EP2889481A2 - Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie Membranvakuumpumpe - Google Patents

Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie Membranvakuumpumpe Download PDF

Info

Publication number
EP2889481A2
EP2889481A2 EP14192137.9A EP14192137A EP2889481A2 EP 2889481 A2 EP2889481 A2 EP 2889481A2 EP 14192137 A EP14192137 A EP 14192137A EP 2889481 A2 EP2889481 A2 EP 2889481A2
Authority
EP
European Patent Office
Prior art keywords
membrane
piston
vacuum pump
dead center
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14192137.9A
Other languages
English (en)
French (fr)
Other versions
EP2889481A3 (de
EP2889481B1 (de
EP2889481B2 (de
Inventor
Armin Conrad
Sebastian Oberbeck
Swen Söhngen
Peter Vorwerk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51903814&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2889481(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2889481A2 publication Critical patent/EP2889481A2/de
Publication of EP2889481A3 publication Critical patent/EP2889481A3/de
Publication of EP2889481B1 publication Critical patent/EP2889481B1/de
Application granted granted Critical
Publication of EP2889481B2 publication Critical patent/EP2889481B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the invention relates to a method for calibrating a membrane vacuum pump and a membrane vacuum pump.
  • Diaphragm vacuum pumps are dry positive displacement pumps. It is known in practice that a connecting rod driven by a crankshaft moves a diaphragm clamped between a head cover and a housing of the membrane vacuum pump, which forms a suction chamber with the space in the head cover. Diaphragm vacuum pumps require inlet and outlet valves to achieve directional gas delivery. As valves, it is known from practice to use pressure-controlled flutter valves made of elastomer materials. There the pumping chamber is hermetically sealed by the diaphragm towards the drive, the required medium is neither contaminated by oil, nor can aggressive media attack the technique. The dead volume between the outlet valve and the suction chamber leads to a limited compression ratio, so that with a pumping stage usually a final pressure of about 70 hectopascals can be achieved.
  • membrane vacuum pumps are particularly well suited as dry backing pumps for turbomolecular pumps with Holweck stage.
  • Two-stage diaphragm vacuum pumps which reach about 5 hectopascal final pressure, can be used as backing pumps for Holweckturbopumpen.
  • the prior art ( DE 1 960 371 ) includes a diaphragm pump that works on a voice coil principle.
  • these pumps operate in such a way that in known piston pumps the piston is replaced by a diaphragm which is periodically deformed.
  • the drive is effected by a piston coupled to a voice coil.
  • the prior art also includes a diaphragm pump.
  • This to the state of the art belonging diaphragm pump tries to allow an exact dosage of a fluid to be delivered.
  • the piston is brought into contact with a bottom surface of the piston working chamber and this defines an exact, bottom dead center, which is not dependent on further tolerances.
  • This belonging to the prior art diaphragm pump has the disadvantage that must be used in this diaphragm pump with a very high manufacturing accuracy. If the diaphragm is worn, the dead center can not be adjusted, so that a dead volume in the pump chamber can gradually develop during operation, which can not be compensated.
  • the technical problem underlying the invention is to provide a method for calibrating a membrane vacuum pump and a diaphragm vacuum pump, with which the disadvantages of the prior art can be avoided.
  • the inventive method has the advantage that the membrane vacuum pump is designed as a self-calibrating diaphragm vacuum pump.
  • the method according to the invention is carried out by the control device. With the control device and the voice coil drive of the diaphragm vacuum pump, a calibration of the dead center before each start or once after production is possible.
  • the self-calibrating membrane vacuum pump according to the invention thus achieves an optimum final pressure. Furthermore, manufacturing tolerances can be compensated and / or increased by the method according to the invention. The associated cost savings of mechanical calibration and faster and cheaper manufacturing provides an optimal diaphragm vacuum pump.
  • the control device adjusts the dead center on the basis of a signal of at least one knock sensor.
  • the pump is controlled by a control loop itself. If the diaphragm strikes against the at least one knock sensor, the piston at the next stroke is commanded to gradually minimize the stroke by a certain amount to finally find the optimum dead center ,
  • the control device adjusts the dead point advantageously only during a calibration drive. This self-calibration is carried out before commissioning the pump. During pumping, the dead center is not adjusted.
  • the piston drives the membrane into the membrane head or against a mechanical end point of the membrane with a force reduced compared to the pumping operation.
  • the inventive method saves the time required for a manual calibration and improves the final pressure of the diaphragm vacuum pump.
  • the movement limit of the piston in the positive direction is determined by the piston driving the diaphragm into the membrane head or against a mechanical end point of the diaphragm with a force reduced compared to the pumping operation.
  • control device continuously detects an actual position of the piston and compares this with a desired position. From the actual position and the desired position, the control device determines the end point of the movement of the diaphragm.
  • the benefit of this self-calibration results from the cost savings resulting from the lower manufacturing cost.
  • the components of such a pump can have lower manufacturing tolerances because the calibration compensates for them, resulting in a more efficient and less expensive one Manufacturing leads.
  • the final pressure and the pumping speed of the membrane vacuum pump can be varied by the method according to the invention.
  • the determined end point of the membrane is advantageously stored and the end point is used during the pumping operation as the maximum stroke.
  • a calibration drive is performed before each startup of the membrane vacuum pump or once after production. This makes it possible to optimize the suction capacity and the final pressure of the diaphragm vacuum pump.
  • the dead center of the piston can be advantageously adjusted so that the membrane rests against the diaphragm head. This ensures that no dead space is created in the delivery chamber, which is particularly advantageous and optimizes the pumping speed of the membrane vacuum pump.
  • the dead point is adjusted so that the membrane is pressed into the membrane head.
  • the pressure used should not lead to a plastic strain or destruction of the diaphragm material.
  • the dead center is set such that a distance of less than 0.5 millimeters, particularly advantageously less than 0.3 millimeters remains between the membrane and membrane head.
  • this embodiment has a small dead volume in the membrane head. As a result, however, wear of the membrane is avoided.
  • the calibration is performed fully automatically. This gives a considerable time savings, since a manual calibration is very time consuming.
  • a calibration travel preferably comprises at least one stroke of the piston.
  • the piston generally advantageously performs several strokes in order to achieve the best possible calibration.
  • the stroke of the piston is reduced when the control device receives a signal from the knock sensor. If the knock sensor receives a signal, the diaphragm has moved against the knock sensor. In this case, the control device detects that the stroke is too high or that the dead center has been exceeded for an optimal calibration.
  • the stroke of the piston is either reduced by a predefined value or the stroke is gradually reduced, and after each step, a stroke is executed again to check whether the knock sensor is still providing a signal at a reduced stroke.
  • the predefined value is set in advance. For example, when the knock sensor gives a signal, the stroke may be reduced in the tenths of a millimeter range. It is also possible to specify from the outset that the stroke of the piston will be reduced by 0.3 millimeters or 0.5 millimeters.
  • a holding force is adjusted, with which the membrane is pressed against the membrane head, and that this actual position of the piston is detected and stored.
  • This holding force is needed to hold the membrane there for a short time after it has advantageously been pressed slowly into the mechanical end point, with the result that it is possible to detect and store the end point.
  • the maximum stroke of the piston during the calibration exceeds the determined actual position. It is possible to deliberately set the maximum stroke at the beginning of the calibration run higher than intended. In this case, the piston pushes the membrane in the end point and it is determined so the maximum stroke of the controller.
  • the controller determines this movement as faulty. To continue the movement, the piston is prevented from stopping.
  • the control device ends the movement since the end point of the movement has been reached. This means that according to an advantageous embodiment of the invention, before the pumping operation of the membrane vacuum pump is started, the membrane is moved against the membrane head, that the control device detects this movement as faulty and that after at least two faulty movements, the control device detects and reduces the actual position of the dead center of the piston. This measure serves to minimize the wear of the membrane.
  • the reduction of the actual position of the dead center of the piston is preferably carried out by a predefined value.
  • the value can be set beforehand, for example in tenths of a millimeter increments (depending on the resolution of the installed measuring system).
  • the size of the predefined value advantageously determines whether the membrane is arranged at the dead center of the piston at a distance from the membrane head, adjacent to the diaphragm head or pressed against the membrane head.
  • the defined value is set in advance.
  • the dead volume is reduced as much as possible.
  • the membrane is located only at the membrane head or if there is a minimal gap between the membrane and the membrane head, the wear of the membrane is lower.
  • the piston with the diaphragm intentionally moves against the diaphragm head.
  • the control device measures a faulty movement in the form of "moving errors”. After a certain number of erroneous movements over a certain period of time, the control device takes the actual value of the incremental sensor and subtracts a certain distance from the actual value.
  • the defined distance can be specified in millimeters. It is also possible to use another counting unit, for example "counts”, which is proportional to the units of length.
  • the set distance or the set amount of "counts” depends among other things on the manufacturing tolerances.
  • an overshoot of the dead center of the piston occurring during a high-frequency operation is taken into account when setting the dead center of the piston.
  • a lower movement limit of the piston is determined and stored.
  • a lower movement limit that is, when the piston moves away from the membrane head, is advantageously calculated and stored as the upper limit.
  • the aim in the calculation is that the membrane travels as far as possible the same path in the positive as in the negative direction.
  • a reduction in the reduction of the actuator unit, consisting of voice coil drive, piston and diaphragm, contributing differential pressure minimization is achieved by sealing the drive space against the atmospheric pressure. If the differential pressure is lowered by independently pumping out the back space of the diaphragm, a smaller voice coil drive or a lower current intensity can be used.
  • differential pressure minimization is achieved particularly well with a two-headed diaphragm pump in which the forces of both heads cancel each other out.
  • At least one spring can be integrated in the membrane head or in the linear drive.
  • the actuator is supported in the recovery of the membrane.
  • the diaphragm vacuum pump according to the invention for conveying a gas with a pumpable with the gas delivery chamber with a linearly driven with a voice coil piston in a drive space with a membrane that separates the delivery chamber and the drive space and is arranged oscillating between the delivery chamber and the drive chamber, with a membrane head, the with the membrane forming the delivery chamber, wherein the piston is designed as a piston moving the membrane in motion and movable by a predetermined distance, is characterized in that a device for detecting a dead center and / or a position of the piston is provided and that a control device is provided, which is designed as a dead center as a function of the detected signal of the device adjustable control device.
  • the membrane vacuum pump according to the invention has the advantage that it can be carried out with its self-calibration method, as described in claims 1 to 16.
  • the optimum dead center can be detected and adjusted via a self-calibration so that the membrane vacuum pump achieves an optimum final pressure and an optimal compression ratio.
  • At least one knock sensor is provided.
  • the arranged in the diaphragm vacuum pump control device advantageously adjusted due to a signal of the knock sensor the dead center of the piston.
  • the knock sensor emits a signal when the diaphragm is moving against the knock sensor.
  • the pressure point is not set correctly and the maximum stroke of the piston is reduced.
  • the reduction can be made incrementally by predetermined path lengths or "counts”. It is also possible to provide a predefined value by which the maximum stroke is reduced.
  • control device is designed as a dead center of the piston only during a calibration travel adjusting control device.
  • the pressure point of the piston can be adjusted by the control device. If the dead center is optimally set, it is stored and no longer changed during operation of the pump, that is to say in pump mode.
  • the device for detecting a dead center and / or a position of the piston is designed as a Hall sensor.
