EP1526267A2 - Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine sowie Vorrichtung - Google Patents

Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine sowie Vorrichtung Download PDF

Info

Publication number
EP1526267A2
EP1526267A2 EP04104138A EP04104138A EP1526267A2 EP 1526267 A2 EP1526267 A2 EP 1526267A2 EP 04104138 A EP04104138 A EP 04104138A EP 04104138 A EP04104138 A EP 04104138A EP 1526267 A2 EP1526267 A2 EP 1526267A2
Authority
EP
European Patent Office
Prior art keywords
correction value
values
value
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04104138A
Other languages
English (en)
French (fr)
Other versions
EP1526267A3 (de
Inventor
Ralf Böhnig
Guy-Michel Cloarec
Christian Zimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Continental Automotive GmbH filed Critical Siemens AG
Publication of EP1526267A2 publication Critical patent/EP1526267A2/de
Publication of EP1526267A3 publication Critical patent/EP1526267A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques

Definitions

  • the invention relates to a method and a device for drift compensation of an injector for direct Fuel injection into a cylinder one Internal combustion engine according to the genus of siblings Claims 1 and 10. It is already known that one Control means determines a correction value, the Correction of the injection, in particular a minimum Fuel quantity is used. However, this correction value applies within a range of values of one injection duration dependent operating parameters of the internal combustion engine, For example, the speed, the start of injection or the Rail pressure in a direct injection system such as common rail, Pump nozzle system or the like. Another problem is seen also in that the learned correction value for a complete value range is used. He will always be used when one or more of the injection duration dependent operating parameters of the internal combustion engine within of the relevant value range. A targeted Adaptation for the case when the operating point at the upper or lower limit of the range of values, is not performed.
  • this new one Correction value replaces the previously valid correction value, without for example checking with a test if this new correction value is better suited than the old one Correction value.
  • This can, for example, at a Multiple injection may be significant if a fore or a Post-injection was not properly discontinued. at an unwanted too low or too big Fuel injection can cause adverse operating conditions arise. In particular, unauthorized exhaust and Noise emissions arise, the smoothness of the internal combustion engine impaired, the fuel consumption can be increased or Damage to the internal combustion engine arise.
  • the invention is based on the object, a method or to provide a device that the Injector drift, especially when injecting minimal Fuel quantities more effectively compensated, so that a more accurate fuel injection at all possible Operating conditions can be performed more reliably. This task comes with the characteristics of the sibling Claims 1 and 14 solved.
  • an injector for direct fuel injection in a cylinder of an internal combustion engine or at the device according to the characteristics of the siblings Claims 1 and 14 there is the advantage that in one Range of values of considered at least one Operating point of the internal combustion engine can be set arbitrarily can. For example, in each case a correction value for an operating point at the top, middle and bottom Range of values of the operating parameter can be determined.
  • a correction value for an operating point at the top, middle and bottom Range of values of the operating parameter can be determined.
  • the determined correction values together with their operating points saved and learned with it. Is the Internal combustion engine just stored in such a Operating point, then easily can the associated Correction value read from the memory and for the Correction of the injection duration of the injector can be used.
  • the inventive correction method can for each cylinder of the internal combustion engine individually the Injection quantities are corrected. This will be Series variations of the injectors and also the engines in advantageously automatically compensated. Come in addition, that through the passive interpretation of the system of Calibration effort is significantly reduced.
  • a particularly favorable solution is that the Result for the interpolated correction value subsequently is checked. This ensures that the Corrective action was successful and the new one found Correction value better fits than the old correction value.
  • Another advantage is the correction value in To determine dependence on the beginning of the injection. ever after the start of injection, the pressure conditions change especially in the rail, so that easily a may result in changed injection quantity.
  • the injected amount of fuel can be undesirable also be negatively influenced by the fact that the rail pressure not constant during the determination of the correction value is held. Depending on the volume of the buffer in the High pressure area and the opening time of the injector valve The rail pressure is subject to large fluctuations, the one corresponding negative influence on the determination of the Exercise corrective value.
  • Another advantage is the learning process during the normal driving operation of the vehicle. Thereby is ensured that an optimal correction of Fuel injection can be performed at any time can, even in such cases, if no suitable Correction value should be present.
  • the device is advantageous in a momentary present operating point of the internal combustion engine to a suitable correction value either by interpolation or by reading from the memory to determine and the Correct the injection duration of the injector accordingly.
  • FIG. 1 is a schematic of a Block diagram the basic operation of the inventive method for drift compensation of a Injector shown.
  • the drift compensation is on the Injection system designed adaptable. Its functioning is the example of the rail pressure p_Rail in a Direct injection system, a common rail system explains as a dependent operating parameter of the internal combustion engine the injection duration of the injector and thus the injected Fuel quantity over the railtikine drift of Injectors can affect in an undesirable manner.
  • further operating parameters such as Start of the injection t_Start, the speed U min of the Internal combustion engine, etc. individually or in combination for the Drift compensation to use, as these parameters also the current operating state of the internal combustion engine can influence.
  • FIG. 1 An essential element of the method according to the invention according to Figure 1 is a manager unit 1, which with a appropriate algorithm is formed.
  • the Manager unit 1 essentially has one program-controlled control unit, which later is explained.
  • the manager unit 1 is connected to a memory in which learned correction values together with corresponding correction values Operating point values of considered Operating parameters preferably in the form of a table or a map 2 are stored.
  • the values can for example, according to the order structure of the value range successive sections as correction value vector and Parameter vector be organized or stored. in addition come in each case an analogously organized mean vector and an adaptation number vector.
  • MFMA minimum mass fuel adaptation
  • Mode selection 5 In the method according to the invention are three different possibilities provided by a Mode selection 5 are selectable:
  • the first route leads from the mode selection 5 to the learning mode 3 and concerns the case when a suitable operating point is reached, the learning process can be activated.
  • the corresponding values the map 2 taken and, together with the one at the entrance a and in unit 4 divided into sections Operating parameter value, to a learning mode 3 with Plausibility check given.
  • An acceptable new one Correction value is then, if necessary, indirectly via a Interpolation unit 6, for operating-parameter-dependent Compensation of Injektordrift or for storage ready.
  • the second way concerns the special case that the manager unit 1 targeted first activates a certain section of the value range to there, if necessary without plausibility check, one Determine correction value.
