EP1088361A1 - Unite membrane-electrodes pour pile a combustible - Google Patents

Unite membrane-electrodes pour pile a combustible

Info

Publication number
EP1088361A1
EP1088361A1 EP99919173A EP99919173A EP1088361A1 EP 1088361 A1 EP1088361 A1 EP 1088361A1 EP 99919173 A EP99919173 A EP 99919173A EP 99919173 A EP99919173 A EP 99919173A EP 1088361 A1 EP1088361 A1 EP 1088361A1
Authority
EP
European Patent Office
Prior art keywords
membrane
nonwoven fabric
membrane electrode
electrode unit
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99919173A
Other languages
German (de)
English (en)
Inventor
Ulrich Stimming
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP1088361A1 publication Critical patent/EP1088361A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a membrane electrode assembly for a fuel cell, comprising an anode optionally coated with a catalyst, a cathode optionally coated with a catalyst, and a proton conductor located between the anode and cathode.
  • Such a unit causes a separation of the ionic and electrical path in the reaction of hydrogen and oxygen-containing reaction gases or flow components in a fuel cell for the direct conversion of chemical into electrical energy.
  • the electrodes must be very good electron conductors (electrical resistance around 0.1 ⁇ cm "1 ). Together with the electrolyte surface, they should catalyze the required reaction.
  • the electrolyte must have a high ionic conductivity have the lowest possible electronic conductivity. It must also be as impermeable as possible to the starting gases. All materials should be chemically inert with each other and with the reactants, so they must not enter into undesirable compounds with one another under the strongly oxidizing conditions on the cathode and the strongly reducing conditions on the anode.
  • the solid components contained in the individual cells must have sufficient mechanical strength. Furthermore, material and process costs, lifespan and environmental compatibility of the cell components play an important role.
  • Proton-conducting polymer membranes have become established in fuel cells for operating temperatures of 80 to 90 ° C. They combine the ability of liquids to give the molecules and protons free mobility and that of solids to be dimensionally stable. These requirements are almost ideally met by a perfluorinated ionomer membrane based on polytetrafluoroethylene with sulfonated perfluorovinyl ether side chains. This material consists of hydrophobic and hydrophilic areas that separate in the presence of water to form a gel-like but dimensionally stable membrane. The hydrophobic main chain of the polymer is very resistant to oxidation and reduction and gives the membrane a dimensionally stable structure even when swollen.
  • the hydrophilic, liquid-like sulfonic acid-containing side chains swollen in water enable very good proton conductivity.
  • the pore size of a few nanometers corresponds to the dimensions of a few water molecules.
  • the presence of water enables high proton mobility in the channels and pores.
  • such membranes tend to dry out, especially when the combustion oxygen is supplied to the cell by means of an air flow, but also because of the property of the proton flow, to transport water molecules from the anode to the cathode.
  • the upper end of the thermal stability of the known film or its sulfonic acid groups is 90 to 100 ° C; the morphological structure begins to collapse at higher temperatures.
  • the known perfluorinated ionomer membrane therefore closes at higher operating temperatures as an independent film, so that it is unsuitable for the following applications:
  • the object of the invention is to provide a membrane-electrode unit for a fuel cell, which complements the advantageous properties of the perfluorinated ionomer membrane with the following properties:
  • the proton conductor is formed by a microfiber nonwoven which is saturated with an electrolyte until saturated; wherein the nonwoven fabric is chemically inert to the electrolyte at temperatures up to +200 ° C and under oxidizing and reducing conditions, the nonwoven fabric weight being: 20 to 200 g / m 2 ; where the nonwoven thickness is at most 1 mm and where the pore volume is: 65 to 92%.
  • the average pore radius of the microfiber nonwoven should be 20 nm to 10 ⁇ m.
  • the nonwoven structure of the microfiber nonwoven ensures the mechanical stability of the membrane, so that the electrolyte no longer has to fulfill this task.
  • the material costs for the membrane can be reduced by up to 90%, compared e.g. B. with the expenses for the production of a correspondingly dimensioned, independent membrane made of perfluorinated ionomer.
  • the microfiber nonwoven fabric can be filled with perfluorinated ionomer, the perfluorinated ionomer being a polytetrafluoroethylene with sulfonated perfluorovinyle- ther side chains can be.
  • perfluorinated ionomer being a polytetrafluoroethylene with sulfonated perfluorovinyle- ther side chains can be.
  • Nonwoven material Polysulfone fibers with a rectangular cross-section (width 6 to 13 ⁇ m, height 1, 7 to 2.4 ⁇ m).
  • Production of the fibers spinning a solution of polysulfone in methylene chloride in an electrostatic field.
  • a device according to DE-OS 26 20 399 can be used.
  • the fibers are collected on a linear, continuously moving, textile carrier.
  • Nonwoven properties Weight: 150 g / m 2 thickness (compressed): 0.05 mm Thickness (impregnated with electrolyte): 0.18 mm Mean pore radii in the uncompressed state: 8 ⁇ m Mean pore radii in the compressed state: 4 ⁇ m pore volume: 83%
  • the temperature resistance of the membrane according to the invention is, unless there are other reasons to the contrary, essentially determined by the nonwoven material and consequently only ends at about 174 ° C. for the pure fiber material polysulfone.
  • the mechanical stability also increases up to temperatures of 250 ° C. This enables high-temperature operation of the fuel cell, which can significantly reduce the poisoning of the anode catalyst.
  • microfiber nonwoven is overlaid with liquid Nafion, a commercially available, perfluorinated ionomer from DuPont, in a glass frit with a diameter of 16 mm.
  • liquid Nafion a commercially available, perfluorinated ionomer from DuPont
  • the liquid phase is drawn into the pore structure of the nonwoven.
  • the membrane soaked is treated in a drying cabinet at 60 ° C. Storage until further processing is then possible in distilled water.
  • microfiber nonwoven fabric is impregnated with three different molar, aqueous sulfuric acid solutions analogously to Example 1, but the sulfuric acid is heated to about 70 ° C. to reduce the viscosity. Without obtaining any other result, the nonwoven fabric can also be boiled for a few minutes in the acid heated to 70 ° C.
  • the membrane thus obtained is expediently stored in the corresponding impregnation medium.
  • Example 5 in the table represents a comparative example for corresponding measurements on a 125 ⁇ m thick, self-supporting polymer membrane of the prior art made of perfluorinated ionomer (Naf ⁇ on-117, DuPont).
  • the values for the specific conductivity S / cm clearly show that the operation of a fuel cell with the state of the art is possible with the membrane according to the invention, which is considerably less expensive, structurally simple and mechanically more resistant than pure Nafion.
  • Concentrated phosphoric acid can be used as an ion conductor for use at temperatures above 100 ° C.
  • the nonwovens soaked with electrolyte used in Examples 1 to 4 are twice as thick.
  • the figure shows the corresponding current / voltage curves at room temperature, which correspond to Examples 1, 3 and 5. It follows that, compared with the prior art (Example 5), comparable curves are achieved through the membranes according to the invention.
  • the above-mentioned effects of higher cell output due to higher acid concentration or thinner nonwoven materials would have an effect in this representation by shifting the curves in the positive direction of the ordinate.
  • concentrated phosphoric acid can also be used as electrolytes for applications at temperatures above 100 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne une unité membrane-électrodes pour pile à combustible, qui comprend une anode éventuellement recouverte d'un catalyseur, une cathode éventuellement recouverte d'un catalyseur et un conducteur de protons situé entre l'anode et la cathode. Le conducteur de protons est formé par un non-tissé à base de microfibres qui est imprégné d'un électrolyte jusqu'à saturation. A des températures allant jusqu'à +200 °C, ainsi que dans des conditions d'oxydation et de réduction, le non-tissé est chimiquement inerte par rapport à l'électrolyte. Le non-tissé pèse entre 20 et 200 g/m2 et son épaisseur est inférieure à 1 mm et le volume poreux se situe entre 65 et 72 %.
EP99919173A 1998-05-18 1999-04-01 Unite membrane-electrodes pour pile a combustible Withdrawn EP1088361A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19821978 1998-05-18
DE19821978A DE19821978C2 (de) 1998-05-18 1998-05-18 Membran-Elektroden-Einheit für eine Brennstoffzelle
PCT/EP1999/002233 WO1999060650A1 (fr) 1998-05-18 1999-04-01 Unite membrane-electrodes pour pile a combustible

