EP1312661B1 - Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt - Google Patents

Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt Download PDF

Info

Publication number
EP1312661B1
EP1312661B1 EP02290433A EP02290433A EP1312661B1 EP 1312661 B1 EP1312661 B1 EP 1312661B1 EP 02290433 A EP02290433 A EP 02290433A EP 02290433 A EP02290433 A EP 02290433A EP 1312661 B1 EP1312661 B1 EP 1312661B1
Authority
EP
European Patent Office
Prior art keywords
pipe
hydrogen
gas
fraction
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290433A
Other languages
English (en)
French (fr)
Other versions
EP1312661A1 (de
Inventor
Christophe Gueret
Pierre Marion
Cécile Plain
Jérôme Bonnardot
Eric Benazzi
Olivier Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1312661A1 publication Critical patent/EP1312661A1/de
Application granted granted Critical
Publication of EP1312661B1 publication Critical patent/EP1312661B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the present invention relates to a method and an installation for the treatment of heavy hydrocarbon feedstocks containing sulfur impurities. It relates to a process for converting at least in part such a hydrocarbon feedstock, for example a vacuum distillate obtained by the direct distillation of a crude oil, into diesel corresponding to the 2005 sulfur specifications, that is to say having less than 50 ppm sulfur, and a heavier product that can be advantageously used as a feedstock for catalytic cracking (such as catalytic cracking in a fluid bed).
  • FR-A-2 791 354 describes a process for converting heavy petroleum fractions comprising a step of hydroconnection into bouillon beds and a hydrotreating step. Until 2000, the sulfur content allowed in diesel was 350 ppm.
  • the treated feeds are heavy, i.e., 80% wt boiling above 340 ° C.
  • Their initial boiling point is usually at least 340 ° C, often at least 370 ° C or above 400 ° C.
  • the process makes it possible to treat fillers having a final boiling temperature of at least 450 ° C. and which may even be greater than 700 ° C.
  • the sulfur content is at least 0.05 wt%, often at least 1% and very often at least 2% or even at least 2.5 wt%. Charges with 3% or more sulfur are well suited in this process.
  • the fillers which can be treated in the context of the present invention are straight-run vacuum distillates, vacuum distillates resulting from conversion processes such as, for example, those resulting from coking, from fixed-bed hydroconversion (such as those from HYVAML® methods of treatment of heavy developed by the applicant) or of hydrotreatment processes of heavy ebullated bed (such as those from process H-oIL ®) or deasphalted oils to solvent (for example propane, butane, or pentane) from the deasphalting of residuum under direct distillation vacuum, or residues from HYVAHL ® and H-OIL processes.
  • the fillers can also be formed by mixing these various fractions.
  • the feedstocks which are treated are preferably vacuum distillates, DAO-type feedstocks, that is to say containing metals and / or asphalenes, and for example more than 10 ppm of metals and more than 10 ppm of metals. 1000 ppm of asphaltenes.
  • the said hydrocarbon feedstock is treated in a treatment section in the presence of hydrogen, the said section comprising at least one triphasic reactor, containing at least one hydroconversion catalyst, the mineral support of which is at least partially amorphous, in a bubbling bed, operating an upflow of liquid and gas, said reactor comprising at least one means for withdrawing the catalyst from said reactor located near the bottom of the reactor and at least one fresh catalyst booster means in said reactor located near the top of said reactor; reactor.
  • the process is usually carried out under an absolute pressure of 2 to 35 MPa, often 4 to 20 MPa and most often 6 to 20 MPa at a temperature of about 300 to about 550 ° C and often about 350 to about 470 ° C. .
  • the hourly space velocity (VVH) with respect to the catalyst volume and the hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion. Most often the VVH relative to the catalyst volume is in a range from about 0.1 h -1 to about 10 h -1 and preferably about 0.5 h -1 to about 5 h -1 .
  • the amount of hydrogen mixed with the feed is usually from about 50 to about 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed and most often from about 100 to about 1500 Nm 3 / m 3 and preferably from about 200 to about 500 Nm 3 / m 3 .
  • the conversion of the feed into fractions lighter than 360 ° C is usually between 10-80% by weight, usually 25-60%.