  • the third way leads from mode selection 5 to Interpolation unit 6 and relates to the case that in Operating mode for a current operating point of z. B. 300 bar rail pressure requires an additional correction value but, for example, only in the section 200 to 300 bar, at operating point B_Pkt (e.g., 250 bar), a current one Correction value of 0.4 and in the section 300 to 400 bar, on Operating point 360 bar, another current correction value of 0.6.
  • the correction value for 300 bar can then advantageous from the two closest value pairs be interpolated.
  • the two units 3 and 6 is a unit 4 to Section indexing 4 upstream, with the Value range of a considered operating parameter in Any number of different sizes Sections, for example, ten sections, is divided.
  • a of the unit 4 becomes a current measured value the operating parameter, in our example the rail pressure p_Rail created by a corresponding pressure sensor in recycled form is available.
  • the current measured value to the interpolation unit 6 and can here in the interpolation in a suitable way are processed.
  • the Interpolation unit 6 is then the determined current Correction values or a corresponding offset value can be tapped and can now be used to drift compensation of the injector become. Strictly speaking, this new correction value only applies for one, but representative for the given section Operating point of the internal combustion engine. He can through the Interpolation of adjacent values previously for a similar operating point were stored, almost arbitrary be adjusted exactly.
  • the number of Sections depending on the sensitivity of the drift be set with respect to the operating parameter. Should on the one hand increases the sensitivity of the operating parameter a higher number of sections is selected. Should On the other hand, the dependency is reduced, becomes a lower number of sections selected.
  • the ranges from 0 to 300 bar and from 700 to 1000 bar rail pressure tighter with sections occupied be as the intermediate, possibly completely blank area.
  • the mode selection 5 has the Interpolation unit 6 is activated, so that between two stored adjacent value pairs an optimal new Correction value can be determined. It will takes into account in which part of the section is currently the instantaneous operating point of the internal combustion engine is located.
  • a correction value of 0.4; 0.5 to finally 0.6 are determined.
  • a plausibility check should be a maximum Deviation of 0.3 may be specified.
  • the second determined Correction value of 0.5 deviates only within the allowed Limit from the first determined correction value of 0.4, so that on the one hand 0.5 as a new correction value for this section and, on the other hand, the updated mean from now 0,45 together with the adaptation number (here: 2) is filed.
  • the third is determined Correction value of 0.6 with the current average of 0.45 compared.
  • the new Correction value of 0.6 is thus accepted. From the Mean value of 0.45 with associated adaptation number of 2 and The new correction value 0.6 can then be calculated according to the formula for the arithmetic mean of a new, updated Mean value of 0.5 (with associated adaptation number of 3) be calculated.
  • the result of the determined old and new correction value is available at the output b of the interpolation unit 6 and can be used to control the injector.
  • the system is provided with a manager that monitors the number of correction values for a particular section. If no correction values have been calculated in a section over a longer period of time, this section becomes targeted Adaptation triggered. If this is not possible or not desirable, for example, an internal display can be made that in this area a partially unreliable engine control is given.
  • the process is very simple and fast to perform, so that it is also for the control of an individual cylinder is applicable.
  • FIGS. 2A to 2C show three diagrams with which FIGS aforementioned embodiment of the invention Correction value for compensation of injector drift in Depending on the rail pressure can be determined.
  • Fig. 2A On the y-axis Fig. 2A is the amount of fuel to be injected m_Sprit applied.
  • FIGS. 2A to 2C On the x-axis FIGS. 2A to 2C is the rail pressure p_Rail applied.
  • FIG. 2A is a linear ramp function shown. These include two saw teeth by way of example recognizable, the edge of which increases with increasing time. Of the left sawtooth is the underlying diagram of the figure 2B assigned. In the diagram of Figure 2B is the case considered when the mode selection 5 in the learning mode 3 has switched.
  • the second sawtooth of Figure 2A is the diagram of the figure 2C assigned. Here the case is considered when the mode selection 5 has switched to the interpolation unit 6.
  • the ramp function of Figure 2A is in principle the Operating point of a range of values determined by the Internal combustion engine is currently located and for which the determining correction value for the drift correction of Injector is to be determined.
  • the diagram of Figure 2B is the associated with the first sawtooth of Figure 2A. It shows in the Learning mode 3 as a learning curve a bowl-shaped offset curve, to correct the injection duration of an injection pulse determined and stored in advance using the algorithm has been. Depending on the operating point can now from the curve of FIG 2B the corresponding correction value (offset value) is read become.
  • the diagram is especially for the adaptation a minimum amount of fuel used.
  • Control device 10 In the block diagram of Figure 3 is a Control device 10 is provided, in which the aforementioned Implemented manager with the algorithm of the invention is.
  • the control device 10 has a programmable Calculator with all required units. He is in particular with a program memory 11, a memory 12 for the algorithm and a memory 13 for correction values connected.
  • the correction values are preferably in Form of a table or a map along with stored further associated parameter values.
  • the control device 10 is preferably via a und Control bus 18 connected to at least one injector 14, the at a suitable location of the internal combustion engine 20 in the area a cylinder 17 is arranged.
  • the injector 14 is preferably formed with a piezoelectric actuator, which can be controlled via the data and control bus 18.
  • the injector 14 is at a high pressure line (rail) 16th connected to those under high pressure Fuel, such as gasoline, diesel or gas filled is.
  • Fuel such as gasoline, diesel or gas filled is.
  • the high pressure in the rail 16 is controlled by a Pump 21 is generated.
  • a pressure sensor 19 on the pump 21 or on The rail records the current rail pressure.
  • a knock sensor 15 On the internal combustion engine 20 is further a knock sensor 15 arranged, with the u.a. detects the combustion noise and from this, for example, the beginning of the injection or the actual amount of fuel injected will be determined can.
  • Other sensors such as a speed sensor for Speed detection of the internal combustion engine, etc. are predictable.
  • the system is cylinder-specific and thus enables for example, the compensation of injector scatters.
  • the Realization of the system is generic, that is, it can for the compensation of different, even several Dependencies are used.
  • the adaptation to the respective dependency is purely via calibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Bei direkt einspritzenden Brennkraftmaschinen tritt das Problem auf, dass insbesondere die Einspritzung einer minimalen Kraftstoffmenge insbesondere von verschiedenen Betriebsparametern wie der Drehzahl, dem Beginn der Einspritzung oder dem Raildruck abhängt. Erfindungsgemäß werden daher ein Verfahren beziehungsweise eine Vorrichtung vorgeschlagen, bei dem eine Steuereinrichtung (10) den gesamten Wertebereich des wenigstens einen Betriebsparameters in diskrete Abschnitte unterteilt. Danach wird für jeden Abschnitt bei wenigstens einem Betriebspunkt ein von dem Betriebsparameter abhängiger Korrekturwert bestimmt und gelernt. Der Korrekturwert wird dann zusammen mit seinem korrespondierenden Betriebspunkt gespeichert. Dieses hat den Vorteil, dass der Korrekturwert genauer bestimmt werden kann, da beispielsweise auch zwischen zwei Betriebspunkten interpoliert werden kann.

