EP1476353B1 - Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb - Google Patents

Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb Download PDF

Info

Publication number
EP1476353B1
EP1476353B1 EP03742491A EP03742491A EP1476353B1 EP 1476353 B1 EP1476353 B1 EP 1476353B1 EP 03742491 A EP03742491 A EP 03742491A EP 03742491 A EP03742491 A EP 03742491A EP 1476353 B1 EP1476353 B1 EP 1476353B1
Authority
EP
European Patent Office
Prior art keywords
marine vessel
propeller
skegs
vessel according
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03742491A
Other languages
English (en)
French (fr)
Other versions
EP1476353A1 (de
Inventor
Adam Grzonka
Björn A. HENRIKSEN
Jan Kanar
Ryszard Lech
Kay Tigges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centrum Techniki Okretowej Ship Design And Research
SeaTrade AS
Siemens AG
Original Assignee
Siemens AG
SeaTrade AS
CENTRUM TECHNIKI OKRETOWEJ SHIP DESIGN AND RESEARCH CENTRE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, SeaTrade AS, CENTRUM TECHNIKI OKRETOWEJ SHIP DESIGN AND RESEARCH CENTRE filed Critical Siemens AG
Publication of EP1476353A1 publication Critical patent/EP1476353A1/de
Application granted granted Critical
Publication of EP1476353B1 publication Critical patent/EP1476353B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/38Keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1258Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors

Definitions

  • the invention relates to a powered by at least two rudder propeller seagoing ship with a hull for transporting payloads or passengers, the rudder propellers are designed as electric rudder propellers (PODS) and the hull mitschiffs has an approximately rectangular cross-section, to which aft flow guide ( Skegs) connect, between which a flow channel is formed.
  • PODS electric rudder propellers
  • Skegs aft flow guide
  • German utility model 29913498.9 is a fast seagoing ship known that has hydrodynamically effective skegs before electric rudder propellers.
  • the sea behavior of the ship to be improved and continue to achieve a particularly favorable flow of electric rudder propeller.
  • the previously known ship has been specially designed for the use of electric rudder propellers, each with a traction and pressure propeller on the rudder propeller and it is a further object of the invention to design such a ship so that it with rudder propellers with only one propeller and also with improved Propulsion efficiency can be operated.
  • the flow channel between the skegs is wedge-shaped with a preferably continuous, slightly curved extension down-aft, wherein the side walls of the flow channel are at least partially formed as flat surfaces and in leaking fins-like webs, which have displacement volumes for the water and wherein the flow channel is designed such that it causes a low ship resistance on its channel effect.
  • the skegs are formed as fin-like webs, the displacement volumes of the skegs terminating in rounded back stubs, which run aft without vertical connection to the hull to just before the rudder propeller.
  • the displacement volume of the skegs are arranged substantially on the outside of the fin-like webs. This advantageously results in a low-resistance flow channel between the skegs with a calmed outflow of water at the stern of the ship and in consequence a particularly favorable resistance behavior of the stern of the ship.
  • the displacement volume on the outside bead-shaped are formed, wherein the bead is formed such that there is an asymmetric flow and outflow of the water in the direction of rotation of the respective rudder propeller, wherein the thus influenced flow results in a favorable Propellerzströmömung.
  • the shape and volume of the flow channel at its outlet in the region of the stub so large and the displacement volume are arranged and dimensioned so that the water flowing around and is directed such that a flow around the stub in the direction of rotation of the respective Rudderpropellers results.
  • the rudder propellers have at least one propeller, which is designed as a high sawtooth propeller and is tuned to the inventively manipulated inflow of water. This results in a further improvement of the low-vibration behavior of the propeller with a minimization of cavitation tendency.
  • a rudder propeller with two concurrent propellers can be used in the pressure propeller and a conventional propeller.
  • the individual dimensions of the hull and the skegs and their composite dimensions on the Vessel speed are turned off, especially as a result of tank towing attempts.
  • the individual flow parameters that result at the tail depend, for example, on the size of the ship, the speed of the ship, the roughness of the hull surface and other properties varying from ship to ship. It is therefore understood that for each type of ship different individual dimensions for the hull, the skegs, the flow channel and the propeller must be selected. These vary within the scope of areas that must be investigated and optimized in tow tests and tank tests.
  • Load capacity and the costs involved in the production of the ship also play a role, so that there are a large number of possible variations, of which only limit dimensions can be specified. These are advantageously given as a percentage of the ship's width, the length of the ship, the draft, etc.
  • the length and shape are optimized such that the influence of waves , in particular, the wake from the aft waves on the stern (sea shock) is reduced, preferably as a result of tank trials.
  • the ship's resistance is low, but also that the sea behavior of the ship is good.
  • the sea behavior of the ship comes in particular in a run-up from aft to sea, possibly even when lying in troubled harbors, so that the influence of the aft ship form on the sea behavior must be considered. This is the case according to the invention. It also takes into account the foreship shape, which has a significant effect on the straight-line running of the ship.
  • the rudder propellers are equipped with pressure propellers; This ensures that a relatively long calming distance for the water is available before entry into the propeller cross-section.
  • the drainage vortices formed on the hull can undergo at least partial compensation.
  • the cavitation behavior of the propellers is significantly improved without the need for high skew propellers.
  • a certain loss of efficiency compared to a draft propeller may have to be taken into account, the downstream flow is directed through the rudder propeller housing, optionally arranged here fins and the shaft of the rudder propeller. This is a matter of cost and flow optimization and is also the subject of tank trials.
  • the distance between the two rudder propellers is advantageously dimensioned such that the rudder propellers can be pivoted on the one hand independently by 360 degrees, but on the other hand, the skew rider does not become too large.
  • the skegs are arranged in alignment with the rudder propellers. An optimal arrangement results at a distance of the two rudder propellers from 1.1 to 1.3 of the propeller diameter.
  • the rudder propellers can always be adjusted in the optimum direction of flow and need not be constantly swiveled for price stabilization. This also results in an energy saving by avoiding the thrust bypass, which is greater than the resistance of the separate rudder.
  • the optimal flow direction of each rudder propeller is depending on the tolerances of the hull, the skegs and the rudder propeller mounting different and is optionally determined advantageous during test drives of the finished ship.
  • FIGURE 1 the area of the stern is shown in side view in Schiffbaubauaji manner, in which the electric rudder propeller and the skegs are.
  • 1 denotes a skeg seen from the side, which terminates in the rounded bead 2.
  • 3 denotes an electric rudder propeller;
  • an electric rudder propeller with two propellers 4 and 5 and lateral fins is shown. It is understood that as a rudder propeller with a train or a rudder propeller with a pressure propeller, each with the matching flow guide can be used.
  • a flow equalization section may be advantageous in some ships.
  • the flow equalization distance is the longest when a POD with a pressure propeller corresponding to the propeller 4 is used. Then, the housing of the electric rudder propeller 3 and the shaft of the electric rudder propeller acts as a flow equalization element.
  • the electric rudder propeller is advantageously at an angle, e.g. 2 degrees, inclined to the horizontal direction. This angle is designated 8.
  • the ship's end is designated 9; Its length, like the other components at the stern of the ship, depends on the configuration of the stern and thus also on the type of ship.
  • FIGURE 2 in which the ship's lines (bulkheads) are shown as seen from aft, 10 indicates a typical former course and 12 the electric rudder propeller visible from the aft.
  • the center 11 of the rudder propeller as shown in FIG 1, behind the end of the stub, but is arranged asymmetrically to the displacement volume 15.
  • the rudder propeller itself is arranged at a distance 13 from the ship's center; the length of 13 is about 1.1 times the Propeller diameter 16.
  • FIG. 3 which shows the course of the ship's line (frame course) seen from the front, 17 denotes a usual frame course and 18 the course at the bulb, which is arranged on the bow of the ship.
  • FIGURE 3 essentially shows a conventional ship's course, as is common for stable and low-resistance seagoing ships.
  • FIGS. 4, 5 and 6 show illustrations of an optimized towed model and depict the lower part of the tail end of the towing model of a relatively fast ferry (28 Kn) with a fuselage intended for receiving motor vehicles and passengers.
  • towed models are usually used for identification the optimal hull shapes of ships are used and are well known in the art.
  • 20 designates the flow channel formed between the skegs 22 with their nearly flat, continuously extending side walls 21.
  • the underside of the ship 23 is just as steady and only slightly curved as the inner side 21 of the flow channel 20th
  • 25 designates the flow channel between the skegs 26 as seen from the aft, which is located below the apex 24 of the landing 28 of the stern of the ship.
  • the skegs 26 are formed aft sharply finned and terminate in bead-like ends 27, which protrude without support elements on the fin-like parts of the skegs 26.
  • the flow channel between the skegs 30 is designated 29.
  • the fin-like end of the skegs is denoted by 31, the bulge-shaped displacement volume by 33.
  • Behind the skegs 30 is arranged for the purpose of optimization, an exchangeable changeable rear part 32, with which the optimum length and possibly inclination of the ship's stern is determined.
  • the bottom of the ship has an obliquely upward sloping shape, which makes up about 1/3 of the length of the ship. This results in a calm, relatively slow outflow at the stern, which leads to a low ship resistance.
  • the rudder propellers, the skegs and the stern shape are interconnected elements acting.
  • the electric rudder propellers are arranged in the outflow of the skegs, that the axis of rotation of the propeller coincides within the region with a significantly reduced axial component of the velocity field.
  • the fact that the electric rudder propellers are arranged behind the skegs, an operation of the propeller in the outflow field of the skegs is made possible.
  • the shaped flow channel leads the outflowing water advantageously directed to the propellers.
  • the lateral display of the skegs and the shape of the flow guide influences the velocity field within the propeller disks such that the tangential components of the velocity field advantageously extend favorably into the propeller.
  • the skegs result in a higher price stability of the ship. The end result is a significant fuel savings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Earth Drilling (AREA)
  • Feedback Control In General (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Linear Motors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

