EP1217061B1 - Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung durch eine Gegenstrom-Hydrobehandlung in einem Festbett - Google Patents

Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung durch eine Gegenstrom-Hydrobehandlung in einem Festbett Download PDF

Info

Publication number
EP1217061B1
EP1217061B1 EP01403141A EP01403141A EP1217061B1 EP 1217061 B1 EP1217061 B1 EP 1217061B1 EP 01403141 A EP01403141 A EP 01403141A EP 01403141 A EP01403141 A EP 01403141A EP 1217061 B1 EP1217061 B1 EP 1217061B1
Authority
EP
European Patent Office
Prior art keywords
solid particles
process according
metal
catalyst
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01403141A
Other languages
English (en)
French (fr)
Other versions
EP1217061A1 (de
Inventor
Daniel Vuillemot
Laurence Carpot
Thierry Chapus
Philippe Rocher
Frédéric Morel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1217061A1 publication Critical patent/EP1217061A1/de
Application granted granted Critical
Publication of EP1217061B1 publication Critical patent/EP1217061B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used

Definitions

  • the present invention relates to the hydrotreatment (HDT) of hydrocarbon fractions for produce hydrocarbon fractions with a low content of sulfur, nitrogen and compounds aromatic compounds which can be used in particular in the field of motor fuels for internal combustion.
  • hydrocarbon fractions include jet fuel, fuel diesel and kerosene.
  • the invention finds more particularly its application during processes of transformation of a middle distillate and more particularly of a diesel fuel cut to produce a fuel with a high cetane number, deflavored and desulfurized.
  • the invention can also be applied to the hydrotreatment of products more alone or in admixture with diluents, for example hydrocarbon fractions atmospheric or vacuum distillations in the course of operations hydrodemetallation (HDM), hydrodesulfurization (HDS) or hydrodenitrogenation (HDN).
  • hydrodemetallation HDM
  • hydrodesulfurization HDS
  • hydrodenitrogenation HDN
  • the present method can thus be implemented both to improve the characteristics of the finished products in terms of specifications required to achieve product quality and standards of pollution (sulfur and aromatic content in particular) prepare charges for refinery processing or conversion units (visbreaking, coking or catalytic cracking for vacuum distillate, isomerization or reforming for a naphtha for example) using impurity-sensitive catalysts (eg sulfur for metal catalysts, nitrogen for acid catalysts and metals in general).
  • impurity-sensitive catalysts eg sulfur for metal catalysts, nitrogen for acid catalysts and metals in general.
  • Class II diesel fuel must not contain more than 50 ppm of sulfur and more than 10% by volume of Class I and more than 10 ppm of sulfur and 5% by volume of aromatics.
  • Class III diesel fuel must contain less than 500 ppm of sulfur and less than 25% by volume of aromatic compounds. Limits similar are also to be respected for the sale of this type of fuel in California.
  • the method according to the present invention relates in a more general context any process in which a fixed bed is used in a reactor during a catalytic process and wherein a liquid charge and a gaseous reactant are injected into the reactor from else of the bed and flow against the current in said bed.
  • the The process finds its application in the field of hydrotreating of petroleum fractions.
  • the main constraint related to this type of device is the possible existence of a congestion phenomenon limiting the possible flow of each of the phases being able to pass through the catalytic bed.
  • the risk is thus for the strong gas pressures most often required for hydrotreatment phase training liquid by the gas phase circulating against the current.
  • a flow against the current can not be reasonably envisaged that if one minimizes the losses of charges within the catalytic bed. It is known that small catalyst causes a great loss of load.
  • the increase in the classical dimensions of supported catalyst generally adopted for fixed beds (0.5 to 10 mm) seems a priori necessary.
  • a larger size of the catalyst grains results in a decreased catalytic activity within the reaction bed due to diffusion intraparticular limited charge in large particles.
  • the object of the present invention is a method making it possible to limit the associated pressure losses. for the use in a fixed-bed reactor of a flow of countercurrent fluids during a catalytic process of hydrotreatment while maintaining a catalytic activity acceptable within the mixture of particles used.
  • one of the objects of the invention is to preserve a catalytic activity reasonable within the bed while minimizing losses.
