EP1525357B1 - Wall construction and component for the same - Google Patents

Wall construction and component for the same Download PDF

Info

Publication number
EP1525357B1
EP1525357B1 EP02751048A EP02751048A EP1525357B1 EP 1525357 B1 EP1525357 B1 EP 1525357B1 EP 02751048 A EP02751048 A EP 02751048A EP 02751048 A EP02751048 A EP 02751048A EP 1525357 B1 EP1525357 B1 EP 1525357B1
Authority
EP
European Patent Office
Prior art keywords
wall
energy
layer
air
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02751048A
Other languages
German (de)
French (fr)
Other versions
EP1525357A1 (en
Inventor
Christoph Schwan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
URBIGKEIT STEFAN
Original Assignee
URBIGKEIT STEFAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by URBIGKEIT STEFAN filed Critical URBIGKEIT STEFAN
Publication of EP1525357A1 publication Critical patent/EP1525357A1/en
Application granted granted Critical
Publication of EP1525357B1 publication Critical patent/EP1525357B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7608Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
    • E04B1/7612Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels in combination with an air space
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0286Building elements with coatings

Definitions

  • the present invention relates to a wall structure for a masonry building exterior wall with a Hämauerwerk and a facing brick and a component for such a wall structure.
  • a wall structure for a masonry building exterior wall which has a Hämauerwerk and a facing brick.
  • an insulating layer is provided on the rear masonry facing side of the facing wall, which is provided at its the back masonry facing side with a heat radiation reflective layer, and is provided a further insulation layer on the facing wall facing the masonry facing.
  • FIGS. 2 to 7 show for better understanding of the present invention cross-sections of hitherto conventional masonry and also by types of masonry with reinforced insulation layers.
  • the wall cross-section according to Fig. 2 illustrates a einschaliges masonry of conventional bricks 12, such as bricks or sand-lime bricks.
  • the masonry has a standard thickness of 36.5 cm, and it is provided on both sides with plaster 1 (exterior plaster) and 6 (interior plaster).
  • the wall structure combines supporting and facade technology functions in one. As far as building physics is concerned, the dew zone is located in the interior of the wall cross-section, depending on the climatic conditions of the room, the working heating system and the weather conditions. There it comes to condensation and a measurable moisture penetration of the building material with a corresponding increase in the thermal conductivity.
  • the water which has become drippable migrates capillary to the outer wall where it is dried off more or less quickly depending on the wind speed and relative humidity of the outside air. Under unfavorable conditions, the dew zone on the inside of the wall or immediately behind it, so it also comes to condensation on the inside of the room, associated with all by-products such as the formation of black mold.
  • the wall construction according to Fig. 2 absorbs the irradiated solar energy well. In the moistened condensation water the solar energy is passed on particularly well. In this respect, it is a good and proven wall construction, but no longer meets the requirements of the future Energy Saving Ordinance (EnEV).
  • EnEV Energy Saving Ordinance
  • the in Fig. 3 shown wall construction corresponds to the Fig. 2 with the exception that it is externally provided with a usually about 80 mm thick insulating layer 4, which is mechanically attached to the masonry.
  • insulating layer 4 which is mechanically attached to the masonry.
  • the outer plaster 1 is in particular a synthetic resin plaster, which is reinforced in different ways, for example, with PVC fabric. Since the insulating effect of this construction is mainly generated by the insulating material, the wall thickness is reduced to the statically required level of 24 cm.
  • the outer thin, approximately 5 mm thick plaster layer 1 is heated, but also cools down very quickly because of their low absolute heat storage capacity.
  • the heating by irradiation also to a desirable extent promotes the drying of the insulating layer 4.
  • This construction is very disadvantageous in the case of darker coloring and strongly absorbing the solar energy, since the then considerable temperature stresses can lead to crack formation in the plaster layer 1.
  • the manufacturers of these insulation systems therefore rightly advise against a dark color. Overall, this wall construction is almost completely shielded against the irradiation gains.
  • Fig. 4 The wall construction after Fig. 4 corresponds to that of Fig. 3 , however, according to new EnEV with considerably strengthened insulating layer 4, whose recommended Minimum insulation thickness is 20 cm.
  • the technical function is essentially the same as in Fig. 3 , However, there may be static problems due to significant extra weights in the insulating layer 4 and significant Kragmomente in their anchorages.
  • the wall construction is alarming according to Fig. 4 even in conjunction with the indispensable vapor barriers even in warm and humid summer climate with rotated temperature and steam pressure drop, as it will come to condensation on the inside of the insulation.
  • the vapor barrier located there is then - as building physical outside - a source of structural damage.
  • Fig. 5 shows another traditional wall construction, consisting of a load-bearing brickwork 5 made of bricks or sand-lime bricks or other masonry materials, including concrete.
  • the masonry 5 is usually about 24 cm thick, and it is provided on the inside of the room with plaster 6.
  • an approximately 5 cm thick flowing air layer 3 is arranged.
  • the weather skin consists of a usually about 11.5 cm strong exposed masonry 2 of facing bricks or equally well suited other Vormauermaterial.
  • the background masonry 5 forms the outer supporting wall of the relevant building with predominantly static functions.
  • the flowing air layer 3 has the task of dew water in the front wall cross section, which passes capillary to the outer wall surface to dry.
  • the facing layer 2 serves as a facade and weather skin.
  • the arrangement of the Fig. 5 a good wall construction, which is preferably used in coastal areas of northern Germany. However, it does not meet the requirements for minimum heat protection, and it is completely inadmissible under the new EnEV.
  • Fig. 6 shows a meanwhile widespread wall construction, in which, for example, a 24 cm thick supporting inner wall (Hintermauerwerk) 5 are provided with superior insulating layer 4, a rear ventilation zone 3 and an example 11.5 cm thick weather skin from facing bricks 2.
  • This wall construction is about the same as building construction Fig. 3 to rate.
  • the facing layer 2 is not rated thermally. she can be replaced by any other type of superior and ventilated facade.
  • solar radiation there are only minimal differences to the wall structure Fig. 3 , It is a good wall construction with sufficient heat storage and sufficient insulation effect, which is assessed as insufficient according to the future EnEV.
  • the Hintermauerwerk 5 takes over essentially static tasks. Since a 24 cm thick brick or sand-lime brick wall does not provide sufficient thermal protection, the back-masonry 5 of the arrangement according to Fig. 6 wear an insulating layer 4 of at least 60 mm on its side facing the facing wall 2 in order to meet the requirements of DIN 4108. Between the insulating layer 4 and the inside of the facing wall 2 is the example in the example about 50 mm wide air gap 3 for ventilation of the facing wall 2. An interior wall plaster is indicated again at 6.
  • Such a conventional wall construction is based on the standardized requirements for thermal insulation in building construction.
  • the standard (DIN 4108) is based on the idea of a "heat flow", and the standardized insulation technique therefore tries to increase the insulating capacity of a wall construction by incorporating materials with low thermal conductivity. This succeeds quite well even with correct dimensioning of the insulation materials.
  • DIN 4108 which was initially only intended to prevent thawing damage, a change in meaning has begun. For years the goal of the standard is more and more the energy saving. Consequently, over the years the minimum thicknesses of the insulating layers have been continually increased in the standard.
  • the built-in insulating material turns out to be very disadvantageous because it hinders the energy flow from outside to inside.
  • the flowing air layer extracts the radiated energy by convection of the front wall shell before it can benefit the back wall.
  • the layer thickness before the thawing zone is already 8 to 10 cm thick. This distance can no longer be overcome by the water. The water thus remains in the insulating material, where it soaks through the area of the dew zone. The soaked area becomes ineffective as an insulating layer. It turns into the opposite of a thermal insulation, namely a zone of increased heat conduction. In the self-paced further The process moves the dew zone further inwards and finally reaches the wall cross-section. It comes to the wetting of the masonry, which is a source of considerable structural damage.
  • This object is based on a wall structure for a masonry building exterior wall with a background masonry and a facing brick achieved in that the front wall shell is at least partially constructed of components such as bricks, bricks or the like, which are provided only on their the back wall facing side with a heat radiation reflecting layer and according to the invention between the facing wall and the back masonry no insulation layers are provided, however, a substantially standing air layer is formed.
  • the invention is based on the finding that the above-described conventional wall construction only takes into account the problem of heat conduction within the building materials, because the "k-numbers" contained in the standard (heat coefficients in W / (m 2 x ° K) only say something about
  • energy losses are not caused by energy turnover within the building materials, but only by the fact that heat energy is released to the environment, but how the energy transfer from an outer wall into the environment takes place can not be deduced from the k-numbers and is also not the subject of relevant standards.
  • components of the facing brick itself especially brick or sand-lime bricks, but also provided for subsequent plaster bricks of the facing wall or other materials used for the production of shells in masonry materials, formed at their the masonry facing side heat radiation reflective by having a reflective layer, eg made of vapor-deposited aluminum or other materials with a reflective effect.
  • a reflective layer eg made of vapor-deposited aluminum or other materials with a reflective effect.
  • the heat energy emitted from inside and radiated outwards is for the most part reflected in the heated masonry cross section.
  • the ventilated front shell is the ventilated front shell. Additional insulating layers are unnecessary here. As far as they are to be used anyway, they can be kept very weak.
  • the insolation gains from sunlight are considerable even in winter. These are also not significantly hindered by the heat radiation-reflecting formation of components of the facing brick, for example by vapor deposition of an aluminum layer. A reflection of the radiated energy back into the facing shell is therefore not possible because no light waves can develop between the reflective layer and the background masonry. For this purpose, at least the wavelength of infrared light would be required. On the other hand, the radiation of the heat energy can at best be slightly hindered by the fact that bright metallic surfaces are poor emitters.
  • FIG. 1 illustrated embodiment of the novel wall structure of a masonry building exterior wall has a supporting brickwork 5 from conventional bricks, which are usually about 24 cm thick. In principle, however, weaker reinforced concrete walls and the like come into consideration.
  • a facing brick 2 which in the illustrated embodiment is about 11.5 cm thick.
  • the air chambers 9 are in the illustrated embodiment, about 30 mm thick and separated by horizontally extending, the gap between the facing brick 2 and the background masonry 5 webs 10 from each other to suppress airflow.
  • a generally standing air layer is formed in the air chambers 9. This standing air layer acts as a very good Insulation layer, and it replaces the usual insulation materials in this area.
  • An interior wall plaster is again indicated at 6.
  • the facing brick 2 is constructed of components 11, which may preferably be brick or calcareous brick bricks, but for example also natural and artificial stone slabs, fiber cement boards, plastic panels or the like. Bearing and butt joints, in particular mortar joints, are indicated at 7.
  • the components 11 of the facing wall 2 are coated only on their inside reflecting heat radiation, for example, provided with a reflective layer 8 of vapor-deposited aluminum.
  • the entire masonry according to Fig. 1 is bricked in the usual way.
  • the back wall shell 5 is first established.
  • the preparation of the facing brick 2 takes place in a second operation of an outer frame.
  • a soft plate for example a rockwool plate, in the intermediate space between the facing brick 2 and the back wall shell 5, which is to be raised in accordance with the progress of the work.
  • the present wall construction is based on the finding that the release of thermal energy of a wall is predominantly by radiation in the infrared range of the electromagnetic wave spectrum, that this radiation can be reflected by shiny layers, preferably metal layers, that air is completely transparent to radiation and also standing or hardly moving Air layers represent by far the best insulating material against the energy transfer from particle to particle. Furthermore, this wall structure takes into account that electromagnetic waves can develop only in areas with the minimum extent of the length of a light wave, but not between densely interconnected materials such as Inner side of the components 11 of the facing wall and the reflection layer 8 applied there.
  • the heat energy introduced into the exterior wall of the building by the heating of the space reaches the outside of the supporting inner wall 5.
  • the energy arriving there is radiated from there according to the laws of radiation. It should be stressed here that, depending on the energy state of the wall construction, at least 85% of the energy output is due to thermal radiation.
  • the energy radiated on the outside of the back masonry 5 impinges on the reflection layer 8, and is therefore reflected back according to the laws of reflection.
  • a high-gloss aluminum layer is able to reflect about 80% of the radiated energy. This proportion of thermal energy is thus completely retained in masonry cross-section.
  • this low energy input into the front wall shell is desirable because the outer shell 2 should not cool below the temperature of the outside air. There she would be one Tauzone compared to the outside air with the adverse consequences analogous to the phenomena according to the wall structure in Fig. 4 , This energy input into the outer shell 2 is also unobjectionable because in this wall structure, because of the standing air layer, the front wall shell can also be included as a damping layer.
  • the vapor-permeable wall joints 7 of the outer shell 2 take over the necessary moisture balance between inner wall 5, air layer 9 and facing wall 2.
  • the entire wall structure is therefore permeable to diffusion. This is of great importance because the dew zone of this wall construction, depending on the weather and heating conditions, either in the stationary air layer or in the front wall.
  • the present construction with regard to the insolation gains from the sunlight, as they can act on the back masonry 5 substantially unhindered on the outer shell 2 on the way of the irradiation of the outer shell 2 through the air layer 3.
  • the radiation energy from the sunlight primarily heats the facing wall shell 2, so that it will heat up well above the ambient air temperature even on clear winter sun days. In the usual wall materials for facing shells this is uniformly heated after about 2 hours of irradiation.
  • the facing wall 2 is now in turn - to a small extent by convection in the now somewhat turbulent air layer in the air chambers 9, for the most part by radiation - the collected solar energy to the background masonry 5 from.
  • the air layer in the air chambers 9 is not an obstacle to the passage of heat radiation. It is therefore irrelevant to the radiation process.
  • the reflection layer 8 does not hinder the radiation, since it is deposited close to the back of the facing stones and thus a reflection in the facing wall 2 is impossible. It should be noted, however, that the reflection layer 8 is usually a relatively poor radiator, so that the radiation process to the background masonry 5 is somewhat delayed. However, this effect is desirable because it harmonizes with the very good heat capacity of masonry.
  • the wall construction according to the invention represents a revolution in conventional masonry construction, since here for the first time physical effects and events are converted into a construction in which the right conclusions in particular are drawn from the fact that the major part of the energy removal from a wall is not due to the thermal conductivity of the building materials is determined, but by the radiation of electromagnetic waves in the infrared range.
  • Facade cladding with mirrored facing bricks is the use of thin-walled facade panels, eg the ETERNIT AG, which are equipped with reflective material on the back.
  • ETERNIT AG thin-walled facade panels
  • reflective coated plates differ from uncoated material.
  • the reflective layer is a bad emitter, so that thermal energy is poorly degraded by radiation.
  • the result is a higher heating of the coated material than is the case with uncoated material.
  • it comes with the coated plate to a significantly larger temperature gradient between the plate and behind the outer wall.
  • the rooms located behind the outer wall are brought to a room air temperature of +20 ° C and by thermal conduction the wall surface has a constant temperature of +10 ° C, it can quite to a temperature gradient between plate and wall surface of 30 ° C and come in addition, although winter conditions exist.
  • a temperature gradient from outside to inside occurs with a corresponding energy flow.
  • the heat transfer coefficient "alpha" in W / m 2 ⁇ K is to be increased by 12 xw 1/2 according to generally practiced rule of thumb.
  • w is the flow velocity in m / s. Therefore, the heat transfer can be up to 50 times greater at the conventional flow velocities than is assumed with stagnant air.
  • the turbulent air layer comes to rest again and is then again an effective insulating layer.
  • the advantage of the wall structure according to the invention thus consists in that it promotes the energy transfer from outside to inside, but hinders the energy transfer from the inside to the outside.
  • the present wall structure differs fundamentally from the conventional insulation technique, the advantage of which is to reduce the transmission heat loss from the inside to the outside, but the decisive disadvantage lies in the obstruction of the exogenous energy input. It should be appreciated that in the temporal distribution of Kernfil - and heating transition times, the obstruction of the exogenous energy input by externally mounted insulation layers, the year-round energy balance is deteriorated, although the thermal conductivities are significantly improved
  • the outer wall surfaces are almost fully equipped with electrically conductive material. This also leads to some shielding against electromagnetic waves. It turned out that the reception for the widely used radiotelephones obviously deteriorated considerably. Given the concern that an excess of electromagnetic waves can lead to health damage, it is conceivable that the wall construction according to the invention is also advantageous in this regard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Finishing Walls (AREA)
  • Building Environments (AREA)

Abstract

The present invention relates to a wall construction for an exterior brick wall of a building, comprising a rear brickwork and a front brickwork, which is characterized in that the front brickwork (2) is made at least in part of constructional elements (11), particularly bricks, building blocks and the like, which at their side facing the rear brickwork (5) are designed to be reflective for heat radiation. The invention further relates to a constructional element, in particular a brick, a building block or the like, for use in the production of the front brickwork of such a wall construction which on the side which in the walled-in state faces inwardly, is provided with a layer (8) which is reflective for heat radiation.

