concrete layer is also possible at a later date.
  • the two concrete layers can be of different thickness and even different concrete can be used for their production.
  • the first concrete layer may be thinner than the second.
  • concrete with a finer grain size than for the production of the thicker layer can be used.
  • the thinner layer consists of "exposed concrete”. It is often the attachment shell. Attachment shells are often visible on building fronts.
  • the thicker layer is often the tray.
  • the textile reinforcement structures contain three-dimensional textile lattice structures. Such structures can be prepared prior to the production of the prefabricated component and bring in the desired shape.
  • the lattice structures absorb surface loads well and, if necessary, transfer them into the concrete matrix.
  • a "three-dimensional textile lattice structure" is u.a. if a reinforcing grid made of textile reinforcement material - such as glass fiber or carbon fiber - is shaped so that it leaves the plane.
  • first insulation elements can be introduced into recesses of the first reinforcement elements. This can go so far that a positive connection between these parts comes about.
  • a first reinforcement structure only "loosely surrounds" an insulation element and the projection of the respective reinforcing structure projects beyond the insulation material and is anchored in the concrete matrix after the concrete component has been produced. In the latter case, such a reinforcing element thus simultaneously serves as a connection element in the sense of the present document.
  • the recesses may be U-shaped.
  • areas of or of the insulation element can then be introduced, for example, which are in turn formed plate-shaped.
  • the one or more insulating elements may be formed plate-shaped in their entirety and z. B. present as Styrofoam or foam board. Plate-shaped insulation elements are particularly advantageous if the entire prefabricated component is to assume a plate-like shape. In these cases, the length and width of the device is a multiple of its depth.
  • first thermal insulation elements in viscous form - that is often in the form of foam or a liquid - are introduced into the component.
  • the advantages of foaming or pouring out essential parts of the first reinforcing structure are particularly evident in textile-reinforced concrete, since such reinforcing structures are often more filigree and more fragile than structural steel.
  • Both during pouring or foaming large volume components as well as when using already cured insulation elements it is possible to produce components whose insulation elements have a large density.
  • This tightness increases the insulation capacity of the concrete component.
  • this tightness strengthens the "buoyancy" that the prefabricated component experiences on the first concrete layer and thus counteracts the above-described excessive sinking of the reinforcing structures on.
  • prefabricated components of the type described are advantageous. These components already comprise first textile reinforcement structures and first insulation elements, so that the operations that are necessary for "bringing together" these two elements normally on a construction site (in-situ concrete) or in a concrete plant (precast concrete elements) are omitted at these exposed locations.
  • the prefabricated components can in this case with little concrete or steel be acted upon or they can be designed completely free of concrete or steel, so that their transport weight remains low.
  • textile reinforcement structures are reinforcement structures containing materials of textile construction. These include mineral fibers, of which v.a. Glass, ceramic and basalt fibers belong.
  • group of organic fibers plays a role, which includes carbon fiber materials or carbon fibers, aramid fibers and possibly even polymer fibers such as polypropylene fibers.
  • the former fiberglass materials are often embedded in a plastic matrix in this context to protect the glass from the basic environment of the concrete.
  • fiber meshes are used to form reinforcing meshes that are similar in shape to structural steel meshes.
  • Such grids are produced as a fabric, but preferably as a scrim.
  • thermo insulation elements is based on the understanding of those skilled in the art: this component of the component, which are made of materials that are commonly used for thermal insulation, under “thermal insulation elements” subsumed.
  • Styrofoam or Polyuretanschaum (generic term plastic foam materials) belong in this category.
  • mineral wool materials such as glass and rock wool should be mentioned.
  • materials based on textile waste belong to this category.
  • foam materials such as foam glass are used.
  • connection elements are equipped with connection elements. Connecting elements protrude beyond the first insulation elements, so that they can intervene in their processing into concrete components in a concrete matrix. Suitable connection elements can be well connected with other reinforcement structures. For this purpose, the shape of a connection element can be optimized (eg in such a way that it has a round bar in the Form-fitting encompasses). For optimal embedding in a concrete matrix, certain shapes may be provided, which are mentioned again in the present description.
  • the prefabricated component has a largely plate-like shape, wherein the possibly existing connection elements can reach beyond the plate-like body.
  • the plate-like body may be filled by the first reinforcing elements and the first insulating elements.
  • the first thermal insulation elements form a barrier against the outflow of heat. It is therefore advantageous if the first thermal insulation elements are not penetrated by metals and / or concrete. In particular, in the case of plate-like components, it is advantageous if the first insulation elements define a plane which is not penetrated or penetrated by the abovementioned substances.
  • FIG. 1 shows a lying flat on the floor textile grid 1, on which a spacer 2 is placed.
  • the spacer can be locked to the textile grid 1 with a suitable adhesive.
  • the spacer may be configured as a three-dimensional textile grid structure. In this case, it can be made by bending fabric lattices.
  • two U-shaped grid components 4 and 5 can be formed and assembled into a double-T-shaped structure ( FIG. 10 ).
  • the adhesion between the two grid components 4 and 5 can be brought about by adhesive.
  • the radii the connection between the legs 7 of the spacer 2 and its cross-connection 21 in the figures are shown very small. In general, it will come to significantly larger radii here.
  • FIG. 2 shows the same state of manufacture of the same component 3 from above.
  • the fiber strands of the textile grid 1 have a 90 ° or 180 ° orientation to the edges of the textile grid 1.
  • the orientation of the fiber strands that make up the spacer 2 are rotated by 45 ° with respect to the orientation of the fiber strands of the textile grid 1, which is advantageous.
  • other angles such as 0 ° or 30 ° are possible.
  • FIG. 3 shows a slightly more advanced state of manufacture of the same component 3.
  • the insulation elements 6 have already been inserted into the device. Based on FIGS. 3 and 10 It is also clear that the spacer 2 and its components have several functions:
  • the legs 7 of the spacer 2 surround the ends of the insulation elements 6, which are designed plate-shaped. Thus, the leg 7 define the recesses 8, in which the insulation elements 6 are inserted.
  • the prefabricated component 3 from FIG. 4 contains in addition to the in FIG. 3 These provide for the maintenance of a distance between the insulation elements 6 and the legs 7 of the spacer 2. Also, the spacer element 10 maintains the distance between the textile grid 1 and the insulating member 6 upright. The meaning of this measure is based on the FIG. 7 clear:
  • connection element 19 in the sense of the term formation of the present document.
  • the structure of the prefabricated component 3 from FIG. 5 initially corresponds to the already in relation to FIG. 4 Said, the upper ones Spacers 9 define a slightly greater distance than the corresponding spacers 9 in FIG. 4 , In FIG. 5 However, it is already possible to see another second reinforcing structure 12, which has been additionally installed.
  • this reinforcement structure is made of metal. It can be attached in a conventional way to the prefabricated component which is supplied metal-free in a concrete factory or on a construction site. For this purpose, z. B. steel wire can be used.
  • FIG. 6 shows a formwork 13 with a first layer of concrete 11.
  • a prefabricated component 3 can be lowered. It is advantageous if a prefabricated component 3 with the industry-standard tolerances fits into the form 13 (in this case, it is meant in particular in the l / b plane).
  • FIG. 7 shows a situation in which the prefabricated component FIG. 5 in the form of the FIG. 6 , which was already filled with a first concrete layer 11, was lowered.
  • FIG. 7 also shows that a second concrete layer 14 is already applied to the prefabricated component. This second concrete layer is reinforced by the second reinforcing structure 12. After curing of the concrete layers 11 and 14, a finished concrete component 15 can be removed from the formwork 13.
  • FIG. 8 shows a manufacturing state of another prefabricated component 3, the three-dimensional textile reinforcing structures, which in FIG. 8 show a sinusoidal cross-section.
  • Such reinforcement structures can also be achieved by subjecting textile meshes such as the textile grid 1 to a forming process.
  • insulation elements 6 are brought into a viscous state in conjunction with the first reinforcement elements.
  • the mold layer 16 is shown.
  • Such a layer may, for. B. of sand or a heavy medium.
  • the first reinforcing structures 18 have a sinusoidal cross-section.
  • viscous insulating material 17 is applied, which cures in the course of time to first insulation elements 6.
  • the mold layer 16 can typically be used in the manufacture of a plurality of prefabricated components 3. If the mold layer 16 of a granular or For this purpose, a smoothing of the surface of the mold layer can be made before a new prefabricated component 3 is further refined using the same mold layer. The new prefabricated component 3 is then pressed back into the mold layer 16, so that a part of the connection elements 19 dips into this layer 16 and thus can not be enclosed by viscous insulation material 17.
  • FIG. 9 a prefabricated component 3 is shown, which was manufactured in the manner described.
  • the first thermal insulation elements 6 are already hardened.
  • the first and second concrete layers 11, 14 are already present, so that it is possible to speak of a concrete component-here a "sandwich component".
  • FIGS. 8 and 9 shown horizontal reinforcement member 20, which improves the anchoring of the first reinforcing elements 18 in the second concrete layer 14.
  • insulation elements (6) of prefabricated components (15) are not penetrated by highly heat-conducting materials such as metals or concrete.
  • plate-shaped prefabricated components 3 and concrete components 15 are shown, which in turn contain predominantly plate-shaped isolation elements (6).
  • plate-shaped means that their depth t is significantly less than their length I or width b.
  • the insulation elements define a plane (here in the direction I and B) which is not penetrated by materials which conduct more heat.
  • concrete components 15 have a plurality of lattice-like reinforcement structures (for example made of any desired material) that run in the l- and b-directions.
  • FIG. 11 shows a concrete component 15, the on FIG. 9 based.
  • the cross-sectional areas of the transverse rods 22 are shown, which are received in a form-fitting manner in the first reinforcing structures 18.
  • the transverse rods 22 also improve considerably the anchoring of the first reinforcing structures 18 or of the entire prefabricated structural element 3 in the first concrete layer 11.
  • the cross bars may be made of metal or of a textile reinforcement material.
  • FIG. 12 an embodiment of another component 3 is shown.
  • This device has two relatively thin concrete layers 11 and 14, which are advantageously approximately equally pronounced. Both concrete layers can be made of exposed concrete and so z. B. as screens z. B. serve in garage construction.
  • the first reinforcement structures 18 contain textile reinforcement structures. It has also proven to be advantageous in all embodiments of the invention, including the reinforcements of the concrete layers - so possibly the first 11 and / or the second concrete layer 14 - to be provided with textile reinforcement structures. This can go so far that one or both of these concrete layers 11 and 14 are steel-free. Possibly. then the entire concrete component can be steel-free and thus free of metallic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Woven Fabrics (AREA)
  • Panels For Use In Building Construction (AREA)