  • An intermediate zone of stripping placed between the two reactors allows the evacuation of the lightest compounds resulting from the hydrodesulfurization reaction (H2S, NH3, etc.).
  • H2S hydrodesulfurization reaction
  • One of the advantages of a two-step process thus lies in the possibility of using in the second reactor a catalyst more specifically dedicated to the hydrogenation of aromatic nuclei (whose reactivity is the weakest) without any problem of deactivation of it by H2S. This technology is for example described in US Patent 5,114,562.
  • the reactors have necessarily the highest diameters possible and the low linear velocities of fluids in reactors requires distribution systems within these same very efficient reactors.
  • the exothermicity of the reaction makes it difficult to control the temperature along the reactor and most often imposes a management strategy temperatures and the injection of a cooling gas still called by the specialists of this quench gas field directly into the reactor between the catalytic beds, usually followed by redistribution of the reaction fluids.
  • a co-current flow of the reagents causes the deposition of molecules of sulfur or coke which obstructs the entry of the pores of the catalyst, in the upper part of the fixed beds.
  • the present invention relates to a process for treating a hydrocarbon feedstock containing sulfur compounds, nitrogen compounds and aromatic compounds comprising at least one hydrotreatment stage in which at least one countercurrent chamber is circulated.
  • liquid fraction of said hydrocarbon feedstock and hydrogen through at least one fixed bed of solid particles, said solid particle fixed bed (s) comprising a substantially homogeneous mixture of S1 solid particles having an average diameter of 0.5 to 5 mm and S2 solid particles whose average diameter is greater than the average diameter of the solid particles S1.
  • at least a part of at least one of said particles S1 or S2 is catalytic and comprises a mineral support.
  • the mean diameter of the particles S1 will be between 0.5 and 2 mm and very preferably between 1 and 2 mm.
  • the solid particles S2 will advantageously have an average diameter of at least 1.1 times that of the solid particles S1.
  • the average diameter of the particles S 2 will generally be between about 1.1 and 10 times, more preferably between 1.5 and 5 times and very preferably between 2 and 4 times the average diameter of the solid particles S 1.
  • At least a portion and preferably all the particles S1 are catalytic and at least a portion and preferably all the particles S2 are inert.
  • at least a portion of the particles (inert or catalytic) is meant at least 20%, preferably at least 50% and most preferably at least 80% of the particles.
  • the ratio of the volume occupied in the bed by said catalytic solid particles to the volume occupied in the bed by said inert solid particles is between 0.1 and 5, preferably between 0.3 and 2.
  • the solid particles S1 have a geometric shape different from that of the solid particles S2.
  • the inert solid particles may be in the form of beads and / or rings and / or stool.
  • the inert solid particles may be ring-shaped and / or saddle-shaped solids and included in the group consisting of Raschig rings, Lessing rings, Pall and Hy-Pak rings, rings. spiraled, stool Berl, Intalox stool.
  • the catalytic solid particles are advantageously in the form of extrudates and / or beads and / or pellets. According to a particular and advantageous embodiment of the process of the invention, the catalytic solid particles will be in the form of extrudates and the inert solid particles will be in the form of beads.
  • said catalytic solid particles comprise at least partly a hydrotreatment catalyst comprising on a mineral support at least one metal or a group VIB metal compound preferably selected from the group consisting of molybdenum and tungsten and at least one non-noble metal or a non-noble group VIII metal compound preferably selected from the group consisting of nickel, cobalt and iron.
  • said catalytic solid particles comprise at least partly a hydrotreatment catalyst comprising on a mineral support at least one noble metal or a group VIII noble metal compound, advantageously at least one metal or one compound of noble metal selected from the group consisting of palladium and platinum, alone or in mixture.
  • the support of said catalyst is chosen from the group formed by alumina, silica, silica-aluminas, zeolites and mixtures of at least two of these mineral compounds.
  • any additional device of known perfection of the prior art can be included within the scope of the present invention without leaving it, for example additional stripping and / or recycling of gases comprising hydrogen and hydrogen sulfide from any one of the three preceding steps.