  • Die Erfindung betrifft ein durch zumindest zwei Ruderpropeller angetriebenes seegehendes Schiff mit einem Rumpf zum Transport von Nutzlasten oder Passagieren, wobei die Ruderpropeller als elektrische Ruderpropeller (PODS) ausgebildet sind und wobei der Rumpf mitschiffs einen etwa rechteckigen Querschnitt aufweist, an den sich nach achtern Strömungsleitkörper (Skegs) anschließen, zwischen denen ein Strömungskanal ausgebildet ist.
  • Aus dem deutschen Gebrauchsmuster 29913498.9 ist ein schnelles seegehendes Schiff bekannt, das hydrodynamisch wirksame Skegs vor elektrischen Ruderpropellern aufweist.
  • Es ist Aufgabe der Erfindung, ein derartiges Schiff weiter zu optimieren. Dabei soll insbesondere das Seeverhalten des Schiffes verbessert werden und weiterhin eine besonders günstige Anströmung der elektrischen Ruderpropeller erreicht werden.
  • Das vorbekannte Schiff ist speziell für den Einsatz von elektrischen Ruderpropellern mit je einem Zug- und Druckpropeller am Ruderpropeller konzipiert worden und es ist eine weitere Aufgabe der Erfindung, ein derartiges Schiff so auszugestalten, dass es mit Ruderpropellern mit nur je einem Propeller und auch mit verbessertem Propulsionswirkungsgrad betrieben werden kann.
  • Die Aufgabe wird dadurch gelöst, dass der Strömungskanal zwischen den Skegs keilförmig mit einer vorzugsweise stetigen, leicht gekrümmten Erweiterung nach unten-achtern ausgebildet ist, wobei die Seitenwände des Strömungskanals zumindest teilweise als ebene Flächen ausgebildet sind und in flossenartige Stege auslaufen, die Verdrängungsvolumen für das Wasser aufweisen und wobei der Strömungskanal derart ausgebildet ist, dass er über seinen Kanaleffekt einen niedrigen Schiffswiderstand verursacht.
  • Durch die Schaffung des erfindungsgemäß optimierten Strömungskanals zwischen den Skegs wird vorteilhaft ein geringer Abströmwiderstand und eine niedrige Anströmgeschwindigkeit der elektrischen Ruderpropeller erreicht. Hierdurch verringert sich der Widerstand des Schiffes bei der Fahrt durch das Wasser und der Propulsionswirkungsgrad kann erhöht werden.
  • In Ausgestaltung der Erfindung ist vorgesehen, dass die Skegs als flossenartige Stege ausgebildet sind, wobei die Verdrängungsvolumen der Skegs in nach hinten abgerundeten Stummeln auslaufen, die achtern ohne vertikale Verbindung zum Rumpf bis kurz vor die Ruderpropeller verlaufen. Durch diese Ausbildung wird vorteilhaft erreicht, dass sich vor den Ruderpropellern durch den Druckunterschied zwischen der Innen- und der Außenseite des Strömungskanals eine Umströmung der Enden der Skegs ergibt, die in Richtung der von den Propellern induzierten Strömung verläuft. Hierdurch wird das Anströmverhalten der Propeller vorteilhaft verbessert und der Wasserzustrom zu den Propellern vergleichmäßigt.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass die Verdrängungsvolumen der Skegs im wesentlichen an der Außenseite der flossenartigen Stege angeordnet sind. Hierdurch ergibt sich vorteilhaft ein widerstandsarmer Strömungskanal zwischen den Skegs mit einem beruhigten Abströmen des Wassers am Heck des Schiffes und in Folge ein besonders günstiges Widerstandsverhalten des Hecks des Schiffes.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass die Verdrängungsvolumen an der Außenseite wulstförmig ausgebildet sind, wobei der Wulst derart ausgebildet ist, dass sich eine asymmetrische Um- und Abströmung des Wassers im Drehsinn des jeweiligen Ruderpropellers ergibt, wobei die derart beeinflußte Strömung eine vorteilhafte Propellerzuströmung ergibt. So wird die vorteilhafte Wirkung des beruhigten Ausströmens des Wassers aus dem Strömungskanal durch eine Rotationsbewegung des Wassers bereits vor den Propellern ergänzt, so dass sich eine insgesamt vorteilhafte Anströmung der Propeller ergibt.
  • Es ist weiterhin vorgesehen, dass Form und Volumen des Strömungskanals an seinem Auslauf im Bereich der Stummel so groß und die Verdrängungsvolumen so angeordnet und dimensioniert sind, dass das um- und abströmende Wasser derart gerichtet wird, dass sich eine Umströmung der Stummel im Drehsinn des jeweiligen Ruderpropellers ergibt. So ergibt sich in Kombination mit der asymmetrischen Ausbildung der Verdrängungsvolumen der Skegs eine vorteilhafte gleichmäßige und insbesondere wirbelarme Zuströmung zu den Propellern in einer für die Vermeidung von Kavitation vorteilhaften Weise. Dabei braucht auf die übliche Aufkimmung des Hecks mit seiner günstigen Auswirkung in Bezug auf das Kursstabilitätsverhalten sowie auf das sogenannte "Slammingverhalten" des Schiffes nicht verzichtet werden.
