EP1054138B1 - Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine - Google Patents

Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine Download PDF

Info

Publication number
EP1054138B1
EP1054138B1 EP00109582A EP00109582A EP1054138B1 EP 1054138 B1 EP1054138 B1 EP 1054138B1 EP 00109582 A EP00109582 A EP 00109582A EP 00109582 A EP00109582 A EP 00109582A EP 1054138 B1 EP1054138 B1 EP 1054138B1
Authority
EP
European Patent Office
Prior art keywords
current
electromagnets
armature
pole face
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00109582A
Other languages
English (en)
French (fr)
Other versions
EP1054138A2 (de
EP1054138A3 (de
Inventor
Christian Boie
Lutz Kather
Günter Schmitz
Frank Van Der Staay
Günter Rudolf Feyerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Publication of EP1054138A2 publication Critical patent/EP1054138A2/de
Publication of EP1054138A3 publication Critical patent/EP1054138A3/de
Application granted granted Critical
Publication of EP1054138B1 publication Critical patent/EP1054138B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • An electromagnetic actuator for actuating a gas exchange valve on a piston internal combustion engine consists in essentially of two spaced apart Electromagnets, the pole faces of which face each other and between which one with the gas exchange valve to be operated connected armature against the force of return springs and is movably guided forth.
  • the arrangement is made so that in the rest position the anchor is in its central position is located between the two pole faces. With the alternating The armature receives current from the two electromagnets each against the force of a return spring on the Pole surface of the energized and thus capturing electromagnet to the facility.
  • the holding current is switched off, then the armature is through the force of the return spring towards the other Electromagnet accelerates during armature movement with a catch current, so that after overshoot about the middle position of the anchor against the force of the the return spring assigned to the catching electromagnet comes to the plant.
  • One of the electromagnets is used for this as a closing magnet through which the gas exchange valve against the Force of the opening spring is held in a closed position, while the other electromagnet serves as an opening magnet, through which the gas exchange valve over the armature counter to the force the associated closing spring held in the open position becomes.
  • the alternating energization of the two electromagnets takes place in time with the resonance frequency known from the system data from the return springs as well as the armature and the gas exchange valve spring-mass system formed as mass (see DE-C-19736 137 or DE-A-197 39840).
  • the current supply the resonance frequency takes place until the armature comes to rest on one of the electromagnets.
  • each of the capturing electromagnets is controlled by sensors the approach grasped. This can be done in the way that when a predetermined position of the armature is reached in with respect to the pole face a corresponding control signal or the distance covered is recorded and if necessary derived from this, the speed is recorded, or the speed is also recorded immediately. These values the approach can then be used via the engine control reduce the capture current so that the anchor at a speed only slightly above "zero" on the pole face, d. H. hits gently so that the person in question Electromagnet only with the low holding current is to be applied.
  • the invention is based on the problem of a flawless Commissioning and the proper operation of a to cause electromagnetic actuator.
  • a reference temperature for the electromagnets is detected and that at normal temperature level the armature due to alternating current supply to the electromagnets the resonance frequency swelled and at a predetermined Pole face, preferably the pole face of the closing magnet, brought to the plant, or at an existing low temperature level one of the electromagnets, preferably the Closing magnet, is subjected to a high current pulse.
  • the cooling water or oil temperature can be used as a reference temperature the piston internal combustion engine can be specified or immediately the coil temperature can be measured. So that's it possible, two different start strategies during commissioning to apply, namely the oscillation at normal temperature or that which takes place with a relatively high expenditure of energy immediate tightening of the armature to the pole face of a Electromagnets at low temperature levels.
  • the level of the high current pulse as a function of the height of the reference temperature is specified. This has the Advantage that in an intermediate range between the low temperature level and normal temperature level, in which after the Cold start strategy that energization is controlled, not only the electricity consumption is reduced, but already the high impact energy can be reduced.
  • the current level with the High current pulse applied to electromagnets in dependence from the approach of the armature to the pole face. This ensures that despite cold start operation the high current pulse and the associated high magnetic force, the anchor with very high speed of movement moved towards the pole face by a reduction the current level of the pending over a certain switching time Current pulse already reduced when approaching can be, so that the restoring force of the return spring becomes more effective and the anchor hits gently.