Description

Die vorliegende Erfindung betrifft einen Wandaufbau für eine gemauerte Gebäudeaußenwand mit einem Hintermauerwerk und einer Vormauerschale sowie ein Bauelement für einen solchen Wandaufbau.The present invention relates to a wall structure for a masonry building exterior wall with a Hintermauerwerk and a facing brick and a component for such a wall structure.

In der DE-A-35 30 973 ist ein Wandaufbau für eine gemauerte Gebäude-außenwand beschrieben, welcher ein Hintermauerwerk und eine Vormauerschale aufweist. Hierbei ist an der dem Hintermauerwerk zugekehrten Seite der Vormauerschale eine Dämmstoffschicht vorgesehen, die an ihrer dem Hintermauerwerk zugekehrten Seite mit einer Wärmestrahlung reflektierenden Schicht versehen ist, und ist eine weitere Dämmstoffschicht an der der Vormauerschale zugekehrten Seite des Hintermauerwerks vorgesehen.In the DE-A-35 30 973 a wall structure for a masonry building exterior wall is described, which has a Hintermauerwerk and a facing brick. In this case, an insulating layer is provided on the rear masonry facing side of the facing wall, which is provided at its the back masonry facing side with a heat radiation reflective layer, and is provided a further insulation layer on the facing wall facing the masonry facing.

Die beiliegenden Figuren 2 bis 7 zeigen zum besseren Verständnis der vorliegenden Erfindung Querschnitte durch bisher übliches Mauerwerk und auch durch Bauarten von Mauerwerk mit verstärkten Dämmschichten.The enclosed FIGS. 2 to 7 show for better understanding of the present invention cross-sections of hitherto conventional masonry and also by types of masonry with reinforced insulation layers.

Der Wandquerschnitt gemäß Fig. 2 veranschaulicht ein einschaliges Mauerwerk aus üblichen Mauersteinen 12, z.B. Ziegel oder Kalksandsteinen. Das Mauerwerk hat eine Regelstärke von 36,5 cm, und es ist beidseitig mit Verputz 1 (Außenputz) beziehungsweise 6 (Innenputz) versehen. Der Wandaufbau vereinigt dabei tragende und fassadentechnische Funktionen in Einem. Was die Bauphysik anbelangt befindet sich die Tauzone je nach raumklimatischen Bedingungen, dem arbeitenden Heizungssystem und den Wetterbedingungen im Innenbereich des Wandquerschnittes. Dort kommt es zu Tauwasserbildung und zu einer messbaren Durchfeuchtung des Baustoffs mit einer entsprechenden Erhöhung der Wärmeleitzahl. Das tropfbar gewordene Wasser wandert kapillar zur Außenwand und wird dort in Abhängigkeit von Windgeschwindigkeit und relativer Feuchte der Außenluft mehr oder weniger schnell abgetrocknet. Unter ungünstigen Bedingungen stellt sich die Tauzone auf der Innseite der Wand oder unmittelbar dahinter ein, sodass es auch zu Tauwasserbildung auf der Rauminnenseite kommt, verbunden mit allen Begleiterscheinungen wie zum Beispiel der Bildung von Schwarzschimmel.The wall cross-section according to Fig. 2 illustrates a einschaliges masonry of conventional bricks 12, such as bricks or sand-lime bricks. The masonry has a standard thickness of 36.5 cm, and it is provided on both sides with plaster 1 (exterior plaster) and 6 (interior plaster). The wall structure combines supporting and facade technology functions in one. As far as building physics is concerned, the dew zone is located in the interior of the wall cross-section, depending on the climatic conditions of the room, the working heating system and the weather conditions. There it comes to condensation and a measurable moisture penetration of the building material with a corresponding increase in the thermal conductivity. The water which has become drippable migrates capillary to the outer wall where it is dried off more or less quickly depending on the wind speed and relative humidity of the outside air. Under unfavorable conditions, the dew zone on the inside of the wall or immediately behind it, so it also comes to condensation on the inside of the room, associated with all by-products such as the formation of black mold.

Derartige Bauschäden stellen sich fast immer ein, wenn auf den Innenflächen derartiger Außenwände wärmedämmende Stoffe, auch Möbel oder Bilder, angebracht sind, da sie die Tauzone nach innen verlagern. Bei der in sich homogenen Konstruktion hängt die Wärmedämmfähigkeit von der Mauerwerksstärke und dem Feuchtigkeitszustand ab. Eine normale Wand dieser Bauart aus Vollziegeln erreicht die erforderliche Dämmfähigkeit nicht, sodass die Ziegelindustrie seit längerem Mauersteine mit einer hohen Porosität auf den Markt bringt. Mauerwerk dieser Bauart erreicht die geforderten Mindestdämmwerte, allerdings zu Lasten der Speicherfähigkeit.Such structural damage almost always occur when heat-insulating materials, including furniture or pictures, are attached to the inner surfaces of such outer walls, since they displace the dew zone inwards. In the homogeneous construction, the thermal insulation capacity depends on the masonry strength and the moisture condition. A normal wall of this type of solid bricks does not reach the required insulation capacity, so that the brick industry has long been bringing bricks with a high porosity on the market. Masonry of this type achieves the required minimum insulation values, but at the expense of storage capacity.

Die Wandkonstruktion gemäß Fig. 2 nimmt die eingestrahlte Sonnenenergie gut auf. In den durchfeuchteten Tauwasserzonen wird die Sonnenenergie sogar besonders gut weitergeleitet. In dieser Hinsicht handelt es sich um eine gute und bewährte Wandkonstruktion, die jedoch den Anforderungen der künftigen Energieeinsparverordnung (EnEV) nicht mehr genügt.The wall construction according to Fig. 2 absorbs the irradiated solar energy well. In the moistened condensation water the solar energy is passed on particularly well. In this respect, it is a good and proven wall construction, but no longer meets the requirements of the future Energy Saving Ordinance (EnEV).

Der in Fig. 3 gezeigte Wandaufbau entspricht dem der Fig. 2 mit der Ausnahme, dass er außen mit einer in der Regel etwa 80 mm dicken Dämmschicht 4 versehen ist, die am Mauerwerk mechanisch befestigt ist. Bei dem Außenputz 1 handelt es sich insbesondere um einen Kunstharzputz, der auf unterschiedliche Weise bewehrt ist, zum Beispiel mit Gewebe aus PVC. Da die dämmende Wirkung dieser Konstruktion überwiegend durch den Dämmstoff erzeugt wird, ist die Wandstärke auf das statisch erforderliche Maß von 24 cm reduziert.The in Fig. 3 shown wall construction corresponds to the Fig. 2 with the exception that it is externally provided with a usually about 80 mm thick insulating layer 4, which is mechanically attached to the masonry. In the outer plaster 1 is in particular a synthetic resin plaster, which is reinforced in different ways, for example, with PVC fabric. Since the insulating effect of this construction is mainly generated by the insulating material, the wall thickness is reduced to the statically required level of 24 cm.

Bei dem Wandaufbau gemäß Fig. 3 sind statische und dämmende Funktionen auf zwei unterschiedliche Baustoffschichten verteilt. Die Tauzone liegt bei dieser Konstruktion in der Regel im vorderen Drittel der Dämmschicht 4. Das dort tropfbar gewordene Wasser wird kapillar zur Außenfläche der Dämmschicht geleitet, wo es von der vorbeiströmenden Luft abgetrocknet wird. Die Außendämmung bewirkt eine Verzögerung des Wärmeenergiedurchgangs mit der Folge, dass der tragende Mauerwerksquerschnitt in einem deutlich höheren Energiezustand verbleibt.In the wall construction according to Fig. 3 static and insulating functions are distributed over two different building material layers. The thawing zone in this construction is usually in the front third of the insulating layer 4. The water which has become drippable there is conducted capillary to the outer surface of the insulating layer, where it is dried by the passing air. The external insulation causes a delay of the heat energy passage with the result that the load-bearing masonry cross section remains in a much higher energy state.

Einstrahlende Sonnenenergie trifft nahezu unmittelbar auf die Dämmschicht 4, wo sie am weiteren Eintritt in die Mauerkonstruktion gehindert wird. Die außenliegende dünne, cirka 5 mm starke Putzschicht 1 wird erwärmt, kühlt jedoch wegen ihrer geringen absoluten Wärmespeicherungsfähigkeit auch sehr rasch wieder aus. Bei Einstrahlungsphasen befördert die Erwärmung durch Einstrahlung auch in wünschbarem Umfang die Abtrocknung der Dämmschicht 4. Sehr nachteilig ist diese Konstruktion bei dunkler und die Sonnenenergie stark absorbierender Farbgebung, da die dann erheblichen Temperaturspannungen zur Rissbildung in der Putzschicht 1 führen können. Die Hersteller dieser Dämmsysteme raten daher zu Recht von einer dunklen Farbgebung ab. Insgesamt ist diese Wandkonstruktion gegen die Einstrahlungsgewinne nahezu vollständig abgeschirmt.Incident solar energy strikes almost directly on the insulating layer 4, where it is prevented from further entry into the wall construction. The outer thin, approximately 5 mm thick plaster layer 1 is heated, but also cools down very quickly because of their low absolute heat storage capacity. During irradiation phases, the heating by irradiation also to a desirable extent promotes the drying of the insulating layer 4. This construction is very disadvantageous in the case of darker coloring and strongly absorbing the solar energy, since the then considerable temperature stresses can lead to crack formation in the plaster layer 1. The manufacturers of these insulation systems therefore rightly advise against a dark color. Overall, this wall construction is almost completely shielded against the irradiation gains.

Neuerdings werden bei dieser Konstruktion Bauschäden bekannt, die auf die starke Auskühlung der Oberflächen durch Abstrahlung von Wärmeenergie zurückgehen, wobei wegen der Dämmschicht nur wenig Wärmeenergie zur Oberfläche geleitet wird. Die stark ausgekühlten Oberflächen werden zur Kondensationsebene gegenüber der Außenluft. Sie werden daher von Tauwasser benässt oder beschlagen mit Reif. Die Folgen sind Veralgung der Oberflächen und die Durchnässung des Dämmstoffes.Recently, structural damage is known in this construction, which go back to the strong cooling of the surfaces by radiation of heat energy, with little heat energy is passed to the surface because of the insulating layer. The strongly cooled surfaces become the condensation level with respect to the outside air. They are therefore wetted by condensation or fogged with frost. The consequences are algae on the surfaces and the wetting of the insulating material.

Zusammenfassend ist festzuhalten, dass es sich bei dem Wandaufbau gemäß Fig. 3 um eine bewährte Wandkonstruktion handelt, bei der jedoch in nachteiliger Weise die Sonneneinstrahlungsenergie abgeschirmt ist. Die Beheizung entsprechender Gebäude erfolgt ausschließlich über die Heizungsanlage, was energiewirtschaftlich ungünstig ist.In summary, it should be noted that in the wall structure according to Fig. 3 is a proven wall construction, but in which the solar insolation energy is shielded in a disadvantageous manner. The heating of such buildings is done exclusively via the heating system, which is unfavorable energy.

Die Wandkonstruktion nach Fig. 4 entspricht derjenigen von Fig. 3, jedoch nach neuer EnEV mit erheblich verstärkter Dämmschicht 4, deren empfohlene Mindestdämmstärke 20 cm beträgt. Die technische Funktion ist im Wesentlichen die gleiche wie bei Fig. 3. Es kann jedoch zu statischen Problemen wegen erheblicher Mehrgewichte in der Dämmschicht 4 und bedeutender Kragmomente in deren Verankerungen kommen.The wall construction after Fig. 4 corresponds to that of Fig. 3 , however, according to new EnEV with considerably strengthened insulating layer 4, whose recommended Minimum insulation thickness is 20 cm. The technical function is essentially the same as in Fig. 3 , However, there may be static problems due to significant extra weights in the insulating layer 4 and significant Kragmomente in their anchorages.

Bauphysikalisch wird durch Verstärkung der Dämmschicht 4 rechnerisch eine bedeutende Verminderung des Wärmedurchgangs erreicht. Die Anordnung gemäß Fig. 4 ist jedoch in erheblichem Masse schadensgefährdet, da die vor der Tauzone liegende Dämmschichtstärke durch den kapillaren Druck nicht mehr überwunden werden kann. Bei Dämmstoffen aus Polystyrol ist ohnehin die kapillare Leitfähigkeit wegen der Materialstruktur sehr gering. Bei faserigen Dämmstoffen ist die kapillare Leitung strukturbedingt im Wesentlichen nur parallel zur Außenwandfläche möglich. Diese Konstruktion ist daher nur bei Verwendung von dampfdichten Dämmstoffen möglich, zum Beispiel von doppelllagig verlegten Schaumglasplatten im Klebeverfahren mit zusätzlicher mechanischer Verankerung. Die durchfeuchteten Zonen fallen als Dämmzone aus. Der sich weiter entwickelnde Prozess führt zur vollständigen Durchnässung des Dämmstoffes. Denkbar ist eine derartige Konstruktion allenfalls dann, wenn wirksame Dampfsperren vor dem Dämmstoff angeordnet werden. Solche Dampfsperren verhindern jedoch die Wasserdampfdiffusion durch die Wand, worunter volkstümlich das "Atmen" einer Wand verstanden wird.Building physics is achieved by reinforcing the insulating layer 4 arithmetically a significant reduction in the heat transfer. The arrangement according to Fig. 4 However, it is at considerable risk of damage, since the thickness of the insulating layer lying in front of the dew zone can no longer be overcome by the capillary pressure. In the case of insulating materials made of polystyrene, the capillary conductivity is anyway very low because of the material structure. In the case of fibrous insulating materials, the capillary line is structurally possible only in parallel to the outer wall surface. This construction is therefore only possible with the use of vapor-tight insulating materials, for example of double-layer laid foam glass plates in the adhesive method with additional mechanical anchoring. The moistened zones will fail as an insulation zone. The evolving process leads to complete wetting of the insulating material. Such a construction is conceivable at best if effective vapor barriers are arranged in front of the insulating material. However, such vapor barriers prevent water vapor diffusion through the wall, which is commonly understood to mean the "breathing" of a wall.

