EP1800078B1 - Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge - Google Patents

Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge Download PDF

Info

Publication number
EP1800078B1
EP1800078B1 EP05797323.2A EP05797323A EP1800078B1 EP 1800078 B1 EP1800078 B1 EP 1800078B1 EP 05797323 A EP05797323 A EP 05797323A EP 1800078 B1 EP1800078 B1 EP 1800078B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
heat exchanger
gas heat
cooler
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05797323.2A
Other languages
English (en)
French (fr)
Other versions
EP1800078A1 (de
Inventor
Jörg DIGELE
Peter Geskes
Klaus Irmler
Frank von Lützau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1800078A1 publication Critical patent/EP1800078A1/de
Application granted granted Critical
Publication of EP1800078B1 publication Critical patent/EP1800078B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0425Air cooled heat exchangers
    • F02B29/0431Details or means to guide the ambient air to the heat exchanger, e.g. having a fan, flaps, a bypass or a special location in the engine compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0461Combination of different types of heat exchanger, e.g. radiator combined with tube-and-shell heat exchanger; Arrangement of conduits for heat exchange between at least two media and for heat exchange between at least one medium and the large body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/31Air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an air-cooled exhaust gas heat exchanger, in particular an exhaust gas cooler for motor vehicles, according to the preamble of claim 1 and an arrangement for exhaust gas recirculation according to the preamble of claim 33.
  • Exhaust coolers are used in today's vehicles, especially commercial vehicles, as part of an exhaust gas recirculation (EGR) system for cooling recirculated exhaust gases.
  • EGR exhaust gas recirculation
  • the exhaust gas recirculation is based on legal provisions for reducing the fuel consumption of the internal combustion engine and for reducing the pollutants (in particular NO x ) in the exhaust gases of the internal combustion engine.
  • the previously installed in motor vehicles exhaust gas cooler are cooled by a liquid coolant, which is taken from the cooling circuit of the internal combustion engine.
  • These known liquid-cooled exhaust gas coolers operate very effectively, but have the disadvantage that the cooling of the exhaust gases is bound to the coolant temperature, which is in the range of 80 to 100 ° C. This allows only exhaust gas outlet temperatures behind the exhaust gas cooler of about 120 to 150 ° C reach.
  • the applicant has disclosed a stainless steel exhaust gas heat exchanger which consists of a tube bundle through which exhaust gases can flow and a housing through which a liquid coolant can flow.
  • the exhaust pipes are welded into tubesheets, which in turn are welded to the housing. All welds are preferably made by laser beam welding.
  • the Applicant has disclosed various embodiments of exhaust gas coolers for motor vehicles, one embodiment of which discloses an air-cooled exhaust gas cooler which is constructed as a disk heat exchanger, between which corrugated fins for air cooling are arranged.
  • the disks which form the exhaust ducts, each consist of two disk halves, which are circumferentially soldered together and are interconnected via stackable inlet and outlet openings.
  • winglets are arranged, ie V-shaped arranged lobes or ribs, which provide a turbulence of the exhaust gas flow and prevent soot deposition.
  • the Applicant has disclosed a liquid cooled exhaust gas cooler with an integrated exhaust gas recirculation (EGR) valve which determines the amount of recirculated exhaust gas, thus eliminating a separate EGR valve in the EGR line.
  • EGR exhaust gas recirculation
  • the DE 103 27 847 A1 discloses an exhaust fluid circuit for a turbocharged EGR engine having an air cooled exhaust heat exchanger according to the preamble of claim 1.
  • the exhaust gas heat exchanger on the one hand has a finned tube block, ie a block constructed from tubes for the exhaust gas and fins for the air cooling and, on the other hand, collecting boxes into which the exhaust tubes open.
  • the headers are welded or brazed and have tube sheets, in which the tube ends of the exhaust pipes are soldered or welded, preferably laser-welded.
  • Stainless steel is used as the preferred material for the exhaust pipes and the collecting tanks.
  • Corrugated ribs made of stainless steel or a non-ferrous metal can be used for the ribbing on the outside of the exhaust pipes.
  • the ribs in particular corrugated fins on gills, which are cut by means of known manufacturing processes in the fin material.
  • corrugated ribs and so-called ribbed ribs can be used, as they are known in particular for air-cooled intercoolers.
  • corrugated corrugated fins are known in particular from coolant coolers.
  • the exhaust gas cooler together with other air-cooled heat exchangers to a unit, a so-called cooling module, consisting of Coolant cooler, intercooler and / or condenser to summarize.
  • the exhaust gas cooler according to the invention can be arranged in front of the coolant radiator or condenser, wherein it occupies only a part of the end face. The remaining part of the face can be covered by a charge air cooler. This results in an extremely compact design for a cooling module.
  • the collecting tanks of the exhaust gas heat exchanger are made of plastic, wherein the plastic boxes is mechanically connected to a metallic tube sheet, z. B. by means of a flare connection and an inserted seal.
  • plastic has the advantage of a lower susceptibility to corrosion compared to the exhaust gas.
  • the plastic material is chosen so that it can withstand the mechanical stress due to pressure and temperature of the exhaust gas.
  • the metallic heat exchanger block, consisting of tubes, fins and tubesheet is made separately by soldering or welding. Thereafter, the plastic boxes are placed.
  • the exhaust gas cooler has a bypass channel, which is controlled via a bypass flap.
  • a bypass channel - without bypass flap - assigned to the exhaust gas heat exchanger wherein the flow through the bypass channel is controlled via the different pressure drop in the bypass channel and in the exhaust gas heat exchanger.
  • the bypass channel is designed such that its pressure drop at outside temperatures above freezing is lower than that of the Abgasebenstedtragers, which can be achieved for example by a diaphragm in the entrance region of the bypass channel.
  • the pressure drop in the exhaust gas heat exchanger is greater than that of the bypass channel, so that it is flowed through by exhaust gas. This achieves the advantage that exhaust gas can be recirculated when the exhaust gas cooler is frozen.
  • a bypass flap with its attached problems is eliminated.
  • the exhaust gas heat exchanger associated with a bypass which is opened or closed by a differential pressure controlled valve.
  • Increases the pressure drop in the exhaust gas heat exchanger due to freezing of condensate in the exhaust channels also increases the differential pressure, which opens the valve closing member and thus releases the bypass between Abgaszulite- and - Weg1700technisch.
  • the advantage is achieved that the exhaust gas cooler can be bypassed in the case of freezing and exhaust gas recirculation can be maintained. It is also possible that the valve closing member is driven externally.
  • coolant channels in particular bypass channels, are provided for heating the exhaust gas heat exchanger, in particular its exhaust ducts, which bring heat to the exhaust ducts, which are endangered by the freezing of condensate.
  • the exhaust heat exchanger associated with an electric heater which heats the exhaust channels and thus also prevents freezing.
  • a blind in particular a flap blind is arranged in front of the finned tube block of the exhaust gas cooler. This also has the advantage that a freezing of the exhaust gas cooler with condensate at very low temperatures is avoided and a faster heating of the engine is guaranteed.
  • a displaceable cover device is arranged in the air flow direction in front of the exhaust gas heat exchanger, which cover the arranged between the exhaust ducts cooling air ducts and thus can prevent cooling.
  • the covering device may preferably be connected via a thermostat, for. B. an expansion element can be actuated.
  • the exhaust gas cooler and the intercooler are connected to a module, wherein the exiting exhaust gas is passed in a separate exhaust passage through the outlet box of the intercooler.
  • This space can be saved.
  • the separation of exhaust gas and charge air in the outlet box of the intercooler is required to prevent corrosion of the exhaust gas condensate with the normally made of aluminum intercooler.
  • the channel can be created by introducing a thick aluminum wall (partition wall) into the outlet box of the intercooler, which for a long time, due to its thickness, withstands the corrosive attack of acid exhaust gas condensate.
  • a plastic or a Stainless steel channel in the outlet box of the intercooler introduce, through which the exhaust gas flows.
  • This channel can also be attached externally (as an additional part) to the outlet box of the intercooler or in a recess of the outlet box. It is advantageous if the charge air and the exhaust gas are mixed as far downstream of the intercooler that no condensate can flow back into the intercooler.
  • the mixing point of charge air and exhaust gas can also be carried out in the form of a Venturi nozzle or a similar device, so that the exhaust gas is partially sucked out of the exhaust gas cooler. This would further increase the exhaust gas mass flow.
  • the exhaust gas cooler and a charge air cooler are integrated into a common cooler, d. H. with common manifolds and with a common finned tube block, the tubes are traversed by both exhaust gas and charge air or by a mixture of exhaust gases and charge air.
  • the supply of exhaust gas and charge air can either via a common inlet nozzle, which brings the advantage of a mixture of both gas streams with it, or via separate inlet nozzle.
  • This common heat exchanger results in cost and weight advantages over two separate heat exchangers.
  • the cooler which is preferably made of stainless steel due to the hot and corrosive exhaust gases, also withstands higher charge air pressures. The current engine development goes in this direction, d. H. tends to be more supercharged, which is not always manageable with the current aluminum intercoolers.
  • the exhaust gas heat exchanger upstream of an oxidation catalyst.
  • This has the advantage that soot deposits in the exhaust pipes leading reduced become.
  • the oxidation catalyst can also be arranged in an inlet-side collecting box.
  • the object of the invention is also achieved by an arrangement for an EGR system in which a conventional liquid-cooled exhaust gas cooler is connected upstream of the air-cooled exhaust gas cooler according to the invention.
  • a two-stage cooling of the exhaust gas is achieved in the exhaust gas recirculation, so that the inlet temperatures for the air-cooled exhaust gas cooler can be lowered.
  • This also results in an approximation of the exhaust gas and the charge air temperatures, which is particularly advantageous when using a common heat exchanger for exhaust gas and charge air. Due to the two-stage exhaust gas cooling, the exhaust gas reaches a lower temperature when it is returned to the intake tract of the internal combustion engine, which increases the degree of filling of the cylinders and thus the power of the engine.
  • Fig. 1 shows an exhaust gas cooler 1 in an exploded view, ie disassembled into individual parts or assemblies.
  • the exhaust gas cooler 1 is used for cooling exhaust gases for exhaust gas recirculation in internal combustion engines of motor vehicles, which will be described later with reference to FIG Fig. 4 will be explained in more detail.
  • the exhaust gas cooler 1 has a finned tube block 2 which consists of flat tubes 3 and corrugated fins 4 arranged between them.
  • the corrugated fins 4 are soldered to the flat tubes or welded and thus form a compact block 2.
  • the corrugated fins 4 are flowed through by ambient air and have to increase the heat transfer to the air gills, not shown, as are known, for example, in coolant coolers for corrugated fins.
  • rib ribs As an alternative to the corrugated fins 4, it is also possible to use what are known as rib ribs, ie meandering ribs with offset flanks.
  • the rib ribs usually have a lower heat transfer performance.
  • the tubes 3 are flowed through by exhaust gas and have winglets not shown, as they are known from the aforementioned prior art.
  • these winglets may be molded into the flat sides of the flat tubes 4, e.g. B. by massive forming.
  • internal ribs not shown, may also be arranged and soldered in the tubes.
  • the exhaust gas cooler 1 further comprises at least one collecting box 5, which is composed of a bottom 6, a lid 7, an end wall 8 and a further end wall 9 with a connection piece 10 materially.
  • the said parts are preferably made of stainless steel - as are the exhaust pipes 3 and the corrugated fins 4.
  • the pipe ends 3a are inserted into the openings 11 of the tube sheet 11 and welded to the tube sheet 6, preferably by laser beam welding. This results in a dense and solid tube bottom connection.
  • Another collecting tank, not shown, is provided on the other side of the finned tube block 2, so that all exhaust gas pipes 3 are flowed through in parallel and in the same direction.
  • the finned tube block 2 is closed at the top and bottom by side parts 12, 13, which are soldered to the outermost fin layers.
  • the depth of the finned tube block 2 in the air flow direction is indicated by T.
  • the height of the corrugated fins 4 is h
  • the height of the flat tubes 3 is denoted by b
  • the pitch of the corrugated fins with t is the reciprocal of the rib density: the larger the pitch t, the lower the rib density, which is defined as the number of ribs per dm.
  • the finned tube block 2 is formed in a single row; However, it may also be advantageous to form the finned tube block two or more rows, ie with in the air flow direction (in the depth direction T) shorter tubes. This results in a higher internal pressure resistance for the exhaust pipes.
  • the fin height h is in a range of 2 to 10 mm, preferably in a range of 4 to 6 mm, in particular 5 mm
  • the tube height b is in the range of 2 to mm, preferably in the range of 3 to 10 mm, in particular 4.5 mm.
  • the ratio of pipe height b to fin height h is in the range of 0.5 to 1.5.
  • the rib density is in the range of 20 to 80 ribs / dm, preferably in the range of 30 to 50 ribs / dm, in particular 35 ribs / dm.
  • the tubes have a hydraulic diameter which is by definition four times the ratio of flow area to wetted perimeter.
  • the hydraulic diameter of the tubes is in the range of 2 to 20 mm, preferably in the range of 3 to 10 mm.
  • the depth T of the finned tube block 2 is in the range of 20 to 100 mm, preferably in the range of 30 to 70 mm.
  • Fig. 2 shows the exhaust gas cooler 1 in a view, wherein the same reference numerals are used for the same parts.
  • the finned tube block 2 is shown in a view, ie with its end face 2 a, which has a length L and a height H.
  • On both sides of the finned tube block 2 collecting tanks 5, 14 are arranged, each with the exhaust port 10 and an exhaust port 15, which each act as inlet or outlet nozzle for the exhaust.