Description

Die Erfindung geht von einem Verfahren und einer Vorrichtung zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine nach der Gattung der nebengeordneten Ansprüche 1 und 10 aus. Es ist schon bekannt, dass eine Steuereinrichtung einen Korrekturwert ermittelt, der zur Korrektur der Einspritzung insbesondere einer minimalen Kraftstoffmenge dient. Dieser Korrekturwert gilt jedoch innerhalb eines Wertebereiches eines von der Einspritzdauer abhängigen Betriebsparameters der Brennkraftmaschine, beispielsweise der Drehzahl, dem Einspritzbeginn oder dem Raildruck bei einem Direkteinspritzsystem wie Common Rail-, Pumpe-Düsesystem oder ähnliches. Ein weiteres Problem wird auch darin gesehen, dass der gelernte Korrekturwert für einen kompletten Wertebereich verwendet wird. Er wird immer dann verwendet, wenn sich ein oder mehrere von der Einspritzdauer abhängigen Betriebsparameter der Brennkraftmaschine innerhalb des betreffenden Wertebereiches befinden. Eine gezielte Adaptierung für den Fall, wenn sich der Betriebspunkt an der oberen oder der unteren Grenze des Wertebereiches befindet, wird nicht durchgeführt.
Kritisch ist auch, dass bei der Bestimmung eines neuen Korrekturwert für einen bestimmten Wertebereich dieser neue Korrekturwert den vorher geltenden Korrekturwert ersetzt, ohne dass zum Beispiel mit einem Test überprüft wird, ob dieser neue Korrekturwert besser geeignet ist als der alte Korrekturwert. Dieses kann beispielsweise bei einer Mehrfacheinspritzung von Bedeutung sein, wenn eine Vor- oder Nacheinspritzung nicht ordnungsgemäß abgesetzt wurde. Bei einer unerwünschten zu niedrigen oder zu großen Kraftstoffeinspritzung können nachteilige Betriebszustände entstehen. Insbesondere können unerlaubte Abgas- und Lärmemissionen entstehen, die Laufruhe der Brennkraftmaschine beeinträchtigt, der Kraftstoffverbrauch erhöht werden oder Schäden an der Brennkraftmaschine entstehen.
Bei den bekannten Verfahren zur Driftkompensation des Injektors erscheint des Weiteren ungünstig, dass auftretende Änderungen des Kraftstoffdrucks im Rail nicht berücksichtigt wird. Da der Raildruck jedoch neben der Einspritzdauer ein entscheidender Faktor bei der Bestimmung der einzuspritzenden Kraftstoffmenge ist, ergibt sich hier eine Fehlerquelle, die zu unzuverlässigen Einspritzergebnissen führen kann.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren beziehungsweise eine Vorrichtung anzugeben, die die Injektordrift insbesondere bei der Einspritzung minimaler Kraftstoffmengen wirkungsvoller kompensiert, so dass eine genauere Kraftstoffeinspritzung bei möglichst allen Betriebsbedingungen zuverlässiger durchgeführt werden kann. Diese Aufgabe wird mit den Merkmalen der nebengeordneten Ansprüche 1 und 14 gelöst.
Bei dem erfindungsgemäßen Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine beziehungsweise bei der Vorrichtung gemäß den Merkmalen der nebengeordneten Ansprüche 1 und 14 ergibt sich der Vorteil, dass in einem Wertebereich der in Betracht gezogene wenigstens eine Betriebspunkt der Brennkraftmaschine beliebig gelegt werden kann. So kann beispielweise jeweils ein Korrekturwert für einen Betriebspunkt am oberen, mittleren und unteren Wertebereich des Betriebsparameters ermittelt werden. Als besonders vorteilhaft wird dabei angesehen, dass die ermittelten Korrekturwerte zusammen mit ihren Betriebspunkten gespeichert und damit gelernt werden. Befindet sich die Brennkraftmaschine gerade bei einem solchen gespeicherten Betriebspunkt, dann kann leicht der dazugehörige Korrekturwert aus dem Speicher ausgelesen und für die Korrektur der Einspritzdauer des Injektors verwendet werden. Durch das erfindungsgemäße Korrekturverfahren können für jeden Zylinder der Brennkraftmaschine individuell die Einspritzmengen korrigiert werden. Dadurch werden Serienstreuungen der Injektoren und auch der Motoren in vorteilhafter Weise automatisch kompensiert. Hinzu kommt, dass durch die passive Auslegung des Systems der Kalibrieraufwand erheblich verringert wird.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des in den nebengeordneten Ansprüche 1 und 14 abgegebenen Verfahrens beziehungsweise der Vorrichtung gegeben. Als besonders vorteilhaft wird angesehen, dass der Betriebspunkt bei der Berechnung konstant gehalten wird. Dadurch kann der Korrekturwert zum Beispiel über mehrere Einspritzzyklen genauer bestimmt werden, so dass die Korrektur zuverlässiger ausgeführt werden kann.
Als sehr vorteilhaft hat sich weiterhin gezeigt, dass eine sehr effiziente Korrektur mit großer Genauigkeit erzielt werden kann, wenn für die Bestimmung des Korrekturwerts im normalen Fahrbetrieb des Fahrzeugs zwischen zwei gelernten Wertepaaren interpoliert wird. Da die Stützstellen für die Interpolation frei wählbar sind, kann auf diese Weise der Korrekturwert an solche Bereiche optimal angepasst werden, die beispielsweise eine große Bereichsabhängigkeit eines Betriebsparameters aufweisen. Durch die Interpolation erhält man ein genaueres adaptives Interpolationskennfeld als durch die Verwendung von diskreten Werten, die lediglich einem ganzen Bereich zugeordnet sind. Insbesondere kleinste Kraftstoffmengen lassen sich auf diese Weise zuverlässiger und mit größerer Genauigkeit adaptieren.
Eine besonders günstige Lösung besteht darin, dass das Ergebnis für den interpolierten Korrekturwert anschließend überprüft wird. Dadurch ist sichergestellt, ob die Korrekturmaßnahme erfolgreich war und der gefundene neue Korrekturwert besser passt als der alte Korrekturwert.
Auf die Einspritzung einer bestimmten Kraftstoffmenge haben mehrere Betriebsparameter einen entscheidenden Einfluss. Insbesondere treten bei sehr kleinen Einspritzmengen relativ große Ungenauigkeiten auf, da die Öffnungszeiten des Injektors in diesem Bereich außerordentlich kurz und daher schwer zu steuern sind. Daher ist es besonders wichtig, dass während der Einspritzung die Drehzahl der Brennkraftmaschine konstant gehalten wird.
Ein weiterer Vorteil besteht auch darin, den Korrekturwert in Abhängigkeit vom Beginn der Einspritzung zu bestimmen. Je nach Einspritzbeginn ändern sich die Druckverhältnisse insbesondere im Rail, so dass sich dadurch leicht eine geänderte Einspritzmenge ergeben kann.
Die eingespritzte Kraftstoffmenge kann in unerwünschtem Masse auch dadurch negativ beeinflusst werden, dass der Raildruck während der Bestimmung des Korrekturwerts nicht konstant gehalten wird. Je nach dem Volumen des Pufferspeichers im Hochdruckbereich und der Öffnungsdauer des Injektorventils unterliegt der Raildruck großen Schwankungen, die einen entsprechenden negativen Einfluss auf die Ermittlung des Korrekturwerts ausüben können.
Von Vorteil ist weiterhin, den Lernvorgang während des normalen Fahrbetriebs des Fahrzeugs zu aktivieren. Dadurch ist sichergestellt, dass eine optimale Korrektur der Kraftstofffeinspritzung zu jeder Zeit durchgeführt werden kann, auch in solchen Fällen, wenn kein geeigneter Korrekturwert vorhanden sein sollte.
Bei der Vorrichtung ist von Vorteil, bei einem momentan vorliegenden Betriebspunkt der Brennkraftmaschine eine dazu geeigneten Korrekturwert entweder durch Interpolation oder durch Auslesen aus dem Speicher zu ermitteln und die Einspritzdauer des Injektors entsprechend zu korrigieren.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert.
Figur 1
zeigt in schematischer Darstellung ein Blockschaltbild für ein erfindungsgemäßes Verfahren, mit dem eine Driftkompensation des Injektors durchführbar ist,
