EP1738420A2 - Leuchtdiodenchip - Google Patents

Leuchtdiodenchip

Info

Publication number
EP1738420A2
EP1738420A2 EP05742638A EP05742638A EP1738420A2 EP 1738420 A2 EP1738420 A2 EP 1738420A2 EP 05742638 A EP05742638 A EP 05742638A EP 05742638 A EP05742638 A EP 05742638A EP 1738420 A2 EP1738420 A2 EP 1738420A2
Authority
EP
European Patent Office
Prior art keywords
layer
thin
light
chip according
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05742638A
Other languages
English (en)
French (fr)
Inventor
Stefan Bader
Wolfgang Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1738420A2 publication Critical patent/EP1738420A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • H01L33/465Reflective coating, e.g. dielectric Bragg reflector with a resonant cavity structure

Definitions

  • the invention relates to a light-emitting diode chip, in particular a thin-film LED chip.
  • the object of the present invention is to provide a thin-film light-emitting diode chip with a high efficiency and low absorption losses.
  • a thin-film light-emitting diode chip is specified, in which the distance between a mirror layer and a light-generating active zone is set such that a radiation emitted by the active zone interferes with a light reflected by the mirror layer. This interference affects the internal quantum efficiency of the active zone and achieves a directional radiation characteristic of the active zone.
  • the directional radiation characteristic has at least one preferred direction.
  • the thin-film light-emitting diode chip has a coupling-out layer which is at least semiconductive. The decoupling layer is not an antireflection coating.
  • a thin-film light-emitting diode chip is characterized in particular by the following characteristic features: on a first main surface of a radiation-generating epitaxial layer sequence facing a carrier element, a reflective layer is deposited or formed which reflects back at least part of the electromagnetic radiation generated in the epitaxial layer sequence; the epitaxial layer sequence has a thickness in the range of 20 ⁇ m or less, in particular in the range between 4 ⁇ m and 10 ⁇ m; and the epitaxial layer sequence contains at least one semiconductor layer having at least one surface which has a mixing structure which, in the ideal case, leads to an approximately ergodic distribution of the light in the epitaxial epitaxial layer sequence, ie it has a possibly ergo-stochastically scattering behavior.
  • a thin-film light-emitting diode chip is to a good approximation a Lambert surface radiator.
  • the basic principle of a thin-film light-emitting diode chip is described, for example, in the publication I. Schnitzer et al. , Appl. Phys. Lett. 63 (16), 18 October 1993, 2174 - 2176.
  • a thin-film LED chip is understood in particular to be a light-emitting diode chip having a layer structure with epitaxially grown layers, from which the growth substrate has preferably been removed after growth. At least part of the epitaxially grown layers are semiconductor layers.
  • the chip may have a carrier different from the growth substrate on which the layer structure is applied.
  • the specified thin-film LED chip has no resonator.
  • the specified thin-film LED chip in contrast to a RCLED (Resonant Cavity Light Emmiting Diode) comprises only a single mirror.
  • the thin-film LED chip and in particular the epitaxial layer construction advantageously does not comprise a Bragg mirror, in contrast to an RCLED.
  • the thin-film light-emitting diode chip is GaN-based.
  • the light generated in the semiconductor body is coupled out directly from the semiconductor body, ie without absorption losses and reflection losses due to a substrate arranged downstream of the radiation-emitting epitaxial layer sequence.
  • Near-field optical effects greatly affect the output efficiency of thin-film LEDs.
  • the advantage of using near-field optical effects is the increase in the proportion of radiation that is coupled out of the light-generating semiconductor.
  • the thin-film chip specified here is characterized by a high coupling-out efficiency, which can exceed 70%.
  • the active zone has several sublayers, for example in the form of a single quantum well or a multiple quantum well structure.
  • the semiconductor body has at least a first semiconductor layer of a first conductivity type, at least one second semiconductor layer of a second conductivity type and the active zone arranged therebetween.
  • the first semiconductor layer is preferably p-doped, and the second semiconductor layer is preferably n-doped.
  • the semiconductor layers are preferably transparent, ie permeable to the radiation generated in the active zone.
  • the semiconductor body may, for example, contain a barrier layer which is arranged between the first semiconductor layer and the mirror layer and z. B. acts as a charge carrier diffusion barrier, that prevents the emergence of charge carriers from the first semiconductor layer in the direction of the mirror layer.
  • the charge carrier barrier layer is preferably at least partially semiconducting and may be included in a variant Al.
  • the carrier barrier layer is preferably transparent to the radiation generated in the active zone.
  • the semiconductor body is preferably identical to the epitaxially grown layer structure of the chip.
  • the layers of the semiconductor body are grown on a growth substrate, which is present as a wafer.
  • the n-doped second semiconductor layer is epitaxially deposited.
  • the active zone or partial layers of the active zone, the p-doped first semiconductor layer and optionally a charge carrier barrier layer are epitaxially grown in succession.
  • the mirror layer is preferably applied by sputtering or vapor deposition.
  • the mirror layer is preferably a metal layer.
  • the mirror layer is preferably highly reflective broadband, wherein z. B. at least 70%, preferably at least 80% of the incident light reflected.
  • the mirror layer is z. B. from Ag, Au, Pt or Al and / or produced from an alloy of at least two of these metals.
  • the mirror layer may also be a multi-layer sequence having multiple layers of various of the aforementioned metals or alloys.
  • the layer composite comprising the epitaxial layer sequence, the growth substrate and the mirror layer is preferably firmly connected by eutectic bonding with a carrier, which may be optimized in terms of electrical and / or thermal properties and on the optical properties of which no requirements are made.
  • the carrier is preferably electrically conductive or at least semiconducting. Suitable as carrier material z. As germanium, GaAs, SiC, AlN or Si. A surface of the carrier facing the mirror layer is preferably planar. The on achsubstrat is detached after joining the layer composite with the carrier from the Halbleier Sciences.
  • At least one adhesion-promoting layer may be provided between the mirror layer and the carrier.
  • the preferably electrically conductive adhesion-promoting layer connects the carrier to the epitaxial layer sequence, the mirror layer facing the carrier.
  • the adhesion-promoting layer may in particular be a metal layer z. PbSn (Lot), AuGe, AuBe, AuSi, Sn, In or Pdln.
  • the mirror layer can by a facing the adhesion-promoting layer diffusion barrier layer, the z. B. Ti and / or W, be protected.
  • a diffusion barrier layer prevents penetration of material from the primer layer into the mirror layer.
  • All of the layers of the light-emitting diode chip mentioned here, in particular the active zone and the semiconductor layers of the semiconductor body, can each consist of several partial layers.
  • the semiconductor body comprises a decoupling layer with a decoupling surface.
  • the radiation distribution in the coupling-out layer has preferred directions.
  • the coupling-out layer is preferably connected to the second semiconductor layer, the z. B. n-doped, identical.
  • the first semiconductor layer, the z. B. p-doped is preferably disposed between the mirror layer and the active zone.
  • the mirror layer is arranged so close to the light source, ie the active zone, that in the case of interference optical near-field effects come to bear clearly.
  • the interference of the generated and the reflected light wave influences the spontaneous emission in the active zone, in particular the lifetime of the radiative recombination and thus the internal quantum efficiency in the light-generating layer.
  • Certain mirror spacings eg, ⁇ / 4, 3 ⁇ / 4, 5 ⁇ / 4) to the active layer, which produce a favorable (angle-dependent) emission characteristic, are accompanied by an increase in the internal quantum efficiency.
  • the distance between the light-generating layer and the mirror layer is smaller than 1.75 ⁇ in one variant. In a further advantageous variant, this distance is smaller than 1, 5 ⁇ .
  • the small distance has the advantage that the spontaneous emission of the active zone is controlled by the interaction of the radiation generated in the active zone and the radiation reflected by the mirror.