  • the tubes of the finned tube block 2 are thus - in the drawing horizontally - and flows through each other in parallel.
  • B. a U-shaped deflection in a collection box.
  • the ratio of height H to length L is in a range of 0.1 to 0.8, preferably in the range of 0.2 to 0.4.
  • the radiator is thus stretched relatively long and can therefore with regard to its length extension to the length of a Cooling module or a coolant radiator can be adjusted.
  • a charge air cooler is arranged above the exhaust gas cooler, which covers the remaining part of the end face at least partially.
  • an exhaust gas recirculation valve so-called EGR valve
  • EGR valve which can be arranged either in the inlet region or in the outlet region, ie in the region of the exhaust nozzles 10, 15.
  • the EGR valve controls the diverted, recirculated exhaust gas quantity.
  • the arrangement of the EGR valve in the exhaust gas outlet region has the advantage that there are lower exhaust gas temperatures than at the inlet - in this respect, the EGR valve could also be made of plastic.
  • Fig. 3 shows a modified embodiment, namely an exhaust gas cooler 16 with a bypass channel 17 and a bypass valve 18, wherein the bypass channel 17 between an inlet nozzle 19 and an outlet nozzle 20 extends parallel to the finned tube block 21.
  • the bypass flap 18 By means of the bypass flap 18, the entire exhaust gas flow can be directed through the bypass channel 17, so that a cooling of the exhaust gases does not take place. This can be advantageous, for example, with a cold internal combustion engine during the warm-up phase.
  • Fig. 4 shows an arrangement of components of an exhaust gas recirculation system, a so-called AGR system 22 for motor vehicles.
  • An internal combustion engine a diesel engine 23 has an exhaust pipe 24 which leads to an exhaust gas turbine 25, which drives a compressor 26.
  • a charge air line 27 leads to a charge air cooler 28 and The charge air cooler 28 is air-cooled and cools the heated in the compressor 26, compressed air pressure to a lower temperature level to increase the degree of filling for the cylinders of the engine.
  • a branch point 30 is provided, from which an exhaust gas recirculation line 31 branches off and is supplied to the intake region of the engine 23.
  • a first exhaust gas cooler 32 is arranged, which is liquid-cooled and is connected via terminals 32a, 32b to a not shown coolant circuit of the motor 23.
  • a second exhaust gas cooler 33 is arranged, which is designed as an inventive air-cooled exhaust gas cooler.
  • the cooled in the second exhaust gas cooler 32 exhaust gases are fed to the intake manifold 29, that is mixed with the cooled charge air.
  • the recirculated through the EGR line 31 exhaust gases are thus cooled in two stages, wherein in the first stage by the exhaust gas cooler 32, a cooling to about 120 to 150 ° C is achieved. In the second stage by the second exhaust gas cooler 33, a further cooling of the exhaust gases is achieved to a temperature which is 5 to 50 ° C above the ambient temperature.
  • the air-cooled exhaust gas cooler 33 and the charge air cooler 28 are arranged one above the other. This corresponds approximately to the actual arrangement in the engine compartment, where both coolers 28, 33 are arranged in the air flow direction in front of a cooling module, not shown, consisting of coolant radiator and condenser. All heat exchangers, ie coolant radiator, Kondenstor, intercooler and the air-cooled exhaust gas cooler according to the invention can thus be compactly assembled into a unit, the so-called cooling module, arranged and fixed in the front engine compartment of the motor vehicle. In this case, a sufficient exposure to ambient air is ensured.
  • the air-cooled exhaust gas cooler according to the invention it is also possible to arrange the air-cooled exhaust gas cooler according to the invention elsewhere than at the cooling module in the engine compartment and, if appropriate, allocate it to a separate fan.
  • Fig. 5 shows a heat exchanger module 50, which is composed of a - arranged in the drawing - bottom exhaust cooler 51 and a superposed charge air cooler, wherein both heat exchangers 51, 52 are acted upon in parallel by ambient air.
  • the exhaust gas cooler 51 has an inlet-side box 53 with an exhaust gas inlet pipe 54 and an outlet-side box 55.
  • the two exhaust gas boxes 53, 55 are preferably made of plastic for corrosion reasons, ie they consist of a plastic box, which is connected by a mechanical connection, not shown, with a metal tube bottom, not shown.
  • the charge air cooler 52 has an inlet-side air box 56 and an outlet-side air box 57.
  • the air boxes 56, 57 are preferably made of an aluminum material, which is welded to the tube sheets, not shown.
  • a partition wall 58 is arranged, which forms a separate channel 59.
  • the outlet-side exhaust box 55 is connected via a port 60 to the exhaust passage 59, so that a flow connection between the exhaust gas box 55 and channel 59 is made.
  • the exhaust gas thus flows out of the outlet box 55 into the separate channel 59 through the outlet-side air box 57, wherein a separation of exhaust gas and charge air is ensured.
  • Exhaust gas and charge air are mixed in a mixing zone, not shown, which is arranged at a sufficient distance downstream of the outlet box 57.
  • the nozzle 60 can be sealed by suitable seals against the air box 57.
  • Exhaust cooler 51 and intercooler 52 can be screwed together via flanges or brackets, not shown.
  • Fig. 6a shows a further embodiment for the formation of an exhaust passage for a heat exchanger module, as shown in Fig. 5 is shown.
  • a separate exhaust duct 62 is arranged, which can be produced from a corrosion-resistant material, in particular plastic or stainless steel.
  • the exhaust duct 62 is connected via a connecting piece 63 with the outlet box 64 of the exhaust gas cooler, not shown.
  • Fig. 6b shows a further embodiment of the arrangement and design of an exhaust passage, in which case only the cross sections of the outlet box 65 of the intercooler and the exhaust duct 66 are shown.
  • the outlet box 65 has on its outer longitudinal side a trough 67, which is adapted to the oval cross-section 66 of the exhaust duct, so that it is embedded in the trough 67.
  • the attached as an additional part on the outlet box 65 exhaust duct 66 may be made of stainless steel, aluminum or plastic.
  • Fig. 7a shows as a further embodiment of a combined heat exchanger 34, the integration of the air-cooled exhaust gas cooler and the air-cooled intercooler (see. Fig. 3 : Cooler 28, 33) represents.
  • the so-called combi cooler 34 has a finned tube block 35, an inlet box 36 and an outlet box 37 with outlet nozzle 38.
  • the inlet box 36 has an inlet connection 39 with a supply line 39a for the exhaust gas and a supply line 39b for the charge air.
  • the exhaust stream and the charge air stream are thus brought together in the nozzle 39, premixed and fed into the inlet box 36, where the total flow is distributed to the tubes of the finned tube block 35, not shown becomes.
  • the combi-cooler 34 is in an analogous manner, as in Fig. 4 shown installed in the EGR system, ie, instead of the cooler 33, shown there 28. From the common outlet nozzle 38, the cooled gas stream is supplied to the intake manifold of the engine.
  • Fig. 7b shows a modified combi cooler 40 with a separate inlet connection piece 41 for the exhaust gas and a separate inlet connection 42 for the charge air. Both nozzles lead into a common collection box 43. Pipe block and outlet box correspond to the embodiment according to Fig. 7a , In the first embodiment, exhaust gas and charge air flow are already premixed in the inlet nozzle 39, which also causes a temperature equalization of the two gas streams. In the second exemplary embodiment with separate inlet ports 41, 42, the mixture of the two gas streams takes place essentially in the inlet box 43.
  • Fig. 8a and 8b show an exhaust heat exchanger 44 with a front-mounted shutter 45, which consists of individual pivotable flaps or fins 45a, 45b, 45c, ... 45f.
  • Fig. 8a shows the exhaust heat exchanger 44 with blind closed 45, ie the entire air side acted upon end face of the exhaust heat exchanger 44 is covered by the fins 45 a to 45 f.
  • Fig. 8b shows the exhaust gas heat exchanger 44 with the shutter 45 in the open position, ie the slats 45a to 45f are aligned parallel to the air flow direction L and thus allow cooling air through.
  • the fins 45a to 45f are arranged in each case in the air flow direction in front of the non-visible or not shown exhaust ducts of the exhaust gas heat exchanger 44, so that the ribs 46a, 46b, 46c, ... are released between the exhaust ducts for an air flow.
  • the blind position according to Fig. 8b Thus, there is a cooling of the exhaust gas flowing through the exhaust heat exchanger 44, while in the closed blind position according to Fig. 8 no cooling takes place through an airflow.
  • the blind 45 is particularly at low outside temperatures, if there is a risk of freezing of condensate in the exhaust ducts, closed. This can largely prevent freezing and exhaust gas recirculation can be maintained.
  • a displaceable covering device 48 is arranged which comprises webs 49a, 49b, 49c,... and longitudinal slots 50a, 50b, 50c arranged between the webs. ... consists.
  • the webs 49a, 49b, 49c, ... can be moved by a suitable servomotor transversely to the longitudinal direction of the exhaust ducts, not shown, and thus partially release or close the end face of the exhaust gas cooler 47.
  • Fig. 9a shows the exhaust gas cooler 47 with a closed cover 48, ie the webs 49a, 49b, 49c, ... cover the not visible here cooling air channels, while the slots 50a, 50b, 50c, ...
  • FIG. 9b shows the exhaust gas cooler 47 with open cover 48, wherein the ribs 51 a, 51 b, 51 c, ... occupied cooling air channels are released between the exhaust ducts.
  • the cover device 48 may be formed as a grid structure (grid lattice), wherein the individual bars are foldable or mutually displaceable, so that their acted upon by the air flow end face are increased or decreased can. Also, this cover 48 is adapted to prevent freezing of condensate in the exhaust ducts and to maintain exhaust gas recirculation.
  • the control of the cover 48, ie their transverse movement can be achieved by suitable servomotors, for. B. temperature-dependent expansion elements, vacuum boxes or other motors.
  • Fig. 10 shows a further embodiment with a so-called combi cooler 52, which is composed of a charge air cooler 53 and an exhaust gas cooler 54, both of which are acted upon by cooling air.
  • the exhaust gas cooler 54 has a block 56 consisting of air ribs 55 and non-visible exhaust gas ducts, in front of which - viewed in the air flow direction - a serpentine-shaped coolant channel 57 is arranged, which is connectable to a not shown coolant circuit of the internal combustion engine of the motor vehicle.
  • the coolant channel 57 has straight sections 57a, which are connected at the end by tube bends 57b.
  • the coolant channel 57, 57a, 57b thus forms a coil, wherein the straight portions 57a are arranged in front of the non-visible exhaust passages of the exhaust gas cooler 54, ie the air ribs 55, which form cooling air ducts are completely exposed to the cooling air flow.
  • the straight sections 57a of the coil 57 are in heat-transmitting connection - whether by heat conduction or by thermal radiation - with the exhaust channels and thus prevent low ambient temperatures freezing of condensate in the exhaust channels and thus a blockage. Exhaust gas recirculation can thus be maintained even at low outside temperatures as a result of the tube coil 57 through which coolant flows at a higher temperature.
  • the coolant is taken from the engine return, ie the radiator inlet of the cooling circuit.
  • the removal of the hot coolant for the flow through the coil 57 can be controlled by a valve, not shown.
  • the coil 57 preferably covers all the exhaust ducts, but at least part of the exhaust ducts.
  • Fig. 11 shows a further embodiment with an air-cooled exhaust gas cooler 58 which has an acted upon by cooling air end face 59.
  • an electrically heatable heating grid 60 In the air flow direction in front of the end face 59 of the exhaust gas cooler 58 is an electrically heatable heating grid 60, consisting of a plurality of heating wires, which with the non-visible exhaust ducts and between these arranged air ribs are in heat-transmitting connection, arranged.
  • the electrically heatable heating grid 60 releases its heat - also through the air flow flowing through the heating grid 60 - to the exhaust gas channels and the air fins, so that they are heated at low outside temperatures.
  • the activation of the heating can be done manually or automatically, for. B. depending on the ambient temperature or the exhaust gas outlet temperature behind the exhaust gas cooler 58th
  • Fig. 12 shows a further embodiment with an air-cooled exhaust gas cooler 61, which has an exhaust-side inlet box 62 and an exhaust-side outlet box 63, between which an exhaust gas ducts 64 and cooling fins 65 existing exhaust block 66 is arranged.
  • the inlet box 62 is connected to an exhaust gas supply line 67 and the outlet box 63 is connected to an exhaust gas recirculation line 68.
  • the exhaust gas cooler 61 is associated with a valve 69, which has two divided by a partition wall 70 valve chambers 71, 72. In the partition wall 70, a valve opening 73 is arranged, which is controlled by a valve closing member 74 loaded by a valve closing spring 74.
  • the valve chamber 71 is flowed through by the Abgaszu111 Gustav 67, while the valve chamber 72 is flowed through by the exhaust gas recirculation line 68.
  • the valve opening 73 is closed by the valve closing member 75 as long as the force of the valve closing spring 74 is greater than the pressure acting on the valve closing member 75 compressive forces.
  • P1 which corresponds to the input side exhaust gas pressure of the exhaust gas cooler 61
  • P2 in the valve chamber 72 corresponds to the output side exhaust gas pressure of the exhaust gas cooler 61.
  • a differential pressure .DELTA.P which corresponds to the exhaust-side pressure drop (P1 minus P2) in the exhaust gas cooler 61.
  • P2 is smaller, and P1 is larger until the out of the Differential pressure resulting force greater than the force of the closing spring 74 is - then opens the valve closing member 75 and releases the valve port 73, which then acts as a bypass between the Abgaszu111 Gustav 67 and the exhaust gas recirculation line 68.
  • the exhaust gas cooler 61 is then completely or partially bypassed by the opened bypass 73.
  • the bypass channel in particular its entry is designed so that the pressure drop across the bypass channel is initially greater than the exhaust gas pressure loss in the exhaust gas cooler (in the non-frozen state, ie with maximum exhaust-side flow area). In this state the relation holds: ⁇ P by > ⁇ P ak .
  • P By is the pressure drop in the bypass
  • P Ak is the pressure drop in the exhaust gas cooler.
  • bypass channel is designed so that the condensate can not freeze in the bypass channel;
  • the bypass channel is formed as a round tube or rectangular tube with a sufficient cross section as a function of the mass flows. In this by the pressure loss self-controlled bypass no bypass damper and no further control of this flap are required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