  • a conventional hydroconversion granular catalyst comprising, on an amorphous support, at least one metal or metal compound having a hydrodehydrogenating function can be used.
  • This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum of preferably from 5 to 20% by weight of molybdenum (expressed as MoO 3 molybdenum oxide) on an amorphous mineral support.
  • This support will for example be chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds and for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride. Most often we use a alumina support and very often a support of alumina doped with phosphorus and possibly boron.
  • the concentration of phosphorus pentoxide P 2 O 5 is usually less than about 20% by weight and most often less than about 10% by weight. This P 2 O 5 concentration is usually at least 0.001% by weight.
  • the concentration of boron trioxide B 2 O 3 is usually from about 0 to about 10% by weight.
  • the alumina used is usually a ⁇ or ⁇ alumina. This catalyst is most often in the form of extruded.
  • the total content of Group VI and VIII metal oxides is often from about 5 to about 40% by weight and generally from about 7 to 30% by weight and the weight ratio of metal oxide (or metals) to metal oxide Group VI group VIII metal (or metals) is generally from about 20 to about 1 and most often from about 10 to about 2.
  • the spent catalyst is partly replaced by fresh catalyst by withdrawal at the bottom of the reactor and introduction to the top of the fresh or new catalyst reactor at regular time interval, that is to say for example by puff or almost continuously.
  • fresh catalyst can be introduced every day.
  • the replacement rate of spent catalyst with fresh catalyst may be, for example, from about 0.05 kilograms to about 10 kilograms per cubic meter of charge.
  • This withdrawal and replacement are performed using devices for the continuous operation of this hydroconversion step.
  • the unit usually comprises a recirculation pump for maintaining the bubbling bed catalyst by continuously recycling at least a portion of the liquid withdrawn from step a) and reinjected into the bottom of the zone of step a). It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and sulfur contained therein are removed and then to return this regenerated catalyst to the hydroconversion stage b).
  • This step is to separate the gases from the liquid, and in particular to recover hydrogen and most of the hydrogen sulfide H 2 S formed in step a), and then obtain a liquid effluent free of H 2 S dissolved.
  • the liquid effluent devoid of H 2 S and optionally added stabilized naphtha is distilled to obtain at least one distillate cut including a gas oil fraction, and at least a heavier fraction than the diesel fuel.
  • the distillate cut may be a diesel cut or a diesel fuel cut mixed with naphtha. It feeds step c).
  • the heavier liquid fraction than the diesel-type fraction may optionally be sent to a catalytic cracking process in which it is advantageously treated under conditions making it possible to produce a gaseous fraction, a gasoline fraction, a diesel fraction and a heavier fraction. that the diesel fraction often referred to by those skilled in the art slurry fraction.
  • this heavier liquid fraction than the diesel fraction can be used as a low sulfur industrial fuel or as a thermal cracking feedstock.
  • the naphtha When the naphtha is not sent to the mixture with the diesel fuel in step c), it is distilled.
  • the naphtha fraction obtained can advantageously be separated into heavy gasoline, which will preferably be a feedstock for a reforming process, and light gasoline which preferably will be subjected to a paraffin isomerization process.
  • the diesel fuel cutter most often has a sulfur content of between 100 and 500 ppm by weight and the gasoline cutter most often has a sulfur content of at most 200 ppm by weight.
  • the diesel cut does not meet the 2005 specifications for sulfur.
  • the other characteristics of diesel are also at a low level; for example, the cetane is of the order of 45 and the aromatic content is greater than 20% by weight.
  • the conditions are generally chosen such that the initial boiling point of the heavy fraction is from about 340 ° C to about 400 ° C and preferably from about 350 ° C to about 380 ° C. for example, about 360 ° C.
  • the boiling point is between about 120 ° C and 180 ° C.
  • the diesel is between the naphtha and the heavy fraction.
  • the cutting points given here are indicative but the operator will choose the cutting point according to the quality and quantity of the desired products, as is generally done.