  • the device for detecting a dead center and / or a position of the piston is designed as an incremental Hall sensor.
  • Hall sensors are very suitable as displacement sensors to detect the position of the piston.
  • the membrane vacuum pump can be designed as a single-headed, double-headed or multi-headed membrane vacuum pump.
  • the drive space is formed sealed against atmospheric pressure.
  • the differential pressure minimization contributing to the reduction of the actuator unit is achieved by sealing the drive space against the atmospheric pressure.
  • the drive space is designed as a pumped drive space. If the differential pressure is lowered by independently pumping out the back space of the diaphragm, a smaller voice coil drive or a lower current intensity can be used.
  • At least one spring is provided in the membrane head and / or in the linear drive for returning the piston and the membrane.
  • the spring achieves optimization and reduction of force.
  • the actuator is supported by the spring when the diaphragm is returned.
  • the membrane vacuum pump has at least one inlet valve and at least one outlet valve, which communicate with the delivery chamber.
  • the valves are advantageously designed as reed valves and / or ball valves and / or disk valves. Other types of valves are also possible.
  • a diaphragm vacuum pump wherein a voice coil drive has at least one coil and at least one magnet associated with the coil, in which the coil is designed as a stator and the magnet as a rotor.
  • the coil of the drive changes from the position of the rotor to the position of the stator.
  • the magnetic stator becomes the new rotor of the drive.
  • the stator conducts temperature with a housing is connected, and that are arranged on the housing cooling fins. This makes it possible to derive the temperature of the system very well. It can also be provided, for example, to provide a flow-blowing of the housing in order to keep the temperature of the system at a constant level.
  • the rotor can advantageously be mounted on at least two plain bearings or at least two ball sleeves.
  • the membrane vacuum pump according to the invention for conveying a gas with a filling chamber which can be filled with the gas, with a piston which can be driven linearly with a voice coil drive in a drive space, with a membrane which separates the delivery space and the drive space and is swingably arranged between delivery space and drive space, with a membrane head which forms the delivery chamber with the diaphragm, the piston being designed as a piston moving the diaphragm in motion and movable by a predetermined distance, the voice coil drive having at least one coil and at least one magnet associated with the coil, characterized in that Coil as a stator and the magnet are designed as a rotor.
  • voice coil drives In known from practice voice coil drives, the coil is designed as a rotor and the magnet as a stator. In these voice coil drives very high temperatures occur in the voice coil drive, since the coil can be poorly cooled as a runner.
  • the coil of the drive changes from the position of the rotor to the position of the stator. At the same time the magnetic stator becomes the new rotor of the drive.
  • the particular advantage of the invention is that the heat generated primarily by the coil, can be dissipated significantly better.
  • the coil is connected in accordance with an advantageous embodiment of the invention with a temperature-conducting housing, wherein on the housing advantageously cooling fins are arranged. This makes it possible to derive the temperature of the system very well. It can also be provided, for example, to provide a flow-blowing of the housing in order to keep the temperature of the system at a constant level.
  • the rotor can advantageously be mounted on at least two plain bearings or at least two ball sleeves.
  • a device for detecting a dead center and / or a position of the piston and a control device which can be adjusted as a dead center in response to the detected signal of the device Control device is formed.
  • This membrane vacuum pump according to the invention has the advantage that it can be carried out with its self-calibration method, as described in claims 1 to 16.
  • the optimal dead center can be detected and adjusted via a self-calibration, so that the membrane vacuum pump reaches an optimal end pressure, at the same time effective cooling of the coils is possible.
  • At least one knock sensor is provided and the control device is designed as a control device based on a signal of the knock sensor which adjusts the dead center.
  • the knock sensor emits a signal when the diaphragm is moving against the knock sensor.
  • the pressure point is not set correctly and the maximum stroke of the piston is reduced.
  • the reduction can be made incrementally by predetermined path lengths or "counts”. It is also possible to provide a predefined value by which the maximum stroke is reduced.
  • control device is designed as a dead center of the piston only during a calibration travel adjusting control device.
  • the pressure point of the piston can be adjusted by the control device. If the dead center is optimally set, it is stored and no longer changed during operation of the pump, that is to say in pump mode.
  • the device for detecting a dead center or a position of the piston is designed as a Hall sensor.
  • the device for detecting a dead center or a position of the piston is designed as an incremental Hall sensor.
  • Hall sensors are very suitable as displacement sensors to detect the position of the piston.
  • the membrane vacuum pump can be designed as a single-headed, double-headed or multi-headed membrane vacuum pump.
  • the drive space is formed sealed against atmospheric pressure.
  • the differential pressure minimization contributing to the reduction of the actuator unit is achieved by sealing the drive space against the atmospheric pressure.
  • the drive space is designed as an evacuated drive space. If the differential pressure is lowered by independently pumping out the back space of the diaphragm, a smaller voice coil drive or a lower current intensity can be used.
  • At least one spring is provided in the membrane head and / or in the linear drive for returning the piston and the membrane.
  • the spring achieves optimization and reduction of force.
  • the actuator is supported by the spring when the diaphragm is returned.
  • the membrane vacuum pump has at least one inlet valve and at least one outlet valve.
  • the valves are advantageously in communication with the delivery chamber.
  • the valves are advantageously designed as reed valves and / or ball valves and / or disk valves. Other types of valves are also possible.
  • the method according to the invention can be used with all the features in the membrane vacuum pumps described in the application.
  • the membrane vacuum pumps described can also be combined with their features disclosed in the application.
  • the membrane vacuum pump can advantageously be designed as a two-headed membrane vacuum pump with a voice coil drive.
  • Two-headed diaphragm vacuum pump means that on both sides of the piston a diaphragm is driven by the reciprocating piston.
  • connection of the at least one coil of the voice coil drive or the coil pairs of the voice coil drive directly to the housing allow effective cooling, for example by blowing a Gepatiusiverrippung.
  • Fig. 1 shows a membrane vacuum pump 1 with two non-positively connected to a piston 2 in connection membranes 3, 4.
  • the membranes 3, 4 is associated with a respective membrane head 5, 6, against which the membranes 3, 4 drive at maximum deflection of the piston 2.
  • coils 7, that is current-carrying conductors, are operated in a magnetic field of permanent magnets 8 with a constantly changing current direction. Between the coil 7 and the permanent magnet 8, an air gap is present. This should be as low as possible be to increase the efficiency of the actuator consisting of piston 2 and membranes 3, 4.
  • the piston 2 is non-magnetic and is mounted on plain bearings 9. It is also a bearing without plain bearings possible with optimized positive (stabilizing) radial stiffness of the membrane assemblies (perpendicular to the stroke direction) and negative (destabilizing) radial stiffness of the coil assembly (perpendicular to the stroke direction).
  • an incremental Hall sensor 10 In order to permanently determine the position of the piston 2, there is an incremental Hall sensor 10, which in the Fig. 1 is shown only schematically, for detecting the path in the region of the piston 2.
  • the Hall sensor 10 is also used for current reversal, depending on the position of the piston 2, the current direction is reversed early.
  • springs 11 are provided.
  • the springs 11 are arranged on both sides of the piston 2. It may also be provided capacitors (not shown) for energy recovery.
  • the membranes 3, 4 are clamped between a housing 12 and the membrane heads 5, 6, so that a delivery chamber 13, 14 is gas-tightly separated from a drive space 15.
  • the permanent magnets 8 are formed as a rotor.
  • the housing 12 has cooling ribs 16, in particular in the region of the coil 7. These cooling fins, for example, with room air, which has a lower temperature compared to the housing temperature, flows around be, whereby the coil 7 can be kept at a constant temperature.
  • coil 7 advantageously consists of a plurality of coil pairs, which can be energized differently in order to move the permanent magnet rotor can.
  • Fig. 2 the vacuum pump 1 is shown in cutaway form.
  • the same parts are provided with the same reference numbers. To avoid repetition, refer to the description of the figure Fig. 1 directed.
  • Fig. 3 shows a side view of the vacuum pump 1 with the cooling fins 16.
  • Fig. 4 shows a perspective view of the diaphragm pump 1. Also clearly the cooling fins 16 can be seen.
  • the vacuum pump 1, which in Fig. 1 is shown, has the Hall sensor 10, which serves to detect the position of the piston 2.
  • the control device 17 detected in dependence on the position of the piston 2, the dead center of the piston.
  • the control device 17 detects the actual position of the piston 2 continuously and compares this with a target position. From a comparison of the actual position with the desired position, the control device 17 determines the end point of the movement of the diaphragm. This end point is continuously used during the pumping operation of the membrane vacuum pump 1 as the maximum stroke.
  • the dead center of the piston 2 can be adjusted such that the membrane 3 is arranged adjacent to the membrane head 5.
  • the dead center can also be adjusted so that a distance of less than 0.3 mm remains between the membrane and membrane head.
  • the dead center can also be adjusted so that the membrane 3 is pressed against the membrane head 5 with a certain force.
  • the dead center is set such that the membrane 3 rests completely on the membrane head 5, so that the delivery chamber 13 has no dead volume, so that the pump power of the pump is optimized.
  • Fig. 1 illustrated two-head diaphragm pump
  • the calibration described also for the membrane 4 and the diaphragm head 6 is carried out accordingly.
  • the drive space 15 is sealed against atmospheric pressure.
  • the drive chamber 15 is additionally pumped out.
  • the membrane vacuum pump 1 according to Fig. 1 has an inlet valve and an outlet valve for each delivery chamber 13, 14.
  • Fig. 5 shows a modified embodiment of a membrane vacuum pump 20.
  • the membrane vacuum pump 20 has a housing 21 in which the piston 22 is linearly mounted.
  • the linear drive consisting of coils and magnets, is in Fig. 5 not shown, but according to the principle of Fig. 1 ,
  • the vacuum pump has three membrane heads 22, 23, 24.
  • the membrane heads 22, 23, 24 are associated with membranes 25, 26, 27.
  • the movement of the membrane 27 by the piston 22 is effected directly via a rod 28.
  • the movement of the membranes 25, 26 through the piston 22 via a tee 29.
  • the membrane heads 22, 23 may be connected in parallel or in series.
  • Fig. 5 only the membrane heads 22, 23, 24 are shown schematically. Inlets and outlets are not shown.
  • Fig. 6 shows the sake of completeness, the principle of operation of a diaphragm vacuum pump according to the prior art.
  • Fig. 6 shows a membrane vacuum pump 1 with a housing 12 having a membrane 30 which is clamped in the edge of the housing 12 and can be offset by a drive connecting rod 31 of a motor drive in a tumbling downward movement.
  • housing 12 is a limited by the membrane 3 of a housing head 32 suction chamber 13, which is limited relative to the membrane 3 of the housing head 5 of the housing 12.
  • housing head 5 is at least one leading into the pumping chamber 13 suction line 18 with an inlet valve assembly 33 and at least one of the suction chamber 13 leading discharge line 19 with an outlet valve assembly 34th
  • the inlet valve arrangement 33 has an inlet valve opening 35 and an inlet valve opening 36 which closes the inlet valve opening 35 when there is overpressure in the suction chamber 13.
  • the outlet valve arrangement 34 has a closing outlet valve body 37 at negative pressure in the suction chamber 13.
  • a negative pressure is created in the delivery chamber 13, whereby a differential pressure is present at the inlet valve body 36, which presses the valve body 36 in the direction of the delivery chamber 13.
  • gas flows from the suction line 18 into the suction chamber 13.
  • an overpressure is created in the delivery chamber 13, whereby a differential pressure is present at the inlet valve body 36 which presses the valve body 36 in the direction of the valve opening 35.
  • a negative pressure is created in the delivery chamber 13, whereby a differential pressure arises at the outlet valve body 38, which presses the valve body 38 in the direction of delivery chamber 13 and into the valve opening 39.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie eine Membranvakuumpumpe zur Förderung eines Mediums, mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum, mit einer zwischen einem Förderraum und Antriebsraum schwingenden Membran, die den Förderraum und den Antriebsraum trennt, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist, mit einer Vorrichtung zur Erfassung eines Totpunktes und/oder Position des Kolbens, bei dem eine Steuervorrichtung den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung verstellt.