  • the procedure can also be modified in such a way that the Duration of the current pulse depending on the approach the armature is switched, d. H. the pending high current pulse is before the anchor hits the Pole surface switched off, due to the path and / or speed information the sensors this time is definable.
  • an electromagnet of the electromagnetic actuator heating energy is fed.
  • the heating energy can be applied of the electromagnet with a heating current.
  • a direct current as heating current however, high ohmic losses have to be accepted. Is expedient it is therefore if a high-frequency alternating current is used as the heating current is used so about eddy currents losses in magnetic yoke, To produce anchors and the guide pin.
  • the eddy currents heat up the arrangement. It is useful here if the two electromagnets alternate with heating current be applied, so as to achieve uniform heating to get both electromagnets and local overheating to avoid.
  • Heating energy through alternating energization of the two electromagnets with simultaneous slight anchor movement is due to an alternating current supply the magnet of the armature causes small movements, so that due to the friction in the guides, heating takes place.
  • the current can, but does not have to be in the resonance frequency respectively.
  • a method according to claims 1 to 8 is further provided that at least one of the electromagnets with a current in Form of a start pulse is applied and dependent the initial movements detected by the sensor Anchor the subsequent energization of the electromagnet either is controlled for normal start-up current or but the current for the cold start operation by application the electromagnet with heating energy and / or high current pulse or with heating current and subsequent start-up energization he follows.
  • the electromagnetic Actuator via the engine control system a "vibration test" carried out, d. H. it can also be used without a temperature detection via the motor control the current supply in the normal Start-up current or in the high-pulse current if necessary with the supply of heating energy or also by heating followed by a cold start strategy be performed.
  • the invention further provides that powered by the motor control as a catching magnet A high current pulse is applied to the electromagnet, when the sensor movement reverses the armature movement Anchor is detected before reaching the pole face.
  • a high current pulse is applied to the electromagnet, when the sensor movement reverses the armature movement Anchor is detected before reaching the pole face.
  • the electromagnetic actuator with the defective electromagnet to be controlled so that, for example, in the event of a defective one Opening magnets of the still intact closing magnet are controlled in this way will that under the force of the return spring Gas exchange valve partially opens and, for example, after the reversal of movement forced by the return spring a correspondingly high current pulse in the armature again Locking is returned.
  • This procedure can also be used if as part of the launch strategy described above the sensor system in the engine control is detected that at "normal current supply” the catching process on the wrong side of the magnetic actuator would take place. In this case the level of the current is reduced on the “wrong” side, so the armature of this electromagnet is not is caught but only after passing through it again Middle position on the other, d. H. the "right” side with regulated current is caught.
  • the “wrong” side is usually the opener side, because mostly the gas exchange valve from the closed Position must be started. In special cases, for example, if the crankshaft turns slightly in the event of a cold start should be possible, the opening side can also use the "correct" Be side.
  • An electromagnetic actuator 1 for actuating a gas exchange valve 2 consists essentially of a closing magnet 3 and an opening magnet 4, which are at a distance from each other are arranged and between which an anchor 5 against the Force of return springs, namely an opening spring 7 and a closing spring 8 is guided to move back and forth .
  • the drawing shows the arrangement in the closed position namely in the "classic" arrangement of the opening spring and the closing spring. With this arrangement, the closing spring acts 8 directly via one with the stem 2.1 of the gas exchange valve 2 connected spring plate 2.2.
  • the guide rod 11 of the electromagnetic actuator is separated from the shaft 2.1, is usually in the closed position here Gap in the form of the so-called valve clearance VS is present.
  • the Opener spring 7 is in turn supported on a spring plate 11.1 on the guide rod 11, so that in the middle position under the opposing effect of opening spring 7 and Closing spring 8 the guide rod 11 on the shaft 2.1 of the gas exchange valve 2 is supported.
  • the closing spring 8 and the opening spring 7 are usually like this designed that at rest, d. H. with de-energized Electromagnet of the armature 5 is in the middle position. From this middle position must then correspond to that described above Procedure for starting up the associated piston internal combustion engine the electromagnetic actuator 2 with his gas exchange valve 2 are started.
  • the electromagnets 3 and 4 of the actuator 1 are over a electronic engine control 9 according to the given Control programs and depending on the engine control supplied operating data, such as speed, temperature etc. driven.