  • Step c) wherein at least a portion, and preferably all, of the distillate cut undergoes hydrotreatment to reduce the sulfur content below 50 ppm by weight, and most often below 10 ppm.
  • This hydrocarbon fraction may for example be chosen from the group formed by LCOs (light cycle oil from catalytic cracking in a fluidized bed).
  • the temperature in this step is usually from about 300 to about 500 ° C, often from about 300 ° C to about 450 ° C and very often from about 350 to about 420 ° C. This temperature is usually adjusted according to the desired level of hydrodesulfurization and / or saturation of the aromatics and must be compatible with the desired cycle time.
  • the hourly space velocity (VVH) and the hydrogen partial pressure are chosen according to the characteristics of the product to be treated and the desired conversion. Most often the VVH is in a range from about 0.1 h -1 to about 10 h -1 and preferably 0.1 h -1 - 5 h -1 and preferably from about 0.2 h -1 to about 2 h - 1 .
  • the total amount of hydrogen mixed with the feedstock is usually about 200 to about 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed and most often about 250 to 2000 Nm 3 / m 3 and preferably from about 300 to 1500 Nm 3 / m 3 .
  • the same operation is carried out with a partial pressure of reduced hydrogen sulfide compatible with the stability of the sulfurized catalysts.
  • the partial pressure of hydrogen sulfide is preferably less than 0.05 MPa, preferably 0.03 MPa, more preferably 0.01 MPa.
  • the ideal catalyst In the hydrodesulfurization zone, the ideal catalyst must have a high hydrogenating power so as to achieve a deep refining of the products and to obtain a significant lowering of sulfur.
  • the hydrotreatment zone operates at a relatively low temperature, which is in the direction of a deep hydrogenation, hence an improvement in the aromatic content of the product and its cetane and a limitation of the product. coking. It is not within the scope of the present invention to use in the hydrotreating zone simultaneously or successively a single catalyst or several different catalysts. Usually this step is carried out industrially in one or more reactors with one or more catalytic beds and downflow of liquid.
  • At least one fixed bed of hydrotreatment catalyst comprising a hydrodehydrogenating function and an amorphous support is used.
  • a catalyst is used, the support of which is for example chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds and for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide and phosphoric anhydride. Most often a support of alumina and better alumina n or ⁇ is used.
  • the hydrogenating function is provided by at least one Group VIII metal and / or Group VIB.
  • the total content of metal oxides of groups VI and VIII is often from about 5 to about 40% by weight and generally from about 7 to 30% by weight and the weight ratio expressed as metal oxide between metal (metal) group VI on metal Group VIII (or metals) is generally from about 20 to about 1 and most often from about 10 to about 2.
  • the ideal catalyst must have a high hydrogenating power so as to achieve a deep refining of the products and to obtain a significant lowering of sulfur.
  • This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • a NiMo catalyst will be used.
  • the desulfurization of a NiMo catalyst is greater than that of a CoMo catalyst because the first shows a hydrogenating function more important than the second.
  • a catalyst comprising from 0.5 to 10% by weight of nickel and preferably from 1 to 5% by weight of nickel (expressed as nickel oxide NiO) and from 1 to 30% by weight of molybdenum and preferably from 1 to 30% by weight of molybdenum may be used. at 20% by weight of molybdenum (expressed as molybdenum oxide (MoO 3 ) on an amorphous mineral support.
  • nickel oxide NiO nickel oxide
  • MoO 3 molybdenum oxide
  • the catalyst may also contain an element such as phosphorus and / or boron. This element may have been introduced into the matrix or may have been deposited on the support. It is also possible to deposit silicon on the support, alone or with phosphorus and / or boron.
  • the concentration of said element is usually less than about 20% by weight (calculated oxide) and most often less than about 10% by weight and is usually at least 0.001% by weight.
  • concentration of boron trioxide B 2 O 3 is usually from about 0 to about 10% by weight.
  • Preferred catalysts contain silicon deposited on a support (such as alumina), optionally with P and / or B also deposited, and also containing at least one metal of GVIII (Ni, Co) and at least one metal of GVIB (W, MB).