Description

  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Herstellen eines Betonbauteils, ein vorgefertigtes Bauelement eines Betonbauteils sowie ein entsprechendes Betonbauteil.
  • Betonbauteile und ihre Herstellung sind bekannt. Seit geraumer Zeit ist es bekannt, solche Betonbauteile gleich bei ihrer Herstellung mit Isolationselementen zu versehen. Die betreffenden Betonbauteile sind oft plattenförmig, so dass es oft zu Verbindungen zwischen Isolationsplatten und Betonplatten kommt. Oft werden auch so genannte Sandwichplatten hergestellt, bei denen die Isolationsschicht von zwei Betonschichten eingefasst ("gesandwicht") ist.
  • Insbesondere bei der Bereitstellung solcher Sandwichelemente stellt sich die Frage nach einer festen Verbindung zwischen den beiden (außenliegenden) Betonschichten, da diese Verbindung die Isolationsschicht durchgreifen muss, ohne eine Wärmebrücke größeren Ausmaßes zu verursachen.
  • Die US20040065034A1 zeigt ein Sandwichelement, das zu diesem Zweck ein gewobenes Kohlefasergitter aufweist, das die beiden äußeren Betonplatten durch die Isolationsschicht hindurch verbindet. Das Kohlefasergitter ist in länglich ausgebildete Isolationselemente integriert und erstreckt sich ausschließlich in einer Ebene, die senkrecht zur Oberfläche des Betonbauteils steht. Das Verfahren zur Herstellung der Sandwichelemente soll im Wesentlichen bestehende Fertigungsabläufe beibehalten, um flexibel und kostengünstig Sandwichelemente in großer Stückzahl herstellen zu können. Die US20040206032A1 ist eine "Continuation-in-part" der US20040065034A1 . In Weiterbildung der US20040065034A1 liegt der Schwerpunkt in der US20040206032A1 auf Möglichkeiten der Verbindung der besagten Betonbauteile untereinander oder an Gebäudeteilen. Die verwendeten Kohlefaserverstärkungsgitter sind dieselben (siehe entsprechende Markenbezeichnung der verwendeten Gitter) wie in der US20040065034A1 .
  • Die EP0532140A1 zeigt Sandwichelemente, bei denen die beiden äußeren Betonplatten durch faserverstärkte Kunststoffteile verbunden werden. Die Verbindungsteile werden in der Schalung an vorgespannten Stahlseilen fixiert. Teilweise sind die länglichen, meist in einer Fläche liegenden Verbindungsteile in einem Isolationsmaterial integriert. Das Verfahren zur Herstellung der Sandwichelemente beschreibt getrennte und unabhängige Schritte für das Einbringen der Bewehrungen der Betonplatten und für das Einbringen der länglichen Verbindungsteile.
  • Auch die DE 100 07 100 B4 widmet sich diesem Problem. Sie zeigt ein Verfahren, bei dem zunächst eine erste Betonschicht gebildet wird. Auf diese Schicht werden Elemente zur Verbindung der ersten Betonschicht mit der später aufzubringenden zweiten Betonschicht aufgebracht. Diese ragen senkrecht zu der zweiten Schicht empor. Sie durchstoßen die Isolationsschicht, wenn diese auf die erste Betonschicht aufgebracht wird. Um die Durchstoßstelle wieder abzudichten, wird diese mit PU-Schaum ausgeschäumt. Schließlich wird die zweite Betonschicht auf die Isolationsschicht aufgebracht.
  • Auch die zum Zeitpunkt der Erstanmeldung der vorliegenden Erfindung noch nicht zum veröffentlichten Stand der Technik gehörende DE 10 2012 101 498 A1 zeigt ein solches "Sandwichelement", bei dem die beiden Betonschichten durch Bewehrungselemente, die eine Isolationsschicht durchgreifen, verbunden werden. Auch ein Verfahren zur Herstellung des gezeigten Bauteils wird in der letztgenannten Schrift vorgestellt.
  • Den beiden vorgenannten Schriften ist gemein, dass sie die Verwendung von nicht metallischen Bewehrungselementen erwähnen.
  • Praktische Erfahrungen bei der Herstellung von Betonbauteilen zeigen, dass sich aus der Verwendung von textilen Bewehrungselementen wie Glasfasern oder Karbonfaserelementen spezifische Probleme ergeben. So haben diese Bewehrungselemente eine geringere Masse und eine geringere Druckfestigkeit als Metall. Auch die Zugfestigkeit der Werkstoffe ist oft anisotrop und vorgehärtete Bewehrungsgitter weisen eine hohe Zerbrechlichkeit auf.
  • Die vorerwähnte geringe Masse kann dazu führen, dass Bewehrungsmaterial, auf das eine Betonschicht gegeben wird, aufschwimmt, und daher keinen innigen Kontakt mit der Betonmatrix eingeht. Ein Ausweg aus diesem Problem besteht darin, das zerbrechliche Bewehrungsmaterial mit Steinen oder Metall an seiner Oberseite zu beschweren und damit zu gewährleisten, dass Bewehrungsteile beim Abbinden in der Betonmatrix verbleiben. Bei diesem Verfahren kommt es allerdings vor, dass Bewehrungsteile einen zu niedrigen Abstand zu dem Boden der Schalform einnehmen (die Bewehrung sinkt dank ihrer Beschwerung zu tief ein), so dass die Bewehrungsbestandteile später durch die fertige Betonschicht durchscheinen. Dies ist besonders bei Fassadenbestandteilen unerwünscht. Daher wird der Abstand oft eingestellt, indem Bewehrungsbestandteile auf Abstandshalter, die sich am Boden der Schalform abstützen, aufgelegt werden.
  • Der Nachteil dieser Maßnahme besteht in der Sichtbarkeit der Abstandshalter an der Oberfläche der ersten Betonschicht und in dem Aufwand und den Unsicherheiten, den solche eher filigranen Maßnahmen sowohl bei der Herstellung von Ortbetonbauteilen als auch bei Fertigbauelementen hervorrufen.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Herstellverfahren für ein Betonbauteil vorzuschlagen, bei dem die vorgenannten Nachteile verringert werden.
  • Die Aufgabe wird durch ein Verfahren nach dem vorliegenden Anspruch 1 gelöst.
  • Demnach wird zunächst Beton in eine vorzugsweise flache Schalform gegeben. Auf die entstandene Betonschicht - die durchaus bereits Bewehrungselemente z. B. aus Stahl enthalten kann - wird ein vorgefertigtes Bauteil abgesenkt. Dieses vorgefertigte Bauelement umfasst erste textile Bewehrungselemente und erste Isolationselemente. Die Isolationselemente verleihen den Bewehrungsstrukturen unter anderem eine nicht unerhebliche Masse, die ein völliges Aufschwimmen derselben auf dem Beton vermeidet. Auf der anderen Seite ist das spezifische Gewicht - bzw. dessen Dichte - sehr viel niedriger als das von Beton, so dass die Isolationselemente ein völliges Absinken der Bewehrungselemente vermeiden können. Daher stellt sich die vertikale Lage des vorgefertigten Bauelements zu der Betonschicht in gewünschter Weise ein, so dass die vorgenannten Nachteile des Standes der Technik vermieden werden.
  • Zu den weiteren Vorteilen der Verwendung des vorgefertigten Bauelements gehört, dass das oft weiche aber relativ voluminöse Isolationsmaterial, das während des ganzen Transports zur und der Lagerung auf der Baustelle das brüchige Bewehrungsgerüst zumindest teilweise umgibt, dieses damit schützt oder stabilisiert.
  • Der nächste Vorteil besteht darin, dass durch die Verwendung des vorgefertigten Bauelements Transportvolumen eingespart wird:
  • Bei einem Verfahren nach der DE 100 07 100 B4 binden sowohl Isolationselemente als auch erste Bewehrungselemente Transport- und Lagervolumina. Bei Verwendung des vorgefertigten Bauelements werden diese Volumen nur einmal benötigt.