Description

  • Die Erfindung betrifft ein Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie eine Membranvakuumpumpe.
  • Membranvakuumpumpen sind trockene Verdrängerpumpen. Aus der Praxis ist bekannt, dass ein von einer Kurbelwelle angetriebener Pleuel eine zwischen einem Kopfdeckel und einem Gehäuse der Membranvakuumpumpe eingespannte Membran bewegt, die mit dem Raum im Kopfdeckel einen Schöpfraum bildet. Membranvakuumpumpen benötigen Einlass- und Auslassventile, um eine gerichtete Gasförderung zu erreichen. Als Ventile ist es aus der Praxis bekannt, druckgesteuerte Flatterventile aus Elastomerwerkstoffen zu verwenden. Da der Schöpfraum durch die Membran zum Antrieb hin hermetisch abgedichtet ist, wird das geforderte Medium weder durch Öl verunreinigt, noch können aggressive Medien die Technik angreifen. Das Totvolumen zwischen dem Auslassventil und dem Schöpfraum führt zu einem begrenzten Kompressionsverhältnis, so dass mit einer Pumpstufe üblicherweise ein Enddruck von circa 70 Hektopascal erreicht werden kann.
  • Aufgrund ihres kohlenstofffreien Schöpfraumes sind Membranvakuumpumpen besonders gut als trockene Vorpumpen für Turbomolekularpumpen mit Holweckstufe geeignet. Schon zweistufige Membranvakuumpumpen, die etwa 5 Hektopascal Enddruck erreichen, kann man als Vorpumpen für Holweckturbopumpen verwenden.
  • Zum Stand der Technik ( DE 1 960 371 ) gehört eine Membranpumpe, die nach einem Schwingspulenprinzip arbeitet. Im Allgemeinen arbeiten diese Pumpen in der Weise, dass bei bekannten Kolbenpumpen der Kolben durch eine Membran ersetzt ist, welche periodisch deformiert wird. Bei Membranpumpen nach dem Schwingspulenprinzip erfolgt der Antrieb durch einen mit einer Schwingspule gekoppelten Kolben.
  • Diese zum Stand der Technik gehörende Membranpumpe weist den Nachteil auf, dass der Totpunkt des Kolbens, das heißt der Maximalhub, manuell eingestellt werden muss, damit die Membran am Membrankopf optimal anliegt. Liegt sie nicht optimal an, bleibt in dem Förderraum ein Totvolumen, was zu einem begrenzten Kompressionsverhältnis führt. Andererseits darf die Membran nicht zu fest an dem Membrankopf angedrückt werden, um einem vorzeitigen Verschleiß vorzubeugen.
  • Zum Stand der Technik ( DE 10 2006 044 248 B3 ) gehört ebenfalls eine Membranpumpe. Diese zum Stand der Technik gehörende Membranpumpe versucht, eine exakte Dosierung eines zu fördernden Fluids zu ermöglichen. Hierzu wird der Kolben mit einer Bodenfläche des Kolbenarbeitsraumes in Verbindung gebracht und hierdurch wird ein exakter, unterer Totpunkt definiert, der nicht von weiteren Toleranzen abhängig ist.
  • Diese zum Stand der Technik gehörende Membranpumpe weist den Nachteil auf, dass bei dieser Membranpumpe mit einer sehr hohen Fertigungsgenauigkeit gearbeitet werden muss. Verschleißt die Membran, ist der Totpunkt nicht verstellbar, so dass ein Totvolumen in dem Schöpfraum nach und nach im Betrieb entstehen kann, welches nicht ausgeglichen werden kann.
  • Das der Erfindung zugrunde liegende technische Problem besteht darin, ein Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie eine Membranvakuumpumpe anzugeben, mit denen die Nachteile des Standes der Technik vermieden werden können.
  • Dieses technische Problem wird durch ein Verfahren mit den Merkmalen gemäß Anspruch 1 sowie durch eine Membranvakuumpumpe mit den Merkmalen gemäß Anspruch 7 sowie mit einer Membranvakuumpumpe mit den Merkmalen gemäß Anspruch 9 gelöst.
  • Das erfindungsgemäße Verfahren zur Kalibrierung einer Membranvakuumpumpe zur Förderung eines Gases und Dosierung eines Mediums mit einem mit dem Medium füllbaren Förderraum mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum mit einer Membran, die den Förderraum und den Antriebsraum trennt und zwischen Förderraum und Antriebsraum schwingend angeordnet ist, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist, zeichnet sich dadurch aus, dass eine Vorrichtung zur Erfassung eines Totpunktes und/oder einer Position des Kolbens vorgesehen ist und dass eine Steuervorrichtung den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung verstellt.
  • Das erfindungsgemäße Verfahren weist den Vorteil auf, dass die Membranvakuumpumpe als eine selbstkalibrierende Membranvakuumpumpe ausgebildet ist. Das erfindungsgemäße Verfahren wird von der Steuervorrichtung durchgeführt. Mit der Steuervorrichtung und dem Schwingspulenantrieb der Membranvakuumpumpe ist eine Kalibrierung des Totpunktes vor jedem Start oder einmalig nach der Fertigung möglich. Die mit dem erfindungsgemäßen Verfahren selbstkalibrierende Membranvakuumpumpe erzielt hierdurch einen optimalen Enddruck. Des Weiteren können durch das erfindungsgemäße Verfahren Fertigungstoleranzen kompensiert und/oder erhöht werden. Die dadurch verbundene Kostenersparnis der mechanischen Kalibrierung und der schnelleren und preiswerteren Fertigung liefert eine optimale Membranvakuumpumpe.
  • Mit einer vorteilhaften Weiterbildung der Erfindung verstellt die Steuereinrichtung aufgrund eines Signales wenigstens eines Klopfsensors den Totpunkt. Bei dieser Ausführung regelt sich die Pumpe durch einen Regelkreis selbst. Schlägt die Membran gegen den wenigstens einen Klopfsensor, bekommt der Kolben mit der Membran beim nächsten Hub den Befehl, den Hub um einen bestimmten Wert schrittweise zu minimieren, um schließlich den optimalen Totpunkt zu finden.
  • Die Steuereinrichtung verstellt den Totpunkt vorteilhaft lediglich während einer Kalibrierfahrt. Diese Selbstkalibrierung wird vor Inbetriebnahme der Pumpe durchgeführt. Während des Pumpbetriebes wird der Totpunkt nicht verstellt.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass der Kolben zu Beginn der Kalibrierfahrt mit gegenüber dem Pumpbetrieb reduzierter Kraft die Membran in den Membrankopf oder gegen einen mechanischen Endpunkt der Membran fährt.
  • Das erfindungsgemäße Verfahren erspart den Zeitaufwand einer manuellen Kalibrierung und verbessert den Enddruck der Membranvakuumpumpe.
  • Vor jedem Start der Membranvakuumpumpe wird vorteilhaft eine automatische Kalibrierfahrt durchgeführt.
  • Bei dieser Kalibrierfahrt wird das Bewegungslimit des Kolbens in positiver Richtung festgestellt, indem der Kolben mit gegenüber dem Pumpbetrieb reduzierter Kraft die Membran in den Membrankopf oder gegen einen mechanischen Endpunkt der Membran fährt.
  • Vorteilhaft erfasst die Steuereinrichtung kontinuierlich eine Ist-Position des Kolbens und vergleicht diese mit einer Soll-Position. Aus der Ist-Position und der Soll-Position ermittelt die Steuervorrichtung den Endpunkt der Bewegung der Membran.
  • Der Vorteil, der durch diese Selbstkalibrierung entsteht, resultiert aus der Kostenersparnis, die durch den geringeren Fertigungsaufwand zustande kommt. Gleichzeitig können die Bauteile einer solchen Pumpe geringere Fertigungstoleranzen aufweisen, da die Kalibrierung diese kompensiert, was zu einer effizienteren und kostengünstigeren Fertigung führt. Der Enddruck und das Saugvermögen der Membranvakuumpumpe können über das erfindungsgemäße Verfahren variiert werden.
  • Der ermittelte Endpunkt der Membran wird vorteilhaft abgespeichert und der Endpunkt wird während des Pumpbetriebes als Maximalhub verwendet.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung wird vor jeder Inbetriebnahme der Membranvakuumpumpe oder einmalig nach der Fertigung eine Kalibrierfahrt durchgeführt. Hierdurch ist es möglich, das Saugvermögen und den Enddruck der Membranvakuumpumpe zu optimieren.
  • Der Totpunkt des Kolbens kann vorteilhaft derart eingestellt werden, dass die Membran an dem Membrankopf anliegt. Hierdurch ist gewährleistet, dass kein Totraum in dem Förderraum entsteht, was besonders vorteilhaft ist und das Saugvermögen der Membranvakuumpumpe optimiert.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung wird der Totpunkt derart eingestellt, dass die Membran in den Membrankopf gedrückt wird. Das bedeutet, dass die Membran "in den Membrankopf" gefahren wird, beziehungsweise mit einem gewissen Druck angedrückt wird, wodurch das Totvolumen auf ein Minimum reduziert wird, was sich wiederum positiv auf Enddruck und Saugvermögen der Membranvakuumpumpe auswirkt. Der dabei verwendete Druck sollte nicht zu einer plastischen Dehnung oder einer Zerstörung des Membranwerkstoffes führen.
  • Grundsätzlich besteht auch die Möglichkeit, dass der Totpunkt derart eingestellt wird, dass zwischen Membran und Membrankopf ein Abstand von weniger als 0,5 Millimeter, besonders vorteilhaft von weniger als 0,3 Millimeter verbleibt. Gemäß dieser Ausführungsform ist zwar ein geringes Totvolumen in dem Membrankopf vorhanden. Hierdurch wird jedoch ein Verschleiß der Membran vermieden.
  • Gemäß einer besonders bevorzugten Ausführungsform wird die Kalibrierung vollautomatisch durchgeführt. Hierdurch erhält man eine erhebliche Zeitersparnis, da eine manuelle Kalibrierung sehr zeitaufwendig ist.
  • Eine Kalibrierfahrt umfasst vorzugsweise wenigstens einen Hub des Kolbens. Bei der Kalibrierfahrt führt der Kolben in der Regel vorteilhaft mehrere Hübe durch, um eine möglichst gute Kalibrierung zu erzielen.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass bei der Verwendung eines Klopfsensors der Hub des Kolbens verringert wird, wenn die Steuereinrichtung ein Signal von dem Klopfsensor erhält. Erhält der Klopfsensor ein Signal, ist die Membran gegen den Klopfsensor gefahren. Hierbei erfasst die Steuervorrichtung, dass der Hub zu groß ist, beziehungsweise dass der Totpunkt für eine optimale Kalibrierung überschritten wurde. In diesem Falle wird vorteilhaft der Hub des Kolbens entweder um einen vordefinierten Wert verringert oder der Hub wird schrittweise verringert und nach jedem Schritt wird erneut ein Hub ausgeführt, um zu prüfen, ob der Klopfsensor bei verringertem Hub immer noch ein Signal liefert.