  • the gaseous effluent formed in the stripping stage containing gaseous hydrocarbons under the conditions of said stripping zone, hydrogen and hydrogen sulfide can be advantageously cooled to a temperature sufficient to form a liquid fraction of hydrocarbons that are sent to the stripping zone and a gaseous fraction depleted in hydrocarbons that is sent to an elimination zone of the hydrogen sulfide it contains and from which is recovered from the purified hydrogen.
  • the catalyst of step a) comprises at least one metal or a metal compound selected from the group consisting of molybdenum and tungsten and at least one metal or metal compound selected from the group consisting of nickel, cobalt and iron.
  • the catalyst of step a) advantageously comprises at least one element selected from the group consisting of silicon, phosphorus and boron or one or more compounds of this or these elements.
  • the support of the catalysts employed in step a) and in step c) are chosen independently of one another in the group formed by alumina, silica, silica-aluminas and zeolites. and mixtures of at least two of these mineral compounds.
  • said solid particles will be charged into said chamber according to any technique known to those skilled in the art using a means to obtain within the chamber a dense and homogeneous mixture solid particles.
  • any of the devices described in patents FR 2,721,900, EP-B1-482,991 or EP-B1-470,142 of the applicant or one of the devices disclosed in patents GB 2,168,330, US 4,443,707 or EP-B1-769,462, may be used.
  • the operating conditions of the steps a) and c) are selected according to the characteristics of the load which may be a diesel cut straight-run distillation, diesel fuel cut from catalytic cracking or diesel fuel from the coking or visbreaking of residues or a mixture of two or more of these cuts. They are usually chosen in order to obtain a product at the leaving step a) containing less than 100 ppm sulfur and less than 200 ppm nitrogen, preferably less than 100 ppm nitrogen and most often less than 50 ppm nitrogen and the conditions of step c) are chosen so as to obtain a product, on leaving said step c), containing less than 20% by volume of aromatic compounds.
  • the conditions of step a) comprise a temperature from 260 ° C to 450 ° C, a total pressure of 2 MPa to 20 MPa and an overall hourly space velocity of liquid charge of 0.1 to 4 and that of step b) a temperature of 100 ° C to 400 ° C, a total pressure of 3 MPa at 15 MPa.
  • the catalyst employed in step a) contains on a mineral support at least one metal or Group VIB metal compound of the periodic table of elements in a quantity in weight of metal relative to the weight of the finished catalyst usually about 0.5 to 40%, at least one non-noble metal or non-noble metal group VIII compound said periodic classification in an amount expressed by weight of metal with respect to catalyst weight usually finished from 0.1 to 30%.
  • the catalyst used will also contain at least one element selected from the group consisting of silicon, phosphorus and boron or compounds of this or these elements.
  • the catalyst will contain example of phosphorus or at least one phosphorus compound in quantity expressed by weight phosphorus pentoxide relative to the support weight of 0.001 to 20%.
  • the catalyst will comprise boron or at least one compound boron preferably in an amount expressed by weight of boron trioxide relative to carrier weight from 0.001 to 10%.
  • the catalyst will comprise silicon or at least one silicon compound preferably in a quantity expressed by weight of silica relative to the weight of the support of 0.001 to 10%.
  • the amount of metal or the Group VIB metal compound expressed in weight of metal per the weight of the finished catalyst will preferably be from 2 to 30% and most often from 5% to 25% and that of the metal or Group VIII metal compound will be preferably from 0.5 to 15% and most often from 1 to 10%.
  • step a1) When you want to stay in a relatively low pressure range while wishing to obtain excellent results it is possible to perform a first step a1) in conditions to reduce the sulfur content of the product to a value of 500 800 ppm then send this product to a subsequent step a2) in which the conditions will be chosen to reduce the sulfur content to below 100 ppm, preferably less than 50 ppm and the product resulting from this step a2) is then sent to step b).
  • the conditions of step a2) are softer than when for a given load one operates in a single step a) since the product sent in this step a2) already has a greatly reduced sulfur content.