  • Aus einem Betonbauteil, das aus lediglich einer Betonschicht und einem vorgefertigten Bauteil besteht, lässt sich in vorteilhafter Weise ein Sandwichelement herstellen, wenn auch auf die der ersten Betonschicht abgewandte Seite des vorgefertigten Bauelements eine weitere zweite Betonschicht aufgebracht wird. Am besten geschieht dies, während sich die erste Betonschicht und das vorgefertigte Bauelement noch in der Schalform befinden. Natürlich ist das Aufbringen der zweiten Betonschicht jedoch auch zu einem späteren Zeitpunkt möglich.
  • Die beiden Betonschichten können von unterschiedlicher Stärke sein und es kann sogar unterschiedlicher Beton zu ihrer Herstellung verwendet werden. So kann die erste Betonschicht dünner sein als die zweite. Zur Herstellung der dünneren Schicht kann Beton mit einer feineren Körnung als zur Herstellung der dickeren Schicht verwendet werden. Oft besteht die dünnere Schicht aus "Sichtbeton". Sie ist oft die Vorsatzschale. Vorsatzschalen sind oft an Gebäudefronten sichtbar. Die dickere Schicht ist oft die Tragschale.
  • Zumindest ein Teil der textilen Bewehrungsstrukturen enthält dreidimensionale textile Gitterstrukturen. Solche Strukturen lassen sich im Vorfeld der Herstellung des vorgefertigten Bauelements herstellen und in die gewünschte Form bringen. Die Gitterstrukturen nehmen flächige Belastungen gut auf und übertragen diese ggf. in die Betonmatrix. Bei plattenförmigen Bauteilen bzw. vorgefertigten Bauelementen ist es von Vorteil, wenn ein Teil der Gitterstrukturen parallel zu der Plattenebene verläuft. Eine "dreidimensionale textile Gitterstruktur" liegt u.a. dann vor, wenn ein Bewehrungsgitter aus textilem Bewehrungsmaterial - wie Glasfaser oder Kohlefaser - derart geformt ist, dass es die Ebene verlässt.
  • Bei der Herstellung des vorgefertigten Bauelements können erste Isolationselemente in Ausnehmungen der ersten Bewehrungselemente eingeführt werden. Dies kann soweit gehen, dass ein Formschluss zwischen diesen Teilen zustande kommt. Es kann jedoch auch sein, dass eine erste Bewehrungsstruktur ein Isolationselement nur "locker umgreift" und der Überstand der jeweiligen Bewehrungsstruktur über das Isolationsmaterial hinausragt und nach der Herstellung des Betonbauteils in der Betonmatrix verankert ist. In letzterem Fall dient ein solches Bewehrungselement damit gleichzeitig als Anschlusselement im Sinne der vorliegenden Druckschrift.
  • Die Ausnehmungen können u-förmig sein. Zur Herstellung dieser Form können ursprünglich flache textile Gitter gebogen werden. In den Bereich der u-förmigen Ausnehmungen können dann u. a. Bereiche der oder des Isolationselements eingebracht werden, die ihrerseits plattenförmig ausgeformt sind. Natürlich können auch das oder die ersten Isolationselemente in ihrer Gesamtheit plattenförmig ausgeformt sein und z. B. als Styropor oder Hartschaumplatte vorliegen. Plattenförmige Isolationselemente sind insbesondere vorteilhaft, wenn das gesamte vorgefertigte Bauelement eine plattenförmige Gestalt annehmen soll. In diesen Fällen beträgt die Länge und Breite des Bauelements ein Vielfaches seiner Tiefe.
  • Vorteilhaft ist in diesem Zusammenhang, wenn der u-förmige Querschnitt zumindest einer Ausnehmung in der Ebene, die durch die Raumrichtung der Tiefe und der Länge oder Breite des Bauelements aufgespannt wird, liegt.
  • Bei der Herstellung des vorgefertigten Bauelements ist es vorteilhaft, wenn erste thermische Isolationselemente in viskoser Form - also oft in Form von Schaum oder einer Flüssigkeit - in das Bauelement eingebracht werden. Die Vorteile des Ausschäumens oder Ausgießens wesentlicher Teile der ersten Bewehrungsstruktur treten bei einer Textilbetonbewehrung besonders zu Tage, da derartige Bewehrungsstrukturen oft filigraner und zerbrechlicher sind als solche aus Baustahl. Sowohl beim Ausgießen oder Ausschäumen großer Volumenbestandteile als auch beim Verwenden bereits ausgehärteter Isolationselemente ist es möglich, Bauelemente zu erzeugen, deren Isolationselemente eine große Dichtigkeit aufweisen. Diese Dichtigkeit vergrößert das Isolationsvermögen des Betonbauteils. Darüber hinaus stärkt diese Dichtigkeit den "Auftrieb" den das vorgefertigte Bauelement auf der ersten Betonschicht erfährt und wirkt damit dem oben geschilderten zu starken Einsinken der Bewehrungsstrukturen weiter entgegen.
  • Dieser Effekt wird weiter verstärkt, wenn das vorgefertigte Bauelement mit den üblichen Toleranzen - die im Baubereich nicht unerheblich sind - in die Schalform der ersten Betonschicht passt. In diesem Fall kann keine nennenswerte Verdrängung von Beton mehr stattfinden, so dass das vorgefertigte Bauelement während des Aushärtens in der durch die Dicke der Betonschicht eingestellten Lage verbleibt.
  • Die vorstehend beschriebenen Verfahren lassen erkennen, dass die Verwendung vorgefertigter Bauelemente der beschriebenen Art vorteilhaft ist. Diese Bauelemente umfassen bereits erste textile Bewehrungsstrukturen und erste Isolationselemente, so dass die Arbeitsgänge, die zum "Zusammenbringen" dieser beiden Elemente normalerweise auf einer Baustelle (Ortbeton) oder in einem Betonwerk (Betonfertigelemente) notwendig sind, an diesen exponierten Orten entfallen. Die vorgefertigten Bauelemente können hierbei mit wenig Beton oder Stahl beaufschlagt sein oder sie können völlig beton- oder stahlfrei ausgestaltet sein, so dass ihr Transportgewicht gering bleibt.
  • Wie bereits oben angesprochen sind textile Bewehrungsstrukturen Bewehrungsstrukturen, die Materialien des textilen Bauens enthalten. Hierzu zählen mineralische Fasern, zu denen v.a. Glas-, Keramik- und Basaltfasern gehören. Daneben spielt die Gruppe der organischen Fasern eine Rolle, zu der Kohlefasermaterialien bzw. Karbonfasern, Aramidfasern und ggf. sogar Polymerfasern wie Polypropylenfasern zählen. Die erstgenannten Glasfasermaterialien werden in diesem Zusammenhang oft in eine Kunststoffmatrix eingebettet, um das Glas vor dem basischen Umfeld des Betons zu schützen.
  • Oft werden aus den Fasermaterialien Bewehrungsgitter gebildet, die in ihrer Gestalt Baustahlgittern ähneln. Solche Gitter werden als Gewebe, vorzugsweise jedoch als Gelege hergestellt.
  • Der Begriff "thermische Isolationselemente" lehnt sich an das Verständnis des Fachmanns an: Dieser wird Bestandteile des Bauelements, die aus Materialien, die üblicherweise zur Wärmedämmung verwendet werden, unter "thermische Isolationselemente" subsummieren. Styropor- oder Polyuretanschaum (Oberbegriff Kunststoffschaummaterialien) gehören in diese Kategorie. Des Weiteren sind Mineralwollmaterialien wie Glas- und Steinwolle zu nennen. Auch Materialien, die auf textilen Abfällen beruhen, gehören in diese Kategorie.
  • In neuerer Zeit werden auch mineralische "Schaummaterialien" wie Schaumglas verwendet.
  • Wie erwähnt können solche Bauelemente mit Vorteil und Gewinn im Bereich des Ortbetons und bei der Herstellung von Betonfertigelementen eingesetzt werden. Die letztere Verwendung erscheint sogar am Vorteilhaftesten.