  • Der vordefinierte Wert wird im Vorfeld festgelegt. Beispielsweise kann der Hub, wenn der Klopfsensor ein Signal gibt, im Zehntel Millimeterbereich verringert werden. Es ist auch von vornherein möglich festzulegen, dass der Hub des Kolbens um 0,3 Millimeter oder 0,5 Millimeter verringert wird.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass eine Haltekraft eingestellt wird, mit der die Membran gegen den Membrankopf gedrückt wird, und dass diese Ist-Position des Kolbens erfasst und gespeichert wird. Diese Haltekraft wird benötigt, um die Membran, nachdem sie vorteilhaft langsam in den mechanischen Endpunkt gedrückt wurde, dort kurzzeitig zu halten, wodurch die Möglichkeit besteht, den Endpunkt zu erfassen und abzuspeichern.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass der maximale Hub des Kolbens während der Kalibrierfahrt die ermittelte Ist-Position überschreitet. Es besteht die Möglichkeit, den maximalen Hub zu Beginn der Kalibrierfahrt absichtlich höher einzustellen als eigentlich vorgesehen. In diesem Fall drückt der Kolben die Membran in den Endpunkt und es wird so der maximale Hub von der Steuereinrichtung ermittelt.
  • Wird die Membran gegen den Membrankopf gefahren, stellt die Steuereinrichtung diese Bewegung als fehlerhaft fest. Um die Bewegung fortsetzen zu können, wird verhindert, dass der Kolben stoppt.
  • Die durch den Kontakt der Membran mit dem Membrankopf beziehungsweise dem ständigen Vergleich der Soll- und Ist-position des Kolbens entstehenden Bewegungsfehler werden vorteilhaft gezählt. Erreicht der Zähler dabei einen definierten Wert, beendet die Steuervorrichtung die Bewegung, da der Endpunkt der Bewegung erreicht wurde. Das bedeutet, dass gemäß einer vorteilhaften Ausführungsform der Erfindung vor Aufnahme des Pumpbetriebes der Membranvakuumpumpe die Membran gegen den Membrankopf gefahren wird, dass die Steuereinrichtung diese Bewegung als fehlerhaft erfasst und dass nach wenigstens zwei fehlerhaften Bewegungen die Steuereinrichtung die Ist-Position des Totpunktes des Kolbens erfasst und verringert. Diese Maßnahme dient dazu, den Verschleiß der Membran zu minimieren.
  • Die Verringerung der Ist-Position des Totpunktes des Kolbens erfolgt vorzugsweise um einen vordefinierten Wert. Wie schon ausgeführt, kann der Wert vorher festgelegt werden, beispielsweise in Zehntel Millimeterschritten (abhängig von der Auflösung des verbauten Messsystems).
  • Die Größe des vordefinierten Wertes bestimmt vorteilhafterweise, ob die Membran im Totpunkt des Kolbens mit Abstand zu dem Membrankopf, anliegend an dem Membrankopf oder gegen den Membrankopf gedrückt angeordnet ist.
  • Je nachdem, welcher Betrieb mit der Membranvakuumpumpe gewünscht ist, wird der definierte Wert im Vorfeld festgelegt.
  • Wird die Membran in den Membrankopf gedrückt, wird das Totvolumen möglichst verkleinert.
  • Liegt die Membran lediglich am Membrankopf an oder ist ein minimaler Spalt zwischen Membran und Membrankopf enthalten, ist der Verschleiß der Membran geringer.
  • Vor jedem Einschalten der Pumpe ist es gemäß einer vorteilhaften Ausführungsform der Erfindung möglich, dass der Kolben mit der Membran (Aktor) absichtlich gegen den Membrankopf fährt. Hierdurch misst die Steuereinrichtung eine fehlerhafte Bewegung in Form von "Moving Errors". Nach einer gewissen Anzahl von Fehlbewegungen über einen bestimmten Zeitraum nimmt die Steuereinrichtung den Ist-Wert des inkrementalen Sensors und subtrahiert eine gewisse Wegstrecke von dem Ist-Wert.
  • Die definierte Strecke kann dabei in Millimetern angegeben werden. Es ist auch möglich, eine andere Zähleinheit, beispielsweise "Counts" zu verwenden, die zu den Längeneinheiten proportional ist.
  • Die festgelegte Strecke oder die festgelegte Menge an "Counts" hängt unter anderem von den Fertigungstoleranzen ab.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass ein durch einen hochfrequenten Betrieb auftretender Überschwung des Totpunktes des Kolbens bei der Einstellung des Totpunktes des Kolbens berücksichtigt wird.
  • Im hochfrequenten Betrieb wird ein so genannter "Over-Shot", also ein Überschwung des eigentlichen anzufahrenden Endpunktes erzeugt. Dies ist bei der Kalkulation des Totpunktes und somit bei der abzuziehenden Wegstrecke oder der "Counts" ebenfalls zu berücksichtigen. Den so ermittelten Maximalwert speichert die Steuereinrichtung für den Dauerbetrieb als Totpunkt ab.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung wird ein unteres Bewegungslimit des Kolbens ermittelt und abgespeichert. Ein unteres Bewegungslimit, das heißt, wenn der Kolben sich von dem Membrankopf wegbewegt, wird vorteilhaft wie das obere Limit berechnet und abgespeichert. Um einen möglichst symmetrischen Bewegungsablauf der Membran zu erzeugen, wird bei der Berechnung angestrebt, dass die Membran möglichst dieselbe Wegstrecke in positiver wie in negativer Richtung zurücklegt.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung wird eine zur Verkleinerung der Aktoreinheit, bestehend aus Schwingspulenantrieb, Kolben und Membran, beitragende Differenzdruckminimierung durch Abdichten des Antriebsraumes gegen den Atmosphärendruck erreicht. Wird der Differenzdruck durch selbstständiges Auspumpen des Rückraumes der Membran gesenkt, kann ein kleinerer Schwingspulenantrieb oder eine niedrigere Stromstärke verwendet werden.
  • Besonders gut wird die Differenzdruckminimierung erreicht bei einer zweiköpfigen Membranpumpe, bei der sich die Kräfte beider Köpfe aufheben.
  • Zur weiteren Optimierung beziehungsweise Reduzierung der Kraft kann wenigstens eine Feder im Membrankopf oder im Linearantrieb integriert werden. Hierdurch wird der Aktor bei der Rückstellung der Membran unterstützt.
  • Die erfindungsgemäße Membranvakuumpumpe zur Förderung eines Gases mit einem mit dem Gas füllbaren Förderraum mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum mit einer Membran, die den Förderraum und den Antriebsraum trennt und zwischen Förderraum und Antriebsraum schwingend angeordnet ist, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist, zeichnet sich dadurch aus, dass eine Vorrichtung zur Erfassung eines Totpunktes und/oder einer Position des Kolbens vorgesehen ist und dass eine Steuervorrichtung vorgesehen ist, die als eine den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung verstellbare Steuervorrichtung ausgebildet ist.
  • Die erfindungsgemäße Membranvakuumpumpe weist den Vorteil auf, dass mit ihr Selbstkalibrierungsverfahren durchführbar sind, wie es in den Ansprüchen 1 bis 16 beschrieben ist.
  • Mit der erfindungsgemäßen Membranvakuumpumpe kann der optimale Totpunkt über eine Selbstkalibrierung erfasst und eingestellt werden, so dass die Membranvakuumpumpe einen optimalen Enddruck und ein optimales Kompressionsverhältnis erreicht.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist wenigstens ein Klopfsensor vorgesehen. Die in der Membranvakuumpumpe angeordnete Steuervorrichtung verstellt vorteilhaft aufgrund eines Signales des Klopfsensors den Totpunkt des Kolbens. Das bedeutet, dass der Klopfsensor ein Signal abgibt, wenn die Membran gegen den Klopfsensor fährt. In diesem Fall ist der Druckpunkt nicht korrekt eingestellt und der maximale Hub des Kolbens wird verringert. Die Verringerung kann schrittweise um vorbestimmte Weglängen oder "Counts" erfolgen. Es ist auch möglich, einen vordefinierten Wert vorzusehen, um den der Maximalhub verringert wird.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Steuervorrichtung als eine den Totpunkt des Kolbens lediglich während einer Kalibrierfahrt verstellende Steuereinrichtung ausgebildet.
  • Während der Kalibrierfahrt, die aus wenigstens einem Hub, vorteilhaft aus mehreren Hüben des Kolbens bestehen kann, kann der Druckpunkt des Kolbens von der Steuereinrichtung verstellt werden. Ist der Totpunkt optimal eingestellt, wird dieser abgespeichert und im Betrieb der Pumpe, das heißt im Pumpbetrieb, nicht mehr verändert.
  • Erst wenn eine neue Kalibrierfahrt durchgeführt wird, beispielsweise nach einer Standzeit der Pumpe, wird der Totpunkt durch die Steuereinrichtung bei Bedarf wieder verstellt.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Vorrichtung zur Erfassung eines Totpunktes und/oder einer Position des Kolbens als Hallsensor ausgebildet.
  • Vorteilhaft ist die Vorrichtung zur Erfassung eines Totpunktes und/oder einer Position des Kolbens als inkrementaler Hallsensor ausgebildet.
  • Hallsensoren eignen sich sehr gut als Wegsensoren, um die Position des Kolbens zu erfassen.
  • Die Membranvakuumpumpe kann als einköpfige, zweiköpfige oder mehrköpfige Membranvakuumpumpe ausgebildet sein.
  • Es besteht zum Beispiel die Möglichkeit, eine zweiköpfige Membranvakuumpumpe vorzusehen, wobei der Kolben auf jeder Seite in axialer Richtung gesehen eine Membran in Bewegung versetzt.
  • Es besteht auch die Möglichkeit, auf einer Seite zwei Membranköpfe und auf der anderen Seite des Kolbens einen Membrankopf vorzusehen.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist der Antriebsraum gegen Atmosphärendruck abgedichtet ausgebildet. Die zur Verkleinerung der Aktoreinheit beitragende Differenzdruckminimierung wird durch Abdichten des Antriebsraumes gegen den Atmosphärendruck erreicht.