  • a support such as alumina
  • P and / or B also deposited, and also containing at least one metal of GVIII (Ni, Co) and at least one metal of GVIB (W, MB).
  • gasolines and gas oils resulting from conversion processes are very refractory to hydrotreating if they are compared with gas oils directly derived from the atmospheric distillation of crudes.
  • the critical point is the conversion of the most refractory species, particularly the di- and trialkylated or more dibenzothiophenes for which the access of the sulfur atom to the catalyst is limited by the alkyl groups.
  • the route of the hydrogenation of an aromatic ring before desulfurization by breaking the Csp3-S bond is faster than the direct desulfurization by breaking the Csp2-S bond.
  • Conversion gas oils therefore require very severe operating conditions to achieve future sulfur specifications. If it is desired to hydrotreat these conversion gas oils under operating conditions making it possible to maintain moderate investments with a reasonable cycle time of the hydrotreatment catalyst, optimization of the integration of the process equipment is necessary.
  • step c) of hydrotreatment additional hydrogen is introduced into step c) of hydrotreatment.
  • the amount of additional hydrogen introduced in this step c) is greater than the chemical consumption of hydrogen necessary to obtain the performances set under the operating conditions set for this step c).
  • the quantity of additional hydrogen is at least equal to the difference in the material balance, the difference found corresponds approximately to the chemical consumption of hydrogen.
  • An appropriate means for measuring the hydrogen content in the feedstock or the liquid effluent is the 1 H-NMR measurement.
  • the chromatographic analysis is suitable for the gaseous effluent.
  • step c) All the makeup hydrogen necessary for the process is introduced in step c). Therefore, the quantity supplied will also take into account the chemical consumption of hydrogen on step a) so as to bring the hydrogen necessary for the hydrogenation sought in step a) also.
  • Another consequence is that it is possible to optimize the hydrogen filling in step c) according to the refractory level of the gas oil to be treated.
  • the invention thus makes it possible to substantially improve the performance of the hydrotreatment catalyst and in particular the hydrodesulfurization for given temperature and total pressure conditions and which correspond to industrially practicable values. Indeed, it makes it possible to maximize the hydrogen partial pressure, therefore the performance, on step c), while maintaining a total pressure of steps a) and c) (and therefore their investment cost) almost identical.
  • the residual sulfur content of the gas oil can be reduced by about 30% compared to a process in which all the additional hydrogen would be introduced in step a) or the additional hydrogen supplied to the reactor.
  • step c) would be just equal to the chemical consumption of hydrogen in step c).
  • Step d) final separation on at least part, and preferably all of the hydrotreated effluent from step c).
  • the hydrogen is separated from the effluent. It contains small amounts of hydrogen sulfide and usually does not require treatment.
  • the hydrogen sulphide is also separated from the liquid effluent and thus a gas oil is obtained at most 50 ppm by weight of sulfur, and most often at less than 10 ppm by weight of sulfur. Naphtha is also obtained in general.
  • the hydrogen-containing gas which has been separated in step b) is, if necessary, at least partly treated to reduce its H 2 S content (preferably by washing with at least one amine) before recycling it into step a) and possibly in step c).
  • the recycle gas preferably contains an amount of H 2 S greater than 0% and up to 1% mol.
  • this amount is at least 15 ppm, preferably at least 0.1%, or even at least 0.2% mol.
  • At least a portion of the gaseous fraction can be sent to an amine wash section where the H 2 S is removed in its entirety; the other part can pass the amine wash section and be sent directly to recycling after compression.
  • H 2 S is useful for maintaining the catalysts in the sulfurized state in steps a) and c), but an excess of H 2 S could reduce hydrodesulfurization.
  • step d With the hydrogen from step b) optionally purified, is added the hydrogen separated in step d). The mixture is re-compressed and then recycled to step a) and possibly to step c).
  • step c) may not be necessary, when all the additional hydrogen is introduced in step c).