  • a sensor 10 is assigned to the actuator 1, which detects the which enables actuator functions.
  • the sensor 10 is shown here schematically. Depending on the design of the sensor For example, the path of the armature 5 can be detected. so that the respective anchor position of the motor control 9 is transmitted can be. In the engine control 9 can then corresponding arithmetic operations, if necessary, also the anchor speed be determined so that depending on the anchor position and / or depending on the anchor speed controlled the energization of the two electromagnets 3, 4 can be.
  • the sensor 10 does not necessarily have to, as shown, the Anchor 5 can be assigned laterally, but it is also possible corresponding sensors in the area of the pole face of the respective Arrange electromagnets or, as with the sensor 10.1, one connected to the armature 5 Assign push rod 11.1.
  • the sensor 10 shown in the schematic drawing is, as already explained above, not in its geometrical Position shown.
  • the sensor 10 is part of the Overall sensor system of the engine control. This also includes context with the invention described above Process a temperature detection, depending on the process concept the temperature on one of the two electromagnets detected or an anyway from the engine control detected temperature for the inventive method with recycled, such as the detection of the cooling water temperature and / or the oil temperature.
  • This part of the sensors is not shown in the drawing but only about the measurement input T in the engine control 9 next to the detections the other, control-relevant operating parameters, such as for example, the crankshaft speed, indicated.
  • the motor controller 9 also has corresponding means Acquisition of current and voltage for each Electromagnets 3 and 4 and to change the current profile and the voltage curve. Via the engine control 9 can then, depending on predefinable operating programs, if necessary, based on corresponding maps, the actuator 1 of the gas exchange valve 2 are fully variable, see above for example with regard to the start and end of the Opening hours. Controls regarding the amount of Opening stroke or the number of opening strokes during one Closing times are controllable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)

Description

Ein elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine besteht im wesentlichen aus zwei mit Abstand zueinander angeordneten Elektromagneten, deren Polflächen einander zugekehrt sind und zwischen denen ein mit dem zu betätigenden Gaswechselventil verbundener Anker gegen die Kraft von Rückstellfedern hin und her bewegbar geführt ist. Die Anordnung ist hierbei so getroffen, daß in der Ruhelage der Anker sich in seiner Mittellage zwischen den beiden Polflächen befindet. Bei der abwechselnden Bestromung der beiden Elektromagneten gelangt der Anker jeweils gegen die Kraft einer Rückstellfeder an der Polfläche des jeweils bestromten und damit fangenden Elektromagneten zur Anlage. Wird an dem jeweils haltenden Elektromagneten der Haltestrom abgeschaltet, dann wird der Anker durch die Kraft der Rückstellfeder in Richtung auf den anderen Elektromagneten beschleunigt, der während der Ankerbewegung mit einem Fangstrom beaufschlagt wird, so daß nach dem Überschwingen über die Mittellage der Anker gegen die Kraft der dem jetzt fangenden Elektromagneten zugeordneten Rückstellfeder zur Anlage kommt. Einer der Elektromagneten dient hierbei als Schließmagnet, durch den das Gaswechselventil gegen die Kraft der Öffnerfeder in einer Schließstellung gehalten wird, während der andere Elektromagnet als Öffnermagnet dient, durch den das Gaswechselventil über der Anker gegen die Kraft der zugeordneten Schließfeder in Öffnungsstellung gehalten wird.
Zur Inbetriebnahme eines derartigen elektromagneten Aktuators erfolgt die wechselnde Bestromung der beiden Elektromagneten im Takte deraus den Systemdaten bekannten Resonanzfrequenz des aus den Rückstellfedern sowie dem Anker und dem Gaswechselventil als Masse gebildeten Feder-Masse-Systems (siehe DE-C-19736 137 oder DE-A-197 39840). Die Bestromung in der Resonanzfrequenz erfolgt hierbei solange, bis der Anker an einem der Elektromagneten zur Anlage kommt. Durch entsprechende Vorgaben in der Motorsteuerung, die die Bestromung der beiden Elektromagneten steuert, kann hierbei erreicht werden, daß der Anschwingvorgang in der Weise beendet wird, daß der Anker an einem vorgegebenen Elektromagneten zur Anlage gekommen ist. Dies ist in der Regel der Schließmagnet. Bei einer mehrzylindrigen Kolbenbrennkraftmaschine werden auf diese Weise die Gaswechselventile der einzelnen Zylinder oder auch von Gruppen von Zylindern durch Anschwingen in die Schließstellung gebracht, so daß zum Starten der Kolbenbrennkraftmaschine in der vorgegebenen Zünd- und Arbeitstaktfolge die Betätigung der einzelnen Gaswechselventile aus der Schließstellung heraus erfolgen kann.