  • Die Erfindung betrifft einen luftgekühlten Abgaswärmeübertrager, insbesondere einen Abgaskühler für Kraftfahrzeuge, nach dem Oberbegriff des Patentanspruches 1 sowie eine Anordnung zur Abgasrückführung nach dem Oberbegriff des Patentanspruches 33.
  • Abgaskühler werden bei heutigen Fahrzeugen, insbesondere Nutzfahrzeugen, im Rahmen eines Abgasrückführsystems (AGR-System) zur Kühlung von zurückgeführten Abgasen eingesetzt. Die Abgasrückführung basiert auf gesetzlichen Bestimmungen zur Verringerung des Kraftstoffverbrauches der Brennkraftmaschine und zur Reduktion der Schadstoffe (insbesondere NOx) in den Abgasen der Brennkraftmaschine. Die bisher in Kraftfahrzeuge eingebauten Abgaskühler werden durch ein flüssiges Kühlmittel gekühlt, welches dem Kühlkreislauf der Brennkraftmaschine entnommen wird. Diese bekannten flüssigkeitsgekühlten Abgaskühler arbeiten sehr effektiv, haben jedoch den Nachteil, dass die Abkühlung der Abgase an die Kühlmitteltemperatur gebunden ist, die im Bereich von 80 bis 100° C liegt. Damit lassen sich nur Abgasaustrittstemperaturen hinter dem Abgaskühler von ca. 120 bis 150° C erreichen.
  • Durch die DE 199 07 163 A1 der Anmelderin wurde ein Abgaswärmeübertrager in Edelstahlbauweise bekannt, welcher aus einem von Abgasen durchströmbaren Rohrbündel und einem von einem flüssigen Kühlmittel durchströmbaren Gehäuse besteht. Die Abgasrohre sind in Rohrböden eingeschweißt, die ihrerseits mit dem Gehäuse verschweißt sind. Alle Schweißnähte sind vorzugsweise durch Laserstrahlschweißen hergestellt.
  • Durch die DE 102 03 003 A1 der Anmelderin wurde ein Abgaswärmeübertrager mit einem integrierten Bypass und einer integrierten Bypassklappe bekannt, welche ein Umgehen des Abgaswärmeübertragers ermöglicht, wenn eine Kühlung der Abgase nicht erforderlich ist.
  • Durch die EP 0 677 715 A1 der Anmelderin wurden verschiedene Ausführungsformen für Abgaskühler für Kraftfahrzeuge bekannt, wobei eine Ausführungsform einen luftgekühlten Abgaskühler offenbart, welcher als Scheibenwärmeübertrager aufgebaut ist, zwischen denen Wellrippen zur Luftkühlung angeordnet sind. Die Scheiben, welche die Abgaskanäle bilden, bestehen jeweils aus zwei Scheibenhälften, welche umfangseitig miteinander verlötet sind und über aufeinander stapelbare Ein- und Austrittsöffnungen miteinander verbunden sind. In den Abgaskanälen bzw. Scheiben sind so genannte winglets angeordnet, d. h. V-förmig angeordnete Lappen oder Rippen, welche für eine Verwirbelung der Abgasströmung sorgen und eine Rußablagerung verhindern.
  • Durch die EP 916 837 B1 der Anmelderin wurde ein flüssigkeitsgekühlter Abgaskühler mit einem integrierten Abgasrückführ-(AGR-)Ventil bekannt, welches die Menge des zurückgeführten Abgases bestimmt - ein separates AGR-Ventil in der AGR-Leitung entfällt somit.
  • Die DE 103 27 847 A1 offenbart einen Abgasfluidkreislauf für einen Turbomotor mit Abgasrückführung mit einem Luftgekühlten Abgaswärmeübertrager gemäß dem Oberbegriff von Anspruch 1.
  • Ausgehend von diesem Stand der Technik, insbesondere einem luftgekühlten Abgaswärmeübertrager, ist es Aufgabe der vorliegenden Erfindung, einen Abgaswärmeübertrager der eingangs genannten Art hinsichtlich seiner Bauweise und der damit verbundenen Einbaumöglichkeiten im Kraftfahrzeug zu verbessern. Es ist auch Aufgabe der Erfindung, eine Anordnung zur Abgasrückführung dahingehend zu verbessern, dass eine stärkere Absenkung der Abgastemperatur möglich ist. Darüber hinaus soll ein Einfrieren von Kondensat im Abgaswärmeübertrager vermieden werden.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Der Abgaswärmeübertrager weist einerseits einen Rippenrohrblock, d. h. einen aus Rohren für das Abgas und Rippen für die Luftkühlung aufgebauten Block und andererseits Sammelkästen auf, in welche die Abgasrohre münden. Vorzugsweise sind die Sammelkästen geschweißt oder gelötet und weisen Rohrböden auf, in welche die Rohrenden der Abgasrohre eingelötet oder eingeschweißt, vorzugsweise laserstrahlgeschweißt sind. Als bevorzugter Werkstoff für die Abgasrohre und die Sammelkästen wird Edelstahl verwendet. Für die Berippung auf der Außenseite der Abgasrohre können Wellrippen aus Edelstahl oder auch aus einem Buntmetall Verwendung finden. Zur Erhöhung des Wärmeüberganges auf der Luftseite weisen die Rippen, insbesondere Wellrippen Kiemen auf, welche mittels bekannter Fertigungsverfahren in das Rippenmaterial eingeschnitten werden. Statt Wellrippen können auch so genannte Stegrippen eingesetzt werden, wie sie insbesondere bei luftgekühlten Ladeluftkühlern bekannt sind. Bekiemte Wellrippen sind dagegen insbesondere von Kühlmittelkühlern her bekannt. Mit dieser luftgekühlten Bauweise des erfindungsgemäßen Abgaskühlers wird der Vorteil erreicht, dass eine Abkühlung des rückgeführten Abgases auf niedrigere Temperaturen als durch eine Kühlmittelkühlung (Flüssigkeitskühlung) möglich ist, was die Leistung des Verbrennungsmotors steigert. Darüber hinaus erlaubt die erfindungsgemäße Bauweise, den Abgaskühler zusammen mit weiteren luftgekühlten Wärmeübertragern zu einer Baueinheit, einem so genannten Kühlmodul, bestehend aus Kühlmittelkühler, Ladeluftkühler und/oder Kondensator, zusammenzufassen. Vorteilhafterweise kann der erfindungsgemäße Abgaskühler vor dem Kühlmittelkühler oder Kondensator angeordnet werden, wobei er nur einen Teil der Stirnfläche einnimmt. Der verbleibende Teil der Stirnfläche kann durch einen Ladeluftkühler abgedeckt werden. Daraus ergibt sich eine äußerst kompakte Bauweise für ein Kühlmodul.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die Sammelkästen des Abgaswärmeübertragers aus Kunststoff herstellbar, wobei die Kunststoffkästen mit einem metallischen Rohrboden mechanisch verbunden wird, z. B. mittels einer Bördelverbindung und einer eingelegten Dichtung. Die Verwendung von Kunststoff hat den Vorteil einer geringeren Korrosionsanfälligkeit gegenüber dem Abgas. Der Kunststoffwerkstoff ist so gewählt, dass er auch der mechanischen Beanspruchung infolge Druck und Temperatur des Abgases standhält. Der metallische Wärmeübertragerblock, bestehend aus Rohren, Rippen und Rohrboden wird separat durch Lötung oder auch Schweißung hergestellt. Danach werden die Kunststoffkästen aufgesetzt.
  • Weitere vorteilhafte Ausgestaltungen ergeben sich aus weiteren Unteransprüchen, welche Bemessungsangaben bzw. Bemessungsbereiche für die Dimensionierung der Rippenhöhe, der Rohrhöhe, des Verhältnisses von Rohrhöhe zu Rippenhöhe, der Rippendichte sowie des hydraulischen Durchmessers der Rohre enthalten. Im Rahmen dieser Bemessungsangaben ergibt sich ein auf die Medien Abgas und Luft optimierter Wärmeübertrager.
  • In einer nicht erfindungsgemäßen Ausgestaltung weist der Abgaskühler einen Bypasskanal auf, der über eine Bypassklappe gesteuert wird. Damit wird der Vorteil erreicht, dass ein Einfrieren des Kühlers mit Kondensat bei niedrigen Außentemperaturen vermieden wird; darüber hinaus wird auch ein schnelleres Aufheizen des Motors erreicht.
  • In erfindungsgemäßer Ausgestaltung der Erfindung ist dem Abgaswärmeübertrager ein Bypasskanal - ohne Bypassklappe - zugeordnet, wobei die Durchströmung des Bypasskanals über den unterschiedlichen Druckabfall im Bypasskanal und im Abgaswärmeübertrager gesteuert wird. Der Bypasskanal ist derart gestaltet, dass sein Druckabfall bei über dem Gefrierpunkt liegenden Außentemperaturen geringer als der des Abgaswärmeübertragers ist, was beispielsweise durch eine Blende im Eingangsbereich des Bypasskanals erreicht werden kann. Bei eingefrorenen Abgaskanälen wird der Druckabfall im Abgaswärmeübertrager größer als der des Bypasskanals, so dass dieser von Abgas durchströmt wird. Damit wird der Vorteil erreicht, dass bei eingefrorenem Abgaskühler Abgas rückgeführt werden kann. Eine Bypassklappe mit den ihr anhaftenden Problemen entfällt.
  • In einer nicht erfindungsgemäßen Ausgestaltung ist dem Abgaswärmeübertrager ein Bypass zugeordnet, welcher über ein differenzdruckgesteuertes Ventil geöffnet oder geschlossen wird. Steigt der Druckabfall im Abgaswärmeübertrager infolge Einfrierens von Kondensat in den Abgaskanälen, steigt auch der Differenzdruck, welcher das Ventilschließglied öffnet und somit den Bypass zwischen Abgaszuführ- und -rückführleitung freigibt. Auch damit wird der Vorteil erreicht, dass der Abgaskühler im Falle des Einfrierens umgangen und eine Abgasrückführung aufrechterhalten werden kann. Möglich ist auch, dass das Ventilschließglied extern angesteuert wird.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung sind zur Beheizung des Abgaswärmeübertragers, insbesondere seiner Abgaskanäle Kühlmittelkanäle, insbesondere Bypasskanäle vorgesehen, welche Wärme an die durch Einfrieren von Kondensat gefährdeten Abgaskanäle heranbringen. Damit wird der Vorteil erreicht, dass ein Einfrieren von Kondensat im Abgaswärmeübertrager verhindert wird.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung ist dem Abgaswärmeübertrager eine elektrische Heizung zugeordnet, welche die Abgaskanäle beheizt und damit ebenfalls ein Einfrieren verhindert.
  • In einer vorteilhaften Weiterbildung der Erfindung ist vor dem Rippenrohrblock des Abgaskühlers eine Jalousie, insbesondere eine Klappenjalousie angeordnet. Damit wird ebenfalls der Vorteil erreicht, dass ein Einfrieren des Abgaskühlers mit Kondensat bei sehr tiefen Temperaturen vermieden und ein schnelleres Aufheizen des Motors gewährleistet ist.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung ist in Luftströmungsrichtung vor dem Abgaswärmeübertrager eine verschiebbare Abdeckvorrichtung angeordnet, welche die zwischen den Abgaskanälen angeordneten Kühlluftkanäle abdecken und damit eine Kühlung unterbinden kann. Damit wird der Vorteil erreicht, dass ein Einfrieren von Kondensat in den Abgaskanälen verhindert und die Abgasrückführung aufrechterhalten wird. Die Abdeckvorrichtung kann vorzugsweise über einen Thermostaten, z. B. ein Dehnstoffelement betätigt werden.
  • In weiterer vorteilhafter Ausgestaltung der Erfindung sind der Abgaskühler und der Ladeluftkühler zu einem Modul miteinander verbunden, wobei das austretende Abgas in einem separaten Abgaskanal durch den Austrittskasten des Ladeluftkühlers geleitet wird. Dadurch kann Bauraum eingespart werden. Die Trennung von Abgas und Ladeluft im Austrittskasten des Ladeluftkühlers ist erforderlich, um Korrosionen des Abgaskondensats mit dem normalerweise aus Aluminium bestehende Ladeluftkühler zu vermeiden. Der Kanal kann dadurch geschaffen werden, dass eine dicke Aluminiumwand (Tennwand) in den Austrittskastens des Ladeluftkühlers eingebracht wird, die aufgrund ihrer Dicke lange Zeit dem Korrosionsangriff von saurem Abgaskondensat standhält. Alternativ ist auch denkbar, einen Kunststoff- oder einen Edelstahl-Kanal in den Austrittskastens des Ladeluftkühlers einzubringen, durch den das Abgas strömt. Dieser Kanal kann auch außen (als zusätzliches Teil) an den Austrittskasten des Ladeluftkühlers oder in einer Ausbuchtung des Austrittskastens angebracht werden. Vorteilhaft ist, wenn die Ladeluft und das Abgas erst soweit stromabwärts vom Ladeluftkühler gemischt werden, dass kein Kondensat in den Ladeluftkühler zurückfließen kann. Die Mischstelle aus Ladeluft und Abgas kann auch in Form einer Venturidüse oder einer ähnlichen Einrichtung ausgeführt werden, so dass das Abgas teilweise aus dem Abgaskühler gesaugt wird. Dadurch ließe sich der Abgasmassenstrom weiter erhöhen.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind der Abgaskühler und ein Ladeluftkühler zu einem gemeinsamen Kühler integriert, d. h. mit gemeinsamen Sammelkästen und mit einem gemeinsamen Rippenrohrblock, dessen Rohre sowohl von Abgas als auch von Ladeluft bzw. von einem Gemisch aus Abgasen und Ladeluft durchströmt werden. Die Zufuhr von Abgas und Ladeluft kann entweder über einen gemeinsamen Eintrittsstutzen, was den Vorteil einer Mischung beider Gasströme mit sich bringt, oder über separate Eintrittsstutzen erfolgen. Durch diesen gemeinsamen Wärmeübertrager ergeben sich Kosten- und Gewichtsvorteile gegenüber zwei separaten Wärmeübertragern. Darüber hinaus ergibt sich der Vorteil, dass der aufgrund der heißen und korrosiven Abgase vorzugsweise in Edelstahl ausgeführte Kühler auch höheren Ladeluftdrücken standhält. Die derzeitige Motorenentwicklung geht in diese Richtung, d. h. tendiert zu höherer Aufladung, welche mit den derzeitigen Ladeluftkühlern in Aluminiumbauweise nicht immer beherrschbar ist.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist dem Abgaswärmeübertrager ein Oxidationskatalysator vorgeschaltet. Dies hat den Vorteil, dass Rußablagerungen in den Abgas führenden Rohren reduziert werden. Vorteilhafterweise kann der Oxidationskatalysator auch in einem eintrittsseitigen Sammelkasten angeordnet werden.