  • Es ist von Vorteil, wenn vorgefertigte Bauelemente mit Anschlusselementen ausgestattet sind. Anschlusselemente ragen über die ersten Isolationselemente hinaus, so dass sie bei ihrer Verarbeitung zu Betonbauteilen in eine Betonmatrix eingreifen können. Geeignete Anschlusselemente lassen sich mit weiteren Bewehrungsstrukturen gut verbinden. Zu diesem Zweck kann die Form eines Anschlusselements optimiert sein (z. B. so, dass sie ein Rundeisen im Formschluss umgreift). Auch zur optimalen Einbettung in eine Betonmatrix können bestimmte Formen vorgesehen sein, die in der gegenständlichen Beschreibung noch einmal erwähnt werden.
  • Ein großer Teil des Bedarfs an Betonbauteilen der beschriebenen Art dürfte sich im Bereich der Herstellung von Wänden ergeben. Demzufolge ist es von Vorteil, das vorgefertigte Bauelement und auch das Betonbauteil plattenförmig auszuführen. Das bedeutet, dass die Länge und Breite der in der Regel rechteckigen oder quadratischen Bauelemente sehr viel größer ist als seine Tiefe. Bei den flachen fertigen Betonbauteilen werden verschiedene Gitterstrukturen - ob aus textilem Material oder aus Metall gebildet - bereichsweise parallel zueinander verlaufen.
  • Es ist von Vorteil, wenn das vorgefertigte Bauelement eine weitgehend plattenartige Gestalt hat, wobei die etwaig vorhanden Anschlusselemente über den plattenartigen Körper hinausgreifen können. Der plattenartige Körper kann von den ersten Bewehrungselementen und den ersten Isolationselementen ausgefüllt sein.
  • Die ersten thermischen Isolationselemente bilden eine Barriere gegen den Abfluss von Wärme. Es ist daher vorteilhaft, wenn die ersten thermischen Isolationselemente nicht von Metallen und/oder Beton durchgriffen werden. Insbesondere bei plattenartigen Bauteilen ist es von Vorteil, wenn die ersten Isolationselemente eine Ebene definieren, die nicht von den vorgenannten Stoffen durchsetzt oder durchdrungen wird.
  • Weitere Ausführungsbeispiele der vorliegenden Erfindung ergeben sich aus den abhängigen Patentansprüchen und der Beschreibung. Auch die Beschreibung beschränkt sich auf wesentliche Merkmale der Erfindung, wobei die einzelnen Merkmale in der Regel bei allen Ausführungsbeispielen vorteilhaft einsetzbar sind.
  • Die Figuren sind ergänzend heranzuziehen.
  • Die technischen Merkmale der einzelnen Ausführungsbeispiele lassen sich in der Regel in Zusammenhang mit allen Ausführungsformen der Erfindung vorteilhaft verwenden.
  • Nachstehend werden einige ausgewählte Ausführungsformen der Erfindung anhand der Figuren erläutert.
  • Fig. 1
    Figur 1 zeigt eine Seitenansicht eines vorgefertigten Bauelements das gerade zusammengestellt wird.
    Fig. 2
    Figur 2 zeigt das vorgefertigte Bauelement von Figur 1 von oben
    Fig. 3
    Figur 3 zeigt eine Seitenansicht des vorgefertigten Bauelements von Figur 1 dem gerade erste thermische Isolationselemente hinzugefügt werden.
    Fig. 4
    Figur 4 zeigt eine Abwandlung das vorgefertigten Bauelements von Figur 3 in der Seitenansicht
    Fig. 5
    Figur 5 zeigt eine Fortbildung das vorgefertigten Bauelements von Figur 4 in der Seitenansicht (mit weiteren Bewehrungsstrukturen)
    Fig. 6
    Figur 6 zeigt eine erste Betonschicht in einer Schalform
    Fig. 7
    Figur 7 zeigt das vorgefertigten Bauelements von Figur 4 in einer Schalform und mit einer ersten und einer zweiten Betonschicht
    Fig. 8
    Figur 8 zeigt einen Fertigungszustand eines anderen vorgefertigten Bauelements
    Fig. 9
    Figur 9 zeigt das vorgefertigte Bauelement aus Figur 8 in seinem Endzustand als Bestandteil eines Betonbauteils
    Fig. 10
    Figur 10 zeigt die Bestandteile eines Abstandshalters, wie er in den Figuren 1 bis 7 gezeigt ist, als Explosionsskizze
    Fig. 11
    Figur 11 zeigt eine Fortbildung des Betonbauteils aus Figur 9
    Fig. 12
    Figur 12 zeigt ein weiteres Ausführungsbeispiel eines Betonbauteils
  • Figur 1 zeigt ein flach auf dem Boden liegendes Textilgitter 1, auf dem ein Abstandshalter 2 aufgelegt ist. Zum Zwecke der Montage des vorgefertigten Bauelements 3 kann der Abstandshalter mit geeignetem Klebstoff an dem Textilgitter 1 arretiert werden. Der Abstandshalter kann als eine dreidimensionale textile Gitterstruktur ausgestaltet sein. In diesem Fall kann er durch das Biegen von Textilgittern hergestellt werden. So können zwei u-förmige Gitterbestandteile 4 und 5 gebildet und zu einem doppel-T-förmigen Gebilde zusammengesetzt werden (Figur 10). Auch die Anhaftung zwischen den beiden Gitterbestandteilen 4 und 5 kann durch Klebstoff herbeigeführt werden. Zu erwähnen bleibt noch, dass die Radien an der Verbindung zwischen den Schenkeln 7 des Abstandshalters 2 und seiner Querverbindung 21 in den Figuren sehr klein dargestellt sind. In der Regel wird es hier zu deutlich größeren Radien kommen.
  • In Figur 1 finden sich damit bereits das Textilgitter 1 und der Abstandshalter 2 als Bestandteil der ersten Bewehrungsstrukturen 18.
  • Figur 2 zeigt denselben Fertigungszustand desselben Bauelements 3 von oben. Anhand der Schraffurlinien ist angedeutet, dass die Faserstränge des Textilgitters 1 eine 90° bzw. 180° Orientierung zu den Rändern des Textilgitters 1 aufweisen. Die Ausrichtung der Faserstränge, aus denen der Abstandshalter 2 besteht, sind gegenüber der Ausrichtung der Faserstränge des Textilgitters 1 um 45° gedreht, was vorteilhaft ist. Es sind - je nach Anwendungsfall -jedoch auch andere Winkel wie 0° oder 30° möglich.
  • Figur 3 zeigt einen etwas weiter fortgeschrittenen Fertigungszustand desselben Bauelements 3. Die Isolationselemente 6 sind bereits in das Bauelement eingefügt worden. Anhand der Figuren 3 und 10 wird auch deutlich, dass dem Abstandshalter 2 und seinen Bestandteilen mehrere Funktionen zukommen:
  • Die Schenkel 7 des Abstandshalters 2 umgreifen die Enden der Isolationselemente 6, die plattenförmig ausgeführt sind. Damit definieren die Schenkel 7 die Ausnehmungen 8, in die die Isolationselemente 6 eingeführt sind.
  • Das vorgefertigte Bauelement 3 aus Figur 4 enthält zusätzlich zu den in Figur 3 gezeigten Merkmalen Distanzelemente 9. Diese sorgen für die Aufrechterhaltung eines Abstandes zwischen den Isolationselementen 6 und den Schenkeln 7 des Abstandshalters 2. Auch das Distanzelement 10 erhält den Abstand zwischen dem Textilgitter 1 und dem Isolationselement 6 aufrecht. Der Sinn dieser Maßnahme wird anhand der Figur 7 klar:
  • Die Schenkel 7 des Abstandshalters 2 und das Textilgitter greifen tief in die Betonmatrix der ersten Betonschicht 11 ein, so dass der Schenkel 7 hier auch als Anschlusselement 19 im Sinne der Begriffsbildung der vorliegenden Druckschrift fungiert.
  • Der Aufbau des vorgefertigten Bauelements 3 aus Figur 5 entspricht zunächst dem bereits in Bezug auf Figur 4 Gesagten, wobei die oberen Abstandshalter 9 eine etwas größere Distanz definieren als die entsprechenden Abstandshalter 9 in Figur 4. In Figur 5 ist jedoch bereits eine weitere zweite Bewehrungsstruktur 12 zu sehen, die zusätzlich angebracht worden ist. Im vorliegenden Ausführungsbeispiel besteht diese Bewehrungsstruktur aus Metall. Sie kann in einem Betonwerk oder auf einer Baustelle auf herkömmliche Art und Weise dem vorgefertigten Bauteil, das metallfrei angeliefert wird, beigefügt werden. Hierzu kann z. B. Rödeldraht verwendet werden.
  • Figur 6 zeigt eine Schalform 13 mit einer ersten Betonschicht 11. In eine solche Schalform 13 kann ein vorgefertigtes Bauelement 3 abgesenkt werden. Es ist von Vorteil, wenn ein vorgefertigtes Bauelement 3 mit den branchenüblichen Toleranzen in die Schalform 13 passt (gemeint ist hier v. a. in der l/b Ebene).