  • the catalyst of step a1) may be a conventional catalyst of the art prior art such as that described in the text of patent applications in the name of the Applicant FR-A-2197966 and FR-A-2538813 and that of step a2) is that described above for step a). It would not be outside the scope of the present invention using the same catalyst in steps a1) and a2).
  • the mineral support of the catalyst is preferably chosen from group formed by alumina, silica, silica-aluminas, zeolites and mixtures of minus two of these mineral compounds.
  • Alumina is very commonly used.
  • the catalyst of these steps a), a1), a2) comprise at least one metal or metal compound selected from the group consisting of molybdenum and tungsten and at least one metal or metal compound selected from the group formed by nickel, cobalt and iron. Most often this catalyst contains molybdenum or a molybdenum compound and at least one metal or metal compound selected from group formed by nickel and cobalt.
  • the catalyst of these steps a), a1), a2) will include boron or at least one boron compound.
  • the catalyst will include for example silicon or a silicon compound, or a combination of silicon and boron or compounds of each of these elements possibly associated with phosphorus or composed of phosphorus.
  • the proportions by weight of boron, silicon and phosphorus with respect to support will be the same as those already stated.
  • the catalyst employed in step c) contains on a mineral support at least one metal noble or noble metal compound of Group VIII of the Periodic Table of Elements in an amount expressed by weight of metal relative to the weight of the finished catalyst of 0.01 to 20% and preferably at least one halogen.
  • the mineral support of the employed catalyst in step c) is chosen independently of the support used for the catalyst of step a). Most often the catalyst of step c) comprises at least one metal or a compound of noble metal selected from the group consisting of palladium and platinum.
  • the inorganic support of the catalyst employed in step c) is usually selected from group formed by alumina, silica, silica-aluminas, zeolites and mixtures of minus two of these mineral compounds.
  • This support will preferably comprise at least one halogen selected from the group consisting of chlorine, fluorine, iodine and bromine and preferably in the group formed by chlorine and fluorine. In an advantageous embodiment, this support will include chlorine and fluorine.
  • the amount of halogen will most often be from 0.5 to 5% by weight relative to the weight of the support.
  • the most support often used is alumina.
  • Halogen is usually introduced onto the support from corresponding acid halides and platinum or palladium from aqueous solutions of their salts or compounds such as, for example, hexachloroplatinic acid in the case of platinum.
  • the amount of metal of this catalyst of step c) will preferably be from 0.01 to 10%, from 0.01 to 5% and most often from 0.03 to 3% expressed by weight of metal relative to the weight of the finished catalyst.
  • a diesel fuel cut is obtained from a mixture of a straight-run diesel (GOSR) and a catalytic cracked gas oil (LCO).
  • the mixture is desulfurized on a conventional desulfurization unit and then stripped in a first step.
  • a catalyst sold by the company Procatalyse under the reference HR 448 and containing nickel and molybdenum is placed in a 1 liter reactor (1). After activation of the catalyst by sulfurization, the unit is maintained under a pressure of 5 MPa and at a temperature of 340 ° C.
  • the diesel fuel charge is injected with a VHV of 1.5 h -1 .
  • Step 2 is carried out in a pilot unit which is disposed in one liter of catalyst sold by the company Procatalyse under the reference LD402 and operating against the flow of fluids at a pressure of 5 MPa and a temperature of 300 ° C.
  • the unit charge flows in a downward flow as the hydrogen flows upwards in the reactor. A congestion phenomenon is observed and most of the injected charge is caused by the gas flow and does not pass through the reactor.
  • Desulfurized and stripped gas oil from the first step described in Example 1 is available.
  • the 2nd step is carried out in a pilot unit operating against the flow of fluids.
  • the unit charge flows in a downward flow as the hydrogen flows upwards in the reactor.
  • the LD402 catalyst is not loaded as such in the unit, but is diluted with alumina beads of 5 mm diameter (and average diameter).
  • the mixture is constituted in volume by half of LD402 catalyst and half of alumina beads. This unit is charged with 1 liter of substantially homogeneous mixture of catalyst and alumina beads.
  • the present process can be applied to desulfurization, denaturalization and desaromatisation of diesel coupes, kerosene cuts, distillates empty of a refining unit or white oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (22)