Bedenklich ist der Wandaufbau gemäß Fig. 4 selbst in Verbindung mit den unverzichtbaren Dampfsperren auch in feuchtwarmem Sommerklima bei gedrehtem Temperatur- und Dampfdruckgefälle, da es hier zu Tauwasserbildung auf der Innenseite des Dämmstoffes kommen wird. Die dort befindliche Dampfsperre ist dann - da bauphysikalisch außenliegend - eine Quelle von Bauschäden.The wall construction is alarming according to Fig. 4 even in conjunction with the indispensable vapor barriers even in warm and humid summer climate with rotated temperature and steam pressure drop, as it will come to condensation on the inside of the insulation. The vapor barrier located there is then - as building physical outside - a source of structural damage.

Was die Sonnenenergie anbelangt, treten wegen der erhöhten Dämmstoffdicken die bereits bei der Anordnung der Fig. 3 genannten nachteiligen Effekte verstärkt ein. Zu zusätzlichen Bauschäden kann es dadurch kommen, dass - solange die Dämmschicht 4 noch nicht vollständig durchfeuchtet ist - die Außenschicht 1 durch Abstrahlung weit unter die Außenlufttemperatur abkühlt und hierdurch zur Tauzone für die winterliche Außenluft wird. Es kommt zur Reifbildung und anschließender Durchfeuchtung der Außenschicht. Mit Eintritt der Vegetationsphase im zeitigen Frühjahr kommt es auf den durchfeuchteten Flächen zur Moos- und Algenbildung mit nachfolgender Zerstörung der Außenhaut. Insgesamt ist die Lösung gemäß Fig.4 als bauschadensträchtige Fehlkonstruktion mit erheblichem Kostenaufwand zu bewerten, von der trotz der hierzu führenden Vorschriften der EnEV dringend abgeraten werden muss.As far as the solar energy is concerned, because of the increased insulation thicknesses that already occur in the arrangement of Fig. 3 mentioned adverse effects amplified. Additional structural damage may occur because, as long as the insulating layer 4 is not yet fully moistened, the outer layer 1 cools far below the outside air temperature by radiation and thereby becomes the dew zone for the winter outside air. It comes to frost formation and subsequent moisture penetration of the outer layer. With the onset of vegetation in early spring it comes to the moistened areas for moss and algae formation with subsequent destruction of the outer skin. Overall, the solution is according to Figure 4 to be assessed as a building construction faulty construction with considerable costs, which must be strongly advised against despite the leading regulations of the EnEV.

Fig. 5 zeigt einen weiteren traditionellen Wandaufbau, bestehend aus einem tragenden Mauerwerk 5 aus Ziegeln oder Kalksandsteinen oder sonstigen Mauerwerksmaterialien, auch Beton. Das Mauerwerk 5 ist meist etwa 24 cm stark, und es ist auf der Rauminnenseite mit Verputz 6 versehen. Vor dieser Wand 5 ist eine etwa 5 cm dicke strömende Luftschicht 3 angeordnet. Die Wetterhaut besteht aus einem in der Regel etwa 11,5 cm starken Sichtmauerwerk 2 aus Vormauerziegeln oder gleich gut geeignetem anderem Vormauermaterial. Das Hintermauerwerk 5 bildet die äußere Tragwand des betreffenden Gebäudes mit überwiegend statischen Funktionen. Die strömende Luftschicht 3 hat die Aufgabe, Tauwasser im vorderen Wandquerschnitt, das bis zur Wandaußenfläche kapillar gelangt, abzutrocknen. Die Vormauerschicht 2 dient als Fassade und Wetterhaut. Fig. 5 shows another traditional wall construction, consisting of a load-bearing brickwork 5 made of bricks or sand-lime bricks or other masonry materials, including concrete. The masonry 5 is usually about 24 cm thick, and it is provided on the inside of the room with plaster 6. In front of this wall 5, an approximately 5 cm thick flowing air layer 3 is arranged. The weather skin consists of a usually about 11.5 cm strong exposed masonry 2 of facing bricks or equally well suited other Vormauermaterial. The background masonry 5 forms the outer supporting wall of the relevant building with predominantly static functions. The flowing air layer 3 has the task of dew water in the front wall cross section, which passes capillary to the outer wall surface to dry. The facing layer 2 serves as a facade and weather skin.

Was die Bauphysik anbelangt, diffundiert Wasserdampf von der Rauminnenseite in den Tragwandquerschnitt ein. Dieser Wasserdampf verändert sich durch Kondensation in der Tauzone in tropfbares Wasser, wobei die hierbei entstehende Kondensationswärme den Taupunkt geringfügig zur Wandaußenzone hin verlagert. Von dort aus wandert das Wasser kapillar nach außen bis zur Luftschicht 3 und trocknet dort ab. Nach innen wanderndes Wasser verwandelt sich wiederum in Wasserdampf.As far as building physics is concerned, water vapor diffuses from the inside of the room into the supporting wall cross-section. This water vapor changes by condensation in the dew zone in drippable water, the heat of condensation arising hereby slightly displaces the dew point to the outer wall zone. From there, the water migrates capillary outside to the air layer 3 and dried there. Inward migrating water turns into steam again.

Vom Wärmeschutz her genügt der Wandaufbau gemäß Fig. 5 unter der Annahme des Einsatzes konventioneller Heizsysteme der geltenden Wärmeschutzverordnung nicht mehr. In die Wärmedurchgangsberechnung wird lediglich die verputzte Innenschale 5 einbezogen. Die Luftschicht 3 und die Vormauerschale 2 gelten bereits als Außenzone. Die Strahlungsenergie aus der Sonne wird von der Vormauerschale 2 aufgenommen, sodass sie sich auch im Winter unter günstigen Bedingungen erwärmen wird. Die strömende Luftschicht 3 führt jedoch einen Teil der Wärmeenergie ab. Eine Wärmeleitung durch Konvektion zwischen Außenschale 2 und Innenwand 5 findet nur in nicht nennenswertem Masse statt. Ein Teil der eingestrahlten Sonnenenergie wird jedoch von der Außenschale 2 auf die Innenwand 5 durch Strahlung übertragen und verringert so das Temperaturgefälle zwischen der Rauminnenfläche und der Außenfläche der tragenden Wandschicht. Die Wärmespeicherungsfähigkeit dieses Wandaufbaus ist im Hinblick auf die Energiegewinne aus der Sonneneinstrahlung mäßig gut.From the heat protection ago meets the wall structure according to Fig. 5 assuming the use of conventional heating systems of the current Heat Insulation Ordinance is no longer. In the heat transfer calculation only the plastered inner shell 5 is included. The air layer 3 and the facing shell 2 are already considered as an outer zone. The radiation energy from the sun is absorbed by the front wall shell 2, so that it will heat up under favorable conditions even in winter. However, the flowing air layer 3 carries off a part of the heat energy. A heat conduction by convection between the outer shell 2 and inner wall 5 takes place only to an insignificant extent. However, part of the incident solar energy is transmitted from the outer shell 2 to the inner wall 5 by radiation and thus reduces the temperature gradient between the interior space surface and the outer surface of the supporting wall layer. The heat storage capability of this wall structure is moderately good in terms of energy gains from solar radiation.

Prinzipiell handelt es sich bei der Anordnung der Fig. 5 um eine gute Wandkonstruktion, die vorzugsweise in küstennahen Bereichen Norddeutschlands eingesetzt wird. Sie erfüllt jedoch die Anforderungen an den Mindestwärmeschutz nicht, und sie ist vollkommen unzulässig nach der neuen EnEV.In principle, the arrangement of the Fig. 5 a good wall construction, which is preferably used in coastal areas of northern Germany. However, it does not meet the requirements for minimum heat protection, and it is completely inadmissible under the new EnEV.

Fig. 6 zeigt eine inzwischen weit verbreitete Wandkonstruktion, bei der eine beispielsweise 24 cm starke tragende Innenwand (Hintermauerwerk) 5 mit vorgesetzter Dämmschicht 4, eine Hinterlüftungszone 3 und eine zum Beispiel 11,5 cm dicke Wetterhaut aus Vormauersteinen 2 vorgesehen sind. Diese Wandkonstruktion ist bauphysikalisch etwa wie der Aufbau nach Fig. 3 zu bewerten. Die Vormauerschicht 2 wird wärmetechnisch nicht bewertet. Sie kann durch jede andere Art der vorgesetzten und hinterlüfteten Fassade ersetzt werden. Im Hinblick auf die Sonneneinstrahlung bestehen nur minimale Unterschiede zum Wandaufbau nach Fig. 3. Es handelt sich um eine gute Wandkonstruktion mit ausreichender Wärmespeicherung und ausreichender Dämmwirkung, die jedoch nach der künftigen EnEV als nicht ausreichend bewertet wird. Fig. 6 shows a meanwhile widespread wall construction, in which, for example, a 24 cm thick supporting inner wall (Hintermauerwerk) 5 are provided with superior insulating layer 4, a rear ventilation zone 3 and an example 11.5 cm thick weather skin from facing bricks 2. This wall construction is about the same as building construction Fig. 3 to rate. The facing layer 2 is not rated thermally. she can be replaced by any other type of superior and ventilated facade. With regard to solar radiation, there are only minimal differences to the wall structure Fig. 3 , It is a good wall construction with sufficient heat storage and sufficient insulation effect, which is assessed as insufficient according to the future EnEV.

Das Hintermauerwerk 5 übernimmt dabei im Wesentlichen statische Aufgaben. Da eine 24 cm dicke Ziegel- oder Kalksandsteinwand keinen ausreichenden Wärmeschutz bietet, muss das Hintermauerwerk 5 der Anordnung gemäß Fig. 6 an seiner der Vormauerschale 2 zugewendeten Seite eine mindestens 60 mm starke Dämmschicht 4 tragen, um die Anforderungen der DIN 4108 zu erfüllen. Zwischen der Dämmschicht 4 und der Innenseite der Vormauerschale 2 befindet sich der im veranschaulichten Beispiel etwa 50 mm breite Luftspalt 3 zur Hinterlüftung der Vormauerschale 2. Ein Innenwandputz ist wieder bei 6 angedeutet.The Hintermauerwerk 5 takes over essentially static tasks. Since a 24 cm thick brick or sand-lime brick wall does not provide sufficient thermal protection, the back-masonry 5 of the arrangement according to Fig. 6 wear an insulating layer 4 of at least 60 mm on its side facing the facing wall 2 in order to meet the requirements of DIN 4108. Between the insulating layer 4 and the inside of the facing wall 2 is the example in the example about 50 mm wide air gap 3 for ventilation of the facing wall 2. An interior wall plaster is indicated again at 6.

Ein solcher konventioneller Wandaufbau beruht auf den genormten Anforderungen für den Wärmeschutz im Hochbau. Der Norm (DIN 4108) liegt die Vorstellung über einen "Wärmestrom" zugrunde, und die genormte Dämmtechnik versucht daher, durch den Einbau von Stoffen mit geringer Wärmeleitfähigkeit die Dämmfähigkeit einer Wandkonstruktion in sich zu erhöhen. Dies gelingt auch bei richtiger Dimensionierung der Dämmstoffe ganz gut. Im Laufe der Entwicklung der DIN 4108, die zunächst nur Tauwasserschäden vorbeugen sollte, hat sich ein Bedeutungswandel eingestellt. Seit Jahren ist das Ziel der Norm mehr und mehr die Energieeinsparung. Folgerichtig wurden in der Norm im Laufe der Jahre die Mindeststärken der Dämmschichten fortwährend erhöht.Such a conventional wall construction is based on the standardized requirements for thermal insulation in building construction. The standard (DIN 4108) is based on the idea of a "heat flow", and the standardized insulation technique therefore tries to increase the insulating capacity of a wall construction by incorporating materials with low thermal conductivity. This succeeds quite well even with correct dimensioning of the insulation materials. In the course of the development of DIN 4108, which was initially only intended to prevent thawing damage, a change in meaning has begun. For years the goal of the standard is more and more the energy saving. Consequently, over the years the minimum thicknesses of the insulating layers have been continually increased in the standard.

Die derzeit in Vorbereitung befindliche neue Norm (die bereits oben erwähnte EnEV) sieht, wie in Fig. 7 dargestellt, 20 bis 30 cm dicke Dämmschichten 4 in Verbindung mit luftdichten Gebäuden (ohne Lüftung über Fenster) und dem Einbau von Klimaanlagen vor.The new standard currently under preparation (the EnEV already mentioned above), as in Fig. 7 shown, 20 to 30 cm thick insulation layers 4 in Connection with airtight buildings (without ventilation through windows) and the installation of air conditioning systems.

Gegen den konventionellen Wandaufbau ist, insbesondere für größere Dämmschichtstärken, einzuwenden, dass die genormten Berechnungen über den Wasserdampfdurchgang (Diffusion) einheitlich zeigen, dass die Tauzone, also der Bereich, in dem diffundierender Wasserdampf tropfbares Wasser wird, sich in aller Regel im vorderen Drittel des Dämmstoffs einstellt. Dort kommt es somit zu einer die dämmende Wirkung mindernden Durchfeuchtung des Dämmstoffes. Bei den bisher üblichen Dämmschichtstärken von 6 bis 10 cm liegt der Taupunkt 2 bis 3 cm vor der Außenfläche. Die restliche Distanz kann vom Wasser durch kapillare Leitung überwunden werden. Zum Abführen der Feuchtigkeit wird bei dieser Wandkonstruktion eine Hinterlüftung angeordnet. Für diese ist eine mindestens 50 mm dicke Luftschicht vorzusehen, die so gestaltet sein muss, dass Luft wie in einem Kamin die Dämmschicht fortwährend bestreicht und somit überschüssige Feuchtigkeit, die durch Kapillarwirkung zur Oberfläche der Dämmschicht gewandert ist, vom Luftstrom abgetragen und ins Freie transportiert wird. Hierzu ist die Anordnung von Zu- und Abluftöffnungen in der Vormauerschale notwendig. Deren trocknende Wirkungsweise ist jedoch nur dann gewährleistet, wenn die Luft einen relative Feuchtigkeit von weniger als 70% hat und außerdem alle Stellen der Dämmstoffoberfläche bestrichen werden.Against the conventional wall construction, especially for larger thicknesses of insulating layers, it is objectionable that the standardized calculations on the water vapor transmission (diffusion) uniformly show that the dew zone, ie the area in which diffusing water vapor becomes drippable water, is usually in the front third of the water Insulating material sets. There it thus comes to a insulating effect mitigating moisture penetration of the insulating material. In the usual insulation thicknesses of 6 to 10 cm, the dew point is 2 to 3 cm in front of the outer surface. The remaining distance can be overcome by the water through capillary line. To remove the moisture, a rear ventilation is arranged in this wall construction. For these, a minimum of 50 mm thick air layer must be provided, which must be designed so that air constantly sweeps the insulating layer as in a fireplace and thus excess moisture, which has migrated by capillary action to the surface of the insulating layer, removed from the air flow and transported to the outside , For this purpose, the arrangement of supply and exhaust air openings in the front wall shell is necessary. However, their drying effect is only guaranteed if the air has a relative humidity of less than 70% and in addition all areas of the insulating surface are coated.