  • Figur 7 zeigt eine Situation, in der das vorgefertigte Bauelement aus Figur 5 in die Schalform der Figur 6, die bereits mit einer ersten Betonschicht 11 befüllt war, abgesenkt wurde. Figur 7 zeigt auch, dass bereits eine zweite Betonschicht 14 auf dem vorgefertigten Bauelement aufgebracht ist. Diese zweite Betonschicht wird von der zweiten Bewehrungsstruktur 12 verstärkt. Nach dem Aushärten der Betonschichten 11 und 14 kann ein fertiges Betonbauteil 15 aus der Schalform 13 entnommen werden.
  • Figur 8 zeigt einen Fertigungszustand eines anderen vorgefertigten Bauelements 3, das dreidimensionale textile Bewehrungsstrukturen aufweist, die in Figur 8 einen sinusförmigen Querschnitt zeigen. Auch solche Bewehrungsstrukturen können zustande kommen, indem textile Gitter wie das Textilgitter 1 einem Umformprozess unterworfen werden. Insbesondere bei komplizierteren textilen Strukturen der gezeigten Art ist es von Vorteil, wenn Isolationselemente 6 in viskosem Zustand in Verbindung mit den ersten Bewehrungselementen gebracht werden. Am unteren Rand der Figur 8 ist die Formschicht 16 gezeigt. Eine solche Schicht kann z. B. aus Sand oder einem schweren Medium bestehen. Die ersten Bewehrungsstrukturen 18 haben wie erwähnt einen sinusförmigen Querschnitt. Über der Formschicht 16 ist viskoses Isolationsmaterial 17 aufgetragen, das im Laufe der Zeit zu ersten Isolationselementen 6 aushärtet. Die Formschicht 16 kann in der Regel bei der Herstellung einer Mehrzahl von vorgefertigten Bauelementen 3 verwendet werden. Falls die Formschicht 16 aus einem körnigen bzw. pulverförmigen Material besteht, kann zu diesem Zweck eine Glättung der Oberfläche der Formschicht vorgenommen werden, bevor ein neues vorgefertigtes Bauelement 3 mit Hilfe derselben Formschicht weiter veredelt wird. Das neue vorgefertigte Bauelement 3 wird dann wieder in die Formschicht 16 gedrückt, so dass ein Teil der Anschlusselemente 19 in diese Schicht 16 eintaucht und damit nicht von viskosem Isolationsmaterial 17 umschlossen werden kann.
  • Falls eine schwere Flüssigkeit - auf der eine vorzugsweise schaumartige Schicht aus viskosem Isolationsmaterial schwimmt - als Formschicht 16 verwendet wird, dürfte eine solche aktive Glättung der Oberfläche der Formschicht 16 überflüssig sein.
  • In Figur 9 ist ein vorgefertigtes Bauelement 3 gezeigt, das in der beschriebenen Weise hergestellt wurde. Die ersten thermischen Isolationselemente 6 sind bereits ausgehärtet. Die erste und zweite Betonschicht 11, 14 sind bereits vorhanden, so dass von einem Betonbauteil - hier einem "Sandwichbauteil" - gesprochen werden kann.
  • Zu erwähnen bleibt noch das in den Figuren 8 und 9 gezeigte horizontale Bewehrungsteil 20, das die Verankerung der ersten Bewehrungselemente 18 in der zweiten Betonschicht 14 verbessert.
  • Allgemein ist es von Vorteil, wenn die Isolationselemente (6) von vorgefertigten Bauteilen (15) nicht von stärker Wärme leitenden Stoffen wie Metallen oder Beton durchgriffen werden.
  • In den vorstehend beschriebenen Figuren sind plattenförmige vorgefertigte Bauelemente 3 und Betonbauteile 15 gezeigt, die ihrerseits überwiegend plattenförmig ausgeprägte Isolationselemente (6) enthalten. Bei diesen Körpern heißt "plattenförmig", dass ihre Tiefe t deutlich geringer als ihre Länge I oder Breite b ist. Insbesondere bei solchen Bauteilen 15 ist es von Vorteil, wenn die Isolationselemente eine Ebene (hier in l- und b-Richtung) definieren, die nicht von stärker Wärme leitenden Materialien durchsetzt wird.
  • Vorteilhaft ist auch, wenn Betonbauteile 15 mehrere gitterartige Bewehrungsstrukturen (z. T. aus beliebigem Material) aufweisen, die in l- und b-Richtung verlaufen.
  • Die Figur 11 zeigt ein Betonbauteil 15, das auf Figur 9 beruht. In Ergänzung zu den Merkmalen des dort gezeigten Betonbauteils 15 sind in Figur 11 die Querschnittsflächen der Querstäbe 22 gezeigt, die formschlüssig in den ersten Bewehrungsstrukturen 18 aufgenommen sind. Auch die Querstäbe 22 verbessern die Verankerung der ersten Bewehrungsstrukturen 18 bzw. des ganzen vorgefertigten Bauelements 3 in der in der ersten Betonschicht 11 erheblich. Die Querstäbe können aus Metall oder aus einem textilen Bewehrungsmaterial sein.
  • In Figur 12 wird ein Ausführungsbeispiel eines weiteren Bauelements 3 gezeigt. Dieses Bauelement hat zwei relativ dünne Betonschichten 11 und 14, die vorteilhafterweise annähernd gleich stark ausgeprägt werden. Beide Betonschichten können aus Sichtbeton hergestellt sein und so z. B. als Sichtwände z. B. im Garagenbau dienen.
  • Bei einem Teil der gezeigten Betonbauteile 15 ist es vorteilhaft, das Bauteil 15 nach dem Abbinden der ersten Betonschicht 11 aus der Schalform 13 zu nehmen und zu drehen, um die zweite Betonschicht 14 schließlich in derselben oder einer anderen Schalform 13 herzustellen. Dies geschieht dann analog zur Herstellung der ersten Betonschicht 11: Die zweite Betonschicht 14 wird in der Schalform 13 gebildet und der Rest des späteren Bauteils wird auf die zweite Betonschicht heruntergelassen.
  • Zu den bereits oben erwähnten Isolationsmaterialien ist noch nachzutragen, dass auch ihre mechanischen Eigenschaften eine bedeutenden Rolle spielen können. Bei den geeigneten Schaummaterialien wird oft zwischen Weich- und Hartschaummaterialien unterschieden.
  • Zu den Problemen der Verarbeitung textiler Bewehrungsmaterialien gehört die mangelnde Begehbarkeit der Bewehrungsstrukturen. Insbesondere mit Hilfe harter Isolationsmaterialien - wie Hartschaum - als Bestandteil der vorgefertigten Bauelemente 3 lassen sich jedoch bereits vor dem Aushärten der betreffenden Betonschichten zumindest begehbare Zonen schaffen.
  • Wie bereits zuvor erwähnt enthalten die ersten Bewehrungsstrukturen 18 textile Bewehrungsstrukturen. Es hat sich darüber hinaus bei allen Ausführungsbeispielen der Erfindung als vorteilhaft erwiesen, auch die Bewehrungen der Betonschichten - also ggf. die der ersten 11 und/oder der zweiten Betonschicht 14 - mit textilen Bewehrungsstrukturen zu versehen. Dies kann so weit gehen, dass eine oder gar beide genannten Betonschichten 11 und 14 stahlfrei sind. Ggf. kann dann das ganze Betonbauteil stahlfrei und damit frei von metallischen Bestandteilen sein.
  • Die vorgenannten Maßnahmen sind besonders vorteilhaft bei dem letzten Ausführungsbeispiel eines Betonbauteils bzw. seiner Herstellung anwendbar, das bzw. die vor dem Hintergrund der Figur 12 erläutert wurde.
    Bezugszeichenliste
    1 Textilgitter
    2 Abstandshalter
    3 Bauelement
    4 u-förmiges Gitterbestandteil
    5 u-förmiges Gitterbestandteil
    6 Isolationselemente
    7 Schenkel (des Abstandshalters 2)
    8 Ausnehmung (des Abstandshalters 2)
    9 Distanzelement
    10 Distanzelement
    11 erste Betonschicht
    12 zweite Bewehrungsstruktur
    13 Schalform
    14 zweite Betonschicht
    15 Betonbauteil
    16 Formschicht
    17 viskoses Isolationsmaterial
    18 erste Bewehrungsstrukturen
    19 Anschlusselemente
    20 horizontales Bewehrungsteil
    21 Querverbindung 21 des Abstandshalters 2
    22 Querstab