  • a distance between the light-generating layer and the mirror layer which is substantially (2m + l) ⁇ / 4
  • a directional radiation of the active zone is obtained whose emission characteristic deviates from the Lambert 'radiation characteristic and the alternately arranged areas with has a high and a low intensity.
  • the distance of the mirror to the light-generating layer can be chosen such that the emission characteristic within the semiconductor can also be adjusted such that a high proportion of radiation is already within the limit angle of total reflection at the first impingement on the light-coupling interface.
  • the distance between the mirror layer and the active zone is in different variants z. B.
  • the radiation distribution has a preferential direction, which is perpendicular to the outcoupling surface
  • the radiation distribution has two preferred directions, one perpendicular to the outcoupling surface and one obliquely to this;
  • the radiation distribution has three preferred directions, one perpendicular to the Auskoppelflache and two obliquely to this.
  • the wavelength of the coupled-out radiation can be in the infrared range, visible range or ultraviolet range.
  • the semiconductor body can be based on wavelength based on various semiconductor material systems are produced.
  • a semiconductor body based on In x Ga y Al ⁇ - x - y As for visible red to yellow radiation, for example, a semiconductor body based on In x Ga y Al ⁇ - x _ y P and short-wave visible (green to blue) or UV radiation z.
  • the spectral width of the exiting radiation can, for. B. 15 to 40 nm. However, the spectral half width of the generated radiation is not limited to the specified range.
  • the distance between the light-generating layer and the mirror layer is preferably identical to the layer thickness of the p-layer.
  • the second semiconductor layer may have a planar decoupling surface.
  • the emission characteristic of the light emerging from the chip deviates from the lambertian emission characteristic and has a high radiation density in at least one preferred direction and a low radiation density in other angular ranges.
  • the decoupling surface of the second semiconductor layer can be roughened in such a way that the radiation that is not decoupled when it encounters this interface is scattered back into the semiconductor in different directions. This redistribution of the radiation directions avoids a so-called waveguide effect and thus increases the coupling-out efficiency.
  • the radiation characteristic of the radiation emerging from the chip is in this case substantially Lambert's.
  • the second semiconductor layer may be arranged between the active zone and an antireflection coating whose thickness is approx. is equal to one quarter wavelength.
  • the antireflection coating is preferably a dielectric layer which is applied to the outcoupling surface of the semiconductor body after the removal of the growth substrate.
  • the light-emitting diode chip is preferably arranged in an optical component in a recess of a housing, wherein the recess may have a reflective surface.
  • the LED chip can be encapsulated in this recess with a potting compound.
  • FIG. 1 shows an exemplary thin-film LED chip with a planar output surface
  • FIG. 2 shows a thin-film LED chip with a semiconductor body which comprises a barrier layer and with an antireflection coating
  • FIG. 3 shows a thin-film LED chip with a roughened outcoupling surface
  • FIG. 4 shows an optical component with an LED chip.
  • FIG. 1 shows a schematic detail of an exemplary thin-film LED chip 100 which has a carrier 6 and a multilayer structure 10. Between carrier 6 and multilayer construction 10, an adhesion-promoting layer 5 is arranged.
  • the multilayer structure 10 comprises a light-emitting active zone 3, which is arranged between a p-type first semiconductor layer 1 and an n-type second semiconductor layer 2.
  • the first semiconductor layer 1 is arranged between the active zone 3 and a metallic mirror layer 4.
  • the electrically conductive mirror layer 4 functions both as a mirror and as an electrical contact layer to the first semiconductor layer.
  • the mirror layer 4 is protected by a diffusion barrier layer 45, which is arranged between the mirror layer 4 and the adhesion-promoting layer 5.
  • the first and second semiconductor layers 1 and 2 and the active zone 3 together form a semiconductor body 123. Together with the diffusion barrier layer 45 and the mirror layer 4, this forms the multilayer structure 10.
  • the second semiconductor layer 2, the active zone 3 and the first semiconductor layer 1 are epitaxially produced on a growth substrate not shown here in succession.
  • the mirror layer 4 is applied on this epitaxial layer structure is z. B. by sputtering or vapor deposition, the mirror layer 4 is applied.
  • the multi-layer structure 10 is connected by means of the adhesion-promoting layer 5 to the carrier 6, the z. B. consists of Ge or has a substantial part Ge, connected.
  • the growth substrate is then removed.
  • the second semiconductor layer 2 facing the growth substrate forms a coupling-out layer after the removal of this substrate, and the surface of this coupling-out layer facing away from the active zone 3 forms a coupling-out surface 20, which is planar in this exemplary embodiment.
  • the propagation direction of the radiation generated in the active zone 3 and the radiation reflected by the mirror layer 4 is indicated in FIG. 1 by the arrows 7 and 8, respectively.
  • the light generated by the interference of the two radiation components 7 and 8 emerges from the multilayer structure 10 in a direction away from the carrier 6.
  • the near-field effects utilized in the specified thin-film LED chip are comparable to a cavity effect, ie the wave effects occurring in an optical resonator (resonant cavity).
  • its emission characteristic can be adjusted within the light-generating semiconductor such that a majority of the photons strike the coupling-out boundary surface at an angle which is below the angle of the total reflection.
  • the use of the cavity effect in the thin-film LED chip significantly reduces the recycling rate.
  • Another advantage of using the cavity effect in thin-film LEDs is the influence of the radiation characteristic outside the semiconductor. Depending on how the angular distribution of the photons within the semiconductor is dependent on the distance between the mirror and the light-generating layer, the emission characteristic outside the semiconductor can be varied and, in particular, a radiation distribution with preferential directions can be achieved with an uncoated decoupling surface.
  • the zero-order output is set.
  • An expedient concrete structure of a thin-film LED chip based on GaN has the following layer sequence:
  • At least one further, preferably one thin carrier barrier layer 11 is arranged between the active zone 3 and the semiconductor layer facing the mirror layer 4 (ie the first semiconductor layer 1).
  • the carrier barrier layer 11 is preferably part of the semiconductor body and therefore grown epitaxially and semiconducting.
  • a passivation layer 8 which is formed as an antireflection coating by setting a certain thickness in an expedient embodiment, is provided on the second semiconductor layer 2. see. Such may be after removal of the growth substrate z. B. be applied by deposition.
  • the anti-reflection layer 8 is not epitaxially generated and consists for example of silicon oxide or silicon nitride.
  • the exemplary embodiment of a thin-film LED chip according to FIG. 3 has, in contrast to the exemplary embodiment according to FIG. 2, a roughened outcoupling surface 20.
  • the profit generated by the use of Cavity effects is thereby only slightly weakened.
  • An emission characteristic that is only slightly influenced by distance fluctuations of the active layer to the mirror proves to be an advantage.
  • an optical device is shown, the 100 a zener LED chip z. B. according to embodiments presented in Figures 1 to 3.
  • the light-emitting diode chip 100 is mounted on a leadframe 92 and installed in a recess of the housing 91.
  • the recess of the housing 91 preferably has a light-reflecting surface.
  • the LED chip is encapsulated with a potting compound 90.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Die Erfindung betrifft einen Dünnfilm-Leuchtdiodenchip, bei dem der Abstand zwischen einer Spiegelschicht (4) und einer lichter­zeugenden aktiven Zone (3) derart eingestellt ist, dass eine von der aktiven Zone (3) abgestrahlte Strahlung mit einem von der Spiegelschicht (4) reflektierten Licht interferiert, wobei die interne Quanteneffizienz der aktiven Zone (3) durch diese Inter­ferenz beeinflusst und dadurch die Abstrahlcharakteristik der aktiven Zone (3) mit mindestens einer Vorzugsrichtung erzielt wird.