  1. Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung, die Schwefelverbindungen, Stickstoffverbindungen und aromatische Verbindungen enthält, umfassend wenigstens eine Hydrotreatmentstufe, in der man in einem Innenraum mit Gegenstrom wenigstens eine Flüssigfraktion der Kohlenwasserstoffbeschickung und Wasserstoff über wenigstens ein Festbett von Festkörperpartikeln zirkulieren lässt, dadurch gekennzeichnet, dass das oder die Festbetten von Festkörperpartikeln ein im Wesentlichen homogenes Gemisch von Festkörperpartikeln S1 umfassen, deren mittlerer Durchmesser von 0,5 bis 5 mm ist und Festkörperpartikeln S2, deren mittlerer Durchmesser über dem mittleren Durchmesser der Festkörperpartikel S1 liegt, dadurch, dass wenigstens ein Teil von einem wenigstens der Partikel S1 oder S2 katalytisch ist und einen mineralischen Träger umfasst.
  2. Verfahren nach Anspruch 1, bei dem ein Teil der Festkörperpartikel S1 katalytisch ist und einen mineralischen Träger umfasst, und wenigstens ein Teil der Festkörperpartikel S2 inert ist und wenigstens eine mineralische Verbindung enthält.
  3. Verfahren nach Anspruch 1 oder 2, bei dem das Verhältnis des in dem Bett durch die katalytischen Festkörperpartikel besetzte Volumenverhältnis zum in dem Bett durch die Inertfestkörperpartikel besetzten Volumen von 0,1 bis 5, vorzugsweise zwischen 0,3 und 2 beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Festkörperpartikel S1 eine geometrische Form, unterschiedlich von jener der Festkörperpartikel S2 aufweisen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem die katalytischen Festkörperpartikel in Form von Extrudaten und/oder Kugeln und/oder Pastillen vorliegen.
  6. Verfahren nach einem der Ansprüche 2 bis 5, bei dem die Inertfestkörperpartikel in Form von Kugeln und/oder Ringen und/oder Satteln vorliegen.
  7. Verfahren nach einem der Ansprüche 2 bis 6, bei dem die katalytischen Festkörperpartikel in Form von Extrudaten vorliegen und die Inertfestkörperpartikel in Form von Kugeln vorliegen.
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die katalytischen Festkörperpartikel wenigstens teilweise einen Hydrotreatment-Katalysator umfassen, der auf einem mineralischen Träger wenigstens ein Metall oder eine Verbindung eines Metalls der Gruppe VIB umfasst, gewählt aus der Gruppe, die besteht aus Molybdän und Wolfram und wenigstens ein nicht edles Metall oder eine Verbindung eines Metalls, das nicht edel ist, aus der Gruppe VIII, gewählt aus der Gruppe, die besteht aus Nickel, Kobalt und Eisen.
  9. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die katalytischen Festkörperpartikel wenigstens teilweise einen Hydrotreatment-Katalysator umfassen, der auf einem mineralischen Träger wenigstens ein Edelmetall oder eine Verbindung eines Edelmetalls der Gruppe VIII umfasst.
  10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem der Träger des Hydrotreatment-Katalysators gewählt ist aus der Gruppe, die gebildet wird durch Aluminiumoxid, Siliziumoxid, Siliziumoxide-Aluminiumoxide, Zeolithe und Gemischen von wenigstens zwei dieser mineralischen Verbindungen.
  11. Verfahren nach einem der Ansprüche 1 bis 10, bei dem der Träger des Hydrotreatment-Katalysators wenigstens ein Halogen umfasst, vorzugsweise gewählt aus der Gruppe, die gebildet wird durch Chlor und Fluor.
  12. Verfahren nach einem der Ansprüche 1 bis 7 und 9 bis 11, bei dem der Hydrotreatment-Katalysator wenigstens ein Metall oder eine Verbindung eines Metalls, das edel ist, umfasst, gewählt aus der Gruppe, die gebildet wird durch Palladium und Platin.
  13. Verfahren nach einem der Ansprüche 2 bis 12, bei dem die Inertfestkörperpartikel wenigstens eine mineralische Verbindung umfassen, die gewählt ist aus der Gruppe, die gebildet wird durch Aluminiumoxid, Siliziumoxid, Siliziumoxide-Aluminiumoxide, Zeolithe und Gemischen von wenigstens zwei dieser mineralischen Verbindungen.
  14. Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung, die Schwefelverbindungen, Stickstoffverbindungen und aromatische Verbindungen enthält, nach Anspruch 1, das die folgenden Stufen umfasst:
    a) wenigstens eine erste Stufe, in der man die Kohlenwasserstoffbeschickung und den Wasserstoff bei absteigendem Gegenstrom in einer Hydrierentschwefelungszone laufen lässt, die wenigstens einen Hydrierentschwefelungskatalysator umfasst, der auf einem mineralischen Träger wenigstens ein Metall oder Verbindung eines Metalls der Gruppe VIB des Periodensystems der Elemente umfasst und wenigstens ein Metall oder eine Verbindung eines Metalls der Gruppe VIII, das nicht edel ist, des Periodensystems, wobei die Zone unter wenigstens teilweisen Hydrierentschwefelungsbedingungen gehalten wird, umfassend eine Temperatur von 150°C bis 450°C und einen Druck von 1 MPa bis 20 MPa.
    b) wenigstens eine zweite Stufe, worin die teilweise entschwefelte Kohlenwasserstoffbeschickung aus der Stufe a) zur Hydrierentschwefelung in eine Abstreifzone geschickt wird, in der sie durch Abstreifen bei Gegenstrom durch wenigstens ein wasserstoffhaltiges Gas bei einer Temperatur von 100°C bis 400°C unter Bedingungen zur Bildung eines Abstreifgasabstroms gereinigt wird, der Wasserstoff und Schwefelwasserstoff enthält und von einer an Schwefelverbindungen verarmten Flüssigkohlenwasserstoffbeschickung.
    c) wenigstens eine dritte Stufe, in der die an Schwefelverbindungen verarmte Flüssigkohlenwasserstoffbeschickung aus der Stufe b) zum Abstreifen in eine katalytische Hydrotreatmentzone geschickt wird, in der man bei Gegenstrom die Flüssigkohlenwasserstoffbeschickung und den Wasserstoff gemäß dem Verfahren nach einem der Ansprüche 1 bis 13 zirkulieren lässt, wobei die Zone unter Hydrotreatment-Bedingungen gehalten wird, die es ermöglichen, einen Flüssigabstrom zu erhalten, der weniger schwefelhaltige, stickstoffhaltige und aromatische Verbindungen enthält als die Flüssigkohlenwasserstoffbeschickung aus Stufe b).
  15. Verfahren nach Anspruch 14, bei dem der Katalysator der Stufe a) wenigstens ein Metall oder eine Verbindung eines Metalls umfasst, gewählt aus der Gruppe, die gebildet wird durch Molybdän und Wolfram und wenigstens ein Metall oder eine Verbindung eines Metalls, gewählt aus der Gruppe, die gebildet wird durch Nickel, Kobalt und Eisen.
  16. Verfahren nach einem der Ansprüche 14 oder 15, bei dem der Katalysator der Stufe a) außerdem wenigstens ein Element umfasst, gewählt aus der Gruppe, die gebildet wird durch Silizium, Phosphor und Bor oder eine oder mehrerer Verbindungen dieses oder dieser Elemente.
  17. Verfahren nach einem der Ansprüche 14 bis 16, bei dem der Träger der in der Stufe a) und in der Stufe c) eingesetzten Katalysatoren unabhängig voneinander gewählt wird aus der Gruppe, die besteht aus Aluminiumoxid, Siliziumoxid, Siliziumoxiden-Aluminiumoxiden, Zeolithen und den Gemischen von wenigstens zwei dieser mineralischen Verbindungen.
  18. Verfahren nach einem der Ansprüche 1 bis 17, bei dem die Festkörperpartikel in den Innenraum mithilfe eines Mittels geladen werden, das es ermöglicht, in dem Innenraum ein dichtes und homogenes Gemisch der Festkörperpartikel zu erhalten.
  19. Verwendung des Verfahrens nach einem der vorhergehenden Ansprüche zur Entschwefelung, Denitrifizierung und Dearomatisierung der Dieselfraktionen.
  20. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 18 zur Entschwefelung, Denitrifizierung und Dearomatisierung der Kerosinfraktionen.
  21. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 18 zur Entschwefelung, Denitrifizierung und Dearomatisierung des Vakuumdestillats aus einer Raffinierungseinheit.
  22. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 18 zur Entschwefelung, Denitrifizierung und Dearomatisierung der weißen Öle.
EP01403141A 2000-12-20 2001-12-06 Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung durch eine Gegenstrom-Hydrobehandlung in einem Festbett Expired - Lifetime EP1217061B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0016824 2000-12-20
FR0016824A FR2818283B1 (fr) 2000-12-20 2000-12-20 Procede de traitement d'une charge hydrocarbonee comprenant une etape d'hydrotraitement en lit fixe a contre-courant