Claims (14)

  1. Verfahren zum Herstellen eines Betonbauteils
    gekennzeichnet durch die folgenden Verfahrensschritte:
    - Herstellung eines vorgefertigten Bauelements (3), das erste Bewehrungsstrukturen (18), die dreidimensionale textile Gitterstrukturen aufweisen, und erste thermische Isolationselemente (6) umfasst,
    - Einlassen von Beton zur Bildung einer ersten Betonschicht (11) in eine Schalform (13),
    - Absenken des vorgefertigten Bauelements (3) auf die erste Betonschicht (11).
  2. Verfahren nach dem vorstehenden Anspruch
    dadurch gekennzeichnet, dass
    eine zweite Betonschicht (14) auf das vorgefertigte Bauelement (3) aufgebracht wird.
  3. Verfahren nach dem vorstehenden Anspruch
    dadurch gekennzeichnet, dass
    bei der Herstellung des vorgefertigten Bauelements (3) erste Isolationselemente (6) in Ausnehmungen (8) der ersten textilen Bewehrungsstrukturen (18) eingebracht werden, die diese zumindest teilweise umschließen.
  4. Verfahren nach dem vorstehenden Anspruch
    dadurch gekennzeichnet, dass
    textile Gitterstrukturen verwendet werden, die u-förmige Ausnehmungen aufweisen, in die die Bestandteile der ersten Isolationselemente (6) eingebracht werden, die plattenförmig ausgeformt sind.
  5. Verfahren nach einem der vorstehenden Ansprüche
    dadurch gekennzeichnet, dass
    bei der Herstellung des vorgefertigten Bauelements (3) erste thermische Isolationselemente (6) in Form von Flüssigkeiten oder Schaum in den Bereich der ersten Bewehrungsstrukturen (18) eingebracht werden.
  6. Verfahren nach dem vorstehenden Anspruch
    dadurch gekennzeichnet, dass
    das vorgefertigte Bauelement (3) mit Anschlusselementen (19) ausgestattet wird,
    - die (19) bereits zu dem Zeitpunkt, an dem eine Flüssigkeit oder Schaum in den Bereich der ersten Bewehrungsstrukturen (18) eingebracht wird, Bestandteile der ersten Bewehrungsstrukturen (18) sind oder mit diesen (18) fest verbunden sind,
    - und die (19) über den Bereich, der mit Schaum oder Flüssigkeiten gefüllt wird, hinausgreifen,
    - und die (19) während des Aushärtens des Schaums oder der Flüssigkeit in eine Formschicht (16) aus weichem, pulverförmigem und/oder viskosem Material eingreifen.
  7. Verfahren nach einem der vorstehenden Ansprüche
    dadurch gekennzeichnet, dass
    zumindest die erste Betonschicht (11) in einer Schalform (13) gebildet wird und dass das vorgefertigte Bauelement (3) beim Absenken auf die erste Betonschicht (11) mit der fachüblichen Genauigkeit in diese Schaltung passt.
  8. Vorgefertigtes Bauelement eines Betonbauteils
    gekennzeichnet durch:
    - erste Bewehrungsstrukturen (18), die dreidimensionale textile Gitterstrukturen aufweisen,
    - erste thermische Isolationselemente (6)
  9. Vorgefertigtes Bauelement nach dem vorstehenden Anspruch
    gekennzeichnet durch
    Anschlusselemente (19),
    - die (19) Bestandteile der ersten Bewehrungsstrukturen (18) sind oder mit diesen (18) fest verbunden sind,
    - die (19) über die Isolationselemente (6) hinausgreifen,
    - und die (19) zum Anschluss an zweite Bewehrungsstrukturen (12) und oder zur festen Einbettung in eine Betonmatrix geeignet sind.
  10. Vorgefertigtes Bauelement nach einem der vorstehenden Ansprüche
    gekennzeichnet durch
    eine annähernd flächige Gestalt, bei der die Länge (I) und Breite (b) des Bauelements ein Vielfaches seiner Tiefe (t) beträgt.
  11. Vorgefertigtes Bauelement nach dem vorstehenden Anspruch
    dadurch gekennzeichnet, dass
    die ersten Bewehrungsstrukturen (18) und die ersten Isolationselemente (6) die plattenförmige Gestalt des vorgefertigten Bauelements (3) weitgehend ausfüllen.
  12. Vorgefertigtes Bauelement nach einem der vorstehenden Ansprüche
    dadurch gekennzeichnet, dass
    die Isolierelemente (6) eine Ebene definieren, die nicht von Materialien großer Wärmeleitfähigkeit - wie Metallen - durchstoßen wird.
  13. Vorgefertigtes Bauelement nach einem der vorstehenden Ansprüche
    dadurch gekennzeichnet, dass
    die ersten thermischen Isolationselemente (6) schaumartige Isolationsstoffe umfassen.
  14. Betonbauteil
    gekennzeichnet durch
    ein vorgefertigtes Bauelement (3) nach einem der vorstehenden Ansprüche 8 -13.
EP14734108.5A 2013-07-02 2014-06-25 Verfahren zum herstellen eines betonbauteils, vorgefertigtes bauelement eines betonbauteils sowie betonbauteil Active EP3017123B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013010989 2013-07-02
DE201310011083 DE102013011083A1 (de) 2013-07-02 2013-07-03 Verfahren zum Herstellen eines Betonbauteils, vorgefertigtes Bauelement eines Betonbauteils sowie Betonbauteil
PCT/EP2014/063448 WO2015000771A1 (de) 2013-07-02 2014-06-25 Verfahren zum herstellen eines betonbauteils, vorgefertigtes bauelement eines betonbauteils sowie betonbauteil