Aus konstruktiven Gründen ist eine vollflächige Abtrocknung der Dämmstoffe aber nur in seltenen Fällen möglich. Meist liegen ungeklärte Strömungs- und Auftriebszustände vor. Insbesondere wird der Luftdurchsatz durch Fensteröffnungen und ähnliche Strukturen unterbrochen, so dass es in den betroffenen Zonen zur dauernden Durchfeuchtung des Dämmstoffes kommt. Ein erheblicher Teil der Wärmeenergie geht bei dieser Konstruktion durch Abstrahlung gegen die Vormauerschale verloren, da die üblichen Dämmstoffe der Wärmeabstrahlung nur gering entgegenwirken. Die in die Vormauerschale eingestrahlte Wärmeenergie wird durch die den Luftspalt 3 durchströmende Luft ebenfalls abgetragen.For structural reasons, a full-surface drying of the insulation but only in rare cases possible. Most are unexplained flow and buoyancy states. In particular, the air flow is interrupted by window openings and similar structures, so that it comes in the affected areas for permanent moisture penetration of the insulating material. A significant part of the heat energy is lost in this construction by radiation against the facing wall, since the usual insulation materials of heat radiation counteract only slightly. The irradiated in the front wall shell Heat energy is also removed by the air flowing through the air gap 3 air.

Betrachtet man die konventionelle Konstruktion unter dem Gesichtspunkt der Einstrahlungsgewinne aus dem Sonnenlicht in der Heizperiode, stellt sich der eingebaute Dämmstoff als sehr nachteilig heraus, da er den Energiefluss von außen nach innen behindert. Außerdem entzieht die strömende Luftschicht durch Konvektion der Vormauerschale die eingestrahlte Energie, bevor sie dem Hintermauerwerk zugute kommen kann.Considering the conventional construction from the viewpoint of the irradiation gains from the sunlight in the heating season, the built-in insulating material turns out to be very disadvantageous because it hinders the energy flow from outside to inside. In addition, the flowing air layer extracts the radiated energy by convection of the front wall shell before it can benefit the back wall.

Problematisch ist außerdem, dass der Dämmstoff mit großer Sorgfalt angebracht werden muss, weil eine Hinterlüftung auf der Seite der Tragwand die dämmende Wirkung des Dämmstoffes verhindert. Die Sorgfalt der hier erforderlichen handwerklichen Arbeit kann - da die Konstruktion verdeckt ist - nicht geprüft werden.Another problem is that the insulation must be attached with great care, because a rear ventilation on the side of the support wall prevents the insulating effect of the insulating material. The care of the manual work required here can - as the construction is covered - not be tested.

Sehr nachteilig ist schon bei der Anordnung gemäß Fig. 6 auch die große Wandstärke mit 48 cm im Hinblick auf die Wirtschaftlichkeit eines Gebäudes. (Wohnflächenverlust). Nachteilig sind ferner die sehr aufwendigen Anschlussdetails bei Mauerwerksöffnungen. Schwierig lösbar ist die Hinterlüftung im Bereich von Mauerwerksöffnungen. Auch besteht die Gefahr einer Besiedelung durch Ungeziefer im feuchtwarmen Milieu zwischen Vormauerung und Tragwand insbesondere über die Zuluftöffnungen am Fußpunkt der Vormauerschale.Very disadvantageous is already in the arrangement according to Fig. 6 also the large wall thickness of 48 cm with regard to the economic efficiency of a building. (Living space loss). Another disadvantage is the very expensive connection details masonry openings. The rear ventilation in the area of masonry openings is difficult to solve. There is also the danger of colonization by vermin in a warm, moist environment between the brick wall and the supporting wall, in particular via the supply air openings at the base of the facing wall.

Bei stärkeren Dämmschichten von 20 bis 30 cm Stärke (Fig. 7), wie sie künftig gefordert werden, ist die Schichtdicke vor der Tauzone bereits 8 bis 10 cm stark. Diese Distanz kann vom Wasser nicht mehr überwunden werden. Das Wasser verbleibt somit im Dämmstoff, wo es den Bereich der Tauzone durchnässt. Der so durchnässte Bereich wird als Dämmschicht wirkungslos. Er verkehrt sich in das Gegenteil einer Wärmedämmung, nämlich eine Zone verstärkter Wärmeleitung. Bei dem sich selbst aufschaukelnden weiteren Vorgang wandert die Tauzone immer weiter nach innen und erreicht letztlich den Mauerquerschnitt. Es kommt zur Durchnässung des Mauerwerks, was eine Quelle erheblicher Bauschäden darstellt. Sobald sich innerhalb des Dämmstoffes eine mehr oder weniger geschlossene Wasserschicht eingestellt hat, wirkt diese als Dampfbremse, die zum Stillstand der bis dahin noch wirkenden Wasserdampfdiffusion führt. Hinzu kommt, dass die Dicke der gemauerten Wandkonstruktion wegen der dann erheblich vergrößerten Dämmschicht zu beträchtlichen Wohn- und Nutzflächenverlusten führt, welche eine solche Konstruktion in vielen Fällen unwirtschaftlich werden lässt. Unklar ist, ob bei dieser Konstruktion eine Luftschichtdicke von 5 cm noch ausreichend ist.For thicker insulating layers of 20 to 30 cm thickness ( Fig. 7 ), as they are required in the future, the layer thickness before the thawing zone is already 8 to 10 cm thick. This distance can no longer be overcome by the water. The water thus remains in the insulating material, where it soaks through the area of the dew zone. The soaked area becomes ineffective as an insulating layer. It turns into the opposite of a thermal insulation, namely a zone of increased heat conduction. In the self-paced further The process moves the dew zone further inwards and finally reaches the wall cross-section. It comes to the wetting of the masonry, which is a source of considerable structural damage. As soon as a more or less closed layer of water has settled within the insulating material, it acts as a vapor barrier, which leads to a standstill of the water vapor diffusion that was still active. In addition, the thickness of the masonry wall construction because of the then considerably increased insulation layer leads to significant housing and Nutzflächenverlusten, which makes such a construction can be uneconomical in many cases. It is unclear whether with this construction an air layer thickness of 5 cm is still sufficient.

Des Weiteren ist zu berücksichtigen, dass Dämmstoffe in nennenswertem Maße Wärmeenergie nicht speichern können. Es fehlt an der hierzu notwendigen Wärmekapazität. Bei Dämmschichtdicken zwischen 8 und 12 cm Stärke treten erfahrungsgemäss die vorstehend geschilderten Schäden noch nicht ein. Allerdings macht sich die hier noch wirkende Dämmwirkung in der Form bemerkbar, dass das Energiedefizit, das durch Abstrahlung und mangelnden Wärmenachschub entsteht, zu einer Absenkung der Oberflächentemperatur deutlich unter die Temperatur der Umgebungsluft führt. Die Oberfläche der Dämmschicht wird somit zur Kondensationsfläche gegenüber der Außenluft. In kalten und wolkenlosen Winternächten kommt es daher zur Reifbildung mit anschließender Durchfeuchtung der Wandoberflächen. Moos- und Algenbildung sind die unausweichliche Folge. In der Fachliteratur häufen sich neuerdings - mit Zunahme der Dämmstärken - derartige Schadensberichte.Furthermore, it has to be taken into account that insulating materials can not store heat energy to any significant degree. It lacks the necessary heat capacity. With insulating layer thicknesses between 8 and 12 cm thickness, experience has shown that the above-described damage does not yet occur. However, the insulating effect that still acts here makes itself felt in the form that the energy deficit, which results from radiation and lack of heat supply, leads to a lowering of the surface temperature well below the temperature of the ambient air. The surface of the insulating layer thus becomes a condensation surface with respect to the outside air. In cold and cloudless winter nights, there is therefore the formation of frost with subsequent moisture penetration of the wall surfaces. Moss and algae formation are the inevitable consequence. In the literature lately accumulate - with increasing insulation thicknesses - such damage reports.

Hinzu kommt, dass der Mensch zum Wohlbefinden und zur Aufrechterhaltung seiner Gesundheit ein ausreichend sauerstoffhaltiges Frischluftangebot benötigt. Nach den Regeln der Bautechnik wird dies durch einen regelmäßigen Luftwechsel einmal je Stunde erreicht. Durch zufällige Undichtigkeiten im Fensterbereich war dieser Luftwechsel bisher mehr oder weniger gewährleistet. Bei einem luftdichten Gebäude, wie es nach dem derzeitigen Referentenentwurf im Bundeswohnungsbauministerium gefordert wird (EnEV 2000), ist das jedoch nur in Verbindung mit Klimaanlagen denkbar. Derartige Anlagen arbeiten mit einer Frischluftbeimengung von 20 Vol.% / Stunde, sodass die Frischluftversorgung fünffach gemindert wird. Der Sauerstoffgehalt der Raumluft ist daher entsprechend gering. Neuere Forschungen zeigen, dass es in derart klimatisierten Räumen zu einem dramatischen Anstieg der Radonbelastung kommen kann. Es liegen auch Erhebungen darüber vor, dass Bewohner derartiger Räume überdurchschnittlich an Erkrankungen der Atemwege leiden.In addition, for the well-being and the maintenance of his health, humans need a sufficient amount of oxygen-containing fresh air. According to the rules of building technology this is achieved by a regular air change once every hour. Due to accidental leaks in the window area, this air change was previously more or less guaranteed. In an airtight building, as the current draft bill in the Federal Ministry of Housing is required (EnEV 2000), but this is only possible in conjunction with air conditioning. Such systems work with a fresh air addition of 20 vol.% / Hour, so that the fresh air supply is reduced five times. The oxygen content of the room air is therefore correspondingly low. Recent research shows that in such air-conditioned rooms, a dramatic increase in radon load can occur. There are also surveys that residents of such areas suffer above average from respiratory diseases.

Der Versuch einer Energieeinsparung durch dickere Dämmschichten in Verbindung mit einem luftdichten Abschluss der Gebäude ist daher offenkundig mit beachtlichen Verschlechterungen verbunden. Die Anordnung gemäß Fig. 7 ist daher abzulehnen. Es handelt sich um einen Wandaufbau, der wohl kaum ausgeführt werden wird, obwohl er den Anforderungen der künftigen EnEV voll entspricht. Eine Wanddicke von 62 cm (Mindestdicke) wird von einem wirtschaftlich denkenden Bauherrn nicht akzeptiert werden. Auch bestehen nahezu unlösbare Probleme im Brandfall, wenn sich der Dämmstoff entzündet. Eine Ausführung der Dämmschicht aus Schaumglas kommt aus Kostengründen nicht in Betracht. Insgesamt stellt diese Lösung eine unwirtschaftliche Fehlkonstruktion mit hoher Bauschadensanfälligkeit dar.The attempt to save energy by thicker insulation layers in conjunction with an airtight completion of the building is therefore obviously associated with considerable deterioration. The arrangement according to Fig. 7 is therefore to be rejected. It is a wall construction that is unlikely to be completed although it fully meets the requirements of the future EnEV. A wall thickness of 62 cm (minimum thickness) will not be accepted by an economically-minded client. There are also almost insoluble problems in case of fire when the insulation material ignites. An embodiment of the insulating layer of foam glass is out of consideration for cost reasons. Overall, this solution represents an uneconomical faulty construction with high Bauschadensanfälligkeit.

Es ist Aufgabe der vorliegenden Erfindung, einen Wandaufbau für gemauerte Gebäudeaußenwände zu schaffen, der bei vergleichsweise niedrigem Raumbedarf nicht nur für eine ausreichende Gebäude-Wärmedämmung bei relativ niedriger Außentemperatur sorgt, sondern darüber hinaus auch einen exogenen Energieeintrag befördert sowie Bauschäden durch Durchnässung des Wandaufbaus aufgrund von Tauwasserbildung zuverlässig entgegenwirkt.It is an object of the present invention to provide a wall structure for masonry building exterior walls, which provides not only sufficient thermal insulation at relatively low outside temperature at relatively low space requirements, but also promotes an exogenous energy input and structural damage by wetting the wall structure due to Condensate condensation reliably counteracts.

Diese Aufgabe wird ausgehend von einem Wandaufbau für eine gemauerte Gebäudeaußenwand mit einem Hintermauerwerk und einer Vormauerschale dadurch gelöst, dass die Vormauerschale mindestens teilweise aus Bauelementenwie Ziegelsteinen, Bausteinen oder dergleichen aufgebaut ist, die nur an ihrer dem Hintermauerwerk zugekehrten Seite mit einer Wärmestrahlung reflektierenden Schicht versehen sind und wobei erfindungsgemäß zwischen der Vormauerschale und dem Hintermauerwerk keine Dämmstoffschichten vorgesehen sind jedoch eine im wesentlichen stehende Luftschicht ausgebildet ist.This object is based on a wall structure for a masonry building exterior wall with a background masonry and a facing brick achieved in that the front wall shell is at least partially constructed of components such as bricks, bricks or the like, which are provided only on their the back wall facing side with a heat radiation reflecting layer and according to the invention between the facing wall and the back masonry no insulation layers are provided, however, a substantially standing air layer is formed.

Die Erfindung beruht auf der Erkenntnis, dass der oben dargestellte konventionelle Wandaufbau nur das Problem der Wärmeleitung innerhalb der Baustoffe berücksichtigt, denn die in der Norm enthaltenen "k-Zahlen" (Wärmekoeffizienten in W/(m2 x °K) sagen lediglich etwas über den Durchgang von Wärmeenergie im Baustoff aus. Energieverluste entstehen jedoch nicht durch Energieumsätze innerhalb der Baustoffe, sondern ausschließlich dadurch, dass Wärmeenergie an die Umwelt abgegeben wird. Wie aber der Energieübertritt von einer Außenwand in die Umgebung stattfindet, kann den k-Zahlen nicht entnommen werden und ist auch nicht Gegenstand der einschlägigen Normen.The invention is based on the finding that the above-described conventional wall construction only takes into account the problem of heat conduction within the building materials, because the "k-numbers" contained in the standard (heat coefficients in W / (m 2 x ° K) only say something about However, energy losses are not caused by energy turnover within the building materials, but only by the fact that heat energy is released to the environment, but how the energy transfer from an outer wall into the environment takes place can not be deduced from the k-numbers and is also not the subject of relevant standards.