Publications (1)

Publication Number Publication Date
EP1088361A1 true EP1088361A1 (fr) 2001-04-04

Family

ID=7867976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99919173A Withdrawn EP1088361A1 (fr) 1998-05-18 1999-04-01 Unite membrane-electrodes pour pile a combustible

Country Status (10)

Country Link
EP (1) EP1088361A1 (fr)
JP (1) JP2002516472A (fr)
KR (1) KR100392921B1 (fr)
CN (1) CN1294762A (fr)
AU (1) AU738679B2 (fr)
BR (1) BR9910535A (fr)
CA (1) CA2327520A1 (fr)
DE (1) DE19821978C2 (fr)
WO (1) WO1999060650A1 (fr)
ZA (1) ZA200001232B (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10101315A1 (de) * 2001-01-12 2002-07-25 Ulrich Stimming Brennstoffzelle mit protonenleitendem Festelektrolyt für den Betrieb im Temperaturbereich 200-600 DEG C
DE10208275A1 (de) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Flexible Elektrolytmembran auf Basis eines Polymerfasern umfassenden Trägers, Verfahren zu deren Herstellung und die Verwendung derselben
EP1541619A4 (fr) * 2002-07-26 2007-10-31 Asahi Glass Co Ltd Film de polymere, procede de production de ce film, et assemblage uni d'electrodes et de membrane pour pile a combustible du type a polymere solide
JP4815759B2 (ja) * 2003-06-30 2011-11-16 住友化学株式会社 高分子電解質複合膜、その製造方法及びその用途
CN100454623C (zh) * 2004-04-28 2009-01-21 日产自动车株式会社 燃料电池用膜-电极接合体以及使用其的燃料电池
US9640805B2 (en) * 2005-10-17 2017-05-02 GM Global Technology Operations LLC Coating process for fuel cell components
DE102006036019A1 (de) * 2006-08-02 2008-02-07 Pemeas Gmbh Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1002588A (en) * 1973-04-04 1976-12-28 Alfred D. Nelson Membrane of micro-fibers for fuel cells
DE2620399C3 (de) * 1976-05-08 1980-11-13 Fa. Carl Freudenberg, 6940 Weinheim Vorrichtung zum elektrostatischen Versprühen
JPS6337134A (ja) * 1986-08-01 1988-02-17 Tokuyama Soda Co Ltd 含フツ素系イオン交換膜
ES2139376T3 (es) * 1995-07-27 2000-02-01 Aventis Res & Tech Gmbh & Co Electrolitos polimeros y procedimiento para su produccion.
US5672438A (en) * 1995-10-10 1997-09-30 E. I. Du Pont De Nemours And Company Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9960650A1 *