Publications (2)

Publication Number Publication Date
EP3017123A1 EP3017123A1 (de) 2016-05-11
EP3017123B1 true EP3017123B1 (de) 2017-04-26

Family

ID=52105896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14734108.5A Active EP3017123B1 (de) 2013-07-02 2014-06-25 Verfahren zum herstellen eines betonbauteils, vorgefertigtes bauelement eines betonbauteils sowie betonbauteil

Country Status (13)

Country Link
US (1) US10227777B2 (de)
EP (1) EP3017123B1 (de)
JP (1) JP6278981B2 (de)
KR (1) KR101633301B1 (de)
CN (1) CN105917057A (de)
BR (1) BR112015028885A2 (de)
DE (1) DE102013011083A1 (de)
DK (1) DK3017123T3 (de)
ES (1) ES2632251T3 (de)
PL (1) PL3017123T3 (de)
PT (1) PT3017123T (de)
RU (1) RU2629183C2 (de)
WO (1) WO2015000771A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016103223U1 (de) * 2016-06-17 2016-07-04 Goldbeck Gmbh Flächiges Betonfertigteil zum Bau von Parkhäusern, Verbundbauteil zum Bau von Parkhäusern sowie deren Verwendung
DE102016114927B4 (de) * 2016-08-11 2018-04-12 Groz-Beckert Kommanditgesellschaft Schutzplattenanordnung und Verfahren zur Reparatur einer solchen Schutzplattenanordnung
DE102017124617B4 (de) 2016-10-21 2020-01-09 Hochschule für Technik, Wirtschaft und Kultur Leipzig Mehrschichtiges Bauelement, Verfahren und Verbindungssystem zu seiner Herstellung, Verwendung des Bauelements und Bauwerk
RU2744905C2 (ru) * 2018-12-26 2021-03-17 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ повышения надежности и долговечности железобетонных конструкций
DE102019126608B4 (de) * 2019-10-02 2022-12-22 Technische Universität Dresden Stützvorrichtung und Verfahren zur Herstellung einer textilen Querkraftbewehrung und Betonbauteil
WO2021207570A1 (en) * 2020-04-10 2021-10-14 Owens Corning Intellectual Capital, Llc Non-combustible edge for insulated concrete sandwich wall panels