Publications (2)

Publication Number Publication Date
EP1217061A1 EP1217061A1 (de) 2002-06-26
EP1217061B1 true EP1217061B1 (de) 2005-11-30

Family

ID=8858041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01403141A Expired - Lifetime EP1217061B1 (de) 2000-12-20 2001-12-06 Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung durch eine Gegenstrom-Hydrobehandlung in einem Festbett

Country Status (6)

Country Link
US (1) US6645371B2 (de)
EP (1) EP1217061B1 (de)
JP (1) JP4304653B2 (de)
DE (1) DE60115372T2 (de)
ES (1) ES2256187T3 (de)
FR (1) FR2818283B1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658491B2 (ja) * 2004-02-26 2011-03-23 Jx日鉱日石エネルギー株式会社 環境対応軽油の製造方法
US7906013B2 (en) 2006-12-29 2011-03-15 Uop Llc Hydrocarbon conversion process
FR2913024B1 (fr) 2007-02-27 2012-07-27 Total France Procede d'hydrotraitement d'une charge gazole, unite d'hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante
US7794588B2 (en) * 2007-10-15 2010-09-14 Uop Llc Hydrocarbon conversion process to decrease polyaromatics
US9279087B2 (en) 2008-06-30 2016-03-08 Uop Llc Multi-staged hydroprocessing process and system
US8008534B2 (en) * 2008-06-30 2011-08-30 Uop Llc Liquid phase hydroprocessing with temperature management
US8999141B2 (en) * 2008-06-30 2015-04-07 Uop Llc Three-phase hydroprocessing without a recycle gas compressor
EP2199371A1 (de) * 2008-12-15 2010-06-23 Total Raffinage Marketing Verfahren zur aromatischen Hydrierung und Erhöhung des Cetangehalts von Ausgangsmaterialien aus dem Mitteldestillat
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8127938B2 (en) * 2009-03-31 2012-03-06 Uop Llc Apparatus and process for treating a hydrocarbon stream
US8221706B2 (en) * 2009-06-30 2012-07-17 Uop Llc Apparatus for multi-staged hydroprocessing
US8518241B2 (en) * 2009-06-30 2013-08-27 Uop Llc Method for multi-staged hydroprocessing
MX2011009116A (es) 2011-08-31 2013-02-28 Mexicano Inst Petrol Proceso de hidroconversion-destilacion de aceites crudos pesados y/o extra-pesados.
CN104011181B (zh) 2011-11-04 2017-02-15 沙特***石油公司 具有集成中间氢分离和纯化的加氢处理和芳烃饱和方法
US9724639B2 (en) * 2015-08-18 2017-08-08 United Arab Emirates University System for contacting gases and liquids
US10118843B2 (en) 2015-08-18 2018-11-06 United Arab Emirates University Process for capture of carbon dioxide and desalination

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147210A (en) * 1962-03-19 1964-09-01 Union Oil Co Two stage hydrogenation process
US3437588A (en) * 1965-10-08 1969-04-08 Sinclair Research Inc Process for hydrorefining hydrocarbons with a catalytic mixture of individually-supported active components
US5589057A (en) * 1989-07-19 1996-12-31 Chevron U.S.A. Inc. Method for extending the life of hydroprocessing catalyst
US5110444A (en) * 1990-08-03 1992-05-05 Uop Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
DK170679B1 (da) * 1992-06-30 1995-12-04 Topsoe Haldor As Katalysatorleje til anvendelse ved hydrobehandling af carbonhydrider
US5624547A (en) * 1993-09-20 1997-04-29 Texaco Inc. Process for pretreatment of hydrocarbon oil prior to hydrocracking and fluid catalytic cracking
EP0840772B1 (de) * 1995-07-13 1999-09-22 Engelhard De Meern B.V. Hydrierung von thiofenische schwefel enthaltenden kohlenwasserstoffeinsätzen
US5837128A (en) * 1996-01-16 1998-11-17 Amoco Corporation Method for grading cylindrical catalyst particles in a bed to reduce pressure drop
JP2000144150A (ja) * 1998-11-11 2000-05-26 Nippon Mitsubishi Oil Corp 低硫黄軽油