  • Es ist weiterhin vorgesehen, dass die Ruderpropeller zumindest einen Propeller aufweisen, der als High Scew-Propeller ausgebildet ist und der auf die erfindungsgemäß manipulierte Zuströmung des Wassers abgestimmt ist. So ergibt sich eine weitere Verbesserung des vibrationsarmen Verhaltens der Propeller mit einer Minimierung der Kavitationsneigung. Bei einem Ruderpropeller mit zwei gleichlaufenden Propellern kann bei dem Druckpropeller auch ein herkömmlicher Propeller verwendet werden.
  • Des weiteren ist vorgesehen, dass die Einzelmaße des Schiffsrumpfes und der Skegs und ihre Verbundmaße auf die Schiffsgeschwindigkeit abgestellt sind, insbesondere als Resultat von Tankschleppversuchen. Das gleiche gilt für die Maße des High Skew-Propellers. Die einzelnen Strömungsparameter, die sich am Heck ergeben, sind z.B. von der Schiffsgröße, der Schiffsgeschwindigkeit, der Rauhheit der Rumpfoberfläche und weiteren von Schiff zu Schiff variierenden Eigenschaften abhängig. Es versteht sich daher, dass für jeden Schiffstyp unterschiedliche Einzelmaße für den Schiffsrumpf, die Skegs, den Strömungskanal und die Propeller gewählt werden müssen. Diese variieren im Rahmen von Bereichen, die in Schleppversuchen und Tanktests jeweils untersucht und optimiert werden müssen. Dabei spielen auch Laderaumkapazität und die Kosten bei der Herstellung des Schiffes eine Rolle, so dass sich eine Vielzahl von Variationsmöglichkeiten ergibt, von denen nur Grenzmaße angegeben werden können. Diese werden vorteilhaft in Prozenten der Schiffsbreite, der Schiffslänge, des Tiefgangs etc. angegeben.
  • In weiterer Ausgestaltung der Erfindung ist fernerhin vorgesehen, dass auch weitere Einzelmaße des Hecks, z.B. die Aufkimmung und der Überstand über die Ruderpropeller nach achtern sowie die Maße der Skegs, z.B. die Auswärtsstellung die Länge und die Form derart optimiert sind, dass der Einfluß von Wellen, insbesondere der von achtern auflaufenden Wellen auf das Heck (Seeschlag) verringert wird, vorzugsweise als Resultat von Tankversuchen. Für ein seegehendes Schiff ist es nicht nur wichtig, dass der Schiffswiderstand gering ist, sondern auch dass das Seeverhalten des Schiffes gut ist. Das Seeverhalten des Schiffes kommt insbesondere bei einer von achtern auflaufenden See zum Tragen, gegebenenfalls auch beim Liegen in unruhigen Häfen, so dass auch der Einfluß der Achterschiffsform auf das Seeverhaltens berücksichtigt werden muß. Erfindungsgemäß ist dies der Fall. Dabei wird auch die Vorschiffsform mit berücksichtigt, die sich auf das Geradeauslaufen des Schiffes wesentlich auswirkt.
  • Zur Optimierung des Antriebssystems ist auch vorgesehen, dass die Ruderpropeller mit Druckpropellern ausgerüstet sind; so wird erreicht, dass eine relativ lange Beruhigungsstrecke für das Wasser vor Eintritt in den Propellerquerschnitt zur Verfügung steht. So können die am Rumpf gebildeten Ablaufwirbel zumindest einen teilweisen Ausgleich erfahren. Das Kavitationsverhalten der Propeller wird so erheblich verbessert, ohne dass High Skew-Propeller notwendig wären. Dabei muß eventuell ein gewisser Wirkungsgradverlust gegenüber einem Zugpropeller in Kauf genommen werden, dessen Nachstrom durch das Ruderpropellergehäuse, gegebenenfalls hier angeordnete Flossen und den Schaft des Ruderpropellers gerichtet wird. Dies ist eine Frage der Kosten und der Strömungsoptimierung und ebenfalls Gegenstand von Tankversuchen.
  • Der Abstand der beiden Ruderpropeller voneinander wird vorteilhaft so bemessen, dass die Ruderpropeller einerseits unabhängig voneinander um 360 Grad verschwenkt werden können, dass aber andererseits der Skegabstand nicht zu groß wird. Die Skegs sind ja fluchtend vor den Ruderpropellern angeordnet. Eine optimale Anordnung ergibt sich bei einem Abstand der beiden Ruderpropeller von 1,1 bis 1,3 des Propellerdurchmessers.
  • Vorteilhaft für den Energieverbrauch bei Geradeausfahrt ist die Anordnung eines separaten kleinen Geradeausfahrtruders, wie es aus der nicht vorveröffentlichten Patentanmeldung DE 101 59 427.5 in verschiedenen Varianten ersichtlich ist. So können die Ruderpropeller stets in der optimalen Anströmrichtung eingestellt werden und brauchen zur Kursstabilisierung nicht laufend verschwenkt werden. Auch hierdurch ergibt sich eine Energieeinsparung durch Vermeidung der Schubumleitung, die größer ist als der Widerstand des separaten Ruders. Die optimale Anströmrichtung jedes Ruderpropellers ist je nach den Toleranzen des Schiffsrumpfes, der Skegs und der Ruderpropellermontage unterschiedlich und wird gegebenenfalls vorteilhaft bei Testfahrten des fertigen Schiffes ermittelt.