  • Die Aufgabe der Erfindung wird auch durch eine Anordnung für ein AGR-System gelöst, bei welchem dem erfindungsgemäßen luftgekühlten Abgaskühler ein herkömmlicher flüssigkeitsgekühlter Abgaskühler vorgeschaltet ist. Damit wird eine zweistufige Abkühlung des Abgases bei der Abgasrückführung erreicht, so dass die Eintrittstemperaturen für den luftgekühlten Abgaskühler gesenkt werden können. Damit ergibt sich auch eine Angleichung der Abgas- und der Ladelufttemperaturen, was insbesondere bei Verwendung eines gemeinsamen Wärmeübertragers für Abgas und Ladeluft vorteilhaft ist. Durch die zweistufige Abgaskühlung erreicht das Abgas bei seiner Rückführung in den Ansaugtrakt der Verbrennungskraftmaschine eine niedrigere Temperatur, was den Füllungsgrad der Zylinder und damit die Leistung des Motors steigert.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
  • Fig. 1
    einen luftgekühlten Abgaskühler in Explosivdarstellung,
    Fig. 2
    den Abgaskühler in einer Ansicht,
    Fig. 3
    eine Weiterbildung des Abgaskühlers mit Bypasskanal,
    Fig. 4
    ein AGR-System mit zweistufiger Abgaskühlung durch flüssigkeitsund luftgekühlten Abgaskühler,
    Fig. 5
    ein Wärmeübertragermodul, bestehend aus Abgas- und Ladeluftkühler, mit einer ersten Ausführung eines separaten Abgaskanals,
    Fig. 6a
    eine zweite Ausführungsform des separaten Abgaskanals im Austrittskastens des Ladeluftkühlers,
    Fig. 6b
    eine dritte Ausführungsform eines separaten Abgaskanals auf der Außenseite des Austrittskastens des Ladeluftkühlers,
    Fig. 7a
    eine erste Ausführungsform eines kombinierten Abgas- und Ladeluftkühlers,
    Fig. 7b
    eine zweite Ausführungsform des kombinierten Abgas- und Ladeluftkühlers,
    Fig. 8a
    einen Abgaskühler mit geschlossener Jalousie,
    Fig. 8b
    einen Abgaskühler mit offener Jalousie,
    Fig. 9a
    einen Abgaskühler mit einer verschiebbaren, geschlossenen Abdeckvorrichtung,
    Fig. 9b
    einen Abgaskühler mit der verschiebbaren, offenen Abdeckvorrichtung,
    Fig. 10
    einen Abgaskühler mit einem Kühlmittelbypasskanal,
    Fig. 11
    einen Abgaskühler mit einer elektrischen Heizung und
    Fig. 12
    einen Abgaskühler mit Bypassventil.
  • Fig. 1 zeigt einen Abgaskühler 1 in Explosivdarstellung, d. h. in Einzelteile bzw. Baugruppen zerlegt. Der Abgaskühler 1 dient der Kühlung von Abgasen für eine Abgasrückführung bei Brennkraftmaschinen von Kraftfahrzeugen, was später anhand von Fig. 4 genauer erläutert wird. Der Abgaskühler 1 weist einen Rippenrohrblock 2 auf, welcher aus Flachrohren 3 und zwischen diesen angeordneten Wellrippen 4 besteht. Die Wellrippen 4 werden mit den Flachrohren verlötet oder auch verschweißt und bilden somit einen kompakten Block 2. Die Wellrippen 4 werden von Umgebungsluft durchströmt und weisen zur Erhöhung des Wärmeüberganges gegenüber der Luft nicht dargestellte Kiemen auf, wie sie beispielsweise bei Kühlmittelkühlern für Wellrippen bekannt sind. Alternativ zu den Wellrippen 4 können auch nicht dargestellte so genannte Stegrippen, d. h. mäanderförmig ausgebildete Rippen mit versetzt angeordneten Flanken eingesetzt werden. Die Stegrippen haben in der Regel eine geringere Wärmeübertragungsleistung. Die Rohre 3 werden von Abgas durchströmt und weisen nicht dargestellte winglets auf, wie sie aus dem eingangs genannten Stand der Technik bekannt sind. Beispielsweise können diese winglets in die flachen Seiten der Flachrohre 4 eingeformt sein, z. B. durch Massivumformung. Damit wird ein verbesserter Wärmeübergang erreicht, und Rußablagerungen werden vermieden. Alternativ können in den Rohren auch nicht dargestellte Innenrippen angeordnet und eingelötet sein. Der Abgaskühler 1 weist ferner mindestens einen Sammelkasten 5 auf, welcher aus einem Boden 6, einem Deckel 7, einer Stirnwand 8 und einer weiteren Stirnwand 9 mit Stutzen 10 stoffschlüssig zusammengesetzt ist. Die genannten Teile bestehen vorzugsweise aus Edelstahl - ebenso wie die Abgasrohre 3 und die Wellrippen 4. In dem Boden 6 sind rechteckförmige Öffnungen 11 vorgesehen, die dem Querschnitt der Flachrohre 3 entsprechen. Die Rohrenden 3a werden in die Öffnungen 11 des Rohrbodens 11 eingesetzt und mit dem Rohrboden 6 verschweißt, vorzugsweise durch Laserstrahlschweißen. Damit ergibt sich eine dichte und feste Rohrbodenverbindung. Ein weiterer nicht dargestellter Sammelkasten ist auf der anderen Seite des Rippenrohrblockes 2 vorgesehen, so dass alle Abgasrohre 3 parallel und in derselben Richtung durchströmt werden. Umgebungsluft und Abgasstrom bilden somit einen Kreuzstrom. Der Rippenrohrblock 2 wird oben und unten durch Seitenteile 12, 13 abgeschlossen, welche mit den äußersten Rippenlagen verlötet sind. Die Tiefe des Rippenrohrblockes 2 in Luftströmungsrichtung ist mit T angegeben. Die Höhe der Wellrippen 4 ist mit h, die Höhe der Flachrohre 3 ist mit b und die Teilung der Wellrippen mit t bezeichnet. Die Teilung t ist der reziproke Wert der Rippendichte: je größer die Teilung t, desto geringer ist die Rippendichte, welche als Anzahl der Rippen pro dm definiert ist. In dem dargestellten Ausführungsbeispiel ist der Rippenrohrblock 2 einreihig ausgebildet; es kann jedoch auch vorteilhaft sein, den Rippenrohrblock zwei- oder mehrreihig auszubilden, d. h. mit in Luftströmungsrichtung (in Tiefenrichtung T) kürzeren Rohren. Dadurch ergibt sich eine höhere Innendruckfestigkeit für die Abgasrohre. Nach einem bevorzugten Ausführungsbeispiel der Erfindung sind für die optimale Dimensionierung des Abgaskühlers 1 bzw. des Rippenrohrblockes 2 folgende Bemessungsbereiche vorgesehen: die Rippenhöhe h liegt in einem Bereich von 2 bis 10 mm, vorzugsweise in einem Bereich von 4 bis 6 mm, insbesondere bei 5 mm. Die Rohrhöhe b liegt im Bereich von 2 bis mm, vorzugsweise im Bereich von 3 bis 10 mm, insbesondere bei 4,5 mm. Das Verhältnis aus Rohrhöhe b zu Rippenhöhe h liegt im Bereich von 0,5 bis 1,5. Die Rippendichte liegt im Bereich von 20 bis 80 Rippen/dm, vorzugsweise im Bereich von 30 bis 50 Rippen/dm, insbesondere bei 35 Rippen/dm. Die Rohre weisen einen hydraulischen Durchmesser auf, der definitionsgemäß das Vierfache des Verhältnisses von Strömungsquerschnitt zu benetztem Umfang beträgt. Der hydraulische Durchmesser der Rohre liegt im Bereich von 2 bis 20 mm, vorzugsweise im Bereich von 3 bis 10 mm. Die Tiefe T des Rippenrohrblockes 2 liegt im Bereich von 20 bis 100 mm, vorzugsweise im Bereich von 30 bis 70 mm.
  • Fig. 2 zeigt den Abgaskühler 1 in einer Ansicht, wobei für gleiche Teile gleiche Bezugszahlen verwendet werden. Der Rippenrohrblock 2 ist in einer Ansicht dargestellt, d. h. mit seiner Stirnfläche 2a, welche eine Länge L und eine Höhe H aufweist. Beiderseits des Rippenrohrblockes 2 sind Sammelkästen 5, 14 angeordnet, jeweils mit dem Abgasstutzen 10 und einem Abgasstutzen 15, welche jeweils als Ein- oder Austrittsstutzen für das Abgas fungieren. Die Rohre des Rippenrohrblockes 2 werden somit - in der Zeichnung waagerecht - und parallel zueinander durchströmt. Selbstverständlich ist auch eine andere als die dargestellte Durchströmung möglich, z. B. eine U-förmige Umlenkung in einem Sammelkasten.
  • Nach einem bevorzugten Ausführungsbeispiel der Erfindung liegt das Verhältnis von Höhe H zu Länge L in einem Bereich von 0,1 bis 0,8, vorzugsweise im Bereich von 0,2 bis 0,4. Der Kühler ist somit relativ lang gestreckt und kann daher hinsichtlich seiner Längenerstreckung an die Länge eines Kühlmoduls bzw. eines Kühlmittelkühlers angepasst werden. Vorteilhafterweise wird dabei oberhalb des Abgaskühlers ein Ladeluftkühler angeordnet, welcher den verbleibenden Teil der Stirnfläche zumindest teilweise überdeckt.
  • In der Zeichnung nicht dargestellt ist ein auf der Abgasaustrittsseite des Abgaskühlers angeordneter Kondensatablass, wobei das Kondensat entweder direkt nach außen oder in die Abgasleitung (Auspuff) abgeführt wird.
  • Ebenfalls in der Zeichnung nicht dargestellt ist ein Abgasrückführventil, so genanntes AGR-Ventil, welches entweder im Eintrittsbereich oder im Austrittsbereich, also im Bereich der Abgasstutzen 10, 15 angeordnet werden kann. Das AGR-Ventil regelt die abgezweigte, rückgeführte Abgasmenge. Die Anordnung des AGR-Ventils im Abgasaustrittsbereich hat den Vorteil, dass dort niedrigere Abgastemperaturen herrschen als am Eintritt - insofern könnte das AGR-Ventil auch aus Kunststoff hergestellt werden.
  • Fig. 3 zeigt ein abgewandeltes Ausführungsbeispiel, nämlich einen Abgaskühler 16 mit einem Bypasskanal 17 und einer Bypassklappe 18, wobei sich der Bypasskanal 17 zwischen einem Eintrittsstutzen 19 und einem Austrittsstutzen 20 parallel zum Rippenrohrblock 21 erstreckt. Mittels der Bypassklappe 18 kann der gesamte Abgasstrom durch den Bypasskanal 17 gelenkt werden, so dass eine Abkühlung der Abgase nicht stattfindet. Dies kann beispielsweise bei kalter Brennkraftmaschine während der Warmlaufphase vorteilhaft sein.
  • Fig. 4 zeigt eine Anordnung von Komponenten eines Abgasrückführsystems, eines so genannten AGR-Systems 22 für Kraftfahrzeuge. Eine Brennkraftmaschine, ein Dieselmotor 23, weist eine Abgasleitung 24 auf, welche zu einer Abgasturbine 25 führt, welche einen Kompressor 26 antreibt. Vom Turboverdichter 26 führt eine Ladeluftleitung 27 zu einem Ladeluftkühler 28 und anschließend über eine Ansaugleitung 29 zum Motor 23. Der Ladeluftkühler 28 ist luftgekühlt und kühlt die im Verdichter 26 erhitzte, auf Ladedruck komprimierte Luft auf ein niedrigeres Temperaturniveau ab, um den Füllungsgrad für die Zylinder des Motors zu erhöhen. In der Abgasleitung 24, d. h. zwischen Motor 23 und Turbine 25 ist eine Abzweigstelle 30 vorgesehen, von der aus eine Abgasrückführleitung 31 abzweigt und dem Ansaugbereich des Motors 23 zugeführt wird. In der AGR-Leitung 31 ist ein erster Abgaskühler 32 angeordnet, welcher flüssigkeitsgekühlt ist und über Anschlüsse 32a, 32b an einen nicht dargestellten Kühlmittelkreislauf des Motors 23 angeschlossen ist. In Abgasströmungsrichtung hinter dem ersten Abgaskühler 32 ist ein zweiter Abgaskühler 33 angeordnet, welcher als erfindungsgemäßer luftgekühlter Abgaskühler ausgebildet ist. Die im zweiten Abgaskühler 32 abgekühlten Abgase werden der Ansaugleitung 29 zugeführt, d. h. mit der abgekühlten Ladeluft vermischt. Die durch die AGR-Leitung 31 rückgeführten Abgase werden somit zweistufig abgekühlt, wobei in der ersten Stufe durch den Abgaskühler 32 eine Abkühlung bis auf etwa 120 bis 150° C erreicht wird. In der zweiten Stufe durch den zweiten Abgaskühler 33 wird eine weitere Abkühlung der Abgase bis auf eine Temperatur erreicht, die 5 bis 50° C über der Umgebungstemperatur liegt.
  • In der Zeichnung sind der luftgekühlte Abgaskühler 33 und der Ladeluftkühler 28 übereinander angeordnet. Dies entspricht in etwa auch der tatsächlichen Anordnung im Motorraum, wo beide Kühler 28, 33 in Luftströmungsrichtung vor einem nicht dargestellten Kühlmodul, bestehend aus Kühlmittelkühler und Kondensator angeordnet sind. Sämtliche Wärmeübertrager, d. h. Kühlmittelkühler, Kondenstor, Ladeluftkühler und der erfindungsgemäße luftgekühlte Abgaskühler können somit kompakt zu einer Baueinheit, dem so genannten Kühlmodul zusammengefasst, im vorderen Motorraum des Kraftfahrzeuges angeordnet und befestigt werden. Dabei ist eine hinreichende Beaufschlagung mit Umgebungsluft sichergestellt.
  • Allerdings ist es auch möglich, den erfindungsgemäßen luftgekühlten Abgaskühler an anderer Stelle als am Kühlmodul im Motorraum anzuordnen und ihm gegebenenfalls einen eigenen Lüfter zuzuordnen.
  • Fig. 5 zeigt ein Wärmeübertragermodul 50, welches aus einem - in der Zeichnung - unten angeordneten Abgaskühler 51 und einem darüber angeordneten Ladeluftkühler zusammengesetzt ist, wobei beide Wärmeübertrager 51, 52 parallel von Umgebungsluft beaufschlagt werden. Der Abgaskühler 51 weist einen eintrittsseitigen Kasten 53 mit einem Abgaseintrittsstutzen 54 sowie einen austrittsseitigen Kasten 55 auf. Die beiden Abgaskästen 53, 55 sind aus Korrosionsgründen vorzugsweise aus Kunststoff hergestellt, d. h. sie bestehen aus einem Kunststoffkasten, der durch eine nicht dargestellte mechanische Verbindung mit einem nicht näher dargestellten metallischen Rohrboden verbunden ist. Der Ladeluftkühler 52 weist einen eintrittsseitigen Luftkasten 56 und einen austrittsseitigen Luftkasten 57 auf. Die Luftkästen 56, 57 bestehen vorzugsweise aus einem Aluminiumwerkstoff, der mit den nicht dargestellten Rohrböden verschweißbar ist. In dem austrittsseitigen Luftkasten 57 ist eine Trennwand 58 angeordnet, welche einen separaten Kanal 59 bildet. Der austrittsseitige Abgaskasten 55 ist über einen Stutzen 60 mit dem Abgaskanal 59 verbunden, so dass eine Strömungsverbindung zwischen Abgaskasten 55 und Kanal 59 hergestellt ist. Das Abgas strömt somit aus dem Austrittskasten 55 in den separaten Kanal 59 durch den austrittsseitigen Luftkasten 57, wobei eine Trennung von Abgas und Ladeluft sichergestellt ist. Abgas und Ladeluft werden in einer nicht dargestellten Mischzone, die in einem hinreichenden Abstand stromabwärts vom Austrittskasten 57 angeordnet ist, miteinander gemischt. Dadurch wird eine Rückströmung von Abgaskondensat in den Ladeluftkühler 52 vermieden. Der Stutzen 60 kann durch geeignete Dichtungen gegenüber dem Luftkasten 57 abgedichtet werden. Abgaskühler 51 und Ladeluftkühler 52 können über nicht dargestellte Flansche oder Halterungen miteinander verschraubt werden.