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL53573A (en) 1976-12-27 1980-09-16 Maso Therm Corp Composite building panel with reinforced shell
JPS5761013U (de) 1980-09-26 1982-04-10
US5033248A (en) * 1990-01-05 1991-07-23 Phillips Charles N Reinforced concrete building and method of construction
EP0532140A1 (de) * 1991-09-13 1993-03-17 Board of Regents of the University of Nebraska Vorgefertigte Sandwichbetonbauplatten
AT406064B (de) 1993-06-02 2000-02-25 Evg Entwicklung Verwert Ges Bauelement
JPH08151724A (ja) 1994-11-30 1996-06-11 Tatsuo Ono ユニット構造体およびその製造方法
CA2211984C (en) * 1997-09-12 2002-11-05 Marc-Andre Mathieu Cementitious panel with reinforced edges
CN2338404Y (zh) * 1998-08-03 1999-09-15 赵建国 钢丝网架膨胀珍珠岩复合墙板
US20050284088A1 (en) * 1999-03-31 2005-12-29 Heath Mark D Structural panel and method of fabrication
CN2404947Y (zh) * 1999-12-24 2000-11-08 王茂樑 复合高效珍珠岩保温板
DE10007100B4 (de) 2000-02-16 2005-04-21 Syspro-Gruppe Betonbauteile E.V. Wand-/Deckenhalbfertigbaulelement
JP4007756B2 (ja) * 2000-09-22 2007-11-14 タマホーム 株式会社 コンクリートパネルおよびコンクリートパネル製造方法
RU2190523C1 (ru) * 2001-10-23 2002-10-10 Закрытое акционерное общество "Строительное управление №155" Способ изготовления трехслойной стеновой панели
US6898908B2 (en) * 2002-03-06 2005-05-31 Oldcastle Precast, Inc. Insulative concrete building panel with carbon fiber and steel reinforcement
US7100336B2 (en) * 2002-03-06 2006-09-05 Oldcastle Precast, Inc. Concrete building panel with a low density core and carbon fiber and steel reinforcement
GB0314538D0 (en) * 2003-06-21 2003-07-30 Composhield As Reinforcement assembly for matrix materials
US7354876B2 (en) * 2003-07-09 2008-04-08 Saint-Gobain Technical Fabrics Canada Ltd. Fabric reinforcement and cementitious boards faced with same
JP4418961B2 (ja) 2004-03-30 2010-02-24 忠勝 雨宮 ボイドスラブ
JP2006089994A (ja) 2004-09-22 2006-04-06 Kozo Keikaku Engineering Inc 建造物構造体、それを用いた建造物構造及び建造物の施工方法
CA2598442C (en) * 2005-02-25 2011-02-08 Nova Chemicals Inc. Composite pre-formed building panels, a building and a framing stud
KR100718006B1 (ko) * 2006-11-10 2007-05-14 주식회사 부일건화 단열재를 이용한 3차원 입체 지붕재
JP5033248B2 (ja) * 2011-02-17 2012-09-26 株式会社シビル 落石予防施設、落石予防構造及び落石予防工法
CN202148636U (zh) * 2011-07-04 2012-02-22 朱维高 增强型无机纤维复合板
DE102012101498A1 (de) 2012-01-03 2013-07-04 Groz-Beckert Kg Bauelement und Verfahren zur Herstellung eines Bauelements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2015155685A (ru) 2017-08-07
KR20160011676A (ko) 2016-02-01
PT3017123T (pt) 2017-07-17
PL3017123T3 (pl) 2017-09-29
WO2015000771A1 (de) 2015-01-08
US10227777B2 (en) 2019-03-12
DK3017123T3 (en) 2017-08-07
US20160130812A1 (en) 2016-05-12
CN105917057A (zh) 2016-08-31
BR112015028885A2 (pt) 2017-07-25
ES2632251T3 (es) 2017-09-12
DE102013011083A1 (de) 2015-01-08
EP3017123A1 (de) 2016-05-11
RU2629183C2 (ru) 2017-08-25
JP6278981B2 (ja) 2018-02-14
KR101633301B1 (ko) 2016-06-24
JP2017507259A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
EP3017123B1 (de) Verfahren zum herstellen eines betonbauteils, vorgefertigtes bauelement eines betonbauteils sowie betonbauteil
EP2281964B1 (de) Gegossenes Wandelement und Verfahren zu dessen Herstellung
EP1718814A1 (de) Verfahren und hilfsmittel zur herstellung von betonteilen, insbesondere von betonhalbzeug und/oder von betondecken sowie hilfsmittel zur herstelung von betondecken
WO2014124886A1 (de) Verfahren zur herstellung eines mehrschichtigen, bewehrten betonelements
EP0051101B1 (de) Zementplatte, sowie Verfahren und Vorrichtung zu deren Herstellung
EP1953303B1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Ankerbauteil für ein Wandbauelement
DE4424941C2 (de) Verbundschalungssystem und Verfahren zur Herstellung eines Verbundschalungssystems
EP2209952B1 (de) Abstandhalter und bauteil zur herstellung einer wandkonstruktion sowie verfahren und vorrichtung
DE102018207761B3 (de) Segment für ein Bauwerk, Verfahren zu dessen Herstellung, Bauwerk und Verfahren zu dessen Herstellung
EP1783293B1 (de) Bewehrter Dämmkörper für eine wärmegedämmte Fertigteilwand und Fertigteilwand sowie Verfahren zur Herstellung
EP3296478B1 (de) Anordnung zum verbinden einer gebäudewand mit einer boden- oder deckenplatte und formbaustein für eine solche anordnung
EP2297413A2 (de) Mehrschaliges halbfertig-bauteil
WO1995035422A1 (de) Schalungstafel aus beton
DE3119623A1 (de) Tragendes, plattenfoermiges bauelement
EP2746015A2 (de) Bewehrte Bauplatte sowie Verfahren und Vorrichtung zur Herstellung der Bauplatte
DE102007004573A1 (de) Wandbauelement, Verfahren zur Herstellung eines Wandbauelements und ein Ankerbauteil für ein Wandbauelement
DE3027217A1 (de) Plattenfoermiger koerper und verfahren zu dessen herstellung
CH358574A (de) Bauelement
DE102023001683A1 (de) Bauelement II- Sohle CO2 frei
DE102018130844A1 (de) Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren
DE102009057074A1 (de) Vorgefertigtes Deckenbauelement
EP2514883A1 (de) Vorgefertigtes isoliertes Wandelement für ein Gebäude und Verfahren zu seiner Herstellung
CH371240A (de) Lichtdurchlässiger Körper
AT13302U1 (de) Halbfertig-Bauteil zum Erstellen von Bauwerken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 888007

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003578

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3017123

Country of ref document: PT

Date of ref document: 20170717

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170711

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170801

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2632251

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170912

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 24807

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003578

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170625

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170625

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180625

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: SOLIDIAN GMBH, DE

Ref country code: CH

Ref legal event code: PUE

Owner name: SOLIDIAN GMBH, DE

Free format text: FORMER OWNER: GROZ-BECKERT KG, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SOLIDIAN GMBH

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014003578

Country of ref document: DE

Owner name: SOLIDIAN GMBH, DE

Free format text: FORMER OWNER: GROZ-BECKERT KG, 72458 ALBSTADT, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SOLIDIAN GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: GROZ-BECKERT KG

Effective date: 20190408

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 24807

Country of ref document: SK

Owner name: SOLIDIAN GMBH, ALBSTADT, DE

Free format text: FORMER OWNER: GROZ-BECKERT KG, ALBSTADT, DE

Effective date: 20190523

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SOLIDIAN GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION, DEED OF ASSIGNMENT.; FORMER OWNER NAME: GROZ-BECKERT KG

Effective date: 20190409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20190619

Year of fee payment: 6

Ref country code: FI

Payment date: 20190610

Year of fee payment: 6

Ref country code: PT

Payment date: 20190624

Year of fee payment: 6

Ref country code: DK

Payment date: 20190613

Year of fee payment: 6

Ref country code: NL

Payment date: 20190612

Year of fee payment: 6

Ref country code: NO

Payment date: 20190612

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 888007

Country of ref document: AT

Kind code of ref document: T

Owner name: SOLIDIAN GMBH, DE

Effective date: 20190627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190510

Year of fee payment: 6

Ref country code: SE

Payment date: 20190611

Year of fee payment: 6

Ref country code: BE

Payment date: 20190417

Year of fee payment: 6

Ref country code: TR

Payment date: 20190621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190506

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190701

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200630

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 24807

Country of ref document: SK

Effective date: 20200625

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210128

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230510

Year of fee payment: 10

Ref country code: DE

Payment date: 20230630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 10