Description

Beschreibung
Leuchtdiodenchip
Die Erfindung betrifft einen Leuchtdiodenchip, insbesondere einen Dünnfilm-Leuchtdiodenchip.
Aus der Druckschrift Y. C. Shen et al „Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emmiting diodes", Appl . Phys . Lett. Vol. 82 No . 14. P.2221 ist ein GaN- basierter FCLED-Chip (Leuchtdiodenchip in Fli -Chip-Anordnung) bekannt. Als Auskoppelschicht dient hier ein Saphir-Substrat .
Aus der Druckschrift US 2003/0143772 AI ist ein Dünnfilm-LED- Chip mit einem AlGalnN-Epitaxieaufbau ohne Aufwachssubstrat bekannt .
Aufgabe der vorliegenden Erfindung ist es, einen Dünnfilm- Lichtdiodenchip mit einer hohen Effizienz und niedrigen Absorptionsverlusten anzugeben.
Es wird ein Dünnfilm-Leuchtdiodenchip angegeben, bei dem der Abstand zwischen einer Spiegelschicht und einer lichterzeugenden aktiven Zone derart eingestellt ist, dass eine von der aktiven Zone abgestrahlte Strahlung mit einem von der Spiegelschicht reflektierten Licht interferiert. Durch diese Interferenz wird die interne Quanteneffizienz der aktiven Zone beeinflusst und eine richtungsabhängige Abstrahlcharakteristik der aktiven Zone erzielt. Die richtungsabhängige Abstrahlcharakteristik weist mindestens eine Vorzugsrichtung auf. Der Dünnfilm-Leuchtdiodenchip weist eine Auskoppelschicht auf, die zumindest halbleitend ist. Die Auskoppelschicht ist dabei keine Entspiegelungsschicht . Ein Dünnfilm-Leuchtdiodenchip zeichnet sich insbesondere durch folgende charakteristische Merkmale aus: an einer zu einem Trägerelement hin gewandten ersten Haupt- fläche einer Strahlungserzeugenden Epitaxieschichtenfolge ist eine reflektierende Schicht aufgebracht oder ausgebildet, die zumindest einen Teil der in der Epitaxieschichtenfolge erzeugten elektromagnetischen Strahlung in diese zurückreflektiert ; die Epitaxieschichtenfolge weist eine Dicke im Bereich von 20μm oder weniger, insbesondere im Bereich zwischen 4 μm und 10 μm auf; und die Epitaxieschichtenfolge enthält mindestens eine Halbleiterschicht mit zumindest einer Fläche, die eine Durchmischungsstruktur aufweist, die im Idealfall zu einer annähernd ergodischen Verteilung des Lichtes in de'r epitaktischen Epitaxieschichtenfolge führt, d.h. sie weist ein möglichst ergo- disch stochastisches Streuverhalten auf.
Ein Dünnfilm-Leuchtdioden-Chip ist in guter Näherung ein Lambert 'scher Oberflächenstrahler. Das Grundprinzip eines Dünnschicht-Leuchtdiodenchips ist beispielsweise in der Druckschrift I. Schnitzer et al . , Appl . Phys . Lett . 63 (16), 18. Oktober 1993, 2174 - 2176 beschrieben.
Unter einem Dünnfilm-LED-Chip wird vorliegend insbesondere ein Leuchtdiodenchip verstanden, der einen Schichtaufbau mit epitaktisch aufgewachsenen Schichten, von dem vorzugsweise das Aufwachssubstrat nach dem Aufwachsen entfernt worden ist. Zumindest ein Teil der epitaktisch aufgewachsenen Schichten sind Halbleiterschichten. Der Chip kann einen vom Aufwachssubstrat unterschiedlichen Träger aufweisen, auf dem der Schichtaufbau aufgebracht ist. Der angegebene Dünnfilm-LED-Chip weist keinen Resonator auf. Der angegebene Dünnfilm-LED-Chip umfasst im Gegensatz zu einer RCLED (Resonant Cavity Light Emmiting Diode) nur einen einzigen Spiegel. Der Dünnfilm-LED-Chip und insbesondere der epitaktische Schichtaufbau umfasst im Gegensatz zu einer RCLED vorteilhafterweise keinen Bragg-Spiegel .
In einer bevorzugten Variante ist der Dünnfilm-Leuchtdiodenchip GaN-basiert . Im Gegensatz zu GaN-basierten Flip-Chip-LEDs auf Saphir-Substraten wird das im Halbleiter-Körper erzeugte Licht direkt, also ohne Absorptionsverluste und Reflexionsverluste aufgrund eines der Strahlungsemittierenden Epitaxieschichtenfolge nachgeordneten Substrats aus dem Halbleiter-Körper ausgekoppelt .
Optische Nahfeld-Effekte beeinflussen die Auskopplungseffizienz bei Dünnfilm-LEDs in hohem Maße. Der Vorteil der Anwendung von optischen Nahfeld-Effekten liegt in der Erhöhung des Strahlungsanteils, der vom lichterzeugenden Halbleiter ausgekoppelt wird. Der hier angegebene Dünnfilmchip zeichnet sich durch eine hohe Auskopplungseffizienz aus, die 70% übersteigen kann.
Die aktive Zone weist in der Regel mehrere Teilschichten, beispielsweise in Form einer Einfach-Quantentopf- oder einer Mehr- fach-Quantentopf-Struktur auf.
Der Halbleiter-Körper weist mindestens eine erste Halbleiterschicht eines ersten Leitungstyps, mindestens eine zweite Halbleiterschicht eines zweiten Leitungstyps und die dazwischen angeordnete aktive Zone auf. Die erste Halbleiterschicht ist vorzugsweise p-dotiert, und die zweite Halbleiterschicht ist vorzugsweise n-dotiert. Die Halbleiterschichten sind vorzugsweise transparent, d. h. für die in der aktiven Zone erzeugte Strahlung durchlässig. Der Halbleiter-Körper kann beispielsweise eine Barriereschicht enthalten, die zwischen der ersten Halbleiterschicht und der Spiegelschicht angeordnet ist und z. B. als Ladungsträger-Diffusionssperre wirkt, d. h. das Heraustreten von Ladungsträgern aus der ersten Halbleiterschicht in Richtung der Spiegelschicht verhindert. Die Ladungsträger-Barriereschicht ist vorzugsweise zumindest teilweise halbleitend und kann in einer Variante AI enthalten. Die Ladungsträger-Barriereschicht ist vorzugsweise für die in der aktiven Zone erzeugte Strahlung transparent.
Der Halbleiter-Körper ist vorzugsweise mit dem epitaktisch aufgewachsenen Schichtaufbau des Chips identisch. Die Schichten des Halbleiter-Körpers werden auf einem Aufwachssubstrat aufgewachsen, das als Wafer vorhanden ist. Zunächst wird vorzugsweise die n-dotierte zweite Halbleiterschicht epitaktisch abgeschieden. Des weiteren werden nacheinander die aktive Zone oder Teil- schichten der aktiven Zone, die p-dotierte erste Halbleiterschicht und ggf. eine Ladungsträger-Barriereschicht epitaktisch aufgewachsen. Danach wird die Spiegelschicht vorzugsweise durch Aufsputtern oder Aufdampfen aufgetragen.
Die Spiegelschicht ist vorzugsweise eine Metallschicht. Die Spiegelschicht ist vorzugsweise breitbandig hochreflektierend, wobei sie z. B. mindestens 70%, vorzugsweise mindestens 80% des einfallenden Lichts reflektiert. Die Spiegelschicht ist z. B. aus Ag, Au, Pt oder AI und/oder aus einer Legierung von mindestens zwei dieser Metalle erzeugt. Die Spiegelschicht kann auch eine Mehrschichtenfolge mit mehreren Schichten aus verschiedenen der vorgenannten Metalle oder Legierungen gebildet sein.
Der Schichtenverbund, der die Epitaxieschichtenfolge, das Auf- wachssubstrat und die Spiegelschicht umfasst, wird vorzugsweise durch eutektisches Bonden mit einem Träger fest verbunden, der hinsichtlich elektrischer und/oder thermischer Eigenschaften optimiert sein kann und an dessen optische Eigenschaften keine Anforderungen gestellt werden. Der Träger ist vorzugsweise elektrisch leitend oder zumindest halbleitend. Geeignet sind als Trägermaterial z. B. Germanium, GaAs, SiC, AlN oder Si. Eine der Spiegelschicht zugewandte Oberfläche des Trägers ist vorzugsweise planar. Das Auf achssubstrat wird nach dem Verbinden des Schichtenverbundes mit dem Träger vom Halbleierkörper abgelöst .
Zwischen der Spiegelschicht und dem Träger kann mindestens eine Haftvermittlungsschicht vorgesehen sein. Die vorzugsweise elektrisch leitende Haftvermittlungsschicht verbindet den Träger mit der Epitaxie-Schichtenfolge, wobei die Spiegelschicht dem Träger zugewandt ist. Die Haftvermittlungsschicht kann insbesondere eine Metallschicht z. B. aus PbSn (Lot), AuGe, AuBe, AuSi, Sn, In oder Pdln sein. Die Spiegelschicht kann durch eine zur Haftvermittlungsschicht gewandte Diffusionssperrschicht, die z. B. Ti und/oder W umfasst, geschützt sein. Eine Diffusionssperrschicht verhindert das Eindringen von Material aus der Haftvermittlungsschicht in die Spiegelschicht.