  • Fig. 6a zeigt ein weiteres Ausführungsbeispiel für die Ausbildung eines Abgaskanals für ein Wärmeübertragermodul, wie es in Fig. 5 dargestellt ist. Im Austrittskasten 61 des nicht dargestellten Ladeluftkühlers ist ein separater Abgaskanal 62 angeordnet, welcher aus einem korrosionsbeständigen Werkstoff, insbesondere Kunststoff oder Edelstahl herstellbar ist. Der Abgaskanal 62 ist über einen Verbindungsstutzen 63 mit dem Austrittskasten 64 des nicht dargestellten Abgaskühlers verbunden. Somit wird auch bei dieser Lösung eine Trennung des durch den Austrittskasten 61 des Ladeluftkühlers strömenden Abgases von der Ladeluft erreicht.
  • Fig. 6b zeigt ein weiteres Ausführungsbeispiel für die Anordnung und Ausbildung eines Abgaskanals, wobei hier lediglich die Querschnitte des Austrittskastens 65 des Ladeluftkühlers und des Abgaskanals 66 dargestellt sind. Der Austrittskasten 65 weist an seiner äußeren Längsseite eine Mulde 67 auf, welche dem ovalen Querschnitt 66 des Abgaskanals angepasst ist, so dass dieser in die Mulde 67 eingebettet ist. Der als Zusatzteil am Austrittskasten 65 befestigte Abgaskanal 66 kann aus Edelstahl, Aluminium oder Kunststoff hergestellt sein.
  • Fig. 7a zeigt als weiteres Ausführungsbeispiel einen kombinierten Wärmeübertrager 34, der eine Integration des luftgekühlten Abgaskühlers und des luftgekühlten Ladeluftkühlers (vgl. Fig. 3: Kühler 28, 33) darstellt. Der so genannte Kombi-Kühler 34 weist einen Rippenrohrblock 35, einen Eintrittskasten 36 und einen Austrittskasten 37 mit Austrittsstutzen 38 auf. Der Eintrittskasten 36 weist einen Eintrittsstutzen 39 mit einer Zuführleitung 39a für das Abgas und einer Zuführleitung 39b für die Ladeluft auf. Der Abgasstrom und der Ladeluftstrom werden somit im Stutzen 39 zusammengeführt, vorgemischt und in den Eintrittskasten 36 geführt, wo der Gesamtstrom auf die nicht dargestellten Rohre des Rippenrohrblockes 35 verteilt wird. Der Kombi-Kühler 34 wird in analoger Weise, wie in Fig. 4 dargestellt, in das AGR-System eingebaut, d. h. anstelle der dort gezeigten Kühler 33, 28. Vom gemeinsamen Austrittsstutzen 38 wird der abgekühlte Gasstrom dem Ansaugtrakt des Motors zugeführt.
  • Fig. 7b zeigt einen abgewandelten Kombi-Kühler 40 mit einem separaten Eintrittsstutzen 41 für das Abgas und einem separaten Eintrittsstutzen 42 für die Ladeluft. Beide Stutzen führen in einen gemeinsamen Sammelkasten 43. Rohrrippenblock und Austrittskasten entsprechen dem Ausführungsbeispiel gemäß Fig. 7a. Im ersten Ausführungsbeispiel werden Abgas- und Ladeluftstrom im Eintrittsstutzen 39 bereits vorgemischt, was auch eine Temperaturangleichung beider Gasströme bewirkt. Im zweiten Ausführungsbeispiel mit separaten Eintrittstutzen 41, 42 erfolgt die Mischung beider Gasströme im Wesentlichen im Eintrittskasten 43.
  • Fig. 8a und 8b zeigen einen Abgaswärmeübertrager 44 mit einer frontseitig angeordneten Jalousie 45, welche aus einzelnen schwenkbaren Klappen oder Lamellen 45a, 45b, 45c, ...45f besteht. Fig. 8a zeigt den Abgaswärmeübertrager 44 mit geschlossener Jalousie 45, d. h. die gesamte luftseitig beaufschlagte Stirnfläche des Abgaswärmeübertragers 44 ist durch die Lamellen 45a bis 45 f abgedeckt. Fig. 8b zeigt den Abgaswärmeübertrager 44 mit der Jalousie 45 in geöffneter Position, d. h. die Lamellen 45a bis 45f sind parallel zur Luftströmungsrichtung L ausgerichtet und lassen somit Kühlluft durch. Die Lamellen 45a bis 45f sind dabei jeweils in Luftströmungsrichtung vor den nicht sichtbaren bzw. nicht dargestellten Abgaskanälen des Abgaswärmeübertragers 44 angeordnet, so dass die Rippen 46a, 46b, 46c, ... zwischen den Abgaskanälen für eine Luftdurchströmung freigegeben sind. In der Jalousieposition gemäß Fig. 8b findet somit eine Kühlung des den Abgaswärmeübertrager 44 durchströmenden Abgases statt, während in der geschlossenen Jalousieposition gemäß Fig. 8 keine Kühlung durch einen Luftstrom stattfindet. Die Jalousie 45 wird insbesondere bei niedrigen Außentemperaturen, wenn die Gefahr des Einfrierens von Kondensat in den Abgaskanälen besteht, geschlossen. Damit kann ein Einfrieren weitestgehend verhindert und eine Abgasrückführung aufrechterhalten werden.
  • Fig. 9a und 9b zeigen eine weitere Ausführungsform für einen vom Kühlluftstrom abschirmbaren Abgaskühler 47. In Luftströmungsrichtung vor dem Abgaskühler 47 ist eine verschiebbare Abdeckvorrichtung 48 angeordnet, welche aus Stegen 49a, 49b, 49c, ... sowie aus zwischen den Stegen angeordneten Längsschlitzen 50a, 50b, 50c, ... besteht. Die Stege 49a, 49b, 49c, ... können durch einen geeigneten Stellmotor quer zur Längsrichtung der nicht dargestellten Abgaskanäle bewegt werden und somit die Stirnfläche des Abgaskühlers 47 teilweise freigeben oder verschließen. Fig. 9a zeigt den Abgaskühler 47 mit einer geschlossenen Abdeckvorrichtung 48, d. h. die Stege 49a, 49b, 49c, ... decken die hier nicht sichtbaren Kühlluftkanäle ab, während sich die Schlitze 50a, 50b, 50c, ... in Luftströmungsrichtung vor den Abgaskanälen befinden. Somit findet eine Luftkühlung bei geschlossener Abdeckvorrichtung 48 nicht statt. Fig. 9b zeigt den Abgaskühler 47 mit geöffneter Abdeckvorrichtung 48, wobei die mit Rippen 51a, 51b, 51c, ... besetzten Kühlluftkanäle zwischen den Abgaskanälen freigegeben sind. Vor den Abgaskanälen befinden sich die Stege 49a, 49b, 49c, .... Die Abdeckvorrichtung 48 kann als Gitterstruktur (Gitterjalousie) ausgebildet sein, wobei die einzelnen Gitterstäbe faltbar oder gegeneinander verschiebbar sind, so dass ihre vom Luftstrom beaufschlagte Stirnfläche vergrößert oder verkleinert werden kann. Auch diese Abdeckvorrichtung 48 ist dafür geeignet, um ein Einfrieren von Kondensat in den Abgaskanälen zu verhindern und eine Abgasrückführung aufrechtzuerhalten. Die Ansteuerung der Abdeckvorrichtung 48, d. h. ihre Querbewegung kann durch geeignete Stellmotoren, z. B. temperaturabhängige Dehnstoffelemente, Unterdruckdosen oder sonstige Motoren erfolgen.
  • Fig. 10 zeigt ein weiteres Ausführungsbeispiel mit einem so genannten Kombikühler 52, welcher aus einem Ladeluftkühler 53 und einem Abgaskühler 54 aufgebaut ist, die beide von Kühlluft beaufschlagt werden. Der Abgaskühler 54 weist einen aus Luftrippen 55 und nicht sichtbaren Abgaskanälen bestehenden Block 56 auf, vor dem - in Luftströmungsrichtung gesehen - ein serpentinenförmig ausgebildeter Kühlmittelkanal 57 angeordnet ist, welcher an einen nicht dargestellten Kühlmittelkreislauf der Brennkraftmaschine des Kraftfahrzeuges anschließbar ist. Der Kühlmittelkanal 57 weist gerade Abschnitte 57a auf, welche endseitig durch Rohrbögen 57b verbunden sind. Der Kühlmittelkanal 57, 57a, 57b bildet somit eine Rohrschlange, wobei die geraden Abschnitte 57a vor den nicht sichtbaren Abgaskanälen des Abgaskühlers 54 angeordnet sind, d. h. die Luftrippen 55, welche Kühlluftkanäle bilden, sind der Kühlluftströmung vollständig ausgesetzt. Die geraden Abschnitte 57a der Rohrschlange 57 stehen in wärmeübertragender Verbindung - sei es durch Wärmeleitung oder durch Wärmestrahlung - mit den Abgaskanälen und verhindern somit bei niedrigen Außentemperaturen ein Einfrieren von Kondensat in den Abgaskanälen und damit eine Verstopfung. Eine Abgasrückführung kann somit auch bei niedrigen Außentemperaturen infolge der von Kühlmittel höherer Temperatur durchströmten Rohrschlange 57 aufrechterhalten werden. Vorzugsweise wird das Kühlmittel dem Motorrücklauf, d. h. dem Kühlervorlauf des Kühlkreislaufes entnommen. Die Entnahme des heißen Kühlmittels für die Durchströmung der Rohrschlange 57 kann über ein nicht dargestelltes Ventil gesteuert werden. Die Rohrschlange 57 deckt vorzugsweise sämtliche Abgaskanäle ab, mindestens jedoch einen Teil der Abgaskanäle.
  • Fig. 11 zeigt ein weiteres Ausführungsbeispiel mit einem luftgekühlten Abgaskühler 58, welcher eine von Kühlluft beaufschlagte Stirnfläche 59 aufweist. In Luftströmungsrichtung vor der Stirnfläche 59 des Abgaskühlers 58 ist ein elektrisch beheizbares Heizgitter 60, bestehend aus einer Vielzahl von Heizdrähten, welche mit den nicht sichtbaren Abgaskanälen und zwischen diesen angeordneten Luftrippen in wärmeübertragender Verbindung stehen, angeordnet. Das elektrisch beheizbare Heizgitter 60 gibt seine Wärme - auch durch den das Heizgitter 60 durchströmenden Luftstrom - an die Abgaskanäle und die Luftrippen ab, so dass diese bei niedrigen Außentemperaturen erwärmt werden. Damit kann ein Einfrieren von Kondensat im Abgaskühler 58 verhindert werden. Die Einschaltung der Beheizung kann manuell oder automatisch erfolgen, z. B. in Abhängigkeit von der Umgebungstemperatur oder der Abgasaustrittstemperatur hinter dem Abgaskühler 58.
  • Fig. 12 zeigt ein weiteres Ausführungsbeispiel mit einem luftgekühlten Abgaskühler 61, welcher einen abgasseitigen Eintrittskasten 62 und einen abgasseitigen Austrittskasten 63 aufweist, zwischen denen ein aus Abgaskanälen 64 und Kühlrippen 65 bestehender Abgasblock 66 angeordnet ist. Der Eintrittskasten 62 ist mit einer Abgaszuführleitung 67 und der Austrittskasten 63 mit einer Abgasrückführleitung 68 verbunden. Dem Abgaskühler 61 ist ein Ventil 69 zugeordnet, welches zwei durch eine Trennwand 70 abgeteilte Ventilkammern 71, 72 aufweist. In der Trennwand 70 ist eine Ventilöffnung 73 angeordnet, welche über ein durch eine Ventilschließfeder 74 belastetes Ventilschließglied 75 kontrolliert wird. Die Ventilkammer 71 wird von der Abgaszuführleitung 67 durchströmt, während die Ventilkammer 72 von der Abgasrückführleitung 68 durchströmt wird. Die Ventilöffnung 73 ist durch das Ventilschließglied 75 so lange geschlossen, wie die Kraft der Ventilschließfeder 74 größer als die auf das Ventilschließglied 75 wirkenden Druckkräfte ist. In der Ventilkammer 71 herrscht ein Druck P1, welcher dem eingangsseitigen Abgasdruck des Abgaskühlers 61 entspricht, während der Druck P2 in der Ventilkammer 72 dem ausgangsseitigen Abgasdruck des Abgaskühlers 61 entspricht. Somit wirkt auf das tellerförmige Ventilschließglied 75 ein Differenzdruck ΔP, welcher dem abgasseitigen Druckabfall (P1 minus P2) im Abgaskühler 61 entspricht. So lange die Abgasrohre 64 frei sind, weist der Abgaswärmeübertrager 61 einen relativ geringen Druckabfall ΔP = P1 - P2 auf. Tritt jedoch bei niedrigen Außentemperaturen eine teilweise oder vollständige Verstopfung der Abgasrohre 64 infolge Einfrierens von Kondensat auf, so steigt der abgasseitige Druckabfall im Abgaskühler 61 und damit der auf das Ventilschließglied 75 wirkende Differenzdruck: P2 wird kleiner, und P1 wird größer, bis die aus dem Differenzdruck resultierende Kraft größer als die Kraft der Schließfeder 74 wird - dann öffnet das Ventilschließglied 75 und gibt die Ventilöffnung 73 frei, die dann als Bypass zwischen der Abgaszuführleitung 67 und der Abgasrückführleitung 68 wirkt. Der Abgaskühler 61 wird dann ganz oder teilweise durch den geöffneten Bypass 73 umgangen. Damit wird sichergestellt, dass auch bei niedrigen Umgebungstemperaturen, bei welchen das eingefrorene Kondensat im Abgaskühler 61 die Rohre 64 verblockt, Abgas zurückgeführt werden kann. Ferner ist auch eine externe Ansteuerung des Ventils 69 - elektrisch oder pneumatisch - in Abhängigkeit von Druck oder Temperatur möglich. Die nicht in der Zeichnungen dargestellte Erfindung betrifft einen luftgekühlten Abgaswärmeübertrager mit einem Bypasskanal für das Abgas, etwa entsprechend dem Ausführungsbeispiel gemäß Fig. 3, jedoch ohne Abgasbypassklappe. Damit ist sichergestellt, dass auch bei niedrigen Außentemperaturen und wenn Kondensat im Kühler eingefroren ist und der Abgaskühler abgasseitig teilweise oder ganz verschlossen ("geblockt") ist, Abgas rückgeführt werden kann. Der Bypasskanal, insbesondere sein Eintritt ist dabei so gestaltet, dass der Druckverlust über den Bypasskanal zunächst größer ist als der abgasseitige Druckverlust im Abgaskühler (im nicht eingefrorenen Zustand, also mit maximalem abgasseitigen Durchtrittsquerschnitt). In diesem Zustand gilt die Beziehung: Δ P By > Δ P Ak ,
    Figure imgb0001
    wobei PBy der Druckabfall im Bypass und PAk der Druckabfall im Abgaskühler sind. Wenn Kondensat im Abgaskühler einfriert, steigt der Druckabfall im Abgaskühler an, bis er den Druckverlust im Bypasskanal erreicht und übersteigt. Dann strömt zunächst ein Teilmassenstrom und bei vollständiger Verstopfung des Abgaskühlers der gesamte Abgasmassenstrom durch den Bypass. Die Geometrie und die Abmessungen des Bypasskanals sind so ausgestaltet, dass das Kondensat nicht im Bypasskanal einfrieren kann; vorzugsweise wird der Bypasskanal als Rundrohr oder Rechteckrohr mit ausreichendem Querschnitt in Abhängigkeit der Massenströme ausgebildet. Bei diesem durch den Druckverlust selbst gesteuerten Bypass sind keine Bypassklappe und auch keine weitere Ansteuerung dieser Klappe erforderlich.