  • Die Erfindung wird anhand von Zeichnungen und einer Parameterdefinition näher verdeutlicht, aus denen ebenso wie aus den Unteransprüchen weitere, auch erfinderische, Einzelheiten zu ersehen sind.
  • Im Einzelnen zeigen:
  • FIG 1
    eine beispielhafte Skeg-Ruderpropelleranordnung;
    FIG 2
    ein Spantverlaufsschema von achtern gesehen mit eingezeichnetem POD entsprechend FIGUR 1;
    FIG 3
    ein Spantverlaufsschema von vorn;
    FIG 4
    die Darstellung eines erfindungsgemäßen Strömungskanals an einem Schlepptank-Modell;
    FIG 5
    das Modell mit dem Strömungskanal entsprechend FIGUR 4 von achtern;
    FIG 6
    die Skegs von der Seite mit dem Strömungskanal entsprechend den FIGUREN 4 und 5 und
    FIG 7
    das Prinzip der Anordnungen.
  • In FIGUR 1 ist in schiffbauüblicher Weise der Bereich des Hecks in Seitenansicht gezeigt, in dem sich die elektrischen Ruderpropeller und die Skegs befinden. Mit 1 ist ein von der Seite gesehener Skeg bezeichnet, der in den rund ausgebildeten Wulst 2 ausläuft. 3 bezeichnet einen elektrischen Ruderpropeller; hier ist beispielsweise ein elektrischer Ruderpropeller mit zwei Propellern 4 und 5 und seitlichen Flossen gezeigt. Es versteht sich, dass ebenso ein Ruderpropeller mit einem Zug- oder ein Ruderpropeller mit einem Druckpropeller, jeweils mit den dazu passenden Strömungsleitelementen verwendet werden kann.
  • 6 bezeichnet die Konstruktionswasserlinie (CWL) und 7 den Abstand zwischen dem Ende des Skegwulstes und dem Zugpropeller des elektrischen Ruderpropellers. Dieser Abstand ist Gegenstand eines Optimierungsvorganges, da einerseits der Propeller 5 hinter dem Auslauf des Wulstes 2 schwenkbar sein muss und andererseits der Abstand zum Wulst 2 gering sein soll.
  • Zur Vermeidung von Vibrationen und zur Verringerung der Kavitation kann bei manchen Schiffen eine Strömungsvergleichmäßigungsstrecke vorteilhaft sein. Die Strömungsvergleichmäßigungsstrecke ist am längsten, wenn ein POD mit einem Druckpropeller entsprechend dem Propeller 4 verwendet wird. Dann wirkt auch das Gehäuse des elektrischen Ruderpropellers 3 und der Schaft des elektrischen Ruderpropellers als Strömungsvergleichmäßigungselement.
  • Der elektrische Ruderpropeller ist vorteilhaft um einen Winkel, z.B. 2 Grad, gegenüber der Horizontalrichtung geneigt. Dieser Winkel ist mit 8 bezeichnet. Das Schiffsende ist mit 9 bezeichnet; auch seine Länge ist ebenso wie die übrigen Komponenten am Heck des Schiffes von der Ausgestaltung des Hecks und damit auch von dem Schiffstyp abhängig.
  • In FIGUR 2, in der die Schiffslinien (Spantverläufe) von Achtern gesehen gezeigt sind, bezeichnet 10 einen typischen Spantverlauf und 12 den von achtern sichtbaren elektrischen Ruderpropeller. Wie ersichtlich, befindet sich die Mitte 11 des Ruderpropellers zwar, wie aus FIGUR 1 ersichtlich, hinter dem Ende des Stummels, ist jedoch asymmetrisch zu dem Verdrängungsvolumen 15 angeordnet. Der Ruderpropeller selbst ist mit dem Abstand 13 gegenüber der Schiffsmitte angeordnet; die Länge von 13 beträgt etwa das 1,1-fache des Propellerdurchmessers 16. Die erfindungsgemäße, im wesentlichen ebene, Ausgestaltung der Innenseite des Strömungskanals, der zwischen den Skegs 1 aus FIGUR 1 ausgebildet ist, ergibt sich deutlich aus dem Linienverlauf im Bereich 14.
  • In FIGUR 3, die den Schiffslinienverlauf (Spantverlauf) von vorn gesehen zeigt, bezeichnet 17 einen üblichen Spantverlauf und 18 den Verlauf am Bulb, der am Schiffsbug angeordnet ist.
  • FIGUR 3 zeigt im wesentlichen einen üblichen Schiffslinienverlauf, wie er für kursstabile und widerstandsarme seegehende Schiffe üblich ist.
  • Die FIGUREN 4, 5 und 6 zeigen Darstellungen eines optimierten Schleppmodells und stellen das Unterteil des Rumpfendes des Schleppmodells eines relativ schnellen Fährschiffes (28 Kn) mit einem Rumpf, der zur Aufnahme von Kraftfahrzeugen und Passagieren bestimmt ist, dar. Derartige Schleppmodelle werden üblicherweise zur Ermittlung der optimalen Rumpfformen von Schiffen verwendet und sind dem Fachmann allgemein bekannt.
  • In FIGUR 4 bezeichnet 20 den zwischen den Skegs 22 mit ihren nahezu ebenen, stetig verlaufenden Seitenwänden 21 ausgebildeten Strömungskanal. Die Schiffsunterseite 23 ist ebenso stetig und nur leicht gekrümmt wie die Innenseite 21 des Strömungskanals 20.