Also Published As

Publication number Publication date
CN1294762A (zh) 2001-05-09
ZA200001232B (en) 2002-05-13
BR9910535A (pt) 2001-01-16
DE19821978A1 (de) 1999-11-25
DE19821978C2 (de) 2002-06-06
AU3704099A (en) 1999-12-06
CA2327520A1 (fr) 1999-11-25
KR100392921B1 (ko) 2003-07-28
JP2002516472A (ja) 2002-06-04
AU738679B2 (en) 2001-09-27
KR20010071286A (ko) 2001-07-28
WO1999060650A1 (fr) 1999-11-25

Similar Documents

Publication Publication Date Title
EP0867048B1 (fr) Electrode de diffusion gazeuse pour piles a combustible avec membrane en electrolite polymerique
DE69435082T2 (de) Organische brennstoffzelle, verfahren zum betrieb der zelle und herstellung einer elektrode dafür
DE69732648T2 (de) Mehrschichtige membranen für brennstoffzellen unter nutzung von direktgespeisten brennstoffen
DE69835992T2 (de) Polymerelektrolytbrennstoffzelle
DE10159476A1 (de) Verfahren zur Herstellung von Membran-Elektrodeneinheiten für Brennstoffzellen
DE10301810A1 (de) Membran-Elektroden-Einheit, Polymermembranen für eine Membran-Elektroden-Einheit und Polymerelektrolyt-Brennstoffzellen sowie Verfahren zur Herstellung derselben
DE10392493T5 (de) Brennstoffzellen und Brennstoffzellenkatalysatoren
WO2016005257A1 (fr) Unité membrane-électrodes
DE102012212420A1 (de) Membran mit laminierter Struktur und orientierungsgesteuerten Nanofaser-Verstärkungszusatzstoffen für Brennstoffzellen
EP1261057B1 (fr) Procédé de fabrication d'une unité membrane-électrode et unité membrane-élecrote obtenue par ce procédé
DE112020001053T5 (de) Kathodenkatalysatorschicht für eine Brennstoffzelle, und Brennstoffzelle
DE102013205284B4 (de) Elektrodenanordnung mit integrierter Verstärkungsschicht
EP1601037B1 (fr) Membrane-électrode-assemblage pour pile à combustible à alimentation directe en méthanole (DMFC)
DE19821978C2 (de) Membran-Elektroden-Einheit für eine Brennstoffzelle
DE602004009603T2 (de) Monomerverbindung, graft-copolymerverbindung, verfahren zu deren herstellung, polymerelektrolytmembran und kraftstoffzelle
DE10052195B4 (de) Verfahren zur Herstellung einer Brennstoffzellenelektrode
EP1088360B1 (fr) Cellule a combustible
DE102020213449A1 (de) Membran-Elektrodeneinheit mit verbesserter Beständigkeit und Protonenleitfähigkeit und Verfahren zu deren Herstellung
DE10052189B4 (de) Mehrschichtige Gasdiffusionselektrode einer Polymerelektrolytmembran-Brennstoffzelle, Membranelektrodenanordnung, Verfahren zur Herstellung einer Gasdiffusionselektrode und einer Membranelektrodenanordnung sowie Verwendung der Membranelektrodenanordnung
DE102004024844A1 (de) Elektrodenpaste zur Herstellung einer Katalysatorschicht für eine elektrochemische Zelle sowie Verfahren zur Herstellung einer Katalysatorschicht
DE10052190B4 (de) Gasdiffusionselektrode, Membranelektrodenanordnung, Verfahren zur Herstellung einer Gasdiffusionselektrode und Verwendung einer Membranelektrodenanordnung
DE60212209T2 (de) Brennstoffzelle und membran-elektrodenanordnung dafür
DE102015121787A1 (de) Gepfropfte funktionelle Gruppen an Träger aus expandiertem Tetrafluorethylen (ePTFE) für Brennstoffzellen- und Wassertransportmembranen
DE102020102692A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem und Kraftfahrzeug mit einem Brennstoffzellensystem
WO2020109435A1 (fr) Procédé de fabrication d'un agencement membrane-électrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17Q First examination report despatched

Effective date: 20010430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL FREUDENBERG KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031211