Es wurde nun festgestellt, dass der Verlust von Wärmeenergie an die Umwelt überwiegend (zu etwa 85%) durch Abstrahlung von elektromagnetischen Wellen im infraroten Bereich erfolgt. Der weitaus geringere Teil der Wärmeübertragung in die Umgebung geschieht durch Konvektion, also durch unmittelbare Übertragung der in den Teilchen enthaltenen kinetischen Energie an vorbeistreichende Luftteilchen. Das Ausmaß dieser Wärmeenergieübertragung schwankt in Abhängigkeit von den Windgeschwindigkeiten und vom Feuchtigkeitszustand der Wandoberflächen und der vorbeiströmenden Luft.It has now been found that the loss of heat energy to the environment is predominantly (about 85%) due to the emission of electromagnetic waves in the infrared range. The much smaller part of the heat transfer into the environment occurs by convection, ie by direct transfer of the kinetic energy contained in the particles to passing air particles. The extent of this heat energy transfer varies depending on the wind speeds and the humidity condition of the wall surfaces and the passing air.

Den Wärmedurchgang durch Baustoffe bis in die Außenschichten kann man hinnehmen, wenn es gelingt, die dort abgestrahlte Energie wieder ins Bauwerk zurückzuführen. Letzteres geschieht vorliegend durch die erfindungsgemäße Ausbildung der Vormauerschale an ihrer Innenseite. Da elektromagnetische Wellen im Infrarotbereich sich grundsätzlich wie sichtbares Licht verhalten, können sie nämlich wie dieses auch reflektiert werden.The heat transfer through building materials to the outer layers can be tolerated, if it succeeds, the energy radiated there back into the building again. The latter happens in the present case by the inventive design of the facing wall shell on its inside. Because electromagnetic Waves in the infrared range basically behave like visible light, because they can also be reflected like this.

Zwar könnte man daran denken, in eine gemauerte mehrschalige Wandkonstruktion reflektierende Schichten in Form von hochglänzenden Aluminiumfolien oder von im Handel befindlichen aluminiumbedampften Kunststofffolien einzubringen. Der Einbau von solchen Folien verbietet sich jedoch in der Regel schon wegen konstruktiver Probleme, aber auch dadurch, dass derartige Materialien höchst unerwünschte Diffusionssperren wären.While one might think to bring in a masonry multi-walled wall construction reflective layers in the form of high-gloss aluminum foil or commercially available aluminum-coated plastic films. However, the incorporation of such films usually prohibits only because of constructive problems, but also in that such materials would be highly undesirable diffusion barriers.

Erfindungsgemäß sind dagegen Bauelemente der Vormauerschale selbst, insbesondere Ziegel- oder Kalksandstein-Vormauersteine, aber auch für einen nachträglichen Verputz vorgesehene Mauersteine der Vormauerschale oder andere zur Herstellung von Vorsatzschalen in Mauertechnik eingesetzte Materialien, an ihrer dem Hintermauerwerk zugekehrten Seite wärmestrahlungsreflektierend ausgebildet, indem sie mit einer reflektierenden Schicht, z.B. aus aufgedampftem Aluminium oder anderen Materialien mit reflektierender Wirkung versehen sind. Derartige Bauelemente (Mauersteine) können in üblicher Weise vermauert werden, wobei über die Fugen, insbesondere Mörtelfugen, der Vorsatzschale die Wasserdampfdiffusion gewährleistet ist.According to the invention, however, components of the facing brick itself, especially brick or sand-lime bricks, but also provided for subsequent plaster bricks of the facing wall or other materials used for the production of shells in masonry materials, formed at their the masonry facing side heat radiation reflective by having a reflective layer, eg made of vapor-deposited aluminum or other materials with a reflective effect. Such components (bricks) can be walled in the usual way, the water vapor diffusion is ensured over the joints, especially mortar joints, the facing shell.

Bei dem Wandaufbau nach der Erfindung wird die von innen kommende und nach außen abgestrahlte Wärmeenergie zum größten Teil in den erwärmten Mauerwerksquerschnitt reflektiert. Dies funktioniert sowohl bei hinterlüfteten Vorsatzschalen, als auch bei angemörtelten Vorsatzschalen, da der Hinterfüllungsmörtel wegen seiner Porosität die Reflektionswirkung kaum behindert. Zu bevorzugen ist allerdings die hinterlüftete Vorsatzschale. Zusätzliche Dämmschichten werden hierbei entbehrlich. Soweit sie dennoch eingesetzt werden sollen, können sie sehr schwach gehalten werden.In the wall construction according to the invention, the heat energy emitted from inside and radiated outwards is for the most part reflected in the heated masonry cross section. This works both with ventilated facing shells, as well as with mortared facing shells, because the backfilling mortar hardly obstructs the reflection effect because of its porosity. To be preferred, however, is the ventilated front shell. Additional insulating layers are unnecessary here. As far as they are to be used anyway, they can be kept very weak.

Bei einem vollfugig gemauerten Mauerwerk dringt Schlagregen erfahrungsgemäß bis in eine Tiefe von etwa 60 mm ein. In diesem Falle erreicht der Schlagregen daher bei einer Vormauerschale, die eine Dicke von mehr als 60 mm hat, die Reflexionsschicht nicht, sodass sie daher auch keinen Einfluss auf das Austrocknungsverhalten der Vormauerschale hat.In full masonry masonry driving rain penetrates experience to a depth of about 60 mm. In this case, the driving rain therefore does not reach the reflection layer in a facing shell having a thickness of more than 60 mm, so that it therefore has no influence on the drying behavior of the facing wall.

Bei einer handwerklich minder guten Arbeit kann Schlagregen über Hohlräume in den Mörtelfugen die Vorsatzschale durchdringen. Im Extremfall kommt es daher zu auf der Innenseite der Vorsatzschale herabfließendem Wasser. Solches Wasser wird aber den dahinter liegenden, vorzugsweise durch eine Luftschicht von der Vormauerschale getrennten Hintermauerquerschnitt nicht erreichen. Mit üblichen und bewährten Konstruktionen ist nur - wie jetzt auch schon - dafür zu sorgen, dass dieses Wasser, zum Beispiel am Mauerfuß, wieder nach außen abfließen kann.When doing a less skilled job, driving rain can penetrate the facing shell via cavities in the mortar joints. In extreme cases, it therefore comes down on the inside of the facing bowl of water. However, such water will not reach the behind it, preferably separated by an air layer of the facing wall Hintermauerquerschnitt. With conventional and proven constructions, it is only necessary to ensure that this water, for example at the base of the wall, can flow outwards again.

Die Einstrahlungsgewinne aus dem Sonnenlicht sind auch im Winter beachtlich. Diese werden auch durch die wärmestrahlungsreflektierende Ausbildung von Bauelementen der Vormauerschale, zum Beispiel durch Aufdampfen einer Aluminiumschicht, nicht nennenswert behindert. Eine Reflexion der eingestrahlten Energie in die Vorsatzschale zurück ist deshalb nicht möglich, weil sich zwischen der reflektierenden Schicht und dem Hintermauerwerk keine Lichtwellen entfalten können. Hierzu wäre mindestens die Wellenlänge infraroten Lichtes erforderlich. Andererseits kann die Abstrahlung der Wärmeenergie allenfalls dadurch geringfügig behindert sein, dass helle metallische Flächen schlechte Strahler sind.The insolation gains from sunlight are considerable even in winter. These are also not significantly hindered by the heat radiation-reflecting formation of components of the facing brick, for example by vapor deposition of an aluminum layer. A reflection of the radiated energy back into the facing shell is therefore not possible because no light waves can develop between the reflective layer and the background masonry. For this purpose, at least the wavelength of infrared light would be required. On the other hand, the radiation of the heat energy can at best be slightly hindered by the fact that bright metallic surfaces are poor emitters.

Die Verwendung von nur an seiner Innenseite reflektierendem Mauermaterial für die Vormauerschale führt zu einem ausreichenden Wärmeschutz auch im konventionellen Mauerwerksbau. Damit kann diese bewährte und zu sehr befriedigenden Architekturen führende Bauweise auch künftig beibehalten bleiben. Von erheblicher wirtschaftlicher Bedeutung ist dies zweifellos für die Ziegel- und Kalksandsteinindustrie.The use of only on its inside reflective wall material for the facing wall results in a sufficient thermal protection in conventional masonry. Thus, this proven and too satisfying architectures leading construction can continue in the future stay. Of considerable economic importance, this is undoubtedly for the brick and limestone industry.

Ausführungsbeispiele der Erfindung sind im folgenden unter Bezugnahme auf die beigefügte Zeichnung näher erläutert. In der Zeichnung zeigen:

Fig. 1
einen Querschnitt durch einen erfindungsgemäßen Wandaufbau,
Fig. 2 bis 6
Querschnitte für verschiedene Ausführungen von konventionellem Wandaufbau, und
Fig. 7
einen Querschnitt durch einen Wandaufbau entsprechend Fig. 6, der jedoch im Hinblick auf die künftige Energieeinsparverordnung (EnEV) mit einer dickeren Dämmschicht versehen ist.
Embodiments of the invention are explained in more detail below with reference to the accompanying drawings. In the drawing show:
Fig. 1
a cross section through a wall construction according to the invention,
Fig. 2 to 6
Cross sections for different versions of conventional wall construction, and
Fig. 7
a cross section through a wall structure accordingly Fig. 6 which, however, is provided with a thicker insulating layer in view of the future Energy Saving Regulation (EnEV).

Das in Fig. 1 dargestellte Ausführungsbeispiel für den neuartigen Wandaufbau einer gemauerten Gebäudeaußenwand weist ein tragendes Hintermauerwerk 5 aus üblichen Ziegelsteinen auf, die in der Regel etwa 24 cm stark sind. Es kommen jedoch grundsätzlich auch schwächere Stahlbetonwände und dergleichen in Betracht. Zu dem Wandaufbau gehört ferner - analog zu dem konventionellen Wandaufbau gemäß Fig. 5 - eine Vormauerschale 2, die im veranschaulichten Ausführungsbeispiel etwa 11,5 cm dick ist. Auf eine Dämmschicht entsprechend der Dämmschicht 4 der bekannten Anordnungen gemäß den Figuren 3, 4, 6 und 7 ist verzichtet. Zwischen der Außenseite des Hintermauerwerks 5 und der Innenseite der Vormauerschale 2 befinden sich Luftkammern 9 ohne Zu- und Abluftöffnungen. Die Luftkammern 9 sind im gezeigten Ausführungsbeispiel etwa 30 mm stark und durch waagerecht verlaufende, den Zwischenraum zwischen der Vormauerschale 2 und dem Hintermauerwerk 5 überbrückende Stege 10 voneinander getrennt, um einen Luftumtrieb zu unterdrücken. In den Luftkammern 9 wird eine in der Regel stehende Luftschicht ausgebildet. Diese stehende Luftschicht wirkt als sehr gute Dämmschicht, und sie ersetzt die bisher üblichen Dämmstoffe in diesen Bereich. Ein Innenwandputz ist wiederum bei 6 angedeutet.This in Fig. 1 illustrated embodiment of the novel wall structure of a masonry building exterior wall has a supporting brickwork 5 from conventional bricks, which are usually about 24 cm thick. In principle, however, weaker reinforced concrete walls and the like come into consideration. To the wall structure also belongs - analogous to the conventional wall construction according to Fig. 5 a facing brick 2, which in the illustrated embodiment is about 11.5 cm thick. On an insulating layer according to the insulating layer 4 of the known arrangements according to the FIGS. 3, 4 . 6 and 7 is omitted. Between the outside of the back masonry 5 and the inside of the facing wall 2 are air chambers 9 without inlet and outlet openings. The air chambers 9 are in the illustrated embodiment, about 30 mm thick and separated by horizontally extending, the gap between the facing brick 2 and the background masonry 5 webs 10 from each other to suppress airflow. In the air chambers 9, a generally standing air layer is formed. This standing air layer acts as a very good Insulation layer, and it replaces the usual insulation materials in this area. An interior wall plaster is again indicated at 6.

Die Vormauerschale 2 ist aus Bauelementen 11 aufgebaut, bei denen es sich vorzugsweise um Ziegel- oder Kalksandstein-Vormauersteine, zum Beispiel aber auch um Natur- und Kunststeinplatten, Faserzementplatten, Kunststoffpaneele oder dergleichen handeln kann. Lager- und Stoßfugen, insbesondere Mörtelfugen, sind bei 7 angedeutet. Die Bauelemente 11 der Vormauerschale 2 sind ausschließlich an ihrer Innenseite wärmestrahlungsreflektierend beschichtet, beispielsweise mit einer Reflexionsschicht 8 aus aufgedampftem Aluminium versehen.The facing brick 2 is constructed of components 11, which may preferably be brick or calcareous brick bricks, but for example also natural and artificial stone slabs, fiber cement boards, plastic panels or the like. Bearing and butt joints, in particular mortar joints, are indicated at 7. The components 11 of the facing wall 2 are coated only on their inside reflecting heat radiation, for example, provided with a reflective layer 8 of vapor-deposited aluminum.

Das gesamte Mauerwerk gemäß Fig. 1 wird in gewohnter Weise gemauert. Hierbei wird zunächst die Hintermauerschale 5 errichtet. Die Erstellung der Vormauerschale 2 erfolgt in einem zweiten Arbeitsgang von einem Außengerüst aus. Um eine Verschmutzung der hochglänzenden Reflexionsschichten 8 zu vermeiden, ist vorzugsweise bei Vermauern der Vormauersteine in dem Zwischenraum zwischen der Vormauerschale 2 und der Hintermauerschale 5 eine weiche Platte, zum Beispiel eine Steinwolleplatte, zu unterhalten, die dem Fortschritt der Arbeiten entsprechend hochzuziehen ist.The entire masonry according to Fig. 1 is bricked in the usual way. Here, the back wall shell 5 is first established. The preparation of the facing brick 2 takes place in a second operation of an outer frame. In order to avoid contamination of the high-gloss reflection layers 8, it is preferable to maintain a soft plate, for example a rockwool plate, in the intermediate space between the facing brick 2 and the back wall shell 5, which is to be raised in accordance with the progress of the work.