  • In FIGUR 5 bezeichnet 25 den von achtern gesehenen Strömungskanal zwischen den Skegs 26, der unter dem Scheitelpunkt 24 der Aufkimmung 28 des Hecks des Schiffes angeordnet ist. Die Skegs 26 sind nach achtern scharf flossenartig ausgebildet und laufen in wulstartigen Enden 27 aus, die ohne Tragelemente über die flossenartigen Teile der Skegs 26 hinausragen. Insgesamt ergibt sich eine sehr strömungsgünstige Heckform mit guten Eigenschaften gegenüber von achtern auflaufenden Seen.
  • In FIGUR 6 ist der Strömungskanal zwischen den Skegs 30 mit 29 bezeichnet. Das flossenartige Ende der Skegs ist mit 31 bezeichnet, das wulstförmige Verdrängungsvolumen mit 33. Hinter den Skegs 30 ist zum Zwecke der Optimierung ein auswechselbares veränderbares Heckteil 32 angeordnet, mit dem die optimale Länge und gegebenenfalls Neigung des Schiffshecks ermittelt wird. Der Boden des Schiffs weist eine aus der Darstellung deutlich zu ersehende schräg nach oben verlaufende Form auf, die etwa 1/3 der Schiffslänge ausmacht. So ergibt sich am Schiffsheck eine beruhigte, relativ langsame Abströmung, die zu einem niedrigen Schiffswiderstand führt.
  • In FIGUR 7 ist die prinzipielle Anordnung der einzelnen Komponenten zur Veranschaulichung dargestellt. Dabei handelt es sich um im internationalen Schiffbau übliche Darstellungsformen. Die Parameterwerte und deren beanspruchte Gültigkeitsbereiche sind mathematisch wie folgt definiert:
  • Ask
    Die Querschnittsfläche des Skegs bei der Länge LAsk ; abgesetzt vom hinteren Ende des Skeg. 0.1 * A 0 < A s k < A 0
    Figure imgb0001
    A0
    Die Propellerkreisfläche A 0 = π * D 2 / 4 = 0.7853 * D 2
    Figure imgb0002
    AR
    Die projizierte Fläche des Hilfsruders 0.01 * A 0 < A R < 0.01 * L p p * T
    Figure imgb0003
    Ls
    Die Länge des Skeg 0.20 * L P P < L s < 0.45 * L p p
    Figure imgb0004
    LAsk
    Der Abstand von der Skegspitze bis zum definierten Querschnitt Ask
    Lpod
    Die Länge des POD.
    dtran
    Der Abstand vom hinteren Lot zum Spiegelheck 2 * L p o d > d t r a n > L p o d / 2
    Figure imgb0005
    ds
    Der Abstand zwischen den Mittellinien der Skegs an ihrer Spitze am hinteren Ende der Skegs 1.5 * D < d s < B - 1.5 * D
    Figure imgb0006
    dss
    Der minimale Abstand zwischen der Mittellinie am Ende des Skegs und der Schiffsseite am Beginn der Aufkimmung des Bilgenradius. d s s > 0.75 * D
    Figure imgb0007
    dh
    Der Abstand zwischen dem hinteren Ende des Skegs und dem Punkt des beginnenden Anstiegs der Basislinie des Skeg von der Schiffsbasislinie. d h > 0.3 * L A s k
    Figure imgb0008
    dp
    Der Abstand zwischen Propellernabe und hinterem Ende des Skegs. 0.02 * D < d p < 0.02 * L p p
    Figure imgb0009
    dt
    Der Propellerfreischlag an der vorderen Propellerebene d t > 0.15 * D
    Figure imgb0010
    α
    Der Winkel zwischen Skeg und der Senkrechten zur Schiffsbasis < 30 °
    Figure imgb0011
    β
    Der Winkel von der Mittellinie POD-Propeller zur Schiffsbasis im Längsschnitt β < 5 °
    Figure imgb0012
    D
    Der Propellerdurchmesser
    Lpp
    Die Länge zwischen den Loten
    B
    Die Breite des Schiffes auf Spanten
    T
    Der Tiefgang des Schiffes auf Spanten
    AP
    Das hintere Lot
  • Zu der erfindungsgemäßen Konstruktion, die zu einem insgesamt sehr niedrigen Schiffswiderstand bei gutem Propulsionswirkungsgrad der elektrischen Ruderpropeller führt, sind die Ruderpropeller, die Skegs und die Heckform miteinander verbunden wirkende Elemente. Die elektrischen Ruderpropeller sind dabei so in der Abströmung der Skegs angeordnet, dass die Drehachse der Propeller innerhalb der Region mit einer wesentlich herabgesetzten axialen Komponente des Geschwindigkeitsfelds übereinstimmt. Dadurch, dass die elektrischen Ruderpropeller hinter den Skegs angeordnet sind, wird eine Operation der Propeller in dem Abströmfeld der Skegs ermöglicht. Der geformte Strömungskanal führt das abströmende Wasser vorteilhaft gerichtet den Propellern zu. Die seitliche Ausstellung der Skegs und die Form der Strömungsleitkörper beeinflusst das Geschwindigkeitsfeld innerhalb der Propellerscheiben derart, dass die tangentialen Komponenten des Geschwindigkeitsfeldes vorteilhaft günstig in den Propeller hinein verlaufen. Als Folge ergibt sich eine Wirkungsgraderhöhung des Propulsionssystems bei verringerter Kavitation und verminderten Schwingungen. Darüber hinaus ergeben die Skegs eine höhere Kursstabilität des Schiffes. Im Endeffekt ergibt sich eine erhebliche Treibstoffersparnis.
  • Dazu kann auch die Verwendung eines Hilfsruders beitragen, das es erlaubt, die elektrischen Ruderpropeller stets optimal zur Abströmung im Skegbereich einzustellen. Diese optimale Stellung braucht durch Kurskorrekturbewegungen nicht verändert zu werden.