Also Published As

Publication number Publication date
JP4304653B2 (ja) 2009-07-29
ES2256187T3 (es) 2006-07-16
FR2818283B1 (fr) 2003-02-14
US6645371B2 (en) 2003-11-11
DE60115372D1 (de) 2006-01-05
FR2818283A1 (fr) 2002-06-21
JP2002201479A (ja) 2002-07-19
EP1217061A1 (de) 2002-06-26
DE60115372T2 (de) 2006-07-06
US20020130063A1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
EP1217061B1 (de) Verfahren zur Behandlung einer Kohlenwasserstoffbeschickung durch eine Gegenstrom-Hydrobehandlung in einem Festbett
CA2854429C (fr) Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
EP0849350B1 (de) Verfahren zur Umwandlung von Gasöl zur Herstellung eines desaromatisierten und entschwefelten Brennstoffes mit hoher Cetanzahl
EP2256179B1 (de) Verfahren zur Herstellung einer Kohlewasserstofffraktion mit hohem Oktan- und niedrigem Schwefelgehalt
EP3255123B1 (de) Umwandlungsverfahren, das mindestens eine hydrotreating-phase im festbett und eine hydrocracking-phase in umgehbaren reaktoren umfasst
EP3018188B1 (de) Verfahren zur umwandlung von erdöleinsätzen, das eine hydrotreating-phase im festbett, eine hydrocracking-phase in einer wirbelschicht, eine reifephase und eine abscheidungsphase von sedimenten für die herstellung von heizöl mit geringem sedimentanteil umfasst
WO2018073018A1 (fr) Procédé de conversion comprenant un hydrotraitement en lit fixe, une separation d'une fraction residu hydrotraitee, une etape de craquage catalytique pour la production de combustibles marins
CA3021600A1 (fr) Procede de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables
EP1849850A1 (de) Verfahren zur Raffination von olefinischen Benzinstoffen mit mindestens zwei verschiedenen Phasen der Hydroraffination
EP1063275B1 (de) Wasserstoffbehandlungsverfahren von Mitteldistillat in zwei Stufen mit Zwichenstrippung
EP2886629B1 (de) Verfahren zur hydroentschwefelung von kohlenwasserstoff anteilen
FR2993571A1 (fr) Procede de desulfuration d'une essence
EP3228683B1 (de) Aufbereitungsverfahren einer essenz
EP1370627B1 (de) Verfahren zur herstellung von benzin mit niedrigem schwefelgehalt
FR3000964A1 (fr) Procede de production d'une essence basse teneur en soufre
WO2016096364A1 (fr) Procede d'adoucissement en composes du type sulfure d'une essence olefinique
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
EP1312661B1 (de) Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt
EP1310544B1 (de) Verfahren zur Umwandlung von schweren teroleumfraktionen zur Herstellung einer Beschickung für ein katalytisches Crackverfahren und Mitteldestillate mit niedrigem Schwefelgehalt
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
EP1123961A1 (de) Verfahren und Apparat mit verschiedenen katalytischen Betten zur Erzeugung von schwefelarmen Gasölen
CA2937194A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
WO2016192893A1 (fr) Procédé de conversion de charges comprenant une étape de viscoréduction, une étape de précipitation et une étape de séparation des sédiments pour la production de fiouls
FR2804966A1 (fr) Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en souffre
WO2015161937A1 (fr) Procédé d'hydrotraitement dans des reacteurs co-courant ascendant presentant un contre-courant d'ensemble

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021227

AKX Designation fees paid

Designated state(s): BE DE ES GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60115372

Country of ref document: DE

Date of ref document: 20060105

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2256187

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60115372

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

Ref country code: DE

Ref legal event code: R081

Ref document number: 60115372

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201229

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210125

Year of fee payment: 20

Ref country code: DE

Payment date: 20210224

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201221

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60115372

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20211205

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211207