Der vorliegenden Wandkonstruktion liegt die Erkenntnis zugrunde, dass die Abgabe von Wärmeenergie einer Wand überwiegend durch Abstrahlung im Infrarotbereich des elektromagnetischen Wellenspektrums erfolgt, dass diese Strahlung durch glänzende Schichten, vorzugsweise Metallschichten, reflektiert werden kann, dass Luft vollkommen strahlungsdurchlässig ist und außerdem stehende oder kaum bewegte Luftschichten den mit Abstand besten Dämmstoff gegen den Energieübergang von Teilchen zu Teilchen darstellen. Weiterhin berücksichtigt dieser Wandaufbau, dass sich elektromagnetische Wellen nur in Bereichen mit der Mindestausdehnung der Länge einer Lichtwelle entfalten können, nicht aber zwischen dicht miteinander verbundenen Stoffen wie der Innenseite der Bauelemente 11 der Vormauerschale und der dort aufgebrachten Reflexionsschicht 8.The present wall construction is based on the finding that the release of thermal energy of a wall is predominantly by radiation in the infrared range of the electromagnetic wave spectrum, that this radiation can be reflected by shiny layers, preferably metal layers, that air is completely transparent to radiation and also standing or hardly moving Air layers represent by far the best insulating material against the energy transfer from particle to particle. Furthermore, this wall structure takes into account that electromagnetic waves can develop only in areas with the minimum extent of the length of a light wave, but not between densely interconnected materials such as Inner side of the components 11 of the facing wall and the reflection layer 8 applied there.

Die in den Luftkammern 9 ausgebildete stehende Luftschicht - eine Hinterlüftung ist hier nicht erforderlich - wirkt also als hochwirksame Dämmschicht. Nach Norm hat diese Luftschicht bereits einen Wärmedurchlasswiderstand von 0,17 (m2 x K/W). Da eine stehende Luftschicht wegen ihrer geringen Masse baupraktisch gesehen eine Wärmeleitung durch Weitergabe von kinetischer Wärmeenergie nahezu vollständig unterbindet, ist die gezeigte Wandkonstruktion im Hinblick auf diesen Vorgang annähernd "energiedicht". Bei einer stehenden Luftschicht wirkt auch die Vormauerschale 2 als wärmedämmend und wärmespeichernd mit.The trained in the air chambers 9 standing air layer - a rear ventilation is not required here - so acts as a highly effective insulation layer. According to the standard, this layer of air already has a thermal resistance of 0.17 (m 2 x K / W). Since a standing layer of air, due to its low mass, practically completely prevents thermal conduction by passing on kinetic heat energy, the wall construction shown is almost "energy-tight" with regard to this process. In a standing air layer and the front wall shell 2 acts as a heat-insulating and heat-storing.

Die durch die Raumbeheizung in die Gebäude-Außenwand eingetragene Wärmeenergie erreicht die Außenseite der tragenden Innenwand 5. Die dort eintreffende Energie wird von dort den Strahlungsgesetzen gemäss abgestrahlt. Zu gewichten ist hierbei, dass je nach Energiezustand der Wandkonstruktion mindestens 85% der Energieabgabe durch Wärmestrahlung erfolgt. Die an der Außenseite des Hintermauerwerks 5 abgestrahlte Energie trifft auf die Reflexionsschicht 8, und sie wird daher nach den Reflexionsgesetzen zurückgespiegelt. Nach vorliegenden Untersuchungen ist eine hochglänzende Aluminiumschicht in der Lage, etwa 80% der eingestrahlten Energie zu reflektieren. Dieser Anteil der Wärmeenergie bleibt somit im Mauerwerksquerschnitt vollständig erhalten.The heat energy introduced into the exterior wall of the building by the heating of the space reaches the outside of the supporting inner wall 5. The energy arriving there is radiated from there according to the laws of radiation. It should be stressed here that, depending on the energy state of the wall construction, at least 85% of the energy output is due to thermal radiation. The energy radiated on the outside of the back masonry 5 impinges on the reflection layer 8, and is therefore reflected back according to the laws of reflection. According to existing studies, a high-gloss aluminum layer is able to reflect about 80% of the radiated energy. This proportion of thermal energy is thus completely retained in masonry cross-section.

Ein geringerer Anteil der Innenseite der Vormauerschicht 2, nämlich der Anteil der Fugen 7, ist nicht verspiegelt. Dort können etwa 10 - 15% der an der Außenseite des Hintermauerwerks 5 abgestrahlten Energie in die Vormauerschale 2 eindringen. Dieser geringe Energieeintrag in die Vormauerschale ist jedoch erwünscht, da die Außenschale 2 nicht unter die Temperatur der Außenluft abkühlen soll. Dort wäre sie nämlich sodann eine Tauzone gegenüber der Außenluft mit den nachteiligen Folgen analog zu den Erscheinungen gemäss dem Wandaufbau in Fig. 4. Unbedenklich ist dieser Energieeintrag in die Außenschale 2 auch deshalb, weil bei diesem Wandaufbau wegen der stehenden Luftschicht auch die Vormauerschale als dämmende Schicht mit einbezogen werden kann. Diese Eigenschaft der Vormauerschale kompensiert somit ausreichend den anfänglichen Energieverlust über die Mauerfugen 7. Andererseits übernehmen die dampfdurchlässigen Mauerfugen 7 der Außenschale 2 den notwendigen Feuchteausgleich zwischen Innenmauer 5, Luftschicht 9 und Vormauerschale 2. Der gesamte Wandaufbau ist daher diffusionsoffen. Dies ist deshalb von großer Bedeutung, weil die Tauzone dieser Wandkonstruktion je nach Witterungs- und Beheizungszustand entweder in der stehenden Luftschicht oder in der Vormauerwand liegt.A smaller proportion of the inside of the facing layer 2, namely the proportion of joints 7, is not mirrored. There, about 10 to 15% of the energy radiated on the outside of the background masonry 5 can penetrate into the facing wall 2. However, this low energy input into the front wall shell is desirable because the outer shell 2 should not cool below the temperature of the outside air. There she would be one Tauzone compared to the outside air with the adverse consequences analogous to the phenomena according to the wall structure in Fig. 4 , This energy input into the outer shell 2 is also unobjectionable because in this wall structure, because of the standing air layer, the front wall shell can also be included as a damping layer. On the other hand, the vapor-permeable wall joints 7 of the outer shell 2 take over the necessary moisture balance between inner wall 5, air layer 9 and facing wall 2. The entire wall structure is therefore permeable to diffusion. This is of great importance because the dew zone of this wall construction, depending on the weather and heating conditions, either in the stationary air layer or in the front wall.

Da durch die nahezu vollkommene Zurückhaltung der von Innen kommenden Wärmestrahlungsenergie in Verbindung mit der stehenden Luftschicht und wegen der dämmtechnischen Mitwirkung der Außenschale eine erhebliche Verbesserung der Dämmfähigkeit dieses Schichtenaufbaus gegeben ist, kann auf den Einsatz von Dämmschichten, wie etwa den Dämmschichten 4 bei den Anordnungen der Figuren 2, 4, 6 und 7, vollständig verzichtet werden. Dies führt neben der Verringerung der Wanddicke, die mit einem erheblichen Gewinn an Wohn- und Nutzflächen einhergeht, zu einer beachtlichen Einsparung von Baukosten im Wert der ersparten Dämmstoffe (derzeit etwa EURO 13,-- bis DM 30,--/m2 Wandfläche). Diese Ersparnis liegt deutlich über den höheren Kosten für eine reflektierende innenseitige Beschichtung der Vormauersteine 2. Dabei ist festzuhalten, dass die Luftschicht zwischen Innen-und Außenschale des Wandaufbaus deshalb stehend angeordnet werden kann, weil in diesem Wandaufbau ein Dämmstoff nicht eingebaut ist und es daher auch kein Bedürfnis zur Belüftung und Trocknung eines Dämmstoffes gibt.As a result of the almost complete restraint of the coming from inside heat radiation energy in conjunction with the standing air layer and the insulation contribution of the outer shell a significant improvement in the insulating capacity of this layer structure is given to the use of insulating layers, such as the insulating layers 4 in the arrangements of FIGS. 2, 4 . 6 and 7 , completely dispensed with. In addition to the reduction of the wall thickness, which is accompanied by a considerable gain in living and usable space, this leads to a considerable saving of construction costs in the value of the saved insulation materials (currently about EURO 13, - to DM 30, - / m 2 wall surface). , This saving is well above the higher cost of a reflective inside coating of the bricks 2. It should be noted that the air layer between the inner and outer shell of the wall structure can therefore be arranged upright, because in this wall structure an insulating material is not installed and therefore it There is no need for ventilation and drying of an insulating material.

Eine Berechnung des Wärmedurchgangskoeffizienten (k-Zahl) für den vorliegenden Wandaufbau ohne Berücksichtigung des geschilderten Reflexionseffekts ergibt nach den Berechnungsverfahren der DIN 4108 einen Wert von 0,876 W/(m2 x K). Dieser Wert liegt bereits erheblich unter dem nach der gültigen Wärmeschutzverordnung geforderten Wert von 1,56 W/(m2 x K), nämlich etwa bei der Hälfte des zulässigen Wertes. Führt man in diese Berechnung noch den Wärmerückführungsgewinn aus der Reflexionsschicht ein und dimensioniert diesen als Faktor vorsichtig mit 0,40, reduziert sich die sogenannte "k-Zahl" auf einen Wert von 0 , 40 × 0 , 876 = 0 , 350 W / m 2 × K .

Figure imgb0001
A calculation of the heat transfer coefficient (k-number) for the present wall construction without consideration of the described Reflection effect results according to the calculation method of DIN 4108 a value of 0.876 W / (m 2 x K). This value is already considerably below the value of 1.56 W / (m 2 × K) required according to the valid thermal insulation regulation, namely approximately half of the permissible value. If we introduce the heat recovery gain from the reflection layer into this calculation and dimension it carefully as a factor of 0.40, the so-called "k-number" is reduced to a value of 0 . 40 × 0 . 876 = 0 . 350 W / m 2 × K ,
Figure imgb0001

Dieser Wert entspricht genau der Maximalforderung der neuen EnEV. Dabei ist hervorzuheben, dass dieses hervorragende Ergebnis ohne den Einsatz von Dämmstoffen erreicht wird.This value corresponds exactly to the maximum requirement of the new EnEV. It should be emphasized that this excellent result is achieved without the use of insulating materials.

Erheblich vorteilhafter ist schließlich die vorliegende Konstruktion im Hinblick auf die Einstrahlungsgewinne aus dem Sonnenlicht, da diese im wesentlichen ungehindert über die Außenschale 2 auf dem Wege der Einstrahlung von der Außenschale 2 durch die Luftschicht 3 hindurch auf das Hintermauerwerk 5 einwirken können.Considerably more advantageous, finally, the present construction with regard to the insolation gains from the sunlight, as they can act on the back masonry 5 substantially unhindered on the outer shell 2 on the way of the irradiation of the outer shell 2 through the air layer 3.

Die Strahlungsenergie aus dem Sonnenlicht erwärmt primär die Vormauerschale 2, sodass sich diese auch an klaren winterlichen Sonnentagen deutlich über die Umgebungslufttemperatur erwärmen wird. Bei den üblichen Wandbaustoffen für Vormauerschalen ist diese nach etwa 2 Stunden Einstrahlungsdauer gleichmäßig durchwärmt. Die Vormauerschale 2 gibt nun ihrerseits - zu einem geringen Teil durch Konvektion in der nun etwas turbulenter werdenden Luftschicht in den Luftkammern 9, zum überwiegenden Teil durch Abstrahlung - die eingesammelte Sonnenenergie auf das Hintermauerwerk 5 ab. Hierbei sind folgende Effekte zu betrachten:The radiation energy from the sunlight primarily heats the facing wall shell 2, so that it will heat up well above the ambient air temperature even on clear winter sun days. In the usual wall materials for facing shells this is uniformly heated after about 2 hours of irradiation. The facing wall 2 is now in turn - to a small extent by convection in the now somewhat turbulent air layer in the air chambers 9, for the most part by radiation - the collected solar energy to the background masonry 5 from. Here are the following effects to consider:

Die Luftschicht in den Luftkammern 9 stellt für den Durchgang der Wärmestrahlung kein Hindernis dar. Sie ist daher für den Strahlungsvorgang ohne Belang.The air layer in the air chambers 9 is not an obstacle to the passage of heat radiation. It is therefore irrelevant to the radiation process.

Ebenso behindert die Reflexionsschicht 8 die Abstrahlung nicht, da sie dicht an die Rückseite der Vormauersteine angelagert ist und somit eine Reflexion in die Vormauerschale 2 unmöglich ist. Zu berücksichtigen ist jedoch, dass die Reflexionsschicht 8 in der Regel ein verhältnismäßig schlechter Strahler ist, sodass der Abstrahlungsvorgang zum Hintermauerwerk 5 etwas verzögert wird. Dieser Effekt ist jedoch erwünscht, da er mit der sehr guten Wärmekapazität von Mauerwerk harmoniert.Likewise, the reflection layer 8 does not hinder the radiation, since it is deposited close to the back of the facing stones and thus a reflection in the facing wall 2 is impossible. It should be noted, however, that the reflection layer 8 is usually a relatively poor radiator, so that the radiation process to the background masonry 5 is somewhat delayed. However, this effect is desirable because it harmonizes with the very good heat capacity of masonry.

Günstig und kompensierend wirkt sich hierbei auch aus, dass bei einer Erwärmung der Vormauerschale 2 dort abgelagertes Tauwasser in der Luftschicht der Luftkammern 9 ausdampft, wodurch sich die Wärmeleitfähigkeit dieser Luftschicht in dieser Phase aus dem feuchtadiabatischen Verhalten der Luft in der Weise auswirkt, dass sie besser als trockene Luft den Energietransport von außen nach innen bewerkstelligt.Favorable and compensatory in this case also has the effect that when a warming of the facing wall 2 there deposited condensation in the air layer of the air chambers 9, whereby the thermal conductivity of this layer of air in this phase from the humid-adiabatic behavior of the air affects in such a way that they better as dry air, the energy transport from outside to inside accomplished.

Die erfindungsgemäße Wandkonstruktion stellt im konventionellen Mauerwerksbau eine Umwälzung dar, da hier erstmalig physikalische Wirkungen und Ereignisse sinngemäß in eine Konstruktion umgesetzt werden, bei der insbesondere die richtigen Schlussfolgerungen daraus gezogen werden, dass der überwiegende Teil des Energieabtrags von einer Wand nicht durch die Wärmeleitfähigkeit der Baustoffe bestimmt wird, sondern durch die Abstrahlung elektromagnetischer Wellen im Infrarotbereich.The wall construction according to the invention represents a revolution in conventional masonry construction, since here for the first time physical effects and events are converted into a construction in which the right conclusions in particular are drawn from the fact that the major part of the energy removal from a wall is not due to the thermal conductivity of the building materials is determined, but by the radiation of electromagnetic waves in the infrared range.