Figuren 2A bis 2C
zeigen drei Diagramme, mit denen Parameter abhängige Korrekturwerte ermittelbar sind und
Figur 3
zeigt ein schematisiertes vereinfachtes Blockschaltbild einer erfindungsgemäßen Vorrichtung zur Driftkompensation.
In Figur 1 ist an Hand eines schematisierten Blockschaltbildes die prinzipielle Funktionsweise des erfindungsgemäßen Verfahrens zur Driftkompensation eines Injektors dargestellt. Die Driftkompensation ist an das Einspritzsystem adaptierbar ausgebildet. Seine Funktionsweise wird nachfolgend am Beispiel des Raildrucks p_Rail in einem Direkteinspritzsystem, einem Common Rail System erläutert, das als abhängigen Betriebsparameter der Brennkraftmaschine die Einspritzdauer des Injektors und damit die eingespritzte Kraftstoffmenge über die raildruckabhängige Drift des Injektors in unerwünschter Weise beeinflussen kann. Alternativ ist vorgesehen, weitere Betriebsparameter wie den Beginn der Einspritzung t_Start, die Drehzahl U min des Brennkraftmaschine usw. einzeln oder in Kombination für die Driftkompensation zu verwenden, da diese Parameter ebenfalls den momentanen Betriebszustand der Brennkraftmaschine beeinflussen können.
Ein wesentliches Element des erfindungsgemäßen Verfahrens gemäß Figur 1 ist eine Managereinheit 1, die mit einem entsprechenden Algorithmus ausgebildet ist. Die Managereinheit 1 weist im Wesentlichen eine programmgesteuerte Steuereinheit auf, die später noch erläutert wird.
Die Managereinheit 1 ist mit einem Speicher verbunden, in dem gelernte Korrekturwerte zusammen mit korrespondierenden Betriebspunkt-Werten von in Betracht gezogenen Betriebsparametern vorzugsweise in Form einer Tabelle oder eines Kennfeldes 2 abgelegt sind. Die Werte können beispielsweise gemäß der Ordnungsstruktur der im Wertebereich aufeinander folgenden Abschnitte als Korrekturwertvektor und Parametervektor organisiert bzw. abgespeichert sein. Hinzu kommen ein jeweils analog organisierter Mittelwertvektor und ein Adaptionsanzahlvektor. Diese Werte bzw. Vektoren werden insbesondere zur Korrektur einer minimalen Einspritzmenge (MFMA = minimum mass fuel adaption) ermittelt, wie sie beispielsweise im Teillastbereich oder bei einer Vor- oder Nacheinspritzung erforderlich sind.
Bei dem erfindungsgemäßen Verfahren sind drei unterschiedliche Möglichkeiten vorgesehen, die durch eine Modus-Auswahl 5 anwählbar sind:
Der erste Weg führt von der Modus-Auswahl 5 zum Lernmodus 3 und betrifft den Fall, wenn ein passender Betriebspunkt erreicht ist, kann der Lernvorgang aktiviert werden. Dazu werden für den momentanen Betriebszustand der Brennkraftmaschine die entsprechenden Werte dem Kennfeld 2 entnommen und, zusammen mit dem am Eingang a anliegenden und in Einheit 4 in Abschnitte eingeteilten Betriebsparameterwert, auf einen Lernmodus 3 mit Plausibilitätsprüfung gegeben. Ein akzeptabler neuer Korrekturwert steht dann, gegebenenfalls mittelbar, über eine Interpolationseinheit 6, zur betriebsparameterabhängigen Kompensation der Injektordrift bzw. zur Abspeicherung bereit.
Der zweite Weg, ausgehend von der Modus-Auswahl 5, betrifft den Sonderfall, dass die Managereinheit 1 zunächst gezielt einen bestimmten Abschnitt des Wertebereiches ansteuert, um dort, gegebenenfalls ohne Plausibilitätsprüfung, einen Korrekturwert zu ermitteln.
Der dritte Weg führt von der Modus-Auswahl 5 zur Interpolationseinheit 6 und betrifft den Fall, dass im Betriebsmodus für einen momentanen Betriebspunkt von z. B. 300 bar Raildruck ein zusätzlicher Korrekturwert benötigt wird, jedoch beispielsweise nur im Abschnitt 200 bis 300 bar, am Betriebspunkt B_Pkt (z.B. 250 bar), ein aktueller Korrekturwert von 0,4 und im Abschnitt 300 bis 400 bar, am Betriebspunkt 360 bar, ein weiterer aktueller Korrekturwert von 0,6 vorliegen. Der Korrekturwert für 300 bar kann dann vorteilhaft aus den zwei nächstliegenden Wertepaaren interpoliert werden.
Den beiden Einheiten 3 und 6 ist eine Einheit 4 zur Abschnittsindizierung 4 vorgeschaltet, mit der der Wertebereich eines betrachteten Betriebsparameters in beliebig viele gegebenenfalls unterschiedlich große Abschnitte, beispielsweise zehn Abschnitte, unterteilt wird. An einem Eingang a der Einheit 4 wird ein aktueller Messwert des Betriebsparameters, in unserem Beispiel der Raildruck p_Rail angelegt, der von einem entsprechenden Drucksensor in aufbereiteter Form zur Verfügung steht. Gleichzeitig gelangt der aktuelle Messwert zur Interpolationseinheit 6 und kann hier bei der Interpolation in geeigneter Weise weiter verarbeitet werden. An einem Ausgang b der Interpolationseinheit 6 ist dann der ermittelte aktuelle Korrekturwerte oder ein entsprechender Offsetwert abgreifbar und kann nun zur Driftkompensation des Injektors verwendet werden. Dieser neue Korrekturwert gilt streng genommen nur für einen, jedoch für den gegebenen Abschnitt repräsentativen Betriebspunkt der Brennkraftmaschine. Er kann durch die Interpolation von benachbarten Werten, die zuvor für einen ähnlichen Betriebspunkt gespeichert wurden, nahezu beliebig genau angepasst werden.
Im Folgenden wird die detaillierte Funktionsweise des in Figur 1 dargestellten Verfahrens näher erläutert. Zunächst wird der gesamte Wertebereich der Abhängigkeitsgröße, also der betrachtete abhängige Betriebsparameter, in der Einheit 4 zur Abschnittsindizierung in eine vorgegebene Anzahl von diskreten Abschnitten eingeteilt. Dabei kann die Anzahl der Abschnitte in Abhängigkeit von der Empfindlichkeit der Drift bezüglich des Betriebsparameters festgelegt werden. Soll einerseits die Empfindlichkeit des Betriebsparameters erhöht werden, wird eine höhere Anzahl von Abschnitten gewählt. Soll andererseits die Abhängigkeit verringert werden, wird eine niedrigere Anzahl von Abschnitten gewählt. In der Praxis können beispielsweise auch die Bereiche von 0 bis 300 bar und von 700 bis 1000 bar Raildruck enger mit Abschnitten belegt werden als der dazwischen liegende, gegebenenfalls ganz unbelegte Bereich.
Für jeden Abschnitt wird wenigstens ein Betriebspunkt festgelegt, für den ein entsprechender Korrekturwert ermittelt und gelernt wird. Alternativ wird für einige Abschnitte ein entsprechender Korrekturwert ermittelt und gelernt, wenn gerade ein geeigneter, jedenfalls innerhalb des jeweiligen Abschnittes liegender, Betriebszustand erreicht ist. Als vorteilhaft hat es sich erwiesen, dass bei der Berechnung des Korrekturwertes stets der jeweilige Betriebspunkt der Brennkraftmaschine konstant gehalten wird. Der Korrekturwert wird dann zusammen mit dem jeweiligen Betriebspunkt in der Tabelle 2 gespeichert. Für die typischerweise weniger als eine Sekunde lange Berechnungszeit kann die Konstanz vom Steuergerät herbeigeführt werden. Sollte in dieser kurzen Zeit der Fahrer des Fahrzeugs eingreifen, so kann beispielsweise eine gewünschte Leistung vom Steuergerät unter Beibehaltung der Konstanz des im Brennpunkt stehenden Betriebsparameters näherungsweise durch Veränderung anderer Parameter erreicht werden, oder aber die Berechnung kann abgebrochen werden. Wenn z. B. beim Anfahren ein bestimmter Betriebszustand nicht erreicht wird, kann das Steuergerät den Raildruck p_Rail für kurze Zeit künstlich erhöhen, wenn dies mit den sonstigen Bedingungen vereinbar ist.
Im normalen Fahrbetrieb hat die Modus-Auswahl 5 die Interpolationseinheit 6 aktiviert, so dass zwischen zwei gespeicherten benachbarten Wertepaaren ein optimaler neuer Korrekturwert ermittelt werden kann. Dabei wird berücksichtigt, in welchem Teil des Abschnitts sich gerade der momentane Betriebspunkt der Brennkraftmaschine befindet.