Zur Regelung der Bestromung, insbesondere zur Reduzierung des Fangstroms kurz vor Auftreffen des Ankers auf die Polfläche des jeweils fangenden Elektromagneten, wird über eine Sensorik die Annäherung erfaßt. Dies kann in der Weise erfolgen, daß bei Erreichen einer vorgegebenen Position des Ankers in bezug zur Polfläche ein entsprechendes Steuersignal abgegeben wird oder aber der zurückgelegte Weg erfaßt wird und ggf. hieraus abgeleitet, die Geschwindigkeit erfaßt wird, oder auch die Geschwindigkeit unmittelbar erfaßt wird. Diese Werte der Annäherung können dann über die Motorsteuerung dazu benutzt werden, den Fangstrom so zu reduzieren, daßder Anker mit einer nur geringfügig über "Null" liegenden Geschwindigkeit auf die Polfläche, d. h. sanft auftrifft, so daß der betreffende Elektromagnet nur noch mit dem geringen Haltestrom zu beaufschlagen ist.
Dieses normale Anschwingverfahren und auch der normale Betrieb sind jedoch dann nicht mehr möglich, wenn an der Kolbenbrennkraftmaschine, insbesondere am elektromagnetischen Aktuator ein niedriges Temperaturniveau vorliegt, durch das beispielsweise die Zähigkeit des Schmieröls spürbar erhöht ist und/oder durch temperaturbedingte Materialkonstruktionen vorhandene Passungen für die Führungen der bewegten Teile des Feder-Masse-Systems sich nachteilig im Sinne einer Erhöhung der Reibung verändert haben. Ein niedriges Temperaturniveau im Sinne der Erfindung ergibt sich beispielsweise bei einer Temperatur von etwa 0°C.
Der Erfindung liegt nun die Aufgabe zugrunde eine einwandfreie Inbetriebnahme sowie einen einwandfreien Betrieb eines elektromagnetischen Aktuators zu bewirken.
Diese Aufgabe wird entsprechend einer ausgestaltung der Erfindung dadurch gelöst, daß für die Elektromagnete eine Referenztemperatur erfaßt wird und daß bei Normaltemperaturniveau der Anker durch wechselnde Bestromung der Elektromagneten in der Resonanzfrequenz angeschwungen und an einer vorgebbaren Polfläche, vorzugsweise der Polfläche des Schließmagneten, zur Anlage gebracht wird, oder bei bestehendem Niedrigtemperaturniveau einer der Elektromagneten, vorzugsweise der Schließmagnet, mit einem hohen Stromimpuls beaufschlagt wird. Als Referenztemperatur kann die Kühlwasser- oder Öltemperatur der Kolbenbrennkraftmaschine vorgegeben werden oder auch unmittelbar die Spulentemperatur gemessen werden. Damit ist es möglich, bei der Inbetriebnahme zwei unterschiedliche Startstrategien anzuwenden, nämlich das Anschwingen bei Normaltemperatur oder das mit verhältnismäßig hohem Energieaufwand erfolgende unmittelbar Anziehen des Ankers an die Polfläche eines Elektromagneten bei Niedrigtemperaturniveau.