Mit einem als minimal zu bezeichnenden Zusatzaufwand, der im Wesentlichen in der Ausrüstung der Vormauerbaumaterialien mit einer Reflexionsschicht besteht, gleichzeitig unter Vermeidung aufwendiger Dämmstoffe, kann der altbewährte konventionelle Mauerwerksbau wirtschaftlicher als bisher trotz der einengenden Bestimmungen der künftigen EnEV weitergeführt und zu neuer Blüte gebracht werden. Ohne diese Erfindung hätte die EnEV das "Aus" für diese Bauweise bedeutet.With a minimum to be designated additional effort, which consists essentially in the equipment of Vormobererbaumaterialien with a reflective layer, while avoiding expensive insulation materials, the well-tried conventional masonry can be continued more economically than before, despite the restrictive provisions of the future EnEV and to newer Blossom be brought. Without this invention, the EnEV would have meant the "off" for this design.

Eine im Rahmen der vorliegenden Erfindung mögliche Variante zu der in Fig. 1 dargestellten Fassadenverkleidung mit verspiegelten Vormauersteinen ist die Verwendung von dünnwandigen Fassadenplatten, z.B. der ETERNIT AG, die auf der Rückseite mit reflektierendem Material ausgerüstet sind. Eine erste Versuchsreihe, die auf einer Nordwand durchgeführt wurde, hat als erstes Teilergebnis erbracht, dass dieser Aufbau einer äquivalenten Dämmschichtdicke von 30 mm Polystyrolhartschaum entspricht und daher hiermit der Mindestwärmeschutz erreicht wird, wobei Tauwasserschäden zuverlässig vermieden bleiben.A possible variant in the context of the present invention to that in Fig. 1 Facade cladding with mirrored facing bricks is the use of thin-walled facade panels, eg the ETERNIT AG, which are equipped with reflective material on the back. A first series of experiments, which was carried out on a north face, has shown as the first partial result that this construction corresponds to an equivalent insulating layer thickness of 30 mm polystyrene foam and therefore the minimum thermal protection is achieved, reliably preventing thawing damage.

Entscheidend für diesen Wandaufbau ist jedoch weniger die Reduzierung von Transmissionswärmeverlusten als die Verbesserung der Energiebilanz im Verlauf der Heizperiode, die ja maßgeblich davon bestimmt wird, dass nicht nur Wärmeenergie im Bauwerk zurückgehalten wird, sondern davon, dass von außen ankommende Wärmeenergie beim Eintritt in die Hüllflächen möglichst wenig behindert wird. Derartige Effekte treten naturgemäß an besonnten Flächen eines Gebäudes, also an den Ost- Süd- und Westseiten verstärkt, an Nordseiten nur gering auf.Decisive for this wall construction, however, is less the reduction of transmission heat losses as the improvement of the energy balance in the course of the heating season, which is indeed determined by the fact that not only heat energy is retained in the building, but by the fact that incoming heat energy from the outside when entering the envelope surfaces as little as possible is hindered. Such effects naturally occur on sunlit surfaces of a building, that is to say on the east, south and west sides, and only slightly on north sides.

Bei einer dünnwandigen Konstruktion, die im Wesentlichen aus reflektierend beschichteten Fassadenplatten besteht, die durch eine geeignete Unterkonstruktion und mit Fugendichtungsbändern so an der Maueraußenfläche befestigt wird, dass sie als "nicht hinterlüftet" angesehen werden kann, treten die folgenden bauphysikalischen Effekte auf:

  1. 1) Reflektion von Wärmestrahlung:
    • In Abhängigkeit von jeweiligen Reflexionsgrad der Beschichtung wird von innen stammende strahlende Wärmeenergie von im Strahlungsaustausch stehenden Flächen mit unterschiedlichem Strahlungskoeffizienten im Bauwerk zurückgehalten.
  2. 2) Dämmung durch stehende Luftschicht:
    • Die stehende Luftschicht behindert den Energieübergang von innen nach außen wegen ihrer geringen Wärmeleitfähigkeit. Bei den Messungen hat sich eine gute Übereinstimmung mit den Wärmeleitzahlen nach DIN 4108-6 gezeigt.
  3. 3) Wärmerückgewinnung durch Kondensation:
    • Die stehende Luftschicht stellt sich auf einen hohen Wasserdampfanteil ein. Die relative Luftfeuchte innerhalb der Luftschicht beträgt im Winter 90% und mehr. An den zeitweise nicht durch Sonnenstrahlung betroffenen Flächen, an Nordseiten sogar immer, kommt es daher an den reflektierenden Innenschichten zur Wasserdampfkondensation, bei der die Kondensationswärme, das heißt der Energiebetrag, der bei gleich bleibender Stofftemperatur ausschließlich zur Änderung des Aggregatzustandes von flüssig nach gasförmig aufgewendet wird und in Tabellenwerken für Wasser mit 627 Wh/kg angegeben wird - ähnlich wie bei sonstigen Wärmerückgewinnungsanlagen im Lüftungsanlagenbereich - frei gesetzt wird und somit das Temperaturniveau im Luftspalt angehoben wird. Folglich verkleinert sich das den Energiedurchgang linear bestimmende Temperaturgefälle entsprechend.
  4. 4) Wirkungen der Sonneneinstrahlung:
    • Je nach Jahreszeit und Bedeckungsgrad sind auf besonnten Flächen mehr oder weniger große eingestrahlte Energiebeträge zu verzeichnen, die zu einer Erwärmung der Fassadenplatten über die Temperatur der Außenluft hinaus führen. Gemessen wurden bereits im März Oberflächentemperaturen von über 40 °C bei Außenlufttemperaturen um 0 °C. Zu betrachten ist somit
im Hinblick auf die Energiebilanz das Ausmaß der Wärmeübertragung von außen nach innen in die Wandkonstruktion hinein.In the case of a thin-walled construction consisting essentially of reflective-coated facade panels fastened to the wall outer surface by a suitable substructure and with joint-sealing tapes in such a way that they can be considered as "not ventilated", the following structural-physical effects occur:
  1. 1) Reflection of heat radiation:
    • Depending on the respective reflectance of the coating, radiant heat energy originating from within is radiated in the radiation exchange standing surfaces with different radiation coefficients retained in the building.
  2. 2) insulation by standing air layer:
    • The standing air layer hinders the energy transfer from the inside to the outside because of their low thermal conductivity. In the measurements, a good agreement with the thermal conductivity according to DIN 4108-6 has been shown.
  3. 3) Heat recovery by condensation:
    • The standing air layer adjusts to a high water vapor content. The relative humidity inside the air layer is 90% or more in winter. At the areas, which are not affected by solar radiation at all times, and always at the northern side, the condensation heat, that is the amount of energy, which at constant material temperature is used exclusively to change the state of aggregation from liquid to gaseous, occurs at the reflecting inner layers and given in tables for water with 627 Wh / kg - similar to other heat recovery systems in the ventilation system area - set free and thus the temperature level is raised in the air gap. As a result, the temperature gradient linearly determining the energy passage decreases correspondingly.
  4. 4) Effects of solar radiation:
    • Depending on the season and degree of coverage, more or less large amounts of irradiated energy are recorded on sunlit surfaces, which lead to heating of the facade panels beyond the temperature of the outside air. Surface temperatures of over 40 ° C at outside air temperatures around 0 ° C were measured as early as March. To look at is thus
in terms of energy balance, the extent of heat transfer from outside to inside into the wall construction.

Bei einem Vergleich von beschichteten mit unbeschichteten Fassadenplatten ist zu berücksichtigen, dass in Abhängigkeit von der Oberflächenfarbe durch Absorption des nicht reflektierten Lichtes eine Erwärmung der Fassadenplatte erfolgt. Hierdurch entsteht ein Temperaturgefälle zwischen Fassadenplatte und den beidseitig anstehenden Luftschichten. Gegenüber der Umgebung wird die eingetragene Energie teils konvektiv, teils durch Strahlung abgebaut. Dieser Energieverlust muss in Kauf genommen werden. Da bei dünnen Fassadenplatten von einer gleichmäßigen Erwärmung des gesamten Materials ausgegangen werden kann, erfolgt auch ein im Sinne der Verbesserung der Energiebilanz erwünschter Energieübergang nach innen. Dieser hängt teils vom Temperaturgefälle zwischen Platte und Wandkonstruktion ab, jedoch auch von Strahlungsvorgängen zwischen Platte und Wand.In a comparison of coated with uncoated facade panels is to be considered that, depending on the surface color by absorption of the non-reflected light heating of the facade panel occurs. This creates a temperature gradient between the facade panel and the air layers on both sides. Compared to the environment, the registered energy is partly convective, partly degraded by radiation. This loss of energy must be accepted. Since with thin façade panels of a uniform heating of the entire material can be expected, also takes place in the sense of improving the energy balance desired energy transition to the inside. This depends in part on the temperature gradient between the slab and the wall construction, but also on radiation processes between slab and wall.

Hierbei unterscheiden sich reflektierend beschichtete Platten von unbeschichtetem Material. Die reflektierende Schicht ist ein schlechter Strahler, sodass Wärmeenergie durch Strahlung nur schlecht abgebaut wird. Die Folge ist eine höhere Erwärmung des beschichteten Materials als dies beim unbeschichteten Material der Fall ist. Infolgedessen kommt es bei der beschichteten Platte zu einem erheblich größeren Temperaturgefälle zwischen Platte und dahinter liegender Außenwand. Unter der Annahme, dass die hinter der Außenwand liegenden Räume auf eine Raumlufttemperatur von +20 °C gebracht sind und durch Wärmeleitung die Wandoberfläche eine Dauertemperatur von +10 °C hat, kann es durchaus zu einem Temperaturgefälle zwischen Platte und Wandoberfläche von 30 °C und darüber hinaus kommen, obwohl winterliche Verhältnisse bestehen. Bei der vorliegenden Konstruktion tritt daher - anders als bei der bekannten Lösung mit nicht reflektierend beschichteten Fassadenplatten - ein Temperaturgefälle von außen nach innen mit einem entsprechenden Energiefluss auf.In this case, reflective coated plates differ from uncoated material. The reflective layer is a bad emitter, so that thermal energy is poorly degraded by radiation. The result is a higher heating of the coated material than is the case with uncoated material. As a result, it comes with the coated plate to a significantly larger temperature gradient between the plate and behind the outer wall. Assuming that the rooms located behind the outer wall are brought to a room air temperature of +20 ° C and by thermal conduction the wall surface has a constant temperature of +10 ° C, it can quite to a temperature gradient between plate and wall surface of 30 ° C and come in addition, although winter conditions exist. In the present construction, therefore - unlike the known solution with non-reflective coated facade panels - a temperature gradient from outside to inside occurs with a corresponding energy flow.

Bei der beschichteten Konstruktion werden - in Abhängigkeit vom Strahlungskoeffizienten der Reflektionsschicht - etwa 20% der Wärmeenergie durch Strahlung nach innen übergeben. Ein weiterer Energieübergang findet über Konvektion statt, die sich immer dann einstellt, wenn der Temperaturunterschied zwischen Platte und Innenwand erheblich wird. Sodann kommt die stehende Luftschicht in Bewegung, wobei hier von kleinformatigen Verwirbelungen auszugehen ist, die den konvektiven Energieübergang bewirken. Befördert wird der Energieübergang von außen nach innen durch die erhöhte Stofffeuchtigkeit in den vorderen Randzonen des Mauerwerks, die sich durch Kondensation bei Einstrahlungsphasen einstellt. Insgesamt kommt es in der Konstruktion zu einem Selbststeuerungseffekt, der seine Ursache darin hat, dass die Summe aus konvektiv und strahlend übertragener Wärmeenergie grundsätzlich gleich bleibt. Theoretisch ist dieser Effekt aus dem Strahlungsgesetz von Stefan - Boltzmann, empirisch aus den Erkenntnissen über konvektiven Energieübergang begründbar, der davon gekennzeichnet ist, dass dieser potentiell zur Strömungsgeschwindigkeit zu - bzw. abnimmt.In the coated construction - depending on the radiation coefficient of the reflection layer - about 20% of the heat energy is transferred by radiation to the inside. Another energy transfer takes place via convection, which always occurs when the temperature difference between plate and inner wall becomes significant. Then the standing air layer comes into motion, where it is assumed that small-scale turbulence, which cause the convective energy transfer. The transfer of energy from outside to inside is promoted by the increased moisture content in the front edge zones of the masonry, which is due to condensation during irradiation phases. Overall, there is a self-control effect in the construction, which is due to the fact that the sum of convective and radiant heat energy basically remains the same. Theoretically, this effect is based on the radiation law of Stefan - Boltzmann, empirically based on the findings on convective energy transfer, which is characterized by the fact that it potentially increases or decreases in relation to the flow velocity.

Die abgeleitete Form des Strahlungsgesetzes von Stefan-Boltzmann lautet: E = C × T / 100 4 in Watt .

Figure imgb0002
The derived form of radiation law by Stefan-Boltzmann is: e = C × T / 100 4 in watts ,
Figure imgb0002

Hierbei steht E für Energie, T für die absolute Temperatur in Kelvin, C für den Strahlungskoeffizienten als Teilbetrag der Stefan - Boltzmann-Konstanten 5,67.Here E stands for energy, T for the absolute temperature in Kelvin, C for the radiation coefficient as a partial amount of the Stefan Boltzmann constant 5.67.

Gegenüber stehenden Luftschichten ist bei bewegten Luftschichten die Wärmeübergangszahl "Alpha" in W/m2 x K nach allgemein praktizierten Faustformeln um den Wert 12 x w1/2 zu vergrößern. Hierbei ist w die Strömungsgeschwindigkeit in m/s. Bei den baupraktisch üblichen Strömungsgeschwindigkeiten kann daher der Wärmeübergang bis zu 50 - fach größer werden, als er bei stehender Luft angenommen wird.In the case of moving layers of air, the heat transfer coefficient "alpha" in W / m 2 × K is to be increased by 12 xw 1/2 according to generally practiced rule of thumb. Here, w is the flow velocity in m / s. Therefore, the heat transfer can be up to 50 times greater at the conventional flow velocities than is assumed with stagnant air.