Liegen noch nicht für alle Abschnitte gelernte Korrekturwerte vor, dann werden für die Interpolation automatisch die beiden nächstliegenden Werte genommen und eine lineare Interpolation nach bekannten Rechneregeln durchgeführt. Anschließend wird überprüft, ob der Ergebniswert für den neuen Korrekturwert innerhalb von kalibrierbaren Grenzen liegt.
Ist beispielsweise nur ein Korrekturwert verfügbar, dann ist für diesen Fall alternativ vorgesehen, diesen einen Wert für alle Bereiche zu verwenden. Falls kein Wert vorliegt, dann wird der Korrekturwert auf den Neutralwert gesetzt. Diese Randbedingungen sind insbesondere bei der Vorkalibrierung der Tabelle 2 anwendbar.
Existieren bereits Korrekturwerte für einen bestimmten Abschnitt des Wertebereiches, so wird der neu gelernte Wert mit dem jeweiligen Mittelwert auf Plausibilität geprüft, woraufhin mit dem bisherigen Mittelwert und der jeweiligen Anzahl der bisher gelernten Werte ein neuer Mittelwert berechnet und gespeichert wird. Dadurch wird zusätzlich auch eine funktionelle Diagnose der Korrekturwertberechnung erreicht.
Beispielsweise kann im Raildruckabschnitt von 200 bis 300 bar bei mindestens einem in diesem Abschnitt liegender Betriebspunkt nacheinander ein Korrekturwert von 0,4; 0,5 bis schließlich 0,6 bestimmt werden. Als Kriterium für die Plausibilitätsprüfung soll beispielsweise eine maximale Abweichung von 0,3 vorgegeben sein. Der zweitbestimmte Korrekturwert von 0,5 weicht nur innerhalb der erlaubten Grenze vom erstbestimmten Korrekturwert von 0,4 ab, so dass einerseits 0,5 als neuer Korrekturwert für diesen Abschnitt gelernt wird und andererseits der aktualisierte Mittelwert von jetzt 0,45 zusammen mit der Adaptionsanzahl (hier: 2) abgelegt wird. Im nächsten Zyklus wird der drittbestimmte Korrekturwert von 0,6 mit dem aktuellen Mittelwert von 0,45 verglichen. Seine Abweichung (hier: 0,15) ist als kleiner als die vorgegebene Abweichung (hier: 0,3). Der neue Korrekturwert von 0,6 wird somit akzeptiert. Aus dem Mittelwert von 0,45 mit zugehöriger Adaptionsanzahl von 2 und dem neuen Korrekturwert 0,6 kann dann gemäß der Formel für den arithmetischen Mittelwert ein neuer, aktualisierter Mittelwert von 0,5 (mit zugehöriger Adaptionszahl von 3) berechnet werden.
Bei der Speicherung werden ungültige Werte durch die neuen Werte ersetzt, nachdem überprüft wurde, dass die neuen Werte besser passen als die alten Werte.
Das Ergebnis des ermittelten alten und neuen Korrekturwerts steht am Ausgang b der Interpolationseinheit 6 zur Verfügung und kann zur Steuerung des Injektors verwendet werden.
Das System wird mit einem Manager versehen, der die Anzahl der Korrekturwerte für einen bestimmten Abschnitt überwacht. Wenn in einem Abschnitt über längere Zeit keine Korrekturwerte berechnet wurden, so wird dieser Abschnitt gezielt zur
Adaption angesteuert. Wenn dies nicht möglich oder nicht erwünscht ist, kann beispielsweise auch eine interne Anzeige erfolgen, dass in diesem Bereich eine partiell unzuverlässige Motorsteuerung gegeben ist.
Das Verfahren ist sehr einfach und schnell durchführbar, so dass es auch für die Steuerung eines individuellen Zylinders anwendbar ist.
Die Figuren 2A bis 2C zeigen drei Diagramme, mit denen zu dem vorgenannten erfindungsgemäßen Ausführungsbeispiel der Korrekturwert zur Kompensation der Injektordrift in Abhängigkeit vom Raildruck ermittelt werden kann. Auf der y-Achse der Fig 2A ist die einzuspritzende Kraftstoffmenge m_Sprit aufgetragen. Dagegen ist auf der y-Achse der Figuren 2B und 2C der Offset (Korrekturwert) der minimalen Einspritzdauer des Injektors t_Offset aufgetragen. Auf der x-Achse der Figuren 2A bis 2C ist der Raildruck p_Rail aufgetragen. In der Figur 2A ist eine lineare Rampenfunktion dargestellt. Darin sind beispielhaft zwei Sägezähne erkennbar, deren Flanke mit zunehmender Zeit ansteigt. Der linke Sägezahn ist dem darunter liegenden Diagramm der Figur 2B zugeordnet. Bei dem Diagramm der Figur 2B ist der Fall betrachtet, wenn die Modusauswahl 5 in den Lernmodus 3 umgeschaltet hat.
Dem zweiten Sägezahn von Figur 2A ist das Diagramm der Figur 2C zugeordnet. Hier wird der Fall betrachtet, wenn die Modus-Auswahl 5 auf die Interpolationseinheit 6 umgeschaltet hat.
Mit der Rampenfunktion der Figur 2A wird prinzipiell der Arbeitspunkt eines Wertebereiches bestimmt, an dem sich die Brennkraftmaschine momentan befindet und für den der zu bestimmende Korrekturwert für die Driftkorrektur des Injektors zu bestimmen ist. Das Diagramm der Figur 2B ist dem ersten Sägezahn von Figur 2A zugeordnet. Es zeigt im Lernmodus 3 als Lernkurve eine schüsselförmige Offset-Kurve, die zur Korrektur der Einspritzdauer eines Einspritzimpulses mit Hilfe des Algorithmus vorab ermittelt und gespeichert wurde. Je nach Arbeitspunkt kann nun aus der Kurve von Figur 2B der entsprechende Korrekturwert (Offsetwert) abgelesen werden. Das Diagramm ist insbesondere für die Adaptierung einer minimalen Kraftstoffmenge verwendbar.
Eine alternative Lösung zur Ermittlung des Korrekturwerts ist in Figur 2C dargestellt. Bei dieser Korrekturkurve wurde während des regulären Fahrbetriebs zwischen zwei gespeicherten Betriebspunkten interpoliert. Die in der Kurve erkennbaren einzelnen Stufen entstehen durch die Rechendauer zur Ermittlung des Offsetwertes. Prinzipiell verläuft diese Kurve ähnlich wie derjenigen in Figur 2B.
Bei dem Blockschaltbild der Figur 3 ist eine Steuereinrichtung 10 vorgesehen, in der der zuvor erwähnte Manager mit dem erfindungsgemäßen Algorithmus implementiert ist. Die Steuereinrichtung 10 weist einen programmierbaren Rechner mit allen erforderlichen Einheiten auf. Er ist insbesondere mit einem Programmspeicher 11, einem Speicher 12 für den Algorithmus und einem Speicher 13 für Korrekturwerte verbunden. Die Korrekturwerte werden dabei vorzugsweise in Form einer Tabelle oder eines Kennfeldes zusammen mit weiteren zugeordneten Parameterwerten gespeichert.
Die Steuereinrichtung 10 ist vorzugsweise über einen Datenund Steuerbus 18 mit wenigstens einem Injektor 14 verbunden, der an geeigneter Stelle der Brennkraftmaschine 20 im Bereich eines Zylinders 17 angeordnet ist. Der Injektor 14 ist vorzugsweise mit einem piezoelektrischen Aktor ausgebildet, der über den Daten- und Steuerbus 18 angesteuert werden kann.
Der Injektor 14 ist an einer Hochdruckleitung (Rail) 16 angeschlossen, die mit unter hohem Druck stehenden Kraftstoff, beispielsweise Benzin, Diesel oder Gas gefüllt ist. Der hohe Druck im Rail 16 wird von einer geregelten Pumpe 21 erzeugt. Ein Drucksensor 19 an der Pumpe 21 oder an dem Rail erfasst dabei den aktuellen Raildruck.
An der Brennkraftmaschine 20 ist des weiteren ein Klopfsensor 15 angeordnet, mit dem u.a. das Verbrennungsgeräusch erfasst und daraus beispielsweise der Beginn der Einspritzung oder die tatsächlich eingespritzte Kraftstoffmenge bestimmt werden kann. Weitere Sensoren, beispielsweise ein Drehzahlsensor zur Drehzahlerfassung der Brennkraftmaschine usw. sind vorsehbar.
Das System ist zylinderindividuell und ermöglicht somit beispielsweise den Ausgleich von Injektorstreuungen. Die Realisierung des Systems ist generisch, das heißt, es kann zur Kompensation von verschiedenen, auch mehreren Abhängigkeiten eingesetzt werden. Die Anpassung an die jeweilige Abhängigkeit erfolgt rein über Kalibration.