Claims (14)

  1. Durch zumindest zwei Ruderpropeller (3) angetriebenes, seegehendes Schiff mit einem Rumpf zum Transport von Nutzlasten oder Passagieren, wobei die Ruderpropeller (3) vorzugsweise als elektrische Ruderpropeller (PODS) ausgebildet sind und wobei der Rumpf mitschiffs einen etwa rechteckigen Querschnitt aufweist, an den sich nach achtern Strömungsleitkörper (Skegs) (26) anschließen, zwischen denen ein Strömungskanal (20) ausgebildet ist, dadurch gekennzeichnet, dass der Strömungskanal (20) keilförmig mit einer stetigen, vorzugsweise leicht gekrümmten, Erweiterung nach untenachtern ausgebildet ist, wobei die Seitenwände (21) des Strömungskanals (20) zumindest teilweise als ebene Flächen ausgebildet sind und in flossenartige Stege (31) auslaufen, die Verdrängungsvolumen für das Wasser aufweisen und wobei der Strömungskanal (20) über seinen Kanaleffekt einen niedrigen Schiffswiderstand erzeugend ausgebildet ist sowie eine für das Propulsionsverhalten günstige Nachstrombeeinflussung bewirkt.
  2. Schiff nach Anspruch 1, dadurch gekennzeichnet, dass die Skegs (26) vals flossenartige Stege (31) ausgebildet sind, wobei die Verdrängungsvolumen der Skegs (26) in nach hinten abgerundeten Stummeln auslaufen, die achtern ohne vertikale Verbindung zum Rumpf bis kurz vor die Ruderpropeller (3) verlaufen.
  3. Schiff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verdrängungsvolumen (33) des Skegs (26) im wesentlichen an der Außenseite der flossenartigen Stege angeordnet sind.
  4. Schiff nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Verdrängungsvolumen (33) an der Außenseite wulstförmig ausgebildet sind, wobei der Wulst derart geformt ist, dass sich eine asymmetrische Um- und Abströmung des Wassers im Drehsinn des jeweiligen Ruderpropellers ergibt, damit die derart beeinflusste Strömung eine vorteilhafte Propellerzuströmung ergibt.
  5. Schiff nach Anspruche 1, 2, 3 oder 4, dadurch gekennzeichnet, dass der Boden des Schiffes eine etwa am Anfang des Strömungsleitkanals (20) beginnende Aufkimmung aufweist.
  6. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Form und Volumen des Strömungskanals (20) an seinem Auslauf im Bereich der Stummel so groß und die Verdrängungsvolumen so angeordnet und dimensioniert sind, dass das um- und abströmende Wasser derart gerichtet wird, dass sich eine Umströmung der Stummel im Drehsinn des jeweiligen Ruderpropellers (3) ergibt.
  7. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ruderpropeller (3) zumindest einen Propeller aufweisen, der als High Skew-Propeller (4, 5) ausgebildet ist.
  8. Schiff nach Anspruch 7, dadurch gekennzeichnet, dass der High Skew-Propeller (4, 5) derart auf die Eigenschaften des gerichtet zuströmenden Wassers abgestimmt ist, dass hohe Druckschwankungen vermieden und das Kavitationsverhalten optimiert wird.
  9. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einzelmaße des Schiffsrumpfs und der Skegs (26) und ihre Verbundmaße auf die Schiffsgeschwindigkeit abgestellt sind, insbesondere als Resultat von Tankschleppversuchen.
  10. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Maße des High Skew-Propellers (4, 5) auf die gerichtete Anströmung optimiert sind, insbesondere als Resultat von Tankversuchen.
  11. Schiff nach einem oder mehreren der vorhergehenden Anspfüche, dadurch gekennzeichnet, dass die Einzelmaße des Hecks (9), z.B. die Aufkimmung und der Überstand über die Ruderpropeller (3) nach achtern sowie die Maße, z.B. die Auswärtsstellung, das Volumen und die Form der Skegs (26) derart optimiert sind, dass der Einfluss von Wellen, insbesondere der von achtern auflaufenden Wellen, auf das Heck (Seeschlag) verringert wird, vorzugsweise als Resultat von Tankversuchen.
  12. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrischen Ruderpropeller (3) je einen Propeller aufweisen, der als Druckpropeller ausgebildet ist.
  13. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ruderpropeller (3) einen Abstand voneinander aufweisen, der das 1,1- bis 1,3-fache des jeweiligen Propellerdurchmessers beträgt.
  14. Schiff nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am Heck (9) des Schiffes, insbesondere vor den Propellern der Ruderpropeller, ein Hilfsruder für die Geradeausfahrt des Schiffes angeordnet ist, insbesondere in Spatenruderform.
EP03742491A 2002-02-18 2003-02-17 Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb Expired - Lifetime EP1476353B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10206669A DE10206669A1 (de) 2002-02-18 2002-02-18 Linienentwurf und Propulsionsanordnung für ein kursstabiles, seegehendes Schiff mit Ruderpropellerantrieb
DE10206669 2002-02-18
PCT/DE2003/000479 WO2003070567A1 (de) 2002-02-18 2003-02-17 Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb

Publications (2)

Publication Number Publication Date
EP1476353A1 EP1476353A1 (de) 2004-11-17
EP1476353B1 true EP1476353B1 (de) 2007-12-12

Family

ID=27635083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03742491A Expired - Lifetime EP1476353B1 (de) 2002-02-18 2003-02-17 Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb

Country Status (14)

Country Link
US (1) US7192322B2 (de)
EP (1) EP1476353B1 (de)
JP (1) JP2005517589A (de)
KR (1) KR20040077972A (de)
CN (1) CN100558598C (de)
AT (1) ATE380745T1 (de)
AU (1) AU2003215509A1 (de)
BR (1) BR0307770A (de)
DE (2) DE10206669A1 (de)
HR (1) HRP20040854B1 (de)
MY (1) MY136608A (de)
NO (1) NO336387B1 (de)
RU (1) RU2004127939A (de)
WO (1) WO2003070567A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054061B4 (de) 2004-11-05 2017-10-12 Siemens Aktiengesellschaft Seegehendes Schiff
JP4934361B2 (ja) * 2006-07-06 2012-05-16 三井造船株式会社 船舶
US7780490B2 (en) * 2008-09-16 2010-08-24 AB Volvo Penla Watercraft with control system for controlling wake and method for controlling wake
JP5648826B2 (ja) * 2010-02-22 2015-01-07 独立行政法人海上技術安全研究所 二軸船尾双胴型船舶
WO2010140357A1 (ja) * 2009-06-06 2010-12-09 独立行政法人海上技術安全研究所 二軸船尾双胴型船舶
JP5477618B2 (ja) * 2009-06-06 2014-04-23 独立行政法人海上技術安全研究所 船舶及び船尾形状の設計方法
JP5818247B2 (ja) * 2010-04-16 2015-11-18 国立研究開発法人海上技術安全研究所 二軸船尾双胴型船舶
CN103625626B (zh) * 2012-08-22 2017-06-23 株式会社Si
JP6118865B2 (ja) * 2015-09-25 2017-04-19 三井造船株式会社 船舶
CN105584586A (zh) * 2016-03-08 2016-05-18 上海船舶研究设计院 一种小型lng运输船双全回转拉式桨推进的尾部结构
CN107010191A (zh) * 2017-05-27 2017-08-04 李先根 不缠绕的轮船调头装置
TWI640454B (zh) * 2017-09-18 2018-11-11 般若科技股份有限公司 Marine propulsion system
RU2667421C1 (ru) * 2017-10-13 2018-09-19 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Дополнительное пропульсивное устройство судна, совмещенное с подруливающим устройством
CN107884113B (zh) * 2017-10-19 2019-09-13 哈尔滨工业大学 一种用于水下螺旋桨推进器的推力测试方法
CN110576945A (zh) * 2018-06-11 2019-12-17 广州海洋地质调查局 科考钻探船
CN113320669A (zh) * 2021-06-30 2021-08-31 刘志刚 一种螺旋桨动力装置及船舶
CN113401326B (zh) * 2021-07-15 2022-05-10 大连海事大学 一种气压驱动船用鱼尾舵
CN113665823B (zh) * 2021-08-16 2024-05-10 航天时代飞鹏有限公司 一种混动式货运无人机及货物运输方法
CN116853459B (zh) * 2023-07-08 2024-04-30 南京审计大学 一种海上救援装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1425538A (fr) 1964-12-07 1966-01-24 Propulseur à réaction sous-marine
US3744446A (en) * 1970-12-24 1973-07-10 F Gibbins Propeller driven boats
US4550673A (en) * 1983-06-02 1985-11-05 Sigurdur Ingvason Hull construction for seagoing vessels
US4977845A (en) * 1989-08-14 1990-12-18 F. William Rundquist Boat propulsion and handling system
US5694877A (en) * 1996-06-24 1997-12-09 Hvide Marine Incorporated Ship docking vessel
DE29913498U1 (de) * 1999-08-03 2000-02-03 Sea Trade As Schnelles seegehendes Schiff
DE29908430U1 (de) * 1999-05-11 1999-09-16 Sea Trade As Oslo Schnelles seegehendes Schiff
DE20003451U1 (de) * 2000-02-25 2000-12-21 Sea Trade As Oslo Kursstabiles, schnelles ,seegehendes Schiff mit einem für einen Ruderpropeller optimierten Rumpf
WO2000068072A1 (de) 1999-05-11 2000-11-16 Siemens Aktiengesellschaft Kursstabiles, schnelles, seegehendes schiff mit einem für einen ruderpropeller optimierten rumpf
DE10141893A1 (de) * 2001-01-22 2002-08-22 Siemens Ag Schnelles militärisches Überwasserschiff
DE10159427A1 (de) 2001-12-04 2003-06-12 Sea Trade As Oslo Vorrichtung zur Kurskorrektur von POD-getriebenen Schiffen