  • Vorteilhaft ist der Antriebsraum als ausgepumpter Antriebsraum ausgebildet. Wird der Differenzdruck durch selbstständiges Auspumpen des Rückraumes der Membran gesenkt, kann ein kleinerer Schwingspulenantrieb oder eine niedrigere Stromstärke verwendet werden.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Membranvakuumpumpe ist zur Rückstellung des Kolbens und der Membran wenigstens eine Feder im Membrankopf und/oder im Linearantrieb vorgesehen. Durch die Feder wird eine Optimierung und Reduzierung der Kraft erreicht. Der Aktor wird bei Rückstellung der Membran durch die Feder unterstützt.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung weist die Membranvakuumpumpe wenigstens ein Einlassventil und wenigstens ein Auslassventil auf, die mit dem Förderraum in Verbindung stehen. Die Ventile sind vorteilhaft als Zungenventile und/oder Kugelventile und/oder Scheibenventile ausgebildet. Andere Arten von Ventilen sind ebenfalls möglich.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist eine Membranvakuumpumpe vorgesehen, wobei ein Schwingspulenantrieb wenigstens eine Spule und wenigstens einen der Spule zugeordneten Magneten aufweist, bei dem die Spule als Stator und der Magnet als Läufer ausgebildet sind. Hierbei wechselt die Spule des Antriebes von der Position des Läufers auf die Position des Stators. Gleichzeitig wird der Magnetstator zum neuen Läufer des Antriebes. Der besondere Vorteil dieser Ausführungsform liegt darin, dass die Wärme, die primär durch die Spule entsteht, deutlich besser abgeführt werden kann. Hierzu ist gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung vorgesehen, dass der Stator mit einem Gehäuse temperaturleitend verbunden ist, und dass an dem Gehäuse Kühlrippen angeordnet sind. Hierdurch ist es möglich, die Temperatur des Systems sehr gut abzuleiten. Es kann beispielsweise auch vorgesehen sein, ein strömungsgünstiges Anblasen des Gehäuses vorzusehen, um die Temperatur des Systems auf einem konstanten Niveau zu halten.
  • Der Läufer kann vorteilhaft auf wenigstens zwei Gleitlagern oder wenigstens zwei Kugelhülsen gelagert werden.
  • Hierdurch ist es möglich, den Spalt zwischen Spule und Magnet effektiv zu verkleinern, wodurch der Wirkungsgrad des Antriebes steigt.
  • Die erfindungsgemäße Membranvakuumpumpe zur Förderung eines Gases mit einem mit dem Gas füllbaren Förderraum, mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum, mit einer Membran, die den Förderraum und den Antriebsraum trennt und zwischen Förderraum und Antriebsraum schwingend angeordnet ist, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist, wobei der Schwingspulenantrieb wenigstens eine Spule und wenigstens einen der Spule zugeordneten Magneten aufweist, ist dadurch gekennzeichnet, dass die Spule als Stator und der Magnet als Läufer ausgebildet sind.
  • Bei aus der Praxis bekannten Schwingspulenantrieben ist die Spule als Läufer und der Magnet als Stator ausgebildet. Bei diesen Schwingspulenantrieben treten sehr hohe Temperaturen in dem Schwingspulenantrieb auf, da die Spule als Läufer schlecht gekühlt werden kann.
  • Gemäß der Erfindung wechselt die Spule des Antriebes von der Position des Läufers auf die Position des Stators. Gleichzeitig wird der Magnetstator zum neuen Läufer des Antriebes. Der besondere Vorteil der Erfindung liegt darin, dass die Wärme, die primär durch die Spule entsteht, deutlich besser abgeführt werden kann. Die Spule ist gemäß einer vorteilhaften Ausführungsform der Erfindung mit einem Gehäuse temperaturleitend verbunden, wobei an dem Gehäuse vorteilhaft Kühlrippen angeordnet sind. Hierdurch ist es möglich, die Temperatur des Systems sehr gut abzuleiten. Es kann beispielsweise auch vorgesehen sein, ein strömungsgünstiges Anblasen des Gehäuses vorzusehen, um die Temperatur des Systems auf einem konstanten Niveau zu halten.
  • Der Läufer kann vorteilhaft auf wenigstens zwei Gleitlagern oder wenigstens zwei Kugelhülsen gelagert werden.
  • Hierdurch ist es möglich, den Spalt zwischen Spule und Magnet effektiv zu verkleinern, wodurch der Wirkungsgrad des Antriebes steigt.
  • Gemäß einer besonders vorteilhaften Ausführungsform der Membranvakuumpumpe mit der Spule als Stator und den Dauermagneten als Läufer ist eine Vorrichtung zur Erfassung eines Totpunktes und/oder einer Position des Kolbens und eine Steuervorrichtung vorgesehen, die als eine den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung verstellbare Steuervorrichtung ausgebildet ist.
  • Diese erfindungsgemäße Membranvakuumpumpe weist den Vorteil auf, dass mit ihr Selbstkalibrierungsverfahren durchführbar sind, wie es in den Ansprüchen 1 bis 16 beschrieben ist.
  • Mit der erfindungsgemäßen Membranvakuumpumpe kann der optimale Totpunkt über eine Selbstkalibrierung erfasst und eingestellt werden, so dass die Membranvakuumpumpe einen optimalen Enddruck erreicht, wobei gleichzeitig eine effektive Kühlung der Spulen möglich ist.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist wenigstens ein Klopfsensor vorgesehen und die Steuervorrichtung ist als eine aufgrund eines Signales des Klopfsensors den Totpunkt verstellende Steuervorrichtung ausgebildet. Das bedeutet, dass der Klopfsensor ein Signal abgibt, wenn die Membran gegen den Klopfsensor fährt. In diesem Fall ist der Druckpunkt nicht korrekt eingestellt und der maximale Hub des Kolbens wird verringert. Die Verringerung kann schrittweise um vorbestimmte Weglängen oder "Counts" erfolgen. Es ist auch möglich, einen vordefinierten Wert vorzusehen, um den der Maximalhub verringert wird.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Steuervorrichtung als eine den Totpunkt des Kolbens lediglich während einer Kalibrierfahrt verstellende Steuereinrichtung ausgebildet.
  • Während der Kalibrierfahrt, die aus wenigstens einem Hub, vorteilhaft aus mehreren Hüben des Kolbens bestehen kann, kann der Druckpunkt des Kolbens von der Steuereinrichtung verstellt werden. Ist der Totpunkt optimal eingestellt, wird dieser abgespeichert und im Betrieb der Pumpe, das heißt im Pumpbetrieb, nicht mehr verändert.
  • Erst wenn eine neue Kalibrierfahrt durchgeführt wird, beispielsweise nach einer Standzeit der Pumpe wird der Totpunkt durch die Steuereinrichtung bei Bedarf wieder verstellt.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Vorrichtung zur Erfassung eines Totpunktes oder einer Position des Kolbens als Hallsensor ausgebildet. Vorteilhaft ist die Vorrichtung zur Erfassung eines Totpunktes oder einer Position des Kolbens als inkrementaler Hallsensor ausgebildet.
  • Hallsensoren eignen sich sehr gut als Wegsensoren, um die Position des Kolbens zu erfassen.
  • Die Membranvakuumpumpe kann als einköpfige, zweiköpfige oder mehrköpfige Membranvakuumpumpe ausgebildet sein.
  • Es besteht zum Beispiel die Möglichkeit, eine zweiköpfige Membranvakuumpumpe vorzusehen, wobei der Kolben auf jeder Seite in axialer Richtung gesehen eine Membran in Bewegung versetzt.
  • Es besteht auch die Möglichkeit, auf einer Seite zwei Membranköpfe und auf der anderen Seite des Kolbens einen Membrankopf vorzusehen.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist der Antriebsraum gegen Atmosphärendruck abgedichtet ausgebildet. Die zur Verkleinerung der Aktoreinheit beitragende Differenzdruckminimierung wird durch Abdichten des Antriebsraumes gegen den Atmosphärendruck erreicht. Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist der Antriebsraum als ausgepumpter Antriebsraum ausgebildet. Wird der Differenzdruck durch selbstständiges Auspumpen des Rückraumes der Membran gesenkt, kann ein kleinerer Schwingspulenantrieb oder eine niedrigere Stromstärke verwendet werden.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Membranvakuumpumpe ist zur Rückstellung des Kolbens und der Membran wenigstens eine Feder im Membrankopf und/oder im Linearantrieb vorgesehen. Durch die Feder wird eine Optimierung und Reduzierung der Kraft erreicht. Der Aktor wird bei Rückstellung der Membran durch die Feder unterstützt.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung weist die Membranvakuumpumpe wenigstens ein Einlassventil und wenigstens ein Auslassventil auf. Die Ventile stehen vorteilhaft mit dem Förderraum in Verbindung. Die Ventile sind vorteilhaft als Zungenventile und/oder Kugelventile und/oder Scheibenventile ausgebildet. Andere Arten von Ventilen sind ebenfalls möglich.
  • Das erfindungsgemäße Verfahren ist mit sämtlichen Merkmalen bei den in der Anmeldung beschriebenen Membranvakuumpumpen einsetzbar. Die beschriebenen Membranvakuumpumpen sind mit ihren in der Anmeldung offenbarten Merkmalen ebenfalls kombinierbar.
  • Die Membranvakuumpumpe kann vorteilhaft als zweiköpfige Membranvakuumpumpe mit einem Schwingspulenantrieb ausgebildet sein.
  • Zweiköpfige Membranvakuumpumpe bedeutet, dass auf beiden Seiten des Kolbens eine Membran von dem sich hin- und herbewegenden Kolben angetrieben wird.
  • Es kann hierbei eine Energierückgewinnung durch Federn auf beiden Seiten des Kolbens vorgesehen sein. Anstelle der Federn können auch Kondensatoren vorgesehen sein.
  • In diesem Fall ist eine Differenzdruckminimierung nicht notwendig, da zwei Membranen in einer Achse liegen. Hierdurch heben sich die Kräfte auf, die durch den Differenzdruck entstehen.
  • Mit den erfindungsgemäßen Membranvakuumpumpen können tiefere Enddrücke erreicht werden, da das Totvolumen gegenüber dem Stand der Technik deutlich verkleinert wird.
  • Die Anbindung der wenigstens einen Spule des Schwingspulenantriebes oder der Spulenpaare des Schwingspulenantriebes direkt an das Gehäuse ermöglichen eine effektive Kühlung, beispielsweise durch Anblasen einer Gehäuseverrippung.
  • Die erfindungsgemäße Membranpumpe mit Schwingspulenantrieb weist folgende Vorteile auf:
    1. 1. Kipp- beziehungsweise Pendelbewegungen der Membran von konventionellen, zum Stand der Technik gehörenden Membranpumpen mit Kurbelwelle werden durch eine rein lineare Bewegung verhindert. Ein Verschleiß der Membran im Membrankopf durch Schleifen oder Reiben am Membrankopf wird dadurch eliminiert.
    2. 2. Die erfindungsgemäße Membranpumpe weist einen optimal angepassten Membrankopf an eine reine Linearbewegung der Membran auf, wodurch effektiv das Totvolumen verringert wird.
    3. 3. Die Verringerung oder Verkleinerung der Ventilkanäle verringert das Totvolumen und verbessert damit den Enddruck beziehungsweise das Kompressionsverhältnis.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer erfindungsgemäßen Membranvakuumpumpe nur beispielhaft dargestellt sind. In der Zeichnung zeigen:
  • Fig. 1
    einen Längsschnitt durch eine zweiköpfige Membranvakuumpumpe;
    Fig. 2
    eine perspektivische Ansicht mit Längsschnitt durch eine Membranvakuumpumpe gemäß Fig. 1;
    Fig. 3
    eine Seitenansicht in Längsrichtung der Membranvakuumpumpe der Fig. 1;
    Fig. 4
    eine perspektivische Ansicht einer Membranvakuumpumpe;
    Fig. 5
    einen Längsschnitt durch eine dreiköpfige Membranvakuumpumpe;
    Fig. 6
    ein Schnittbild durch eine Membranvakuumpumpe in vier Phasen in Funktion.
  • Fig. 1 zeigt eine Membranvakuumpumpe 1 mit zwei mit einem Kolben 2 kraftschlüssig in Verbindung stehenden Membranen 3, 4. Den Membranen 3, 4 ist jeweils ein Membrankopf 5, 6 zugeordnet, gegen den die Membranen 3, 4 bei maximaler Auslenkung des Kolbens 2 fahren.
  • Um eine kontinuierliche Schwingung beziehungsweise oszillierende Bewegung des Kolbens 2 zu erzeugen, werden Spulen 7, also stromdurchflossene Leiter in einem Magnetfeld von Permanentmagneten 8 mit ständig wechselnder Stromrichtung betrieben. Zwischen den Spulen 7 und den Dauermagneten 8 ist ein Luftspalt vorhanden. Dieser sollte möglichst gering sein, um den Wirkungsgrad des Aktuators, bestehend aus Kolben 2 sowie Membranen 3, 4 zu erhöhen.
  • Der Kolben 2 ist unmagnetisch ausgebildet und ist auf Gleitlagern 9 gelagert. Es ist auch eine Lagerung ohne Gleitlager möglich mit optimierter positiver (stabilisierender) Radialsteifigkeit der Membrananordnungen (senkrecht zur Hubrichtung) und negativer (destabilisierender) Radialsteifigkeit der Spulenanordnung (senkrecht zur Hubrichtung).
  • Um permanent die Position des Kolbens 2 feststellen zu können, befindet sich ein inkrementaler Hallsensor 10, der in der Fig. 1 nur schematisch dargestellt ist, zur Erfassung des Weges im Bereich des Kolbens 2. Der Hallsensor 10 wird auch zur Stromumkehr verwendet, indem abhängig von der Position des Kolbens 2 die Stromrichtung frühzeitig umgekehrt wird. Zur Energierückgewinnung sind Federn 11 vorgesehen. Die Federn 11 sind auf beiden Seiten des Kolbens 2 angeordnet. Es können auch Kondensatoren (nicht dargestellt) zur Energierückgewinnung vorgesehen sein.
  • Die Membranen 3, 4 sind zwischen einem Gehäuse 12 und den Membranköpfen 5, 6 eingeklemmt, so dass ein Förderraum 13, 14 gasdicht von einem Antriebsraum 15 getrennt ist.
  • Gegenüber einem herkömmlichen Schwingspulenantrieb weist der in Fig. 1 dargestellte Antrieb die Spule 7 auf, die als Stator ausgebildet ist. Die Dauermagneten 8 sind als Läufer ausgebildet. Hierdurch ist eine sehr gute Wärmeabfuhr aus der Spule 7 durch direkten Kontakt mit dem Gehäuse 12 möglich. Das Gehäuse 12 weist insbesondere im Bereich der Spule 7 Kühlrippen 16 auf. Diese Kühlrippen können beispielsweise mit Raumluft, die im Vergleich zur Gehäusetemperatur eine geringere Temperatur aufweist, umströmt werden, wodurch die Spule 7 auf einer konstanten Temperatur gehalten werden kann.
  • Die in Fig. 1 dargestellte Spule 7 besteht vorteilhaft aus mehreren Spulenpaaren, die unterschiedlich bestromt werden können, um den Dauermagnetläufer bewegen zu können.
  • In Fig. 2 ist die Vakuumpumpe 1 in aufgeschnittener Form dargestellt. Gleiche Teile sind mit gleichen Bezugszahlen versehen. Um Wiederholungen zu vermeiden, wird auf die Figurenbeschreibung von Fig. 1 verwiesen.
  • In Fig. 2 sind die Kühlrippen 16 erkennbar, die zur Kühlung der Spule 7 dienen.
  • Fig. 3 zeigt eine Seitenansicht der Vakuumpumpe 1 mit den Kühlrippen 16.
  • Fig. 4 zeigt eine perspektivische Ansicht der Membranpumpe 1. Ebenfalls deutlich sind die Kühlrippen 16 erkennbar.
  • Die Vakuumpumpe 1, die in Fig. 1 dargestellt ist, weist den Hallsensor 10 auf, der dazu dient, die Position des Kolbens 2 zu erfassen. Eine lediglich schematisch angedeutete Steuervorrichtung 17, an die die Signale des Hallsensors 10 übermittelt werden, erfasst den Totpunkt des Kolbens 2. Die Steuervorrichtung 17 erfasst in Abhängigkeit von der Position des Kolbens 2 den Totpunkt des Kolbens. Vor Inbetriebnahme der Pumpe, das heißt vor einem Pumpvorgang wird eine Kalibrierfahrt durchgeführt. Hierbei fährt der Kolben 2 mit gegenüber dem Pumpbetrieb reduzierter Kraft die Membran 3 in den Membrankopf 5 oder gegen einen mechanischen Endpunkt der Membran 3. Hierbei detektiert die Steuervorrichtung 17 die Ist-Position des Kolbens 2 kontinuierlich und vergleicht diese mit einer Soll-Position. Aus einem Vergleich der Ist-Position mit der Soll-Position ermittelt die Steuervorrichtung 17 den Endpunkt der Bewegung der Membran. Dieser Endpunkt wird während des Pumpbetriebes der Membranvakuumpumpe 1 kontinuierlich als Maximalhub verwendet.
  • Der Totpunkt des Kolbens 2 kann derart eingestellt werden, dass die Membran 3 an dem Membrankopf 5 anliegend angeordnet ist. Der Totpunkt kann auch derart eingestellt werden, dass zwischen Membran und Membrankopf ein Abstand von weniger als 0,3 mm verbleibt. Der Totpunkt kann auch derart eingestellt werden, dass die Membran 3 mit einer gewissen Kraft gegen den Membrankopf 5 gedrückt wird.
  • Vorteilhaft ist der Totpunkt derart eingestellt, dass die Membran 3 vollständig an dem Membrankopf 5 anliegt, damit der Förderraum 13 kein Totvolumen aufweist, so dass die Pumpleistung der Pumpe optimiert wird.
  • Gemäß der in Fig. 1 dargestellten zweiköpfigen Membranpumpe wird die beschriebene Kalibrierung auch für die Membran 4 und den Membrankopf 6 entsprechend durchgeführt.
  • Der Antriebsraum 15 ist gegen Atmosphärendruck abgedichtet. Vorteilhaft ist der Antriebsraum 15 zusätzlich ausgepumpt. Die Membranvakuumpumpe 1 gemäß Fig. 1 weist ein Einlassventil sowie ein Auslassventil für jeden Förderraum 13, 14 auf.
  • Fig. 5 zeigt ein geändertes Ausführungsbeispiel einer Membranvakuumpumpe 20. Die Membranvakuumpumpe 20 weist ein Gehäuse 21 auf, in dem der Kolben 22 linear gelagert ist.
  • Der Linearantrieb, bestehend aus Spulen und Magneten, ist in Fig. 5 nicht dargestellt, erfolgt jedoch nach dem Prinzip der Fig. 1.
  • Gemäß Fig. 5 weist die Vakuumpumpe drei Membranköpfe 22, 23, 24 auf. Den Membranköpfen 22, 23, 24 sind Membranen 25, 26, 27 zugeordnet. Die Bewegung der Membran 27 durch den Kolben 22 erfolgt unmittelbar über eine Stange 28. Die Bewegung der Membranen 25, 26 durch den Kolben 22 erfolgt über ein T-Stück 29. Die Membranköpfe 22, 23 können parallel oder in Reihe geschaltet sein.
  • In Fig. 5 sind lediglich die Membranköpfe 22, 23, 24 schematisch dargestellt. Ein- und Auslässe sind nicht dargestellt.
  • Fig. 6 zeigt der Vollständigkeit halber das Funktionsprinzip einer Membranvakuumpumpe gemäß dem Stand der Technik.
  • Fig. 6 zeigt eine Membranvakuumpumpe 1 mit einem Gehäuse 12 mit einer Membran 30, die im Gehäuse 12 randseitig eingespannt ist und von einem Antriebspleuel 31 eines motorischen Antriebes in eine taumelnde Abwärtsbewegung versetzt werden kann.
  • Im Gehäuse 12 befindet sich ein von der Membran 3 von einem Gehäusekopf 32 begrenzter Schöpfraum 13, der gegenüber der Membran 3 von dem Gehäusekopf 5 des Gehäuses 12 begrenzt ist.
  • Im Gehäusekopf 5 befindet sich mindestens eine in den Förderraum 13 führende Ansaugleitung 18 mit einer Einlassventilanordnung 33 und mindestens einer aus dem Schöpfraum 13 führende Ausstoßleitung 19 mit einer Auslassventilanordnung 34.
  • Generell gilt, dass die Einlassventilanordnung 33 eine Einlassventilöffnung 35 und einen die Einlassventilöffnung 35 bei Überdruck im Schöpfraum 13 schließenden Einlassventilkörper 36 aufweist. In entsprechender Weise weist die Auslassventilanordnung 34 bei Unterdruck im Schöpfraum 13 einen schließenden Auslassventilkörper 37 auf.
  • Bei der Abwärtsbewegung der Membran 3 entsteht im Förderraum 13 ein Unterdruck, wodurch am Einlassventilkörper 36 ein Differenzdruck ansteht, der den Ventilkörper 36 in Richtung Förderraum 13 drückt. Durch das geöffnete Einlassventil strömt Gas aus der Ansaugleitung 18 in den Schöpfraum 13. Bei der Aufwärtsbewegung der Membran 3 entsteht im Förderraum 13 ein Überdruck, wodurch am Einlassventilkörper 36 ein Differenzdruck ansteht, der den Ventilkörper 36 in Richtung Ventilöffnung 35 drückt. Bei der Abwärtsbewegung der Membran 3 entsteht im Förderraum 13 ein Unterdruck, wodurch am Auslassventilkörper 38 ein Differenzdruck entsteht, der den Ventilkörper 38 in Richtung Förderraum 13 und in die Ventilöffnung 39 drückt. Bei der Aufwärtsbewegung der Membran 3 entsteht im Förderraum 13 ein Überdruck, wodurch am Auslassventilkörper 38 ein Differenzdruck ansteht, der den Ventilkörper 38 in Richtung Gehäusedeckel 40 drückt. Das bedeutet, dass sich bei Abwärtsbewegung des Pleuels 31 die Einlassventilanordnung 33 öffnet, so dass Gas aus der Leitung 18 in den Förderraum 13 strömt. Bei Aufwärtsbewegung des Pleuels 31 schließt die Einlassventilanordnung 33 und die Auslassventilanordnung 34 öffnet, so dass das in dem Förderraum 13 befindliche Gas in die Leitung 19 strömt.
  • Bezugszahlen
  • 1
    Membranvakuumpumpe
    2
    Kolben
    3
    Membran
    4
    Membran
    5
    Membrankopf
    6
    Spule
    7
    Spule
    8
    Magnet
    9
    Gleitlager
    10
    Hallsensor
    11
    Federn
    12
    Gehäuse
    13
    Förderraum
    14
    Förderraum
    15
    Antriebsraum
    16
    Kühlrippen
    17
    Steuervorrichtung
    18
    Einlass
    19
    Auslass
    20
    Membranpumpe
    21
    Gehäuse
    22
    Membrankopf
    23
    Membrankopf
    24
    Membrankopf
    25
    Membran
    26
    Membran
    27
    Membran
    28
    Stange
    29
    T-Stück
    30
    Membran
    31
    Pleuel
    32
    Gehäusekopf
    33
    Einlassventilanordnung
    34
    Auslassventilanordnung
    35
    Einlassventilöffnung
    36
    Ventilkörper
    37
    Ventilkörper
    38
    Ventilkörper
    39
    Auslassventilöffnung
    40
    Gehäusedeckel