Claims (15)

  1. Verfahren zur Driftkompensation eines Injektors (14) für die direkte Kraftstoffeinspritzung in einen Zylinder (17) einer Brennkraftmaschine (20), bei dem zur Einspritzung einer definierten Kraftstoffmenge ein die Drift des Injektors (14) kompensierender Korrekturwert von einer Steuereinrichtung (10) ermittelt und gelernt wird, der für einen Wertebereich wenigstens eines Betriebsparameters (U_min, p_Rail, t_Start) der Brennkraftmaschine (20) gilt, dadurch gekennzeichnet, dass der gesamte Wertebereich des Betriebsparameters (U_min, p_Rail, t_Start) in mindestens zwei diskrete Abschnitte unterteilt wird, dass für mindestens einen Abschnitt bei mindestens einem Betriebspunkt ein von dem Betriebsparameter (U_min, p_Rail, t_Start) abhängiger Korrekturwert bestimmt und gelernt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Korrekturwert zusammen mit seinem korrespondierenden Betriebspunkt (B_Pkt) und/oder weiterer Informationen in Form einer Tabelle oder eines Kennfeldes gespeichert wird.
  3. Verfahren nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Betriebspunkt der Brennkraftmaschine (20) bei der Berechnung des Korrekturwerts konstant gehalten wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im normalen Fahrbetrieb zur Bestimmung des Korrekturwert zwischen zwei gelernten Wertepaaren interpoliert wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zwischen zwei nächstliegende Wertepaare interpoliert wird, wenn keine verwertbaren Wertepaare gespeichert sind.
  6. Verfahren nach mindesten einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass das Ergebnis dahingehend überprüft wird, ob die interpolierten Korrekturwerte zwischen kalibrierbaren Grenzen liegen.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Korrekturwerte in Abhängigkeit von der Drehzahl (U_min) der Brennkraftmaschine (20) und/oder vom Beginn der Einspritzung (t_Start) und/oder bei einem Direkteinspritzsystem vom Raildruck (p_Rail)bestimmt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lernvorgang während des Fahrbetriebs des Fahrzeugs aktiviert wird, wenn ein passender Betriebspunkt erreicht ist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Einspritzung einer minimalen Kraftstoffmenge driftkompensierende Korrekturwerte für eine minimale Einspritzdauer des Injektors (14) ermittelt und gelernt werden.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur laufenden Adaption eines Abschnitts ein neuer Korrekturwert bestimmt wird, und dass der neue Korrekturwert durch Vergleich mit dem aktuellen Mittelwert aller im jeweiligen Abschnitt bisher gelernten Korrekturwerte auf Plausibilität geprüft und nur bei Vorliegen vorgebbarer Kriterien gelernt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die neuen Korrekturwerte jeweils dahingehend überprüft werden, ob die Abweichung vom aktuellen Mittelwert unterhalb einer kalibrierbaren Grenze liegt.
  12. Verfahren nach mindestens einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die Plausibilitätsprüfung erst nach einer vorgebbaren Mindestanzahl von im jeweiligen Abschnitt bereits gelernten Korrekturwerten aktiviert wird.
  13. Verfahren nach mindestens einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass ein bestimmter Abschnitt des Wertebereiches gezielt zur Adaption angesteuert wird, wenn dort über einen vorgebbaren Zeitraum hinweg kein oder kein neuer Korrekturwert gelernt wurde.
  14. Vorrichtung zur Driftkompensation eines Injektors (14) nach einem der vorhergehenden Ansprüche, mit einer Steuereinrichtung (10) zur Bestimmung wenigstens eines von einem Betriebsparameter abhängigen Korrekturwerts und mit einem Speicher (13) für den Korrekturwert, dadurch gekennzeichnet, dass die Steuereinrichtung (10) einen Algorithmus aufweist, mit dem der Korrekturwert in mindestens einem Abschnitt eines in mindestens zwei diskrete Abschnitte unterteilten Wertebereiches für mindestens einen Betriebspunkt ermittelbar ist.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass der Algorithmus der Steuereinrichtung (10) ausgebildet ist, zu einem aktuellen Betriebspunkt der Brennkraftmaschine (20) einen geeigneten Korrekturwert entweder durch Interpolation oder Auslesen aus dem Speicher (13) zu ermitteln und die Einspritzdauer des Injektors (14) entsprechend zu korrigieren.
EP04104138A 2003-10-21 2004-08-30 Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine sowie Vorrichtung Withdrawn EP1526267A3 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10348913 2003-10-21
DE10348913 2003-10-21
DE10358703 2003-12-15
DE10358703 2003-12-15
DE102004040770 2004-08-23
DE102004040770 2004-08-23