Also Published As

Publication number Publication date
ATE380745T1 (de) 2007-12-15
NO20043895L (no) 2004-09-17
US7192322B2 (en) 2007-03-20
NO336387B1 (no) 2015-08-10
AU2003215509A1 (en) 2003-09-09
KR20040077972A (ko) 2004-09-07
US20050215132A1 (en) 2005-09-29
DE50308789D1 (de) 2008-01-24
WO2003070567A1 (de) 2003-08-28
EP1476353A1 (de) 2004-11-17
JP2005517589A (ja) 2005-06-16
BR0307770A (pt) 2004-12-21
HRP20040854B1 (hr) 2013-04-30
DE10206669A1 (de) 2003-08-28
CN1646364A (zh) 2005-07-27
CN100558598C (zh) 2009-11-11
HRP20040854A2 (en) 2005-04-30
MY136608A (en) 2008-10-31
PL369765A1 (en) 2005-05-02
RU2004127939A (ru) 2005-06-10

Similar Documents

Publication Publication Date Title
EP1476353B1 (de) Linienentwurf und propulsionsanordnung für ein kursstabiles, seegehendes schiff mit ruderpropellerantrieb
EP2060484B2 (de) Ruder für Schiffe
DE3332868A1 (de) Bootsschraubenantriebseinheit
DE7519767U (de) Bootsstabilisator
EP2238015A2 (de) Variable gesamtrumpflänge für wasserfahrzeuge
DE202009009899U1 (de) Düsenpropeller für Schiffe
DE60101949T2 (de) Verfahren zur Verringerung des in Heck entstanden Wellenwiderstands und Heckform
WO2006048460A1 (de) Seegehendes schiff
EP2531396B1 (de) Wasserfahrzeug mit bugseitig angeordnetem profilkörper
EP1922246B1 (de) Wasserfahrzeug
DE2809662C2 (de) Antrieb für Schiffe bestehend aus einer düsenartigen Ummantelung mit einem Propeller und einem zugeordneten Ruder
DE3801317C2 (de)
DE1781128C3 (de) Hinterschiff für große Einschraubenschiffe
DE9017288U1 (de) Fahrzeug
EP3464045B1 (de) Wasserfahrzeug, insbesondere schleppschiff
DE2536425C3 (de) Verfahren zum Herstellen eines Hinterschiffes mit einem schneckenartigen Schraubenkanal
EP1203715A2 (de) Schiff, insbesondere schnelles Fährschiff mit PoD-Antrieb
DE19841392B4 (de) Hochlast-Schweberuder
DE10240534B4 (de) Schiff
DE202008012549U1 (de) Wasserfahrzeug
WO2000035749A1 (de) Wassertrecker mit propellerflosse
DE102007026118B4 (de) Von einem Medium umströmter, Bugwellen und/oder Heckwellen bildender Körper mit einem stufenförmig ausgebildeten Bug und/oder Heck
EP1107906B1 (de) Vorrichtung zum antrieb eines bootes
DE16924C (de) Neuerungen in der Konstruktion von Schiffskörpern, Propellern, Rudern etc
DE3011653A1 (de) Verfahren zur herstellung eines ruders mit hohlflankenruderartigen eigenschaften aus einem normalen profilruderund hiernach hergestelltes ruder fuer wasserfahrzeuge und schwimmendes geraet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEATRADE AS

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: CENTRUM TECHNIKI OKRETOWEJ SHIP DESIGN AND RESEARC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50308789

Country of ref document: DE

Date of ref document: 20080124

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20080228

Owner name: CENTRUM TECHNIKI OKRETOWEJ SHIP DESIGN AND RESEAR

Effective date: 20080228

Owner name: SEATRADE AS

Effective date: 20080228

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080926

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

26N No opposition filed

Effective date: 20080915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190416

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50308789

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901