Claims (39)

  1. Luftgekühlter Abgaswärmeübertrager, insbesondere Abgaskühler für Kraftfahrzeuge, mit von Abgas einer Brennkraftmaschine durchströmbaren Abgaskanälen, zwischen denen Rippen zur Luftkühlung angeordnet sind, wobei die Abgaskanäle als Rohre, insbesondere als Flachrohre (3), ausgebildet sind, mit den Rippen (4) einen Rippenrohrblock (2) bilden und die Rohre (3) Rohrenden (3a) aufweisen, die in Sammelkästen (5) für das Abgas aufgenommen sind und wobei dem Abgaswärmeübertrager (16) ein Bypasskanal (17) für das Abgas zugeordnet ist, wobei der Abgaswärmeübertrager (16) einen Druckabfall Δ PAk und der Bypasskanal (17) einen Druckabfall Δ PBy aufweisen, dadurch gekennzeichnet, dass bei über dem Gefrierpunkt liegenden Außentemperaturen und offenem Abgaswärmeübertrager (16) die Beziehung Δ PBy > Δ PAk und bei niedrigen Außentemperaturen durch Einfrieren der Abgaskanälen teilweise oder ganz verstopftem Abgaswärmeübertrager (16) die Beziehung Δ PBy < Δ PAk gilt und der Bypasskanal (17) ohne Bypassklappe ausgebildet ist.
  2. Abgaswärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Sammelkästen (5) Rohrböden (6) mit Öffnungen (11) aufweisen, in welche die Rohrenden (3a) eingeschweißt oder eingelötet sind.
  3. Abgaswärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rohre (3) aus Stahl, insbesondere Edelstahl herstellbar sind.
  4. Abgaswärmeübertrager nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Rippen (4) aus Stahl, insbesondere Edelstahl oder aus einem Buntmetall, insbesondere Kupfer herstellbar sind.
  5. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Rippen als Wellrippen (4) ausgebildet sind und Kiemen aufweisen.
  6. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Rippen als Stegrippen ausgebildet sind.
  7. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Rohre (3) Turbulenzeinlagen, eingelötete Innenrippen oder so genannte winglets aufweisen.
  8. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Rohre (3), in Luftströmungsrichtung gesehen, mehrreihig angeordnet sind.
  9. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rippenrohrblock (2) Seitenteile (12, 13) aufweist.
  10. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Sammelkästen (5) für das Abgas aus Edelstahl oder aus Kunststoff herstellbar sind.
  11. Abgaswärmeübertrager nach Anspruch 9, dadurch gekennzeichnet, dass die Seitenteile (12, 13) als nicht durchströmbare Flachrohre ausgebildet sind, die mit den äußersten Rippenlagen stoffschlüssig verbunden, insbesondere verlötet sind.
  12. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Rippen auf der Luftseite, insbesondere Wellrippen (4) oder Innenrippen auf der Abgasseite eine Rippenhöhe h aufweisen, wobei folgender Bemessungsbereich gilt:
    2 ≤ h ≤10 mm, vorzugsweise 4 ≤ h ≤ 6 mm.
  13. Abgaswärmeübertrager nach Anspruch 12, dadurch gekennzeichnet, dass die Rippenhöhe h = 5 mm beträgt.
  14. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Flachrohre (3) eine Rohrhöhe b aufweisen, wobei folgender Bemessungsbereich gilt:
    2 ≤ b ≤ 15 mm, insbesondere 3 ≤ b ≤ 10 mm.
  15. Abgaswärmeübertrager nach Anspruch 14, dadurch gekennzeichnet, dass die Rohrhöhe b = 4,5 mm beträgt.
  16. Abgaswärmeübertrager nach Anspruch 12 oder 13 und Anspruch 14 oder 15, dadurch gekennzeichnet, dass das Verhältnis von Rohrhöhe b zu Rippenhöhe h im Bereich 0,5 ≤ b/h ≤ 1,5 liegt.
  17. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Rippen (4) zwischen den Rohren (3) eine Rippendichte im Bereich von 20 bis 80 Rippen/dm, vorzugsweise im Bereich von 30 bis 50 Rippen/dm aufweisen.
  18. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Rohre (3) einen hydraulischen Durchmesser dh aufweisen, der im Bereich von 2 ≤ dh ≤ 20, vorzugsweise im Bereich von 3 ≤ dh ≤ 10 mm liegt.
  19. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass der Rippenrohrblock (2) eine Tiefe T, gemessen in Luftströmungsrichtung, im Bereich von 20 ≤ T ≤ 100 mm, vorzugsweise im Bereich von 30 ≤ T ≤ 70 mm aufweist.
  20. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der Rippenrohrblock (2) eine Höhe H und eine Länge L aufweist und dass das Verhältnis von Höhe H zu Länge L im Bereich von 0,1 ≤ H/L ≤ 0,8, vorzugsweise im Bereich von 0,2 ≤ H/L ≤ 0,4 liegt.
  21. Kühlmodul mit einem Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 20 und eine zusätzliche Komponente bestehend aus einem Kühlmittelkühler, einem Kondensator und/oder einem Ladeluftkühler.
  22. Kühlmodul nach Anspruch 21, dadurch gekennzeichnet, dass der Abgaswärmeübertrager und der Ladeluftkühler übereinander im Kühlmodul angeordnet sind.
  23. Wärmeübertragermodul (50) mit einem Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Abgaswärmeübertrager und ein Ladeluftkühler (52) miteinander verbunden sind.
  24. Wärmeübertragermodul nach Anspruch 23, dadurch gekennzeichnet, dass das Abgas austrittsseitig von der Ladeluft getrennt und durch den oder um den austrittsseitigen Luftkasten (57, 61, 65) der Ladelufkühler geführt ist.
  25. Wärmeübertragermodul nach Anspruch 24, dadurch gekennzeichnet, dass das Abgas, stromaufwärts vom eintrittsseitigen Sammelkasten und/oder stromabwärts vom austrittsseitigen Sammelkasten (55, 64), in einem separaten Kanal (59, 62, 66) geführt ist.
  26. Wärmeübertragermodul nach Anspruch 25, dadurch gekennzeichnet, dass der separate Kanal (59, 62, 66) innerhalb oder außerhalb des austrittsseitigen Ladeluftkastens (57, 61, 65) angeordnet ist.
  27. Wärmeübertragermodul nach Anspruch 26, dadurch gekennzeichnet, dass der separate Kanal (59) durch eine Trennwand (58) im Ladeluftkasten (57) gebildet wird.
  28. Wärmeübertragermodul nach Anspruch 25 oder 26, dadurch gekennzeichnet, dass der separate Kanal (62, 66) für das Abgas als Rohr oder Schlauch aus Kunststoff, Gummi oder Stahl oder als Kunststoff-Blasteil herstellbar ist.
  29. Wärmeübertragermodul nach mindestens einem der Ansprüche 24 bis 28, dadurch gekennzeichnet, dass das Abgas und die Ladeluft stromabwärts des Ladeluftkastens (57, 61, 65) in einer Mischzone mischbar sind.
  30. Wärmeübertragermodul nach Anspruch 29, dadurch gekennzeichnet, dass die Mischzone geodätisch tiefer als der Austritt der Ladeluft aus dem Ladeluftkasten (57, 61, 65) angeordnet ist.
  31. Wärmeübertragermodul nach mindestens einem der Ansprüche 23 bis 30, dadurch gekennzeichnet, dass das Abgas von der Ladeluft mittels einer nach dem bekannten Venturieffekt arbeitenden Einrichtung, insbesondere mittels einer Venturidüse ansaugbar ist.
  32. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Abgaswärmeübertrager abgasaustrittsseitig einen Kondensatablass aufweist.
  33. Anordnung zur Abgasrückführung (AGR) in einem Kraftfahrzeug mit einer Brennkraftmaschine (23) mit einer Ansaugleitung (29) und einer Abgasleitung (24) sowie einer einen Abgaskühler aufweisenden AGR-Leitung (31), dadurch gekennzeichnet, dass der Abgaskühler als Abgaswärmeübertrager nach einem der Ansprüche 1 bis 20 ausgebildet ist.
  34. Anordnung nach Anspruch 33, dadurch gekennzeichnet, dass dem Abgaswärmeübertrager in der AGR-Leitung (31) ein Abgaskühler (32) vorgeschaltet ist, welcher von einem flüssigen Kühlmittel, insbesondere dem Kühlmittel des Kühlkreislaufes der Brennkraftmaschine (23) kühlbar ist.
  35. Anordnung nach Anspruch 33 oder 34, dadurch gekennzeichnet, dass der Abgaswärmeübertrager an beliebiger Stelle im Motorraum, jedoch nicht am Kühlmodul angeordnet ist.
  36. Anordnung nach Anspruch 33, 34 oder 35, dadurch gekennzeichnet, dass dem Abgaswärmeübertrager ein eigener Lüfter zur Förderung von Kühlluft vor- oder nachgeschaltet ist.
  37. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 20 oder Anordnung nach mindestens einem der Ansprüche 33 bis 36, dadurch gekennzeichnet, dass der Abgaswärmeübertrager ein integriertes AGR-Ventil aufweist.
  38. Abgaswärmeübertrager nach mindestens einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass dem Abgaswärmeübertrager ein Oxidationskatalysator vorgeschaltet ist.
  39. Abgaswärmeübertrager nach Anspruch 38, dadurch gekennzeichnet, dass der Oxidationskatalysator innerhalb oder außerhalb des eintrittsseitigen Sammelkastens für das Abgas angeordnet ist.
EP05797323.2A 2004-10-07 2005-10-05 Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge Not-in-force EP1800078B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004049108 2004-10-07
DE102005023795 2005-05-19
PCT/EP2005/010718 WO2006040053A1 (de) 2004-10-07 2005-10-05 Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge

Publications (2)

Publication Number Publication Date
EP1800078A1 EP1800078A1 (de) 2007-06-27
EP1800078B1 true EP1800078B1 (de) 2018-05-30

Family

ID=35448317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05797323.2A Not-in-force EP1800078B1 (de) 2004-10-07 2005-10-05 Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge

Country Status (6)

Country Link
US (1) US8739520B2 (de)
EP (1) EP1800078B1 (de)
JP (1) JP2008516176A (de)
KR (1) KR101253365B1 (de)
BR (1) BRPI0516124A (de)
WO (1) WO2006040053A1 (de)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527869C2 (sv) * 2004-11-17 2006-06-27 Scania Cv Ab Kylanordning i ett fordon
DE102005055481A1 (de) * 2005-11-18 2007-05-24 Behr Gmbh & Co. Kg Wärmetauscher für einen Verbrennungsmotor
US7464700B2 (en) * 2006-03-03 2008-12-16 Proliance International Inc. Method for cooling an internal combustion engine having exhaust gas recirculation and charge air cooling
SE529731C2 (sv) * 2006-03-21 2007-11-06 Scania Cv Ab Kylararrangemang hos ett fordon
US7793498B2 (en) 2006-07-27 2010-09-14 International Truck Intellectual Property Company, Llc Integrated charge air cooler and exhaust gas recirculation mixer
DE102006037212B4 (de) * 2006-08-09 2008-06-12 Itw Automotive Products Gmbh & Co. Kg Wärmetauscher für ein Kühlsystem einer Verbrennungskraftmaschine
SE530325C2 (sv) * 2006-09-29 2008-05-06 Scania Cv Ab Kylararrangemang
JP2008123840A (ja) * 2006-11-13 2008-05-29 Denso Corp 燃料電池システム
SE530242C2 (sv) * 2006-11-27 2008-04-08 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor
SE530583C2 (sv) * 2006-11-29 2008-07-08 Scania Cv Ab Kylararrangemang hos ett fordon
US7971603B2 (en) 2007-01-26 2011-07-05 Hayward Industries, Inc. Header for a heat exchanger
US20080223561A1 (en) * 2007-01-26 2008-09-18 Hayward Industries, Inc. Heat Exchangers and Headers Therefor
EP3296538A1 (de) * 2007-03-16 2018-03-21 MAHLE Behr GmbH & Co. KG Strömungskanal, wärmetauscher, abgasrückführsystem, ladeluft-zuführsystem, verwendung eines wärmetauschers
EP2129888B1 (de) * 2007-03-23 2012-10-31 Behr GmbH & Co. KG Ladefluidansaugmodul und verbrennungskraftmaschine
JP5112805B2 (ja) * 2007-10-12 2013-01-09 日野自動車株式会社 Egr装置
EP2220351A1 (de) * 2007-11-12 2010-08-25 Behr GmbH & Co. KG Abgaskühler für ein kraftfahrzeug
SE532709C2 (sv) * 2008-03-06 2010-03-23 Scania Cv Ab Kylarrangemang hos en överladdad förbränningsmotor
FR2930633B1 (fr) * 2008-04-24 2014-10-24 Valeo Systemes Thermiques Circuit de refroidissement de gaz et procede de refroidissement de gaz
JP5280113B2 (ja) * 2008-06-11 2013-09-04 ヤンマー株式会社 多気筒内燃機関における排気ガス還流装置
DE102008028194A1 (de) * 2008-06-12 2009-12-17 Audi Ag Ladeluftkühler-Enteisung
US8061138B2 (en) * 2008-06-24 2011-11-22 Ford Global Technologies, Llc System for controlling contaminant deposition in exhaust gas recirculation coolers
DE102008044672A1 (de) * 2008-08-28 2010-03-04 Behr Gmbh & Co. Kg Gaskühler für einen Verbrennungsmotor
FR2945483B1 (fr) * 2009-05-18 2012-11-16 Peugeot Citroen Automobiles Sa Refroidisseur d'air suralimente et vehicule comportant un tel refroidisseur
FR2955620B1 (fr) * 2010-01-26 2012-07-27 Peugeot Citroen Automobiles Sa Raccord, boitier de derivation pour ce raccord, systeme de refroidissement et vehicule equipe de ce raccord
DE102010005803A1 (de) * 2010-01-27 2011-07-28 Audi Ag, 85057 Kraftwagen mit einer Abgasanlage
US8375926B2 (en) * 2010-02-01 2013-02-19 Deere & Company Moisture purging in an EGR system
JP5620685B2 (ja) * 2010-02-02 2014-11-05 国立大学法人東京大学 熱交換器
SE535319C2 (sv) * 2010-02-19 2012-06-26 Scania Cv Ab Arrangemang för avisning av en laddluftkylare
DE102010010624A1 (de) * 2010-03-09 2011-09-15 GM Global Technology Operations LLC , (n. d. Ges. d. Staates Delaware) Koaxialer Wärmetauscher für eine Kraftfahrzeug-Abgasanlage
FR2962164B1 (fr) * 2010-06-30 2012-12-07 Valeo Systemes Thermiques Dispositif de recirculation de gaz d'echappement d'un moteur de vehicule automobile
JP2012067955A (ja) * 2010-09-22 2012-04-05 Hino Motors Ltd 熱交換器及びそれを用いたエンジンの吸気冷却装置
DE102011076800A1 (de) * 2011-05-31 2012-12-06 Behr Gmbh & Co. Kg Wärmeübertrager
US8903632B2 (en) 2011-06-17 2014-12-02 General Electric Company Methods and systems for exhaust gas recirculation cooler regeneration
GB2492770A (en) * 2011-07-11 2013-01-16 Gm Global Tech Operations Inc Method and apparatus for operating an exhaust gas recirculation system
US8746217B2 (en) 2011-10-07 2014-06-10 Deere & Company Power system comprising an air cooled HT EGR cooler and LT EGR cooler
ITTO20120187A1 (it) * 2012-03-02 2013-09-03 Denso Thermal Systems Spa Modulo raffreddatore/riscaldatore, integrato in un collettore di aspirazione di un motore a combustione interna per il condizionamento di un fluido gassoso di aspirazione
US8783233B2 (en) * 2012-08-28 2014-07-22 Ford Global Technologies, Llc Charge air cooler with dual flow path conduit
FR2998954B1 (fr) * 2012-11-30 2018-07-27 Valeo Systemes Thermiques Echangeur de chaleur, notamment generateur thermo electrique.
KR101509556B1 (ko) * 2013-02-26 2015-04-07 주식회사 경동나비엔 급배기 열교환기를 구비한 연소장치
US9109500B2 (en) 2013-07-19 2015-08-18 Ford Global Technologies, Llc Charge air cooler housing water trap
KR101521828B1 (ko) * 2013-10-18 2015-05-20 대우조선해양 주식회사 풍력발전기 나셀의 냉각장치
CN103742298A (zh) * 2013-12-24 2014-04-23 广西科技大学 内燃机废气再循环用冷却器
US10309364B2 (en) * 2014-07-18 2019-06-04 Hanon Systems Exhaust heat regenerator for vehicle
US9689353B2 (en) * 2015-08-27 2017-06-27 GM Global Technology Operations LLC Charge air cooler device
US10024275B2 (en) 2016-01-12 2018-07-17 Ford Global Technologies Llc Condensate management system for an exhaust gas cooler and heat recovery device
US10577973B2 (en) 2016-02-18 2020-03-03 General Electric Company Service tube for a turbine engine
US10273872B2 (en) * 2016-11-14 2019-04-30 GM Global Technology Operations LLC Air-to-air charge air cooler (A-CAC) for a vehicle
KR20180124322A (ko) * 2017-05-11 2018-11-21 현대자동차주식회사 복합 인터쿨러를 구비한 엔진시스템
BE1025208B1 (nl) * 2017-05-12 2018-12-12 Cnh Industrial Belgium Nv Koeler met geschrankte kernen voor een voertuig
EP3489604B1 (de) * 2017-11-24 2020-12-23 TitanX Holding AB Fahrzeugkondensator
WO2019119137A1 (en) * 2017-12-22 2019-06-27 Mcmaster University Plate-fin heat exchanger suitable for rack-mountable cooling unit
JP7097222B2 (ja) * 2018-04-23 2022-07-07 リンナイ株式会社 熱源機
CA3107466A1 (en) 2018-07-25 2020-01-30 Hayward Industries, Inc. Compact universal gas pool heater and associated methods
CN114576048A (zh) * 2020-11-30 2022-06-03 长城汽车股份有限公司 一种egr冷却装置和车辆