Publications (2)

Publication Number Publication Date
EP1526267A2 true EP1526267A2 (de) 2005-04-27
EP1526267A3 EP1526267A3 (de) 2010-07-28

Family

ID=34396728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04104138A Withdrawn EP1526267A3 (de) 2003-10-21 2004-08-30 Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine sowie Vorrichtung

Country Status (2)

Country Link
US (1) US7069138B2 (de)
EP (1) EP1526267A3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007786B3 (de) * 2006-02-20 2007-06-21 Siemens Ag Verfahren und Vorrichtung zur Abschätzung mindestens eines Steuerparameters einer Einspritzanlage einer Brennkraftmaschine für eine Zieleinspritzmenge
DE102006015968B3 (de) * 2006-04-05 2007-11-08 Siemens Ag Adaptionsverfahren und Adaptionsvorrichtung einer Einspritzanlage einer Brennkraftmaschine
EP1862659A1 (de) * 2006-05-30 2007-12-05 Peugeot Citroen Automobiles SA Verfahren und Vorrichtung zur Korrektur des Durchsatzes der Voreinspritzung von Treibstoff in einen Dieseldirekteinspritzmotor des Common-Rail-Typs und Motor, der eine solche Vorrichtung umfasst
DE102006039378A1 (de) * 2006-08-22 2008-03-13 Bayerische Motoren Werke Ag Verfahren zum Betreiben einer Otto-Brennkraftmaschine
DE102009009270A1 (de) * 2009-02-17 2010-08-19 Continental Automotive Gmbh Kalibrierverfahren eines Injektors einer Brennkraftmaschine
US7861693B2 (en) 2006-02-15 2011-01-04 Continental Automotive Gmbh Injection system for an internal combustion engine, and internal combustion engine
EP2336534A1 (de) * 2009-12-18 2011-06-22 Delphi Technologies, Inc. Verfahren und System zur injektorindividiuellen Anpassung der Einspritzzeit von Kraftfahrzeugen
DE102010022269A1 (de) 2010-05-31 2011-12-01 Continental Automotive Gmbh Adaptions-und Einspritzsteuerverfahren eines positionsgeregelten Injektors
CN101747996B (zh) * 2008-12-09 2013-06-05 英菲诺姆国际有限公司 改进油组合物的方法
DE102007000211B4 (de) * 2006-04-06 2014-09-11 Denso Corporation Kraftstoffeinspritzsteuergerät
CN110857666A (zh) * 2018-08-23 2020-03-03 通用汽车环球科技运作有限责任公司 利用补偿学习策略增强发动机部件诊断稳健性的***和方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002738A1 (de) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4858345B2 (ja) * 2007-07-25 2012-01-18 株式会社デンソー 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP2012026340A (ja) 2010-07-22 2012-02-09 Denso Corp 筒内噴射式内燃機関の燃料噴射制御装置
US8608127B2 (en) 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve
CA2754137C (en) 2011-09-30 2012-11-20 Westport Power Inc. Apparatus and method for in situ fuel injector calibration in an internal combustion engine
US9103294B2 (en) 2011-12-02 2015-08-11 Cummins Inc. Fuel drift estimation and compensation for operation of an internal combustion engine
US9255543B2 (en) * 2012-12-14 2016-02-09 Hyundai Motor Company Fuel injection amount compensating method
WO2017218211A1 (en) 2016-06-15 2017-12-21 Cummins Inc. Selective fuel on time and combustion centroid modulation to compensate for injection nozzle cavitation and maintain engine power output and emissions for large bore high-speed diesel engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218552A1 (de) 2001-04-27 2002-10-31 Denso Corp Drehmomentsteuerverfahren für Verbrennungsmotoren mit mehrstufiger Kraftstoffeinspritzung
WO2003031787A1 (de) 2001-09-27 2003-04-17 Robert Bosch Gmbh Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine
EP1388661A2 (de) 2002-08-06 2004-02-11 C.R.F. Società Consortile per Azioni Verfahren und Vorrichtung zur Regelung der in eine Brennkraftmaschine eingespritzten Kraftstoffmenge, insbesondere für einen Dieselmotor mit einem Common-Rail-Einspritzsystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3011595A1 (de) * 1980-03-26 1981-10-01 Robert Bosch Gmbh, 7000 Stuttgart Korrektureinrichtung fuer ein kraftstoffmesssystem bei einer brennkraftmaschine
DE3805033A1 (de) * 1988-02-18 1989-08-31 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE69215306T2 (de) 1991-03-28 1997-04-03 Mitsubishi Motors Corp Luft-/kraftstoffverhältnis-steuereinrichtung für brennkraftmaschinen
DE19700711C2 (de) 1997-01-10 1999-05-12 Siemens Ag Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine
DE19936944A1 (de) * 1999-08-05 2001-02-08 Bosch Gmbh Robert Verfahren zum Zumessen von Brennstoff mit einem Brennstoffeinspritzventil
DE10011690C2 (de) 2000-03-10 2002-02-07 Siemens Ag Verfahren zur Zylindergleichstellung
DE10145188B4 (de) 2001-09-13 2007-07-05 Siemens Ag Verfahren zur Steuerung der Einspritzmenge einer Brennkraftmaschine
DE10257686A1 (de) * 2002-12-10 2004-07-15 Siemens Ag Verfahren zum Anpassen der Charakteristik eines Einspritzventils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218552A1 (de) 2001-04-27 2002-10-31 Denso Corp Drehmomentsteuerverfahren für Verbrennungsmotoren mit mehrstufiger Kraftstoffeinspritzung
WO2003031787A1 (de) 2001-09-27 2003-04-17 Robert Bosch Gmbh Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine
EP1388661A2 (de) 2002-08-06 2004-02-11 C.R.F. Società Consortile per Azioni Verfahren und Vorrichtung zur Regelung der in eine Brennkraftmaschine eingespritzten Kraftstoffmenge, insbesondere für einen Dieselmotor mit einem Common-Rail-Einspritzsystem