Alle hier genannten Schichten des Leuchtdiodenchips, insbesondere die aktive Zone und die Halbleiterschichten des Halbleiter- Körpers, können jeweils aus mehreren Teilschichten bestehen.
Der Halbleiter-Körper umfasst eine AuskoppelSchicht mit einer Auskoppelflache . Die Strahlungsverteilung in der Auskoppelschicht weist Vorzugsrichtungen auf. Die AuskoppelSchicht ist vorzugsweise mit der zweiten Halbleiterschicht, die z. B. n- dotiert ist, identisch. Die erste Halbleiterschicht, die z. B. p-dotiert ist, ist vorzugsweise zwischen der Spiegelschicht und der aktiven Zone angeordnet. Die Spiegelschicht ist so nahe an der Lichtquelle, d. h. der aktiven Zone angeordnet, dass bei der Interferenz optische Nahfeld-Effekte deutlich zum Tragen kommen. Durch die Interferenz der erzeugten und der reflektierten Lichtwelle wird die spontane Emission in der aktiven Zone, insbesondere die Lebensdauer der strahlenden Rekombination und damit die interne Quanteneffizienz in der lichterzeugenden Schicht beeinflusst . Bestimmte Spiegelabstände (z. B. λ/4, 3λ/4, 5λ/4) zur aktiven Schicht, die eine günstige (winkelabhängige) Abstrahlcharakteristik erzeugen, gehen mit einer Erhöhung der internen Quanteneffizienz einher.
Der Abstand zwischen dem Spiegel und der Lichtquelle ist z. B. maximal 2λ, wobei λ= λ0/n die Lichtwellenlänge im optischen Medium (hier Halbleiter-Körper) und λ0 die Lichtwellenlänge im Vakuum ist. Der Abstand zwischen der lichterzeugenden Schicht und der Spiegelschicht ist in einer Variante kleiner als l,75λ. In einer weiteren vorteilhaften Variante ist dieser Abstand kleiner als l,5λ. Der geringe Abstand hat den Vorteil, dass durch die Wechselwirkung der in der aktiven Zone erzeugten und der durch den Spiegel reflektierten Strahlung die spontane Emission der aktiven Zone gesteuert wird.
Die durch die Lichtquelle erzeugte und die durch den Spiegel reflektierte Strahlung können bei bestimmten Abständen zwischen der Lichtquelle und dem Spiegel konstruktiv interferieren. Beispielsweise treten bei einer senkrecht auf die Grenzfläche eines optischen Mediums einfallenden Strahlung Maxima der Strahlungsverteilung auf, wenn der Abstand zwischen der Lichtquelle und dem Spiegel (2m+l)λ/4n beträgt, wobei n die Brechzahl des optischen Mediums ist und m = 0, 1, 2... die Ordnung der Auskopplung angibt. Bei der Auskopplung nullter Ordnung werden sämtliche Photonen in einem Kegel, dessen Rotationssymmetrieachse im Wesentlichen senkrecht zur Auskoppelgrenzfläche steht, ab- gestrahlt. Bei der Auskopplung erster Ordnung existiert eine zusätzliche Abstrahlkeule mit einem größeren Winkel zur Normalen der Auskoppelfläche. Bei der Auskopplung m'ter Ordnung existieren m zusätzliche solche Abstrahlkeulen.
Durch die Einstellung eines Abstands zwischen der lichterzeugenden Schicht und der Spiegelschicht, der im Wesentlichen (2m+l)λ/4 beträgt, wird eine gerichtete Abstrahlung der aktiven Zone erzielt, deren Abstrahlcharakteristik von der Lambert 'sehen Abstrahlcharakteristik abweicht und die abwechselnd angeordnete Bereiche mit einer hohen und einer niedrigen Intensität aufweist. Der Abstand des Spiegels zur lichterzeugenden Schicht kann derart gewählt und damit auch die Abstrahlcharakteristik innerhalb des Halbleiters so eingestellt werden, dass sich ein hoher Strahlungsanteil schon beim ersten Auftreffen auf die lichtauskoppelnde Grenzfläche innerhalb des Grenzwinkels der Totalreflexion befindet.
Der Abstand zwischen der Spiegelschicht und der aktiven Zone beträgt in verschiedenen Varianten z. B.
1) 0,16λ bis 0,28λ, also ca. λ/4 ; die Strahlungsverteilung weist eine Vorzugsrichtung auf, die senkrecht zur Auskoppelfläche steht ;
2) 0,63λ und 0,78λ, also ca. 3λ/4 ; die Strahlungsverteilung weist zwei Vorzugsrichtungen auf, und zwar eine senkrecht zur Auskoppelfläche und eine schräg zu dieser;
3) l,15λ und l,38λ, also ca. 5λ/4 ; die Strahlungsverteilung weist drei Vorzugsrichtungen auf, eine senkrecht zur Auskoppelflache und zwei schräg zu dieser.
Die Wellenlänge der ausgekoppelten Strahlung kann im Infrarotbereich, sichtbaren Bereich oder Ultraviolett-Bereich liegen. Der Halbleiter-Körper kann je nach Wellenlänge auf der Basis von verschiedenen Halbleitermaterial-Systemen hergestellt werden. Für eine langwellige Strahlung ist z. B. ein Halbleiterkörper auf Basis von InxGayAlι-x-yAs, für sichtbare rote bis gelbe Strahlung z.B. ein Halbleiterkörper auf Basis von InxGayAlι-x_yP und für kurzwellige sichtbare (grün bis blau) oder UV-Strahlung z. B. ein Halbleiterkörper auf Basis von InxGayAl!-x-yN geeignet, wobei gilt 0 < y < 1 und 0 < y < 1. Die spektrale Breite der austretenden Strahlung kann z. B. 15 bis 40 nm betragen. Die spektrale Halbwertsbreite der erzeugten Strahlung ist auf den angegebenen Bereich jedoch nicht beschränkt.
Der Abstand zwischen der lichterzeugenden Schicht und der Spiegelschicht ist vorzugsweise identisch mit der Schichtdicke der p-Schicht .
Die zweite Halbleiterschicht kann in einer Variante eine planare Auskoppelflache aufweisen. Die Abstrahlcharakteristik des aus dem Chip heraustretenden Lichts weicht in diesem Fall von der Lambert 'sehen Abstrahlcharakteristik ab und weist eine hohe Strahlungsdichte in mindestens einer bevorzugten Richtung und eine geringe Strahlungsdichte in anderen Winkelbereichen auf.
In einer weiteren Variante kann die Auskoppelfläche der zweiten Halbleiterschicht derart aufgerauht sein, dass die Strahlung, die beim Auftreffen auf diese Grenzfläche nicht ausgekoppelt wird, in verschiedene Richtungen in den Halbleiter zurückgestreut wird. Durch diese Neuverteilung der Strahlungsrichtungen wird ein sogenannter Wellenleitereffekt vermieden, und somit die Auskopplungseffizienz gesteigert. Die Abstrahlcharakteristik der aus dem Chip heraustretenden Strahlung ist in diesem Fall im Wesentlichen Lambert 'seh.
Die zweite Halbleiterschicht kann zwischen der aktiven Zone und einer Entspiegelungsschicht angeordnet sein, deren Dicke annä- hernd einer Viertelwellenlänge gleich ist. Die Entspiegelungs- schicht ist vorzugsweise eine dielektrische Schicht, die auf die Auskoppelfläche der Halbleiter-Körpers nach dem Entfernen des Aufwachssubstrats aufgebracht wird.
Der Leuchtdiodenchip ist vorzugsweise in einem optischen Bauelement in einer Vertiefung eines Gehäuses angeordnet, wobei die Vertiefung eine reflektierende Oberfläche aufweisen kann . Der Leuchtdiodenchip kann in dieser Vertiefung mit einer Vergussmasse verkapselt sein. Durch die Verwendung von hochbrechenden Harzen mit einem Brechungsindex n > 1,55, z.B. Epoxidharz oder Silikonharz zur Verkapselung des Dünnfilmchips kann die Auskopplungseffizienz des optischen Bauelements erhöht werden.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert. Die Figuren zeigen anhand schematischer und nicht maßstabsgetreuer Darstellungen verschiedene Ausführungsbeispiele der Erfindung. Gleiche o- der gleich wirkende Teile sind mit gleichen Bezugszeichen bezeichnet. Es zeigen schematisch
Figur 1 einen beispielhaften Dünnfilm-LED-Chip mit einer planaren Auskopplungsfläche;
Figur 2 einen Dünnfilm-LED-Chip mit einem Halbleiter-Körper, der eine Barriereschicht umfasst, und mit einer Entspiegelungs- schicht ;
Figur 3 einen Dünnfilm-LED-Chip mit einer aufgerauten Auskopplungsfläche;