  • the gas oil obtained has a sulfur content of less than 50 ppm by weight, generally less than 20 ppm, and most often less than 10 ppm.
  • the cetane has been improved from 1 to 12 points, generally from 1 to 7, or from 1 to 5 points with respect to the diesel entering hydrotreating. Its total amount of aromatics has also been reduced by at least 10%, the reduction can even go up to 90%.
  • the amount of polyaromatics in the final gas oil is at most 11% wt.
  • the liquid effluent is sent to a separator (6), which is preferably a steam stripper, to separate the hydrogen sulfide from the hydrocarbon effluent. At the same time, at least a portion of the naphtha fraction can be separated with the hydrogen sulfide.
  • the hydrogen sulfide with said naphtha exits the line (7) while the hydrocarbon effluent is obtained in the line (8).
  • the hydrocarbon effluent then passes into a distillation column (9) and is separated at least one distillate cut including a gas oil fraction and found in the pipe (11), it is also separated a heavier fraction than the diesel fuel and found in the pipe (10).
  • the naphtha separated at the separator (6) is stabilized (H 2 S removed).
  • the stabilized naphtha is injected into the effluent entering column (9).
  • the naphtha can be separated in an additional pipe not shown on the figure 1 .
  • the column (9) separates a diesel fraction mixed with the naphtha in the line (11).
  • the fraction of the pipe (10) is advantageously sent to the zone (V) of catalytic cracking.
  • the naphtha obtained separately, optionally added naphtha separated in the zone (IV) is advantageously separated into gasoline heavy and light, the heavy gasoline being sent to a reforming zone and the light gasoline in an area where isomerization is carried out paraffins.
  • the distillate cut is then sent (alone or optionally added a cut) naphtha and / or diesel outside the process) in a hydrotreating zone (III) provided with at least one fixed bed of a hydrotreatment catalyst.
  • the hydrotreated effluent obtained exits via the pipe (12) to be sent to the separation zone (IV) schematically in dotted lines on the figure 1 .
  • separator preferably a cold separator, wherein are separated a gaseous phase exiting through the pipe (14) and a liquid phase exiting through the pipe (15).
  • the liquid phase is sent to a separator (16) preferably a stripper, to remove the hydrogen sulfide exiting in the pipe (17), usually mixed with the naphtha.
  • a diesel fraction is withdrawn through the line (18), which fraction meets the sulfur specifications, ie less than 50 ppm wt sulfur is generally less than 10 ppm.
  • the H 2 S-naphtha mixture is then optionally treated to recover the purified naphtha fraction.
  • the method and the installation according to the invention also advantageously comprise a hydrogen recycling loop for the 2 zones (I) and (II) and which is now described from the figure 1 .
  • the gas containing hydrogen (gaseous phase of the pipe (4) separated in the zone (II)) is treated to reduce its sulfur content and possibly eliminate the hydrocarbon compounds that may have passed during the separation.
  • the gaseous phase of the pipe (4) is sent into an air cooler (19) after being washed by the water injected by the pipe (20) and partially condensed by a hydrocarbon fraction sent by the line (21).
  • the effluent of the dry cooler is sent to a zone (22) of separation where are separated the water which is withdrawn by the pipe (23), a hydrocarbon fraction by the pipe (21) and a gaseous phase by the pipe ( 24).
  • Part of the hydrocarbon fraction of the pipe (21) is sent to the separation zone (II), and advantageously to the pipe (5).
  • the gaseous phase obtained in the pipe (24) freed from the hydrocarbon compounds is, if necessary, sent to a treatment unit (25) to reduce the sulfur content.
  • it is a treatment with at least one amine.
  • the hydrogen-containing gas thus optionally purified is then re-compressed in the compressor (27).
  • the compressed mixture is then recycled partly to the hydrotreatment zone (III) (Step c) and partly to the hydroconversion zone (1) (step a) through the pipes (28) and the pipe (29) respectively. .
  • recycle hydrogen is introduced at the inlet of the reaction zones with the liquid feed.
  • Part of the hydrogen can also be introduced between the catalytic beds in order to control the inlet temperature of the bed ("quench").
  • a preferred mode for bringing hydrogen to zone (III) is to provide a recycle line and a make-up line.
  • the invention operates at moderate pressures, investments are reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (15)