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861693B2 (en) 2006-02-15 2011-01-04 Continental Automotive Gmbh Injection system for an internal combustion engine, and internal combustion engine
DE102006007786B3 (de) * 2006-02-20 2007-06-21 Siemens Ag Verfahren und Vorrichtung zur Abschätzung mindestens eines Steuerparameters einer Einspritzanlage einer Brennkraftmaschine für eine Zieleinspritzmenge
DE102006015968B3 (de) * 2006-04-05 2007-11-08 Siemens Ag Adaptionsverfahren und Adaptionsvorrichtung einer Einspritzanlage einer Brennkraftmaschine
DE102007000211B4 (de) * 2006-04-06 2014-09-11 Denso Corporation Kraftstoffeinspritzsteuergerät
FR2901848A1 (fr) * 2006-05-30 2007-12-07 Peugeot Citroen Automobiles Sa Procede et dispositif de correction du debit de l'injection de carburant dit pilote dans un moteur diesel a injection directe du type a rampe commune, et moteur comprenant un tel dispositif
EP1862659A1 (de) * 2006-05-30 2007-12-05 Peugeot Citroen Automobiles SA Verfahren und Vorrichtung zur Korrektur des Durchsatzes der Voreinspritzung von Treibstoff in einen Dieseldirekteinspritzmotor des Common-Rail-Typs und Motor, der eine solche Vorrichtung umfasst
DE102006039378A1 (de) * 2006-08-22 2008-03-13 Bayerische Motoren Werke Ag Verfahren zum Betreiben einer Otto-Brennkraftmaschine
CN101747996B (zh) * 2008-12-09 2013-06-05 英菲诺姆国际有限公司 改进油组合物的方法
DE102009009270A1 (de) * 2009-02-17 2010-08-19 Continental Automotive Gmbh Kalibrierverfahren eines Injektors einer Brennkraftmaschine
EP2336534A1 (de) * 2009-12-18 2011-06-22 Delphi Technologies, Inc. Verfahren und System zur injektorindividiuellen Anpassung der Einspritzzeit von Kraftfahrzeugen
WO2011073147A1 (en) * 2009-12-18 2011-06-23 Delphi Technologies, Inc. Method and system for installation of fuel injectors specific parameters
DE102010022269A1 (de) 2010-05-31 2011-12-01 Continental Automotive Gmbh Adaptions-und Einspritzsteuerverfahren eines positionsgeregelten Injektors
DE102010022269B4 (de) 2010-05-31 2019-08-01 Continental Automotive Gmbh Adaptionsverfahren eines positionsgeregelten Injektors
CN110857666A (zh) * 2018-08-23 2020-03-03 通用汽车环球科技运作有限责任公司 利用补偿学习策略增强发动机部件诊断稳健性的***和方法
CN110857666B (zh) * 2018-08-23 2022-04-26 通用汽车环球科技运作有限责任公司 利用补偿学习策略增强发动机部件诊断稳健性的***和方法

Also Published As

Publication number Publication date
US7069138B2 (en) 2006-06-27
US20050085990A1 (en) 2005-04-21
EP1526267A3 (de) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1526267A2 (de) Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine sowie Vorrichtung
DE19945618B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE2633617C2 (de) Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate
EP1303693B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP0828070B1 (de) Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine
DE102008054690B4 (de) Verfahren und Vorrichtung zur Kalibrierung von Teileinspritzungen in einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE10343759B4 (de) Verfahren und Vorrichtung zur Bestimmung der Abweichung der tatsächlichen Einspritzmenge von einer berechneten Referenzeinspritzmenge eines Kraftstoffeinspritzsystems
DE102007053406B3 (de) Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
DE10218549A1 (de) Steuersystem und -verfahren einer Verbrennungskraftmaschine
DE102005039757A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE3929746A1 (de) Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine
DE102008040626A1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmasse einer Einzeleinspritzung und Vorrichtung zur Durchführung des Verfahrens
DE19726757B4 (de) Verfahren zur Steuerung und/oder Regelung einer mit mehreren Brennräumen versehenen Brennkraftmaschine
DE69918914T2 (de) Verfahren und Vorrichtung zur Steuerung des Luft-Kraftstoffverhältnisses in einer Brennkraftmaschine
DE4117476C2 (de) Luft/Kraftstoff-Verhältnis-Regelsystem mit zwei Sensoren für eine Brennkraftmaschine
DE19545924B4 (de) Verfahren und Vorrichtungen zum Steuern des Luft/Kraftstoffverhältnis-Lernens eines Motors mit innerer Verbrennung
DE102005006361A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102006007365B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE3403260C2 (de)
DE102009009270A1 (de) Kalibrierverfahren eines Injektors einer Brennkraftmaschine
DE102011007642B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
DE102004006554B3 (de) Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
DE112014001782B4 (de) Verfahren und System zur Steuerung eines Verbrennungsmotors
DE102008006327A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE4429271C2 (de) Kraftstoff-Einspritzsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101ALI20100624BHEP

Ipc: F02D 41/12 20060101ALI20100624BHEP

Ipc: F02D 41/24 20060101AFI20050113BHEP

17P Request for examination filed

Effective date: 20110128

AKX Designation fees paid

Designated state(s): DE

17Q First examination report despatched

Effective date: 20110713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150508