Claims (16)

  1. Verfahren zur Kalibrierung einer Membranvakuumpumpe zur Förderung eines Mediums, mit einem mit dem Medium füllbaren Förderraum, mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum, mit einer Membran, die den Förderraum und den Antriebsraum trennt und zwischen Förderraum und Antriebsraum schwingend angeordnet ist, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist,
    dadurch gekennzeichnet, dass eine Vorrichtung (10) zur Erfassung eines Totpunktes und/oder Position des Kolbens (2) vorgesehen ist, und dass eine Steuervorrichtung (17) den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung (10) verstellt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinrichtung (17) aufgrund eines Signales wenigstens eines Klopfsensors den Totpunkt verstellt, und/oder dass die Steuereinrichtung (17) den Totpunkt des Kolbens (2) lediglich während einer Kalibrierfahrt verstellt.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuervorrichtung (17) eine Ist-Position des Kolbens (2) kontinuierlich detektiert und mit einer Soll-Position vergleicht, und dass die Steuervorrichtung (17) aus der Ist-Position und der Soll-Position den Endpunkt der Bewegung der Membran (3, 4) ermittelt, insbesondere dass der ermittelte Endpunkt der Membran (3, 4) abgespeichert wird und dass der Endpunkt während des Pumpbetriebes als Maximalhub verwendet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Totpunkt derart eingestellt wird, dass zwischen Membran (3, 4) und Membrankopf (5, 6) ein Abstand von weniger als 0,5 Millimeter verbleibt, insbesondere dass der Totpunkt derart eingestellt wird, dass die Membran (3, 4) an dem Membrankopf (5, 6) anliegt, insbesondere dass der Totpunkt derart eingestellt wird, dass die Membran (3, 4) in den Membrankopf (5, 6) gedrückt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kalibrierung vollautomatisch durchgeführt wird, und dass eine Kalibrierfahrt wenigstens einen Hub des Kolbens (2) umfasst, insbesondere dass bei der Verwendung eines Klopfsensors der Hub des Kolbens (2) verringert wird, wenn die Steuereinrichtung (17) ein Signal von dem Klopfsensor erhält.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor Aufnahme des Pumpbetriebes der Membranvakuumpumpe (1) die Membran (3, 4) gegen den Membrankopf (5, 6) gefahren wird, und dass die Steuereinrichtung (17) diese Bewegung als fehlerhaft erfasst, und dass nach wenigstens zwei fehlerhaften Bewegungen die Steuereinrichtung (17) die Ist-Position des Totpunktes des Kolbens (2) erfasst und verringert, und dass die Verringerung der Ist-Position des Totpunktes des Kolbens (2) um einen vordefinierten Wert erfolgt, insbesondere dass die Größe des vordefinierten Wertes bestimmt, ob die Membran (3, 4) im Totpunkt des Kolbens (2) mit Abstand zu dem Membrankopf (5, 6), anliegend an dem Membrankopf (5, 6) oder gegen den Membrankopf (5, 6) gedrückt angeordnet ist.
  7. Membranvakuumpumpe zur Förderung und Dosierung eines Gases, mit einem mit dem Gas füllbaren Förderraum, mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum, mit einer Membran, die den Förderraum und den Antriebsraum trennt und zwischen Förderraum und Antriebsraum schwingend angeordnet ist, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist,
    dadurch gekennzeichnet, dass eine Vorrichtung (10) zur Erfassung eines Totpunktes und/oder einer Position des Kolbens (2) vorgesehen ist, und dass eine Steuervorrichtung (17) vorgesehen ist, die als eine den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung (10) verstellbare Steuervorrichtung (17) ausgebildet ist.
  8. Membranvakuumpumpe nach Anspruch 7, wobei ein Schwingspulenantrieb wenigstens eine Spule und wenigstens einen der Spule zugeordneten Magneten aufweist, dadurch gekennzeichnet, dass die Spule (7) als Stator und der Magnet (8) als Läufer ausgebildet sind.
  9. Membranvakuumpumpe zur Förderung eines Gases mit einem mit dem Gas füllbaren Förderraum, mit einem mit einem Schwingspulenantrieb linear antreibbaren Kolben in einem Antriebsraum, mit einer Membran, die den Förderraum und den Antriebsraum trennt und zwischen Förderraum und Antriebsraum schwingend angeordnet ist, mit einem Membrankopf, der mit der Membran den Förderraum bildet, wobei der Kolben als ein die Membran in Bewegung versetzender und um eine vorbestimmte Wegstrecke bewegbarer Kolben ausgebildet ist, wobei der Schwingspulenantrieb wenigstens eine Spule und wenigstens einen der Spule zugeordneten Magneten aufweist dadurch gekennzeichnet, dass die Spule (7) als Stator und der Magnet (8) als Läufer ausgebildet sind.
  10. Membranvakuumpumpe nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass der Stator mit einem Gehäuse (12) temperaturleitend verbunden ist, und dass an dem Gehäuse (12) Kühlrippen (16) angeordnet sind.
  11. Membranvakuumpumpe nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass eine Vorrichtung (10) zur Erfassung eines Totpunktes und/oder einer Position des Kolbens (2) vorgesehen ist, und dass eine Steuervorrichtung (17) vorgesehen ist, die als eine den Totpunkt in Abhängigkeit von dem erfassten Signal der Vorrichtung (10) verstellbare Steuervorrichtung (17) ausgebildet ist.
  12. Membranvakuumpumpe nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass wenigstens ein Klopfsensor vorgesehen ist, und dass die Steuervorrichtung (17) als eine aufgrund eines Signales des Klopfsensors den Totpunkt verstellende Steuervorrichtung (17) ausgebildet ist, und/oder dass die Steuereinrichtung (17) als eine den Totpunkt des Kolbens (2) lediglich während einer Kalibrierfahrt verstellende Steuereinrichtung (2) ausgebildet ist, und/oder dass die Vorrichtung (10) zur Erfassung eines Totpunktes und/oder einer Position des Kolbens (2) als Hallsensor ausgebildet ist, und/oder dass die Vorrichtung (10) zur Erfassung eines Totpunktes und/oder einer Position des Kolbens (2) als inkrementaler Hallsensor ausgebildet ist.
  13. Membranvakuumpumpe nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Membranvakuumpumpe (1, 21) als einköpfige, zweiköpfige oder mehrköpfige Membranvakuumpumpe (1, 21) ausgebildet ist, insbesondere dass der Antriebsraum (15) gegen Atmosphärendruck abgedichtet ausgebildet ist.
  14. Membranvakuumpumpe nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass der Antriebsraum (15) als ausgepumpter Antriebsraum (15) ausgebildet ist.
  15. Membranvakuumpumpe nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass zur Rückstellung des Kolbens (2) und der Membran (3, 4) wenigstens eine Feder (11) im Membrankopf (5, 6) und/oder im Linearantrieb vorgesehen ist.
  16. Membranvakuumpumpe nach einem der Ansprüche 7 bis 15, dadurch gekennzeichnet, dass die Membranvakuumpumpe (1, 21) wenigstens ein Einlassventil (18) und wenigstens ein Auslassventil (19) aufweist, und dass die Ventile (18, 19) als Zungenventile und/oder Kugelventile und/oder Scheibenventile ausgebildet sind.
EP14192137.9A 2013-12-03 2014-11-06 Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie Membranvakuumpumpe Active EP2889481B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013113351.7A DE102013113351A1 (de) 2013-12-03 2013-12-03 Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie Membranvakuumpumpe