Figur 4 ein optisches Bauelement mit einem LED-Chip. Figur 1 zeigt schematisch ausschnittsweise einen beispielhaften Dünnfilm-LED-Chip 100, der einen Träger 6 und einen Vielschicht- Aufbau 10 aufweist. Zwischen Träger 6 und Vielschicht -Aufbau 10 ist eine Haftvermittlungsschicht 5 angeordnet. Der Vielschicht- Aufbau 10 umfasst eine lichtemittierende aktive Zone 3, die zwischen einer p-leitenden ersten Halbleiterschicht 1 und einer n-leitenden zweiten Halbleiterschicht 2 angeordnet ist. Die erste Halbleiterschicht 1 ist zwischen der aktiven Zone 3 und einer metallischen Spiegelschicht 4 angeordnet. Die elektrisch leitende Spiegelschicht 4 fungiert sowohl als Spiegel als auch als elektrische Kontaktschicht zur ersten Halbleiterschicht. Die Spiegelschicht 4 ist durch eine Diffusionsbarriereschicht 45 geschützt, die zwischen der Spiegelschicht 4 und der Haftvermittlungsschicht 5 angeordnet ist . Die erste und zweite Halbleiterschicht 1 und 2 und die aktive Zone 3 bilden zusammen einen Halbleiter-Körper 123. Dieser bildet zusammen mit der Diffusionsbarriereschicht 45 und der Spiegelschicht 4 den Vielschicht -Aufbau 10.
Bei einem Verfahren zum Herstellen eines solchen Dünnfilm-LED- Chips werden auf einem hier nicht gezeigten Aufwachssubstrat nacheinander die zweite Halbleiterschicht 2, die aktive Zone 3 und die erste Halbleiterschicht 1 epitaktisch erzeugt. Auf diesen Epitaxie-Schichtaufbau wird z. B. durch Sputtern oder Aufdampfen die Spiegelschicht 4 aufgebracht. Der Vielschicht - Aufbau 10 wird mittels der Haftvermittlungsschicht 5 mit dem Träger 6, der z. B. aus Ge besteht oder zu einem wesentlichen Teil Ge aufweist, verbunden. Das Aufwachssubstrat wird danach entfernt. Die dem Aufwachsssubstrat zugewandte zweite Halbleiterschicht 2 bildet nach dem Entfernen dieses Substrats eine Auskopplungsschicht und die von der aktiven Zone 3 abgewandte Oberfläche dieser AuskoppelSchicht bildet eine Auskopplungsfläche 20, die in diesem Ausführungsbeispiel planar ist. Die Ausbreitungsrichtung der in der aktiven Zone 3 erzeugten Strahlung und der von der Spiegelschicht 4 reflektierten Strahlung ist in Figur 1 durch den Pfeil 7 bzw. 8 angedeutet. Das durch die Interferenz der beiden Strahlungsanteile 7 und 8 erzeugte Licht tritt in einer vom Träger 6 abgewandten Richtung aus dem Vielschicht -Aufbau 10 heraus.
Der Abstand zwischen der Spiegelschicht 4 und der aktiven Zone 3, der in dieser Variante gleich der Dicke der ersten Halbleiterschicht 1 ist, ist derart eingestellt, dass die von der aktiven Zone 3 abgestrahlte Strahlung mit einer von der Spiegel - Schicht 4 reflektierten Strahlung interferiert, und dass die Lebensdauer für strahlende Rekombination in der aktiven Zone 3 durch diese Interferenz beeinflusst wird.
Die im angegebenen Dünnfilm-LED-Chip ausgenutzten Nahfeld-Effekte sind mit einem Cavity-Effekt , d. h. den in einem optischen Resonator (Resonant Cavity) auftretenden Welleneffekten vergleichbar. Durch diese Effekte kann innerhalb des lichterzeugenden Halbleiters seine Abstrahlcharakteristik so eingestellt werden, dass ein Großteil der Photonen in einem Winkel auf die auskoppelnde Grenzfläche trifft, der unterhalb des Winkels der Totalreflexion liegt. Dadurch wird ein größtmöglicher Teil der Strahlung beim ersten Auftreffen auf die auskoppelnde Grenzfläche (=Auskopplungsflache 20) aus dem Chip ausgekoppelt. Nur ein kleiner Teil wird in den Halbleiter 1, 2, 3 zurückreflektiert. Dieser Teil des Lichts erfährt Verluste bei der Reflexion an der Spiegelschicht 4 und auch durch Reabsorption in der aktiven Zone 3, deren Quanteneffizienz nur etwa 50% beträgt, bevor er wieder auf die auskoppelnde Grenzfläche trifft. Es wird also durch die Anwendung des Cavity-Effekts beim Dünnfilm-LED-Chip die Recyclingrate deutlich verringert. Ein weiterer Vorteil der Anwendung des Cavity-Effekts bei Dünnfilm-LEDs besteht in der Beeinflussung der Abstrahlcharakteristik außerhalb des Halbleiters. Je nachdem, wie die Winkelverteilung der Photonen innerhalb des Halbleiters in Abhängigkeit vom Abstand zwischen dem Spiegel und der lichterzeugenden Schicht ist, kann - bei einer nicht aufgerauten Auskoppelflache - die Abstrahlcharakteristik außerhalb des Halbleiters variiert und insbesondere eine Strahlungsverteilung mit Vorzugsrichtungen erzielt werden.
Bevorzugte Werte für den Abstand d der lichterzeugenden Schicht von der Spiegelschicht sind für die Strahlung mit der Wellenlänge λ0 = 455 nm (entspricht der Wellenlänge λ = 182 nm im Halbleiter mit einem Brechungsindex n = 2,5) etwa d = 40 nm für die Auskopplung nullter Ordnung, d = 130 nm für die Auskopplung erster Ordnung, und d = 230 nm für die Auskopplung zweiter Ordnung.
Diese Werte entsprechen bei der nullten Ordnung d = 0,22λ, bei der ersten Ordnung d = 0,71λ, und bei der zweiten Ordnung d = l,26λ. Für andere Wellenlängen muss d entsprechend skaliert werden.
Je niedriger die Ordnung der Auskopplung ist, desto höher ist die Effizienz des Dünnfilm-LED-Chips. Wenn beispielsweise von der Auskopplung zweiter Ordnung auf die Auskopplung erster Ordnung gewechselt wird, ergibt sich eine Effizienzsteigerung von etwa 25%. In einer bevorzugten Variante wird daher die Auskopplung nullter Ordnung eingestellt.
Ein zweckmäßiger konkreter Aufbau eines Dünnfilm-LED-Chips auf Basis von GaN weist folgende Schichtenfolge auf:
Vorderseiten-Kontaktmetallisierung hochdotiertes GaN:Si (Schichtdicke: 700 - 1500 nm) etwas niedriger dotiertes GaN:Si (Schichtdicke: 4000 nm) undotiertes GaN (Schichtdicke: 30 nm) InGaN-Quantentrog (Schichtdicke: ca. 1 nm; In-Gehalt ca. 10%) Barriereschicht (ca. 5nm undotiertes GaN + 6-7nm Si-dotieres GaN + ca. 5nm undotiertes GaN) InGaN-Quantentrog wie oben Barriereschicht wie oben InGaN-Quantentrog wie oben Barriereschicht wie oben InGaN-Quantentrog (Schichtdicke ca. 2-3nm, In-Gehalt ca. 20%) undotierte GaN-Schicht (Schichtdicke ca. 5-10nm) p-dotierte AlGaN-Schicht (Schichtdicke 20 - 40 nm; Elektronen-Barriereschicht; Al-Gehalt 10-25%) p-dotiertes GaN:Mg (Abschlussschicht) Spiegel (Pt-Schicht nicht geschlossen + Ag-Schicht + Diffusionssperre + ggf. weitere Schichten + Verbindungsschicht ) Ge-Träger
Bei dem zweiten Ausführungsbeispiel gemäß Figur 2 ist im Unterschied zum Ausführungsbeispiel gemäß Figur 1 zwischen der aktiven Zone 3 und der zur Spiegelschicht 4 gewandten Halbleiterschicht (d. h. der ersten Halbleiterschicht 1) mindestens eine weitere, vorzugsweise eine dünne Ladungsträger-Barriereschicht 11 angeordnet. Die Ladungsträger-Barriereschicht 11 ist vorzugsweise Bestandteil des Halbleiter-Körpers und daher epitaktisch aufgewachsen und halbleitend.
Bei dem Ausführungsbeispiel gemäß Figur 2 ist des weiteren auf der zweiten Halbleiterschicht 2 eine Passivierungsschicht 8, die durch Einstellung einer gewissen Dicke in einer zweckmäßigen Ausgestaltung als Entspiegelungsschicht ausgebildet ist, vorge- sehen. Eine solche kann nach dem Entfernen des Wachstumssubstrats z. B. durch Abscheiden aufgebracht werden. Die Entspiege- lungsschicht 8 ist nicht epitaktisch erzeugt und besteht beispielsweise aus Siliziumoxid oder Siliziumnitrid.
Das Ausführungsbeispiel eines Dünnfilm-LED-Chips gemäß Figur 3 weist im Unterschied zu dem Ausführungsbeispiel gemäß Figur 2 eine aufgerauhte Auskoppelfläche 20 auf. Der durch die Ausnutzung von Cavity-Effekten erzielte Gewinn wird dadurch nur geringfügig abgeschwächt. Eine Abstrahlcharakteristik, die von Abstandsschwankungen der aktiven Schicht zum Spiegel nur geringfügig beeinflusst wird, erweist sich als Vorteil.
In Figur 4 ist ein optisches Bauelement gezeigt, das einen genausten Leuchtdiodenchip 100 z. B. gemäß in Figuren 1 bis 3 vorgestellten Ausführungsbeispielen umfasst. Der Leuchtdiodenchip 100 wird auf einem Leadframe 92 montiert und in einer Vertiefung des Gehäuses 91 verbaut. Die Vertiefung des Gehäuses 91 weist vorzugsweise eine lichtreflektierende Oberfläche auf. Der Leuchtdiodenchip ist mit einer Vergussmasse 90 verkapselt.
Die Erfindung ist selbstverständlich nicht durch die beispielhafte Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von einzelnen Merkmalen der verschiedenen Patentansprüche oder der verschiedenen Ausführungsbeispiele untereinander beinhaltet, auch wenn das betreffende Merkmal oder die betreffende Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims

Patentansprüche
1. Dünnfilm-Leuchtdiodenchip, bei dem der Abstand zwischen einer Spiegelschicht (4) und einer lichterzeugenden aktiven Zone (3) derart eingestellt ist, dass eine von der aktiven Zone (3) in Richtung einer Strahlungsaus- koppelfläche des Dünnfilm-Leuchtdiodenchips ausgesandte Strahlung mit einer von der Spiegelschicht (4) reflektierten Strahlung interferiert und dadurch die interne Quanteneffizienz der aktiven Zone (3) derart beeinflusst wird, dass eine Abstrahlcharakteristik der aktiven Zone (3) mit mindestens einer Vorzugsrichtung erzielt wird, bei dem eine Auskoppelschicht halbleitend ist.
2. Dünnfilm-Leuchtdiodenchip nach Anspruch 1, mit einem die aktive Zone (3) und die AuskoppelSchicht umfassenden Halbleiter-Körper (1, 2, 3).
3. Dünnfilm-Leuchtdiodenchip nach Anspruch 2, der keinen Resonator umfasst .
4. Dünnfilm-Leuchtdiodenchip nach Anspruch 2 oder 3, wobei die aktive Zone (3) zwischen einer ersten Halbleiterschicht (1) eines ersten Leitfähigkeitstyps und einer zweiten Halbleiterschicht (2) eines zweiten Leitfähigkeitstyps angeordnet ist, wobei die zweite Halbleiterschicht (2) die Auskoppelschicht bildet , und wobei die erste Halbleiterschicht (1) zwischen der Spiegelschicht (4) und der aktiven Zone (3) angeordnet ist.
5. Dünnfilm-Leuchtdiodenchip nach Anspruch 3 oder 4, wobei die zweite Halbleiterschicht (2) zwischen der aktiven Zone (3) und einer Entspiegelungsschicht (7) angeordnet ist.
6. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 5, wobei die Spiegelschicht (4) breitbandig reflektiert.
7. Dünnfilm-Leuchtdiodenchip nach Anspruch 6, wobei die Spiegelschicht (4) eine Metallschicht ist.
8. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 4 bis 7, wobei der Abstand zwischen der Spiegelschicht (4) und der aktiven Zone (3) gleich der Dicke der ersten Halbleiterschicht (1) ist .
9. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 8, wobei der Abstand zwischen der Spiegelschicht (4) und der aktiven Zone (3) kleiner als 2λ ist, wobei λ die Lichtwellenlänge im Halbleiter-Körper ist.
10. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 9, wobei der Abstand zwischen der Spiegelschicht (4) und der aktiven Zone (3) zwischen 0,16λ und 0,28λ liegt, wobei λ die Lichtwellenlänge im Halbleiter-Körper ist.
11. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 9, wobei der Abstand zwischen der Spiegelschicht (4) und der aktiven Zone (3) zwischen 0,63λ und 0,78λ liegt, wobei λ die Lichtwellenlänge im Halbleiter-Körper ist.
12. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 9, wobei der Abstand zwischen der Spiegelschicht (4) und der aktiven Zone (3) zwischen l,15λ und l,38λ liegt, wobei λ die Lichtwellenlänge im Halbleiter-Körper ist.
13. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 12, wobei der Halbleiter-Körper GaN oder GaN-Verbindungen enthält.
14. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 1 bis 13, mit einem der Spiegelschicht (4) zugewandten Träger (6) , der kein Aufwachssubstrat für den Halbleiter-Körper (1, 2, 3) ist.
15. Dünnfilm-Leuchtdiodenchip nach Anspruch 14, wobei zwischen der Spiegelschicht (4) und dem Träger (6) mindestens eine Haftvermittlungsschicht (5) vorgesehen ist.
16. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 2 bis 15, wobei der Halbleiter-Körper (1, 2, 3) eine planare Auskoppelfläche aufweist.
17. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 2 bis 15, wobei der Halbleiter-Körper (1, 2, 3) eine aufgerauhte Auskoppelfläche aufweist.
18. Dünnfilm-Leuchtdiodenchip nach einem der Ansprüche 14 bis 17, wobei der Träger (6) elektrisch leitend ist und die erste Halbleiterschicht (1) durch diesen kontaktiert ist.
EP05742638A 2004-04-14 2005-04-14 Leuchtdiodenchip Withdrawn EP1738420A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004018484 2004-04-14
DE102005016592A DE102005016592A1 (de) 2004-04-14 2005-04-11 Leuchtdiodenchip
PCT/DE2005/000677 WO2005101531A2 (de) 2004-04-14 2005-04-14 Leuchtdiodenchip