Um den hohen Stromverbrauch bei der Kaltstartstrategie zu minimieren, ist in einer Ausgestaltung der Erfindung vorgesehen, daß die Höhe des Hochstromimpulses in Abhängigkeit von der Höhe der Referanztemperatur vorgegeben wird. Dies hat den Vorteil, daß in einem Zwischenbereich zwischen Niedrigtemperaturniveau und Normaltemperaturniveau, in dem noch nach der Kaltstartstrategie die Bestromung gesteuert wird, nicht nur der Stromverbrauch reduziert wird, sondern auch bereits die hohe Aufprallenergie reduziert werden kann.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß zur Reduzierung der Aufprallenergie die Stromhöhe des mit dem Hochstromimpuls beaufschlagten Elektromagneten in Abhängigkeit von der Annäherung des Ankers an die Polfläche erfolgt. Hierdurch wird erreicht, daß auch beim Kaltstartbetrieb trotz des hohen Stromimpulses und der damit verbundenen hohen Magnetkraft, die den Anker mit sehr hoher Bewegungsgeschwindigkeit in Richtung auf die Polfläche bewegt, durch eine Reduzierung der Stromhöhe des über eine gewisse Schaltzeit anstehenden Stromimpulses bei der Annäherung bereits reduziert werden kann, so daß die Rückstellkraft der Rückstellfeder stärker wirksam wird und der Anker sanft auftrifft. Das Verfahren kann auch in der Weise modifiziert werden, daß die Zeitdauer des Stromimpulses in Abhängigkeit von der Annäherung des Ankers geschaltet wird, d. h. der anstehende Hochstromimpuls wird noch vor dem Auftreffen des Ankers auf der Polfläche abgeschaltet, wobei aufgrund der Weg- und/oder Geschwindigkeitsinformationen der Sensorik dieser Zeitpunkt festlegbar ist.
In einer weiterer Ausgestaltung der Erfindung ist vorgesehen, daß bei Erfassung eines Niedrigtemperaturniveaus wenigstens einem Elektromagneten des elektromagnetischen Aktuators Heizenergie zugeführt wird. Die Heizenergie kann durch Beaufschlagung des Elektromagneten mit einem Heizstrom erfolgen. Bei der Beaufschlagung mit einem Gleichstrom als Heizstrom sind jedoch hohe Ohmsche Verluste hinzunehmen. Zweckmäßig ist es daher, wenn als Heizstrom ein hochfrequenter Wechselstrom verwendet wird, um so über Wirbelströme Verluste in Magnetjoch, Anker und den Führungsbolzen zu erzeugen. Die Wirbelströme heizen die Anordnung auf. Zweckmäßig ist es hierbei, wenn die beiden Elektromagneten wechselseitig mit Heizstrom beaufschlagt werden, um so zu einer gleichmäßigen Beheizung beider Elektromagneten zu gelangen und lokale Überhitzungen zu vermeiden.
In anderer Ausgestaltung der Erfindung ist vorgesehen, daß Heizenergie durch wechselnde Bestromung der beiden Elektromagneten bei gleichzeitiger geringer Ankerbewegung erfolgt. Bei dieser Verfahrensweise wird durch eine wechselnde Bestromung der Magneten der Anker zu kleinen Bewegungen veranlaßt, so daß aufgrund der Reibung in den Führungen eine Erwärmung stattfindet. Die Bestromung kann, muß aber nicht in der Resonanzfrequenz erfolgen.
Bei einem Verfahren entsprechend dem Oberbegriff des Anspruchs 1, insbesondere aber auch für das erfindungsgemäße Verfahren nach den Ansprüchen 1 bis 8 ist ferner vorgesehen, daß wenigstens einer der Elektromagneten mit einem Strom in Form eines Startimpulses beaufschlagt wird und in Abhängigkeit der hierbei vom Sensor erfaßten Anfangsbewegungen des Ankers die anschließende Bestromung der Elektromagneten entweder für die normale Anschwingbestromung gesteuert wird oder aber der Strom für den Kaltstartbetrieb durch Beaufschlagung der Elektromagneten mit Heizenergie und/oder hohem Stromimpuls oder mit Heizstrom und anschließender Anschwingbestromung erfolgt. Durch dieses Verfahren wird an dem elektromagneten Aktuator über die Motorsteuerung ein "Schwingtest" durchgeführt, d. h. es kann auch ohne eine Temperaturerfassung über die Motorsteuerung die Bestromung in der normalen Anschwingbestromung oder aber in der Hochimpulsbestromung ggf. unter Zufuhr von Heizenergie oder aber auch durch Beheizung und anschließendes Anschwingen eine Kaltstartstrategie durchgeführt werden.