  1. Verfahren zur Behandlung von Erdölbeschickungen, wovon mindestens 80 Gew.-% oberhalb von 340 °C sieden, und die mindestens 0,05 Gew.-% Schwefel enthalten, um mindestens einen Gasölschnitt mit einem Schwefelgehalt von höchsten 50 ppm (Gewicht) herzustellen, wobei das Verfahren die folgenden Schritte umfasst:
    a) Hydrokonversion im wallenden Bett in Gegenwart eines mindestens teilweise amorphen Hydrokonversionskatalysators, der mit aufsteigendem Flüssigkeits- und Gasstrom bei einer Temperatur von 300 - 550 °C, einem Druck von 2 - 35 MPa, einer Raumgeschwindigkeit pro Stunde von 0,1 h-1 - 10h-1 und in Gegenwart von 50 - 5.000 Nm3 Wasserstoff/m3 Beschickung funktioniert, wobei die Nettokonversion von Produkten, die oberhalb von 360 °C sieden, bei 10-80 Gew.-% liegt,
    b) Abscheiden eines Gases aus dem Abfluss, das Wasserstoff, den in Schritt a) gebildeten Schwefelwasserstoff und eine Fraktion enthält, die schwerer ist als Gasöl, wobei das Gas, das den Wasserstoff enthält, danach zum Schritt a) zurückgeführt wird,
    c) Hydrobehandlung, durch Kontakt mit mindestens einem Katalysator, mindestens eines in Schritt b) erhaltenen Destillatschnitts, der eine Gasölfraktion beinhaltet, bei einer Temperatur von 300 - 500 °C, einem Druck von 2 - 12 MPa, einer Raumgeschwindigkeit pro Stunde von 0,1 - 10h-1 und in Gegenwart von 200 - 5.000 Nm3 Wasserstoff/m3 Beschickung,
    d) Abscheiden des Wasserstoffs, der Gase und mindestens eines Gasölschnitts mit einem Schwefelgehalt von weniger als 50 ppm (Gewicht), wobei der abgeschiedene Wasserstoff zusammen mit dem Wasserstoff aus Schritt b) erneut verdichtet, und dann zum Schritt a) zurückgeführt wird,
    wobei in dem Verfahren die Gesamtheit des für das Verfahren erforderlichen Zusatzwasserstoffs zu Schritt c) geleitet wird.
  2. Verfahren nach Anspruch 1, wobei die Menge an Zusatzwasserstoff, die in Schritt c) eingeführt wird, größer ist als der chemische Wasserstoffverbrauch, der erforderlich ist, um die Leistungen zu erhalten, die in den für Schritt c) festgelegten Betriebsbedingungen festgelegt wurden.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die schwere Fraktion in ein Verfahren zum katalytischen Kracken geschickt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der H2S-Partialdruck am Ausgang von Schritt c) weniger als 0,05 MPa beträgt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei in Schritt b) auch das Naphta abgeschieden wird und in Schritt c) eine Gasölfraktion durchläuft.
  6. Verfahren nach einem der Ansprüche 1 bis 3, wobei in Schritt c) eine mit Naphta gemischte Gasölfraktion durchläuft.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei mindestens ein Teil des Gases, das den in Schritt b) abgeschiedenen Wasserstoff enthält, behandelt wird, um seinen Gehalt an Schwefelwasserstoff zu reduzieren, dann zum Schritt a) zurückgeführt wird, wobei das zurückgeführte Gas Schwefelwasserstoff in der Größenordnung von höchstens 1 Mol.-% enthält.
  8. Verfahren nach Anspruch 7, wobei es sich bei der Behandlung um eine Wäsche mit mindestens einem Amin handelt.
  9. Verfahren nach einem der Ansprüche 7 bis 8, wobei der Wasserstoff ebenfalls in den Schritt c) zurückgeführt wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die in den Schritten b) und d) abgeschiedenen Fraktionen, in Schwer- und Leichtbenzin geschieden werden, wobei das Schwerbenzin zur Reformierung und das Leichtbenzin zur Paraffinisomerisierung geschickt werden.
  11. Anlage zur Behandlung von Erdölbeschickungen, wovon mindestens 80 Gew.-% oberhalb von 340 °C sieden und mindestens 0,05 % Schwefel enthalten, umfassend:
    a) eine Zone (I) zur Hydrokonversion im wallenden Bett mit einem Hydrokonversionskatalysator, die auch mit einer Leitung (1) zum Einführen der zu behandelnden Beschickung, einer Leitung (2) für die Ausleitung des hydrokonvertierten Abflusses, mindestens eine Leitung (31) zum Entnehmen von Katalysator und mindestens eine Leitung (32) zum Zuführen von frischem Katalysator sowie mit einer Leitung (29) zum Einführen von Wasserstoff ausgestattet ist, wobei die Zone mit einem aufsteigenden Beschickungs- und Gasstrom arbeitet,