Publications (1)

Publication Number Publication Date
EP1738420A2 true EP1738420A2 (de) 2007-01-03

Family

ID=34967537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05742638A Withdrawn EP1738420A2 (de) 2004-04-14 2005-04-14 Leuchtdiodenchip

Country Status (6)

Country Link
US (1) US7709851B2 (de)
EP (1) EP1738420A2 (de)
JP (1) JP2007533143A (de)
KR (1) KR20070009673A (de)
DE (1) DE102005016592A1 (de)
WO (1) WO2005101531A2 (de)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
KR100736623B1 (ko) * 2006-05-08 2007-07-09 엘지전자 주식회사 수직형 발광 소자 및 그 제조방법
DE102006035627A1 (de) 2006-07-31 2008-02-07 Osram Opto Semiconductors Gmbh LED-Halbleiterkörper
DE102006035635A1 (de) * 2006-07-31 2008-02-07 Osram Opto Semiconductors Gmbh Beleuchtungsanordnung
DE102007022947B4 (de) 2007-04-26 2022-05-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102007035687A1 (de) * 2007-07-30 2009-02-05 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement mit einem Schichtenstapel
DE102007046027A1 (de) 2007-09-26 2009-04-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip mit einer Mehrfachquantentopfstruktur
KR101459764B1 (ko) 2008-01-21 2014-11-12 엘지이노텍 주식회사 질화물계 발광 소자
DE102008011848A1 (de) 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
EP2245667B1 (de) * 2008-02-29 2018-05-09 OSRAM Opto Semiconductors GmbH Monolithischer, optoelektronischer halbleiterkörper und verfahren zur herstellung eines solchen
US8664747B2 (en) * 2008-04-28 2014-03-04 Toshiba Techno Center Inc. Trenched substrate for crystal growth and wafer bonding
DE102008050538B4 (de) * 2008-06-06 2022-10-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102008030584A1 (de) * 2008-06-27 2009-12-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement
DE102008049535A1 (de) * 2008-09-29 2010-04-08 Osram Opto Semiconductors Gmbh LED-Modul und Herstellungsverfahren
KR101064011B1 (ko) 2009-04-28 2011-09-08 엘지이노텍 주식회사 발광소자 및 그 제조방법
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
TWI405409B (zh) * 2009-08-27 2013-08-11 Novatek Microelectronics Corp 低電壓差動訊號輸出級
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
KR101028220B1 (ko) * 2010-02-25 2011-04-11 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR100999771B1 (ko) * 2010-02-25 2010-12-08 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US8084776B2 (en) 2010-02-25 2011-12-27 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and lighting system
KR101039948B1 (ko) * 2010-04-23 2011-06-09 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
KR101701510B1 (ko) 2010-07-09 2017-02-01 엘지이노텍 주식회사 발광소자
DE102011015726B9 (de) * 2011-03-31 2023-07-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchip, Display mit einer Mehrzahl von Halbleiterchips und Verfahren zu deren Herstellung
JP2014516214A (ja) * 2011-06-10 2014-07-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高放出強度および低効率ドループ半極性青色発光ダイオード
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8552465B2 (en) 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8779694B1 (en) * 2011-12-08 2014-07-15 Automated Assembly Corporation LEDs on flexible substrate arrangement
DE102012210494B4 (de) * 2012-06-21 2023-12-28 Pictiva Displays International Limited Organische Leuchtdiode
JP6190585B2 (ja) * 2012-12-12 2017-08-30 スタンレー電気株式会社 多重量子井戸半導体発光素子
TWI600184B (zh) 2014-04-08 2017-09-21 晶元光電股份有限公司 發光裝置
US10317614B1 (en) 2017-03-14 2019-06-11 Automatad Assembly Corporation SSL lighting apparatus
US10655823B1 (en) 2019-02-04 2020-05-19 Automated Assembly Corporation SSL lighting apparatus
US10995931B1 (en) 2020-08-06 2021-05-04 Automated Assembly Corporation SSL lighting apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246891A1 (de) * 2001-10-11 2003-04-24 Lumileds Lighting Us Selektive Anordnung von Quantentöpfen in Licht emittierenden Flip-Chip-Dioden zur verbesserten Lichtextraktion
DE10330843A1 (de) * 2002-07-23 2004-02-12 Kabushiki Kaisha Toyota Chuo Kenkyuho Nitridhalbleiter-Leuchtdiode