Bei einem Verfahren entsprechend dem Oberbegriff des Anspruchs 1, insbesondere aber bei Verfahren gemäß den Ansprüchen 1 bis 9, ist erfindungsgemäß weiterhin vorgesehen, daß durch die Motorsteuerung ein als fangender Magnet bestromter Elektromagnet mit einem Hochstromimpuls beaufschlagt wird, wenn über die Sensorik aus der Ankerbewegung ein Umkehren des Ankers vor Erreichen der Polfläche erfaßt wird. Dieser Störfall kann sowohl bei der Inbetriebnahme erfolgen als auch im laufenden Betrieb erfolgen, wenn durch stochastische äußere Einflüsse die dem jeweils fangenden Elektromagneten zugeführte elektrische Energie nicht ausreicht, den herannahenden Anker bis zur Anlage an die Polfläche zu führen, so daß der Anker noch vor dem Auftreffen auf die Polfläche durch die Kraft der Rückstellfeder wieder in die Mittellage zurückgeführt würde. Da dieser Vorgang über die Sensorik erfaßt werden kann und zwar nicht nur aus dem Zeitpunkt der Ankerumkehr vor dem Auftreffen, sondern bereits aus den von der Sensorik erfaßten Weg- bzw. Geschwindigkeitsdaten von der Motorsteuerung "vorhergesehen" werden kann, ergibt sich so die Möglichkeit, durch die sofortige Aufschaltung eines Hochstromimpulses den Anker zur Anlage an die Polfläche zu "zwingen", so daß dann der Anker wieder im Normalbetrieb bewegt werden kann.
Bei einem Verfahren entsprechend dem Oberbegriff des Anspruchs 1, insbesondere aber bei dem erfindungsgemäßen Verfahren entsprechend den Ansprüchen 1 bis 10, kann es auch für die normale Anschwingbestromung zweckmäßig sein, wenn in Abhängigkeit der über den Sensor erfaßten Weg- und/oder Geschwindigkeitswerte der Annäherung die Anpassung der Stromhöhe bei der Bestromung im Anschwingbetrieb erfolgt. Dies hat den Vorteil, daß auch im normalen Startbetrieb, beispielsweise bei noch warmem Motor, eine energetisch optimale Bestromung der Spulen der beiden Elektromagneten erzielt wird. Bisher mußten die hierfür erforderlichen Parameter für den Start, wie beispielsweise die Stromhöhe und die Anzahl der wechselseitigen Bestromungsvorgänge von vorgegebenen Motorbetriebsparametern vor dem Ventilstart angepaßt werden, beispielsweise über entsprechende Kennfelder. Nach dem erfindungsgemäßen Verfahren kann hier unmittelbar bei der Inbetriebnahme die erforderliche Stromhöhe beim Anschwingen aufgeschaltet werden.
Aufgrund der vorhandenen Sensorik ist es auch möglich, festzustellen, ob eine Spule an einem Elektromagneten defekt ist. Beim Startbetrieb im normalen Anschwingverfahren läßt sich dies dadurch feststellen, daß die von der Sensorik erfaßte Bewegung bei der Annäherung an den defekten Elektromagneten nicht den vorgegebenen Werten entspricht. Beim Hochimpulsverfahren läßt sich dies beispielsweise für die Schließerseite dadurch feststellen, daß das entsprechende Signal über die Sensorik an die Motorsteuerung nicht erfolgt. Ist in diesem Falle die Spule des Öffnermagneten defekt, so läßt sich dies wiederum über die Sensorik aufgrund der Werteerfassung bei der Annäherung des Ankers an den Öffnermagneten erfassen, da diese im Falle eines Defektes ein zu spätes Durchlaufen eines vorgegebenen Meßpunktes und/oder eine zu geringe Geschwindigkeit im Annäherungsbereich anzeigt. Damit ist-es dann möglich, über eine entsprechende Steuerstrategie, beispielsweise den elektromagnetischen Aktuator mit dem defekten Elektromagneten so anzusteuern, daß beispielsweise bei einem defekten Öffnermagneten der noch intakte Schließmagnet so angesteuert wird, daß unter der Kraft der Rückstellfeder das betreffende Gaswechselventil teilweise öffnet und beispielsweise nach der durch die Rückstellfeder erzwungenen Bewegungsumkehr durch einen entsprechend hohen Stromimpuls der Anker wieder in Schließste'llung zurückgeführt wird.