Publications (4)

Publication Number Publication Date
EP2889481A2 true EP2889481A2 (de) 2015-07-01
EP2889481A3 EP2889481A3 (de) 2015-10-14
EP2889481B1 EP2889481B1 (de) 2018-04-04
EP2889481B2 EP2889481B2 (de) 2022-10-26

Family

ID=51903814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14192137.9A Active EP2889481B2 (de) 2013-12-03 2014-11-06 Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie Membranvakuumpumpe

Country Status (3)

Country Link
EP (1) EP2889481B2 (de)
JP (1) JP6154797B2 (de)
DE (1) DE102013113351A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001083A1 (de) * 2019-07-01 2021-01-07 Ebm-Papst St. Georgen Gmbh & Co. Kg Verfahren zur positionserfassung der membran einer elektromotorisch angetriebenen membranpumpe
CN113518861A (zh) * 2019-07-01 2021-10-19 依必安-派特圣乔根有限责任两合公司 电动隔膜泵隔膜的位置确定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170298919A1 (en) * 2016-04-18 2017-10-19 Ingersoll-Rand Company Direct drive linear motor for conventionally arranged double diaphragm pump
DE102017112975B3 (de) * 2017-06-13 2018-10-25 KNF Micro AG Membranpumpe
CN110230585A (zh) * 2019-06-18 2019-09-13 苏州思维医疗科技有限公司 压力真空控制泵
CN113606121B (zh) * 2021-08-31 2023-09-15 广东佛燃天高流体机械设备有限公司 一种隔膜式压缩机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1960371A1 (de) 1969-12-02 1971-06-09 Klein Heinrich Georg Anhebungsfreies Krankenaufnahmefaltsystem,Steckquerholm,auswechselbare,fuer Decken,Gurte und Verbindung Kopfstuetze,loser Querholmgleiter und Magnethalter
DE102006044248B3 (de) 2006-09-16 2008-04-03 Thomas Magnete Gmbh Membranpumpe

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE859477C (de) 1951-01-30 1952-12-15 Christian Dr Groeber Kolbenverdichter fuer Kaeltemaschinen
JPS534491Y2 (de) * 1973-01-30 1978-02-04
JPS5512222A (en) * 1978-07-11 1980-01-28 Hitachi Metals Ltd Diaphragm pump
DE3246731A1 (de) 1982-12-17 1984-06-20 Wabco Westinghouse Steuerungstechnik GmbH & Co, 3000 Hannover Einrichtung zum erfassen der position des kolbens eines arbeitszylinders
JP2590209B2 (ja) * 1988-06-29 1997-03-12 株式会社長野計器製作所 往復動作動装置
JPH09137781A (ja) 1995-11-15 1997-05-27 Matsushita Refrig Co Ltd 振動型圧縮機
DE19910920B4 (de) 1999-03-12 2006-05-11 Rietschle Thomas Memmingen Gmbh Schwingankermembranpumpe
JP2001090662A (ja) * 1999-09-24 2001-04-03 Sanyo Electric Co Ltd リニアコンプレッサ
BR9907432B1 (pt) 1999-12-23 2014-04-22 Brasil Compressores Sa Método de controle de compressor, sistema de monitoração de posição de um pistão e compressor
US7322801B2 (en) * 2003-08-26 2008-01-29 Thomas Industries Inc. Compact linear air pump and valve package
JP4120512B2 (ja) * 2003-08-27 2008-07-16 日産自動車株式会社 内燃機関の可変圧縮比機構及びそのピストン位置較正方法
DE102004010403A1 (de) 2004-03-03 2005-09-22 BSH Bosch und Siemens Hausgeräte GmbH Reversierender Linearantrieb mit Mitteln zur Erfassung einer Ankerposition
DE102005039772A1 (de) 2005-08-22 2007-03-08 Prominent Dosiertechnik Gmbh Magnetdosierpumpe
SE529328C2 (sv) 2005-11-15 2007-07-10 Johan Stenberg Styrsystem samt metod för styrning av elektromagnetiskt drivna pumpar
WO2008031418A2 (de) * 2006-09-16 2008-03-20 Thomas Magnete Gmbh Membranpumpe
DE102008029370A1 (de) 2008-06-20 2009-12-24 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1960371A1 (de) 1969-12-02 1971-06-09 Klein Heinrich Georg Anhebungsfreies Krankenaufnahmefaltsystem,Steckquerholm,auswechselbare,fuer Decken,Gurte und Verbindung Kopfstuetze,loser Querholmgleiter und Magnethalter
DE102006044248B3 (de) 2006-09-16 2008-04-03 Thomas Magnete Gmbh Membranpumpe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001083A1 (de) * 2019-07-01 2021-01-07 Ebm-Papst St. Georgen Gmbh & Co. Kg Verfahren zur positionserfassung der membran einer elektromotorisch angetriebenen membranpumpe
CN113474557A (zh) * 2019-07-01 2021-10-01 依必安-派特圣乔根有限责任两合公司 电动隔膜泵隔膜的位置确定方法
CN113518861A (zh) * 2019-07-01 2021-10-19 依必安-派特圣乔根有限责任两合公司 电动隔膜泵隔膜的位置确定方法

Also Published As

Publication number Publication date
JP6154797B2 (ja) 2017-06-28
DE102013113351A8 (de) 2024-05-08
DE102013113351A1 (de) 2015-06-03
JP2015117696A (ja) 2015-06-25
EP2889481A3 (de) 2015-10-14
EP2889481B1 (de) 2018-04-04
EP2889481B2 (de) 2022-10-26

Similar Documents

Publication Publication Date Title
EP2889481B1 (de) Verfahren zur Kalibrierung einer Membranvakuumpumpe sowie Membranvakuumpumpe
EP3017196B1 (de) Regelbare kühlmittelpumpe
EP2617996B1 (de) Verdrängerpumpe
EP2550454B1 (de) Verfahren zum regeln einer dosierpumpe
DE102014211126A1 (de) Taumelscheibenkompressor der doppelkopfkolbenart
EP0381835A1 (de) Verfahren und Vorrichtung zur Steuerung einer druckluftbetriebenen Doppelmembranpumpe
DE102014218525B4 (de) Elektrisches Regelventil für einen Klimakompressor mit einem Sensor zur Bestimmung der Stellung des Regelkolbens
EP3508727B1 (de) Scrollpumpe und verfahren zum betreiben einer scrollpumpe
EP2725226A1 (de) Kolbenpumpe
DE1453610B2 (de) Gegentakt-dosierpumpe zum dosieren von fluessigen oder gasfoermigen medien
DE4218631A1 (de) Kuehlungskompressor mit einem profilierten kolben
CN106762926B (zh) 可调压和卸荷的电液控制机构
CN106640798B (zh) 可调压和卸荷的电液控制机构
EP2354546B1 (de) Membranvakuumpumpe
DE10392934T5 (de) Membranpumpe
EP3119596B1 (de) Vorrichtung zum abdichten und aufpumpen aufblasbarer gegenstände
EP2918835B1 (de) Membranpumpe
EP2685104B1 (de) Pumpenmodul, sowie Verdrängerpumpe
EP3488107B1 (de) Oszillierende verdrängerpumpe mit elektro-dynamischem antrieb und verfahren zu deren betrieb
DE102012012735B3 (de) Piezoelektrisch angetriebene Hubkolbenpumpe mit Squiggle-Motor zum Einbau in autonome Funktionsstrukturen
EP4048891A1 (de) Kolbenverdichter und verfahren zum betrieb desselben
DE102012012734B3 (de) Kompressor zum Einbau in autonome Funktionsstrukturen
EP1408234A1 (de) Kolbenmaschine zur Förderung von Gasen
DE2102957C3 (de) Pumpe
DE2000375A1 (de) Gaspumpe- bzw.-verdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141106

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 37/16 20060101ALI20150908BHEP

Ipc: F04B 37/14 20060101ALI20150908BHEP

Ipc: F04B 43/04 20060101ALI20150908BHEP

Ipc: F04B 45/047 20060101ALI20150908BHEP

Ipc: F04B 35/04 20060101AFI20150908BHEP

Ipc: F04B 51/00 20060101ALI20150908BHEP

R17P Request for examination filed (corrected)

Effective date: 20160321

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 51/00 20060101ALI20171010BHEP

Ipc: F04B 43/04 20060101ALI20171010BHEP

Ipc: F04B 45/047 20060101ALI20171010BHEP

Ipc: F04B 37/14 20060101ALI20171010BHEP

Ipc: F04B 37/16 20060101ALI20171010BHEP

Ipc: F04B 35/04 20060101AFI20171010BHEP

INTG Intention to grant announced

Effective date: 20171030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 985891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007826

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180404

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014007826

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

26 Opposition filed

Opponent name: KNF NEUBERGER GMBH

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 985891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191106

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20221026

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014007826

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230907

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231003

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 10

Ref country code: FR

Payment date: 20231127

Year of fee payment: 10

Ref country code: DE

Payment date: 20231004

Year of fee payment: 10