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747862A (en) * 1992-09-25 1998-05-05 Katsumi Kishino Spin-polarized electron emitter having semiconductor opto-electronic layer with split valence band and reflecting mirror
JPH06120559A (ja) * 1992-09-30 1994-04-28 Victor Co Of Japan Ltd 半導体発光装置及びその製造方法
JP2924580B2 (ja) * 1993-07-19 1999-07-26 日立電線株式会社 樹脂モールド型化合物半導体光素子及び樹脂モールド型発光ダイオード
JP3259811B2 (ja) * 1995-06-15 2002-02-25 日亜化学工業株式会社 窒化物半導体素子の製造方法及び窒化物半導体素子
JP3164016B2 (ja) * 1996-05-31 2001-05-08 住友電気工業株式会社 発光素子および発光素子用ウエハの製造方法
JP3783411B2 (ja) * 1997-08-15 2006-06-07 富士ゼロックス株式会社 表面発光型半導体レーザ
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
DE19921987B4 (de) 1998-05-13 2007-05-16 Toyoda Gosei Kk Licht-Abstrahlende Halbleitervorrichtung mit Gruppe-III-Element-Nitrid-Verbindungen
US6091197A (en) * 1998-06-12 2000-07-18 Xerox Corporation Full color tunable resonant cavity organic light emitting diode
EP0977277A1 (de) 1998-07-28 2000-02-02 Interuniversitair Microelektronica Centrum Vzw Strahlenemittierende Vorrichtungen mit hohem Wirkungsgrad und Herstellungsverfahren
JP2001144321A (ja) * 1999-11-04 2001-05-25 Shurai Kagi Kofun Yugenkoshi 発光素子及びその製造方法
JP4174989B2 (ja) * 1999-11-22 2008-11-05 ソニー株式会社 表示装置
DE19963550B4 (de) 1999-12-22 2004-05-06 Epigap Optoelektronik Gmbh Bipolare Beleuchtungsquelle aus einem einseitig kontaktierten, selbstbündelnden Halbleiterkörper
US6903376B2 (en) * 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
JP3795298B2 (ja) * 2000-03-31 2006-07-12 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子の製造方法
WO2001082384A1 (de) 2000-04-26 2001-11-01 Osram Opto Semiconductors Gmbh Strahlungsmittierendes halbleiterbauelement und herstellungsverfahren
DE10026255A1 (de) 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Lumineszenzdiosdenchip auf der Basis von GaN und Verfahren zum Herstellen eines Lumineszenzdiodenbauelements mit einem Lumineszenzdiodenchip auf der Basis von GaN
JP4050444B2 (ja) * 2000-05-30 2008-02-20 信越半導体株式会社 発光素子及びその製造方法
JP2002083999A (ja) * 2000-06-21 2002-03-22 Sharp Corp 半導体発光素子
FR2811139B1 (fr) * 2000-06-29 2003-10-17 Centre Nat Rech Scient Dispositif optoelectronique a filtrage de longueur d'onde integre
DE10032246A1 (de) * 2000-07-03 2002-01-17 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip auf der Basis von InGaN und Verfahren zu dessen Herstellung
DE10054966A1 (de) * 2000-11-06 2002-05-16 Osram Opto Semiconductors Gmbh Bauelement für die Optoelektronik
US6720585B1 (en) * 2001-01-16 2004-04-13 Optical Communication Products, Inc. Low thermal impedance DBR for optoelectronic devices
JP3814151B2 (ja) * 2001-01-31 2006-08-23 信越半導体株式会社 発光素子
TW550834B (en) * 2002-02-15 2003-09-01 United Epitaxy Co Ltd Light emitting diode and its manufacturing method
DE10139090A1 (de) * 2001-08-09 2003-03-06 Osram Opto Semiconductors Gmbh Mehrteiliger Laser
AU2002365761A1 (en) * 2001-11-16 2003-06-17 Toyoda Gosei Co., Ltd. Light-emitting diode, led light, and light apparatus
US6869820B2 (en) 2002-01-30 2005-03-22 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
JP4143324B2 (ja) * 2002-04-25 2008-09-03 キヤノン株式会社 発光素子、光電子集積装置、電気機器、及び光伝送システム
JP3889662B2 (ja) * 2002-05-10 2007-03-07 三菱電線工業株式会社 GaN系半導体発光素子の製造方法
US7126750B2 (en) * 2002-07-08 2006-10-24 John Gilmary Wasserbauer Folded cavity semiconductor optical amplifier (FCSOA)
US6759689B2 (en) * 2002-08-07 2004-07-06 Shin-Etsu Handotai Co., Ltd. Light emitting element and method for manufacturing the same
JP3703028B2 (ja) * 2002-10-04 2005-10-05 ソニー株式会社 表示素子およびこれを用いた表示装置
US7521854B2 (en) * 2003-04-15 2009-04-21 Luminus Devices, Inc. Patterned light emitting devices and extraction efficiencies related to the same
US7257141B2 (en) * 2003-07-23 2007-08-14 Palo Alto Research Center Incorporated Phase array oxide-confined VCSELs
US7344903B2 (en) * 2003-09-17 2008-03-18 Luminus Devices, Inc. Light emitting device processes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246891A1 (de) * 2001-10-11 2003-04-24 Lumileds Lighting Us Selektive Anordnung von Quantentöpfen in Licht emittierenden Flip-Chip-Dioden zur verbesserten Lichtextraktion
DE10330843A1 (de) * 2002-07-23 2004-02-12 Kabushiki Kaisha Toyota Chuo Kenkyuho Nitridhalbleiter-Leuchtdiode

Also Published As

Publication number Publication date
JP2007533143A (ja) 2007-11-15
WO2005101531A3 (de) 2006-05-11
US20080142780A1 (en) 2008-06-19
US7709851B2 (en) 2010-05-04
KR20070009673A (ko) 2007-01-18
WO2005101531A2 (de) 2005-10-27
DE102005016592A1 (de) 2005-11-24

Similar Documents

Publication Publication Date Title
EP1738420A2 (de) Leuchtdiodenchip
EP2149160B1 (de) Optoelektronisches bauelement und verfahren zur herstellung einer mehrzahl optoelektronischer bauelemente
DE102005048408B4 (de) Dünnfilm-Halbleiterkörper
EP1277241B1 (de) Lumineszenzdiodenchip auf der basis von gan
DE10112542B4 (de) Strahlungsemittierendes optisches Bauelement
EP2011160B1 (de) Optoelektronischer halbleiterchip
DE102007019775A1 (de) Optoelektronisches Bauelement
DE102004057802B4 (de) Strahlungemittierendes Halbleiterbauelement mit Zwischenschicht
EP1284026A1 (de) Lumineszenzdiodenchip mit einer auf gan basierenden strahlungsemittierenden epitaxieschichtenfolge und verfahren zu dessen herstellung
DE102010034665A1 (de) Optoelektronischer Halbleiterchip und Verfahren zur Herstellung von optoelektronischen Halbleiterchips
EP2260516A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines solchen
EP2304799A1 (de) Strahlungemittierender halbleiterchip mit schutz gegen elektrostatische entladungen und entsprechendes herstellungsverfahren
DE102006015788A1 (de) Optoelektronischer Halbleiterchip
DE102008009769A1 (de) Doppel-Flip-Halbleiterbauelement und Herstellungsverfahren
WO2007121739A2 (de) Optoelektronisches halbleiterbauelement
EP2273574B1 (de) Verfahren zum Herstellen eines Lumineszenzdiodenbauelements mit einem Lumineszenzdiodenchip auf der Basis von GaN
EP1770792B1 (de) Strahlungsemittierender Halbleiterchip
DE102011010503A1 (de) Optoelektronischer Halbleiterchip
DE10246891A1 (de) Selektive Anordnung von Quantentöpfen in Licht emittierenden Flip-Chip-Dioden zur verbesserten Lichtextraktion
DE10026254A1 (de) Lumineszenzdiodenchip mit einer auf GaN basierenden strahlungsemittierenden Epitaxieschichtenfolge
DE102004050891B4 (de) Lichtmittierende III-Nitrid-Halbleitervorrichtung
DE102010049186A1 (de) Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102005029272A1 (de) Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines Halbleiterkörpers für einen derartigen Halbleiterchip
WO2021032397A1 (de) Optoelektronischer halbleiterchip
WO2014111384A1 (de) Optoelektronischer halbleiterchip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE

17Q First examination report despatched

Effective date: 20070207

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170822