Diese Verfahrensweise kann auch dann angewendet werden, wenn im Rahmen der vorstehend beschriebenen Startstrategie über die Sensorik in der Motorsteuerung erfaßt wird, daß bei "normaler Bestromung" der Fangvorgang an der falschen Seite des magnetischen Aktuators erfolgen würde. In diesem Fall wird auf der "falschen" Seite die Höhe des Stromes heruntergeregelt, so daß der Anker von diesem Elektromagneten nicht gefangen wird sondern erst nach erneutem Durchlaufen seiner Mittellage an der anderen, d. h. der "richtigen" Seite mit geregelter Bestromung gefangen wird.
Als "falsche" Seite ist im Normalfall die Öffnerseite gemeint, da meist das Gaswechselventil aus der geschlossenen Position gestartet werden muß. In Sonderfällen, beispielweise, wenn im Kaltstartfall ein leichtes Drehen der Kurbelwelle möglich werden soll, kann auch die Öffnerseite die "richtige" Seite sein.
Zur Erläuterung der Erfindung ist in einer schematischen Zeichnung ein über eine Motorsteuerung ansteuerbarer elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils dargestellt.
Ein elektromagnetischer Aktuator 1 zur Betätigung eines Gaswechselventils 2 besteht im wesentlichen aus einem Schließmagneten 3 und einem Öffnermagneten 4, die im Abstand zueinander angeordnet sind und zwischen denen ein Anker 5 gegen die Kraft von Rückstellfedern, nämlich einer Öffnerfeder 7 und einer Schließfeder 8 hin und her bewegbar geführt ist.. In der Zeichnung ist die Anordnung in Schließstellung dargestellt und zwar in der "klassischen" Anordnung der Öffnerfeder und der Schließfeder. Bei dieser Anordnung wirkt die Schließfeder 8 unmittelbar über einen mit dem Schaft 2.1 des Gaswechselventils 2 verbundenen Federteller 2.2 ein. Die Führungsstange 11 des elektromagnetischen Aktuators ist vom Schaft 2.1 getrennt, in der Regel ist hier in der Schließstellung ein Spalt in Form des sogenannten Ventilspiels VS vorhanden. Die Öffnerfeder 7 stützt sich wiederum auf einem Federteller 11.1 an der Führungsstange 11 ab, so daß in der Mittellage unter der gegeneinandergerichteten Wirkung von Öffnerfeder 7 und Schließfeder 8 die Führungsstange 11 sich auf dem Schaft 2.1 des Gaswechselventils 2 abstützt.
Es ist auch möglich, an der Stelle der Öffnerfeder 7 nur eine einzige Rückstellfeder vorzusehen, die so ausgelegt ist, daß sie jeweils beim Überschwingen des Ankers 5 über die Mittellage eine entsprechende Rückstellkraft aufbaut. Eine gesonderte Schließfeder 8 entfällt damit. Bei einer derartigen Anordnung muß allerdings die Führungsstange 11 mit dem Schaft 2.1 des Gaswechselventils über ein entsprechendes Koppelelement verbunden sein, das die Hin- und Herbwegung des Ankers in gleicher Weise auf das Gaswechselventil 2 überträgt.
Die Schließfeder 8 und die Öffnerfeder 7 sind in der Regel so ausgelegt, daß in Ruhestellung, d. h. bei nichtbestromten Elektromagneten der Anker 5 sich in der Mittellage befindet. Aus dieser Mittellage heraus muß dann entsprechend dem vorbeschriebenen Verfahren zur Inbetriebnahme der zugehörigen Kolbenbrennkraftmaschine der elektromagnetische Aktuator 2 mit seinem Gaswechselventil 2 gestartet werden.
Die Elektromagneten 3 und 4 des Aktuators 1 werden über eine elektronische Motorsteuerung 9 entsprechend den vorgegebenen Steuerprogrammen und in Abhängigkeit von den der Motorsteuerung zugeführten Betriebsdaten, wie Drehzahl, Temperatur etc. angesteuert.