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2436958A2 (fr) * 1978-09-22 1980-04-18 Ceraver Procede de fabrication d'un element d'echange indirect de chaleur en matiere ceramique, et element obtenu par ce procede
JPS5948498A (ja) * 1982-09-11 1984-03-19 Yamasa Shoyu Co Ltd 1−β−D−アラビノフラノシルシトシン−5′−りん酸誘導体
JPS6095463A (ja) * 1983-10-29 1985-05-28 Mita Ind Co Ltd トナ−カ−トリツジ
DE3508240A1 (de) * 1985-03-08 1986-09-11 Klöckner-Humboldt-Deutz AG, 5000 Köln Waermetauscher, insbesondere ladeluftkuehler mit optimierten stroemungswiderstaenden fuer alle waermeaustauschenden medien
DE3933199C1 (de) * 1989-10-05 1990-12-13 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JP3387523B2 (ja) 1992-05-22 2003-03-17 モーディーン・マニュファクチャリング・カンパニー 熱交換器製造方法、装入空気冷却器及び熱交換器
DE4240239C2 (de) * 1992-12-01 1995-11-30 Wolfgang Schmitz Verbrennungskraftmaschine
JPH07139765A (ja) * 1993-11-18 1995-05-30 Sanyo Electric Co Ltd エンジン駆動式空気調和装置
DE9406197U1 (de) * 1994-04-14 1994-06-16 Behr Gmbh & Co Wärmetauscher zum Kühlen von Abgas eines Kraftfahrzeugmotors
JPH089300A (ja) 1994-06-20 1996-01-12 Matsushita Electric Ind Co Ltd 画像評価装置
JP3355824B2 (ja) 1994-11-04 2002-12-09 株式会社デンソー コルゲートフィン型熱交換器
DE19514016C1 (de) * 1995-04-13 1996-08-29 Laengerer & Reich Gmbh & Co Kühlereinheit in side-by-side Bauweise
DE19629015C2 (de) 1996-07-18 1998-07-02 Mtu Friedrichshafen Gmbh Vorrichtung und Verfahren zur Kühlung eines Abgasstromes einer Brennkraftmaschine sowie deren Verwendung
DE19633190B4 (de) 1996-08-17 2004-02-26 Daimlerchrysler Ag Kühlsystem für eine Brennkraftmaschine
JP3824105B2 (ja) * 1997-02-06 2006-09-20 カルソニックカンセイ株式会社 自動車用空気調和装置のドア機構
JPH10220305A (ja) * 1997-02-10 1998-08-18 Isuzu Motors Ltd インタークーラー付きegr装置
FR2768256B1 (fr) 1997-09-10 2001-01-19 Inside Technologies Procede d'enregistrement d'un mot binaire au moyen de cellules memoire du type programmable et effacable electriquement
DE19750588B4 (de) * 1997-11-17 2016-10-13 MAHLE Behr GmbH & Co. KG Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
US6464854B2 (en) * 1997-12-16 2002-10-15 Lynntech, Inc. Water sources for automotive electrolyzers
KR200311823Y1 (ko) * 1997-12-31 2003-08-19 한라공조주식회사 열교환기용튜브
US5987885A (en) * 1998-01-29 1999-11-23 Chrysler Corporation Combination catalytic converter and heat exchanger that maintains a catalyst substrate within an efficient operating temperature range for emmisions reduction
FR2776015B1 (fr) * 1998-03-11 2000-08-11 Ecia Equip Composants Ind Auto Organe d'echappement a echangeur de chaleur
DE19907163C2 (de) 1998-04-24 2003-08-14 Behr Gmbh & Co Wärmetauscher, insbesondere Abgaswärmetauscher
GB2344643B (en) * 1998-12-07 2002-06-26 Serck Heat Transfer Ltd Heat exchanger core connection
DE29903382U1 (de) * 1999-02-25 1999-05-27 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Modul für Abgasanlagen
US6374911B1 (en) 1999-06-17 2002-04-23 Modine Manufacturing Company Charge air cooler and method of making the same
DE60113646T2 (de) * 2000-01-21 2006-03-16 Honda Giken Kogyo K.K. Abgasreinigungsvorrichtung und brennkraftmaschine
DE10011954A1 (de) 2000-03-11 2001-09-13 Modine Mfg Co Abgaswärmetauscher in einer Abgasrückführungsanordnung
DE10014266A1 (de) * 2000-03-22 2001-09-27 Zeuna Staerker Kg Luftgekühlter Abgaskühler für ein verbrennungsmotorisch angetriebenes Kraftfahrzeug
US6474408B1 (en) * 2000-08-31 2002-11-05 Honeywell International Inc. Heat exchanger with bypass seal allowing differential thermal expansion
JP2002188526A (ja) * 2000-12-20 2002-07-05 Hino Motors Ltd Egr装置
JP3893895B2 (ja) * 2001-04-16 2007-03-14 三菱ふそうトラック・バス株式会社 Egrガス冷却構造
DE10125989A1 (de) 2001-05-08 2002-11-14 Volkswagen Ag Verfahren und Vorrichtung zur Abgaskühlung
JP2003004395A (ja) * 2001-06-22 2003-01-08 Zexel Valeo Climate Control Corp 熱交換器
DE10203003B4 (de) 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
JP2003286846A (ja) 2002-03-27 2003-10-10 Calsonic Kansei Corp 変速機用オイルクーラモジュール
JP4011973B2 (ja) * 2002-05-29 2007-11-21 ヤンマー株式会社 内燃機関の触媒付き熱交換器
US6786210B2 (en) * 2002-06-21 2004-09-07 Detroit Diesel Corporation Working fluid circuit for a turbocharged engine having exhaust gas recirculation
US7011080B2 (en) 2002-06-21 2006-03-14 Detroit Diesel Corporation Working fluid circuit for a turbocharged engine having exhaust gas recirculation
JP2004028469A (ja) 2002-06-26 2004-01-29 Toyo Radiator Co Ltd 熱交換器コア
DE10238839A1 (de) 2002-08-23 2004-03-04 Behr Gmbh & Co. Ladeluftkühler
US7171956B2 (en) 2002-08-28 2007-02-06 T. Rad Co., Ltd. EGR cooler
JP4278939B2 (ja) * 2002-09-06 2009-06-17 三菱重工業株式会社 内燃機関のegr装置
US7059308B2 (en) 2002-12-03 2006-06-13 Behr Gmbh & Co. Kg Cooling device
EP1479883A1 (de) * 2003-05-10 2004-11-24 Universität Stuttgart Verfahren und Vorrichtung zur Reinigung von Abgasen
US7210468B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Heat exchanger method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1800078A1 (de) 2007-06-27
KR20070067699A (ko) 2007-06-28
JP2008516176A (ja) 2008-05-15
KR101253365B1 (ko) 2013-04-11
BRPI0516124A (pt) 2008-08-26
US8739520B2 (en) 2014-06-03
WO2006040053A1 (de) 2006-04-20
US20070261400A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
EP1800078B1 (de) Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE102005047840A1 (de) Luftgekühlter Abgaswärmeübertrager, insbesondere Abgaskühler für Kraftfahrzeuge
EP1626238B1 (de) Wärmetauscher, bestehend aus Flachrohren
EP1279805B1 (de) Luftgekühlter Ladeluftkühler
EP1911946B1 (de) Vorrichtung zur Ladeluftkühlung für einen Verbrennungsmotor, System mit einer Vorrichtung zur Ladeluftkühlung
EP1913324B1 (de) Wärmeübertrager
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
EP1491837B1 (de) Wärmetauscher in gehäuseloser Plattenbauweise
EP2159394B1 (de) Gaskühler für einen Verbrennungsmotor
EP2066992A2 (de) Wärmetauscher für einen verbrennungsmotor
DE102006009948A1 (de) Abgaswärmeaustauscher
EP1941224A1 (de) Wärmetauscher
DE112017006549B4 (de) Ladeluftkühler
WO2007104580A2 (de) Wärmetauscher für ein kraftfahrzeug
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
WO2008058734A1 (de) Wärmeübertrager für kraftfahrzeug mit stranggepresstem gekrümmten strömungskanal
WO2008006604A1 (de) Vorrichtung zur kühlung eines gasstroms eines verbrennungsmotors
DE102005040612A1 (de) Abgaswärmeübertrager
EP1857761B1 (de) Wärmeübertragungseinheit für Verbrennungskraftmaschinen
EP2134941B1 (de) Strömungskanal, wärmetauscher, abgasrückführsystem, ladeluft-zuführsystem, verwendung eines wärmetauschers
DE102006049106A1 (de) Wärmetauscher
DE102007011184A1 (de) Wärmetauscher zur Kühlung von Abgas, Vorrichtung zur Überführung einer flüssigen Harnstofflösung in zumindest gasförmiges Ammoniak, System zur Abgaskühlung, Verfahren zur Rückführung von Abgas und zur Stickoxidreduzierung
DE102007013302A1 (de) Wärmetauscher für ein Kraftfahrzeug
DE102007031824A1 (de) Wärmetauscher
EP1956212A1 (de) Anordnung eines Ladeluftkühlers in einem Ansaugsystem einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20150327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180308

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESKES, PETER

Inventor name: VON LUETZAU, FRANK

Inventor name: IRMLER, KLAUS

Inventor name: DIGELE, JOERG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1004044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015840

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180530

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181030

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181026

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015840

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181005

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181005

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181005

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181005

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1004044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015840

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031