Beim Ende der Einstrahlung kommt die verwirbelte Luftschicht wieder zur Ruhe und ist sodann wieder eine wirksame Dämmschicht. Der Vorteil des erfindungsgemäßen Wandaufbaus besteht somit darin, dass er den Energieübertritt von außen nach innen begünstigt, den Energieübergang von innen nach außen jedoch behindert. Darin unterscheidet sich der vorliegende Wandaufbau grundlegend von der konventionellen Dämmtechnik, deren Vorteil darin besteht, den Transmissionswärmeverlust von innen nach außen zu vermindern, deren entscheidender Nachteil jedoch in der Behinderung des exogenen Energieeintrags liegt. Hierbei ist zu würdigen, dass bei der zeitlichen Verteilung von Kernheiz - und Heizungsübergangszeiten die Behinderung des exogenen Energieeintrags durch außen angebrachte Dämmschichten die ganzjährige Energiebilanz verschlechtert wird, obwohl die Wärmeleitzahlen erheblich verbessert werdenAt the end of the irradiation, the turbulent air layer comes to rest again and is then again an effective insulating layer. The advantage of the wall structure according to the invention thus consists in that it promotes the energy transfer from outside to inside, but hinders the energy transfer from the inside to the outside. Therein, the present wall structure differs fundamentally from the conventional insulation technique, the advantage of which is to reduce the transmission heat loss from the inside to the outside, but the decisive disadvantage lies in the obstruction of the exogenous energy input. It should be appreciated that in the temporal distribution of Kernheiz - and heating transition times, the obstruction of the exogenous energy input by externally mounted insulation layers, the year-round energy balance is deteriorated, although the thermal conductivities are significantly improved

Bei der vorliegend geschilderten Bauweise sind die Außenwandflächen nahezu vollflächig mit elektrisch leitendem Material ausgerüstet. Dies führt auch zu einer gewissen Abschirmung gegen elektromagnetische Wellen. Es zeigte sich, dass der Empfang für die weit verbreiteten Funktelefone offensichtlich erheblich verschlechtert ist. Angesichts der Sorge, dass ein Übermaß an elektromagnetischen Wellen zu gesundheitlichen Schäden führen kann, ist es denkbar, dass der erfindungsgemäße Wandaufbau auch in dieser Hinsicht vorteilhaft ist.In the presently described construction, the outer wall surfaces are almost fully equipped with electrically conductive material. This also leads to some shielding against electromagnetic waves. It turned out that the reception for the widely used radiotelephones obviously deteriorated considerably. Given the concern that an excess of electromagnetic waves can lead to health damage, it is conceivable that the wall construction according to the invention is also advantageous in this regard.

Claims (5)

  1. Wall construction for an exterior brick wall of a building, comprising a rear brickwork and a front brickwork, wherein the front brickwork (2) is made at least in part of constructional elements (11), such as bricks, building blocks and the like, which only at their side facing the rear brickwork (5) are provided with a layer (8) which is reflective for heat radiation, characterized in that no insulating layers are provided between the front brickwork and the rear brickwork, but a substantially stationary air layer is provided between the front brickwork and the rear brickwork.
  2. Wall construction as defined in claim 1, characterized in that a material which is reflective for heat radiation is vapor-deposited on the side of said constructional elements (11) facing the rear brickwork (1).
  3. Wall construction as defined in any one of the preceding claims, characterized in that the constructional elements (11) of the front brickwork (2) at least in regions of their inner side are coated with aluminum or an aluminum alloy.
  4. Wall construction as defined in any one of the preceding claims, characterized in that the front brickwork (2) has a thickness of more than 60 mm.
  5. Wall construction as defined in any one of the preceding claims, characterized in that the front brickwork (2) is made of facade plates which only on their inner side are provided with a reflective coating.
EP02751048A 2002-06-19 2002-06-19 Wall construction and component for the same Expired - Lifetime EP1525357B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/006787 WO2004001148A1 (en) 2002-06-19 2002-06-19 Wall construction and component for the same

Publications (2)

Publication Number Publication Date
EP1525357A1 EP1525357A1 (en) 2005-04-27
EP1525357B1 true EP1525357B1 (en) 2010-04-07

Family

ID=29797084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02751048A Expired - Lifetime EP1525357B1 (en) 2002-06-19 2002-06-19 Wall construction and component for the same

Country Status (9)

Country Link
US (1) US8806824B2 (en)
EP (1) EP1525357B1 (en)
AT (1) ATE463626T1 (en)
AU (1) AU2002368033A1 (en)
CA (1) CA2489925C (en)
DE (1) DE50214348D1 (en)
DK (1) DK1525357T3 (en)
ES (1) ES2343238T3 (en)
WO (1) WO2004001148A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104264821A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid inorganic fireproof wall self-insulation system

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395416C (en) * 2005-08-29 2008-06-18 单锦春 Energy-saving architecture external enclosing and protective structure composite heat preservation wall
DE102012102862A1 (en) * 2012-02-17 2013-08-22 Bdps Ingenieurgesellschaft Mbh Production process for building envelope structure
CN103161240A (en) * 2013-03-13 2013-06-19 中天建设集团有限公司 Thermal insulation wall
CN104234241A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Thermal insulating coating and composite insulation block double-row combined building type wall self-insulation system
CN104234222A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Novel cast-in-situ double-row composite wall self-insulation system
CN104264806A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Insulation system in wall body
CN104264830A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel self-heat-preserving system of half-internal-covering, sandwich and double-row combined building type wall body
CN104234220A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Cast-in-situ composite wall self-insulation system
CN104234233A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Novel semi-outer packing sandwich cast-in-situ double-row composite wall self-insulation system
CN104264805A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel self-heat-preserving system of cast-in-place double-row combined type wall body
CN104251021A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 External thermal insulation system for wall body
CN104234234A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Self-insulation system for thermal insulation coating and semi-outer-wrapped cast-in-situ double-row combination building type wall
CN104234238A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Semi-outer coverage building type sandwich composite wall self-insulation system
CN104264842A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Dual-row combination wall self-insulation system built of compound insulation building blocks
CN104264800A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Insulation block two-row combined wall self-insulation system with heat insulation coating
CN104234225A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Self-insulation system for semi-outer-wrapped sandwiched cast-in-situ double-row combination building type wall
CN104234244A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Double-row combined wall insulation system built by compound insulation building blocks
CN104251025A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 Semi-outsourcing bricking cast-in-place combined wall self-thermal-insulation system constructed by thermal insulation building blocks
CN104251018A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 Self-thermal insulation system of semi-inner clad built wall built by thermal insulation blocks
CN104264889A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Double-row combined-building type wall self-insulation system for building compound insulation building blocks
CN104264840A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Dual-row combination wall self-insulation system built of compound insulation building blocks
CN104251019A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 Semi-outsourcing bricking type cast-in-place combined wall self-thermal-insulation system constructed by thermal insulation building blocks
CN104234265A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Semi-inner coverage building type sandwich composite wall self-insulation system
CN104264828A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel self-heat-preserving system of half-internal-covering, cast-in-place and double-row combined building type wall body
CN104264827A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half inside-enclosure two-row combined laid wall self-insulation system with heat insulation coating
CN104264813A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel semi-externally-wrapped building-type combined wall body self-thermal-insulation system built by thermal-insulation building blocks
CN104264835A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half inside-enclosure laid whole-sandwich combined wall self-insulation system
CN104234230A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Self-insulation system for semi-outer-wrapped building type sandwiched cast-in-situ wall
CN104264808A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel self-heat-preserving system of cast-in-place double-row combined building type wall body
CN104234221A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Cast-in-situ double-row composite wall self-insulation system
CN104264832A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Dual-row combination type wall self-insulation system built of insulation building blocks
CN104234229A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Self-insulation system for semi-outer-wrapped sandwiched double-row combination building type wall
CN104251020A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 Semi-outsourcing bricking cast-in-place combined wall self-thermal-insulation system
CN104264819A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure whole-sandwich two-row combined laid wall self-insulation system
CN104251032A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 Cast-in-place combined wall self-insulation system
CN104278758A (en) * 2014-09-02 2015-01-14 绿建科技集团新型建材高技术有限公司 Novel semi-inner wrapping building type sandwich composite wall self thermal insulation system
CN104264807A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel self-heat-preserving system of heat preserving and insulating coating and combined heat-preserving building block combined wall body
CN104278764A (en) * 2014-09-02 2015-01-14 绿建科技集团新型建材高技术有限公司 Heat-preservation system of double-row combined brick wall built by composite heat-preservation building blocks
CN104264801A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Insulation block combined wall self-insulation system with heat insulation coating
CN104264836A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid combined inorganic fireproof wall self-insulation system
CN104264810A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Novel self-heat-preserving system of cast-in-place combined type wall body
CN104234237A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Double-row built wall body self-insulation system combined with thermal insulating coating
CN104234227A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Self-insulation system for semi-outer-wrapped fully-sandwiched cast-in-situ double-row combination building type wall
CN104278763A (en) * 2014-09-02 2015-01-14 绿建科技集团新型建材高技术有限公司 Heat-preservation system of double-row combined wall built by heat preservation building blocks
CN104264834A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid whole-sandwich cast-in-place combined wall self-insulation system
CN104264833A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid cast-in-place combined wall self-insulation system
CN104264809A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid combined wall self-insulation system
CN104234242A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Double-row combined wall insulation system built by compound insulation building blocks
CN104264831A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Compound insulation block two-row combined laid wall self-insulation system with heat insulation coating
CN104264811A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid wall self-insulation system
CN104264820A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure two-row combined laid wall self-insulation system
CN104234231A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Inorganic and fireproof self-insulation system for semi-outer-wrapped building type cast-in-situ wall
CN104234243A (en) * 2014-09-02 2014-12-24 绿建科技集团新型建材高技术有限公司 Double-row built wall body insulation system constructed by composite insulation blocks
CN104264841A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Dual-row combination type wall self-insulation system built of compound insulation building blocks
CN104251027A (en) * 2014-09-02 2014-12-31 绿建科技集团新型建材高技术有限公司 Novel self-insulation system of semi-fabless building type sandwiched cast-in-place combined wall
SE540537C2 (en) 2015-07-03 2018-09-25 Hallberg Per Metod och anordning för att reducera flöde av jordluft till inomhusluft i en byggnad
CN106245818B (en) * 2016-09-23 2018-08-07 中建八局第一建设有限公司 A kind of light steel construction column of quick access formula and its installation method
RU184563U1 (en) * 2018-08-02 2018-10-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Energy efficient exterior wall masonry system
US11959272B1 (en) 2020-11-25 2024-04-16 Herbert L. deNourie Building construction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2102756A (en) * 1936-07-03 1937-12-21 George A Smith Building block
US2298319A (en) * 1941-07-08 1942-10-13 Vatet Oscar Building construction
US2856766A (en) * 1953-09-08 1958-10-21 Huntley & Blazier Co Wall construction and contraction joint member therefor
US3999349A (en) * 1975-01-28 1976-12-28 Anthony La Grassa Masonry wall construction and laminated building block units therefor
GB2054004A (en) 1979-03-12 1981-02-11 Bfg Glassgroup Reducing heat-transfer through opaque walls
DE3530973A1 (en) * 1985-08-30 1987-03-05 Walther Saalfeld Outer-wall element for a building
US5529624A (en) * 1994-04-12 1996-06-25 Riegler; Norbert Insulation material
GR1003284B (en) * 1998-06-22 1999-12-10 6� 9 6� 0fs@� 0 5#tfs Energy-saving heat-insulation method by heat radiation and convection
DE19851504A1 (en) * 1998-11-09 2000-05-11 Ziegeleien Freiburg & Lausanne Heat reflecting layer, method for producing a heat reflecting coating and its use
DE10062001B4 (en) * 2000-12-13 2005-07-07 Schwan, Christoph, Dipl.-Ing. (FH) Wall construction and component for it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104264821A (en) * 2014-09-02 2015-01-07 绿建科技集团新型建材高技术有限公司 Half outside-enclosure laid inorganic fireproof wall self-insulation system

Also Published As

Publication number Publication date
WO2004001148A1 (en) 2003-12-31
CA2489925C (en) 2011-03-08
ATE463626T1 (en) 2010-04-15
DE50214348D1 (en) 2010-05-20
US8806824B2 (en) 2014-08-19
AU2002368033A1 (en) 2004-01-06
EP1525357A1 (en) 2005-04-27
CA2489925A1 (en) 2003-12-31
DK1525357T3 (en) 2010-08-02
ES2343238T3 (en) 2010-07-27
US20050257467A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
EP1525357B1 (en) Wall construction and component for the same
DE102007016814B4 (en) Building cladding for an exterior wall of a building, as well as building and structural part
EP1198688B1 (en) Transparent thermal insulation device
DE202011102156U1 (en) Insulation module for walls with integrated moisture and energy management
WO2013121045A1 (en) Envelope structure for a building
EP0720718B1 (en) Outer wall element for buildings, in particular wainscot panel for the breastwork area of the wall of a building
EP1073868B1 (en) Solar cell with a solar collector and storage elements
DE4322653C2 (en) Balustrade element
DE10062001B4 (en) Wall construction and component for it
DE19845557C2 (en) Lüftungsdämmsystem
CH678203A5 (en) Weather protective panel for transparent facade insulation - is of transparent material with surface relief, with several differently oriented part-faces
DE1960163A1 (en) Double-shell facade for buildings
DE2623166A1 (en) SOLAR HEATING PROCESS FOR RESIDENTIAL HOUSES, IN PRINCIPLE WITH SINGLE LEVEL
AT519367B1 (en) WALL FOR A BUILDING
EP0151993B1 (en) Outside wall element for a building
CH688449A5 (en) Cavity wall construction and porous, perforated bricks for heat insulation and weather resistance with intervening thermally insulating slabs or mats and air gap produced by internal projections of outer leaf, with external hydrophobic light renderin
DE3033089A1 (en) INSULATION INCLINED ROOF
DE20023399U1 (en) Exterior wall for building comprising front shell and rear wall, has front shell assembled from construction elements which reflect heat on rear wall side
DE20315042U1 (en) External cladding for roof surfaces has thin coating reflective to electromagnetic waves and of high specific electrical conductivity applied to at least part of sides of roof surface facing sun
EP1180649A1 (en) Outdoor-coating to reduce the heat-loss of structural surfaces of buildings, like fair-faced masonry etc
DE202016004998U1 (en) Wall element with reflective coating to reduce the heat transfer to outside walls
DE3234348A1 (en) Building comprising a supporting structure and walls and floors of glass
DE102018005814A1 (en) Anti-condensation insulation for thin and / or highly thermally conductive exterior components
DE102022105833A1 (en) DEVICE AND METHOD FOR THERMAL FACADE RENOVATION
AT506587B1 (en) DEVICE FOR REDUCING HEAT LOSS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAX Requested extension states of the european patent have changed

Extension state: SI

Payment date: 20050112

17Q First examination report despatched

Effective date: 20061204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214348

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2343238

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20100705

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100809

EUG Se: european patent has lapsed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: STEFAN URBIGKEIT;WITTELSBACHER STRASSE 33A;10707 BERLIN (DE)

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50214348

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50214348

Country of ref document: DE

Effective date: 20110630

REG Reference to a national code

Ref country code: SE

Ref legal event code: RINS

Effective date: 20111114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120614

Year of fee payment: 11

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: SE

Effective date: 20111114

BERE Be: lapsed

Owner name: URBIGKEIT, STEFAN

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R085

Ref document number: 50214348

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50214348

Country of ref document: DE

Owner name: URBIGKEIT, STEFAN, DE

Free format text: FORMER OWNER: URBIGKEIT, STEFAN, 10709 BERLIN, DE

Effective date: 20140213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R085

Ref document number: 50214348

Country of ref document: DE

Effective date: 20140313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20140625

Year of fee payment: 13

Ref country code: SE

Payment date: 20140625

Year of fee payment: 13

Ref country code: CH

Payment date: 20140627

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140625

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20140731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140628

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50214348

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150701

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150617

Year of fee payment: 14

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150619

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160331

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161228

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 463626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160619

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171229

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214348

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101