    b) eine Zone (II) zum Abscheiden, die mindestens einen Separator (3) (6) beinhaltet, um das Gas, das reich an Wasserstoff ist, durch die Leitung (4) abzuscheiden, um in der Leitung (7) den Schwefelwasserstoff abzuscheiden und in der Leitung (8) eine flüssige Fraktion zu erhalten, und außerdem eine Destillationssäule (9) beinhaltet, um mindestens einen Destillatschnitt, der eine Gasölfraktion beinhaltet, in der Leitung (11) und eine schwere Fraktion in der Leitung (10) abzuscheiden,
    c) eine Zone (III) zur Hydrobehandlung, die mindestens ein Festbett mit Hydrobehandlungskatalysator enthält, um eine Gasölfraktion zu behandeln, die am Ende von Schritt b) erhalten wird, die mit einer Leitung (30) zum Einführen der Gesamtheit des Zusatzwasserstoffs und einer Leitung (12) zum Ausleiten des hydrobehandelten Abflusses ausgestattet ist,
    d) eine Zone (IV) zum Abscheiden, die mindestens einen Separator (13) (16) beinhaltet, um den Wasserstoff über die Leitung (14) abzuscheiden, um in der Leitung (17) den Schwefelwasserstoff und über die Leitung (18) ein Gasöl abzuscheiden, das einen Schwefelgehalt von weniger als 50 ppm aufweist,
    wobei die Anlage eine Zone (25) zur Behandlung, um den H2S-Gehalt des Gases, das den Wasserstoff aus Leitung (4) enthält, zu senken, einen Verdichter (27), der das Gas aus der Zone (25) und den Wasserstoff, der durch die Leitung (14) geleitet wird, erneut verdichtet, und eine Leitung (29) zum Zurückführen des Wasserstoffs in die Zone (I) umfasst.
  12. Anlage nach Anspruch 11, die außerdem eine Zone (V) zum katalytischen Kracken umfasst, wobei die schwere Fraktion über die Leitung (10) geschickt wird.
  13. Anlage nach einem der Ansprüche 11 oder 12, wobei die Zone (II) einen Gas-/Flüssigkeitsseparator (3), um ein Gas, das Wasserstoff enthält, über die Leitung (4) abzuscheiden, dann einen Separator (6), der den Abfluss, der aus dem Separator (3) stammt, einströmen lässt, um den Schwefelwasserstoff und Naphta über die Leitung (7) abzuscheiden und eine flüssige Fraktion in der Leitung (8) zu erhalten, umfasst, wobei die Zone (II) außerdem eine Destillationssäule (9) umfasst, um über die Leitung (11) einen Naphta- und Gasöl-Schnitt abzuscheiden und über die Leitung (10) eine Fraktion abzuscheiden, die schwerer ist als das Gasöl und wobei die Leitung (10) mit einer Zone (V) zum katalytischen Kracken verbunden ist.
  14. Anlage nach einem der Ansprüche 11 bis 13, wobei die Zone (II) einen Gas-/Flüssigkeitsseparator (3), um ein Gas, das Wasserstoff enthält, über die Leitung (4) abzuscheiden, dann einen Separator (6) umfasst, der den Abfluss aus dem Separator (3) einströmen lässt, um den Schwefelwasserstoff und Naphta über die Leitung (7) abzuscheiden und um in der Leitung (8) eine flüssige Fraktion zu erhalten, wobei auf der Leitung (7) ein Stabilisator angeordnet ist, um den Schwefelwasserstoff zu entfernen, wobei das gereinigte Naphta in die Leitung (8) geschickt wird, wobei die Zone (II) außerdem eine Destillationssäule (9) umfasst, um das Naphta, eine Fraktion, die schwerer ist als das Gasöl, über die Leitung (10), und einen Gasölschnitt über die Leitung (11) abzuscheiden, wobei die Leitung (10) mit der Zone (V) zum katalytischen Kracken verbunden ist.
  15. Anlage nach Anspruch 11, die außerdem mit einer Leitung (28) zur Rückführung des Wasserstoffs in die Zone (III) ausgestattet ist.
EP02290433A 2001-11-12 2002-02-22 Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt Expired - Lifetime EP1312661B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0114594 2001-11-12
FR0114594A FR2832159B1 (fr) 2001-11-12 2001-11-12 Procede de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre

Publications (2)

Publication Number Publication Date
EP1312661A1 EP1312661A1 (de) 2003-05-21
EP1312661B1 true EP1312661B1 (de) 2011-06-08

Family

ID=8869294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290433A Expired - Lifetime EP1312661B1 (de) 2001-11-12 2002-02-22 Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt

Country Status (5)

Country Link
EP (1) EP1312661B1 (de)
AT (1) ATE512207T1 (de)
CA (1) CA2372619C (de)
ES (1) ES2367677T3 (de)
FR (1) FR2832159B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857370B1 (fr) * 2003-07-07 2005-09-02 Inst Francais Du Petrole Procede de production de distillats et d'huiles lubrifiantes
US7704377B2 (en) 2006-03-08 2010-04-27 Institut Francais Du Petrole Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
US7938953B2 (en) * 2008-05-20 2011-05-10 Institute Francais Du Petrole Selective heavy gas oil recycle for optimal integration of heavy oil conversion and vacuum gas oil treating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380910A (en) * 1966-05-17 1968-04-30 Chemical Construction Corp Production of synthetic crude oil
FR2791354B1 (fr) * 1999-03-25 2003-06-13 Inst Francais Du Petrole Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement

Also Published As

Publication number Publication date
CA2372619A1 (fr) 2003-05-12
ES2367677T3 (es) 2011-11-07
FR2832159A1 (fr) 2003-05-16
ATE512207T1 (de) 2011-06-15
EP1312661A1 (de) 2003-05-21
CA2372619C (fr) 2010-05-11
FR2832159B1 (fr) 2004-07-09

Similar Documents

Publication Publication Date Title
EP3018188B1 (de) Verfahren zur umwandlung von erdöleinsätzen, das eine hydrotreating-phase im festbett, eine hydrocracking-phase in einer wirbelschicht, eine reifephase und eine abscheidungsphase von sedimenten für die herstellung von heizöl mit geringem sedimentanteil umfasst
EP3303523B1 (de) Verfahren zur umwandlung von einsatzstoffen mit einem wasserstoffbehandlungsschritt, einem hydrocracking-schritt, einem ausfällungsschritt und einem sedimentabtrennungsschritt zur herstellung von brennstoffölen
EP2788458B1 (de) Verfahren zur hydrokonverion von erdöleinsätzen in festen betten zur erzeugung von brennstoffölen mit niedrigem schwefelgehalt
WO2008081100A2 (fr) Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore
CA2301985C (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement
CA2248882C (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement
FR2964387A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recycle de l'huile desasphaltee
WO2012085407A1 (fr) Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d'hydroconversion
WO2014096591A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee
EP1157084B1 (de) Anpassungsfähiges verfahren zur herstellung medizinischer öle und gegebenenfalls mitteldestillaten
CA2215575C (fr) Procede en plusieurs etapes de conversion d'un residu petrolier
WO2019134811A1 (fr) Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
CA2607252C (fr) Procede et installation de conversion de fractions lourdes petrolieres en lit fixe avec production integree de distillats moyens a tres basse teneur en soufre
EP1312661B1 (de) Umwandlungsverfahren für schwere Petroleumfraktionen in einem wallenden Bett zur Herstellung von Mitteldistillaten mit niedrigem Schwefelgehalt
WO2012085406A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde.
EP1310544B1 (de) Verfahren zur Umwandlung von schweren teroleumfraktionen zur Herstellung einer Beschickung für ein katalytisches Crackverfahren und Mitteldestillate mit niedrigem Schwefelgehalt
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
FR2906813A1 (fr) Procede de conversion tres profonde de residus petroliers par hydroconversion suivie de desasphaltage
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
CA2937194A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
CA2472906C (fr) Procede de production de distillats et d'huiles lubrifiantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031121

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20051108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60240220

Country of ref document: DE

Effective date: 20110721

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401903

Country of ref document: GR

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2367677

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111010

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60240220

Country of ref document: DE

Effective date: 20120309

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210223

Year of fee payment: 20

Ref country code: GR

Payment date: 20210222

Year of fee payment: 20

Ref country code: IT

Payment date: 20210223

Year of fee payment: 20

Ref country code: FR

Payment date: 20210223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210329

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60240220

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220223