Dem Aktuator 1 ist ein Sensor 10 zugeordnet, der die Erfassung der Aktuatorfunktionen ermöglicht. Der Sensor 10 ist hier schematisch dargestellt. Je nach der Auslegung des Sensors kann beispielsweise der Weg des Ankers 5 erfaßt werden, so daß die jeweilige Ankerposition der Motorsteuerung 9 übermittelt werden kann. In der Motorsteuerung 9 kann dann über entsprechende Rechenoperationen ggf. auch die Ankergeschwindigkeit ermittelt werden, so daß in Abhängigkeit von der Ankerposition und/oder in Abhängigkeit von der Ankergeschwindigkeit die Bestromung der beiden Elektromagneten 3, 4 gesteuert werden kann.
Der Sensor 10 muß nicht zwangsläufig, wie dargestellt, dem Anker 5 seitlich zugeordnet sein, sondern es ist auch möglich, entsprechende Sensoren im Bereich der Polfläche der jeweiligen Elektromagneten anzuordnen oder aber auch, wie mit dem Sensor 10.1, einer mit dem Anker 5 in Verbindung stehenden Taststange 11.1 zuzuordnen.
Der in der schematischen Zeichnung dargestellte Sensor 10 ist, wie vorstehend bereits ausgeführt, nicht in seiner geometrischen Position dargestellt. Der Sensor 10 ist Teil der Gesamtsensorik der Motorsteuerung. Hierzu gehört auch im Zusammenhang mit dem vorstehend erläuterten erfindungsgemäßen Verfahren eine Temperaturerfassung, die je nach Verfahrenskonzept die Temperaturlage an einem der beiden Elektromagneten erfaßt oder aber auch eine ohnehin von der Motorsteuerung erfaßte Temperaturlage für das erfindungsgemäße Verfahren mit verwertet, so beispielsweise die Erfassung der Kühlwassertemperatur und/oder der Öltemperatur. Dieser Teil der Sensorik ist in der Zeichnung nicht dargestellt sondern lediglich über den Meßeingang T in der Motorsteurung 9 neben den Erfassungen der übrigen, steuerungsrelevanten Betriebsparametern, wie beispielsweise die Kurbelwellendrehzahl, angedeutet.
Die Motorsteuerung 9 weist ferner entsprechende Mittel zur Erfassung des Stroms und der Spannung für den jeweiligen Elektromagneten 3 und 4 sowie zur Veränderung des Stromverlaufs und des Spannungsverlaufs auf. Über die Motorsteuerung 9 kann dann in Abhängigkeit von vorgebbaren Betriebsprogrammen, ggf. gestützt auf entsprechende Kennfelder, der Aktuator 1 des Gaswechselventils 2 vollvariabel angesteuert werden, so beispielsweise hinsichtlich des Beginns und des Endes der Öffnungszeiten. Auch Ansteuerungen hinsichtlich der Höhe des Öffnungshubes oder auch der Zahl der Öffnungshübe während einer Schließzeit sind steuerbar.

Claims (11)

  1. Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine, der zwei mit Abstand zueinander angeordnete Elektromagnete aufweist, zwischen denen ein mit dem Gaswechselventil in Verbindung stehender Anker gegen die Kraft von wenigstens einer Rückstellfeder jeweils aus seiner Mittellage zur Anlage an einer Polfläche eines der Elektromagneten hin und her bewegbar geführt ist, wobei über eine Motorsteuerung die Elektromagneten abwechselnd mit einem Fangstrom beaufschlagt werden, dessen Höhe in Abhängigkeit der über eine Sensorik erfaßten Annäherung des Ankers an zumindest eine Polfläche geregelt wird, dadurch gekennzeichnet, daß für die Magnete eine Referenztemepratur erfaßt wird und daß bei Normaltemperaturniveau der Anker durch wechselnde Bestromung der Elektromagneten in der Resonanzfrequenz angeschwungen und an einer vorgebbaren Polfläche, vorzugsweise der Schließerseite, zur Anlage gebracht oder bei einem bestehenden Niedrigtemperaturniveau einer der Elektromagneten, vorzugsweise der Schließmagnet, mit einem hohen Stromimpuls beaufschlagt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Höhe des Stromimpulses in Abhängigkeit von der Höhe der Referenztemperatur vorgegeben wird.
  3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß zur Reduzierung der Aufprallenergie die Stromhöhe für den Stromimpuls in Abhängigkeit von der Annäherung des Ankers an die Polfläche des Magneten erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei Erfassung eines Niedrigtemperaturniveaus wenigstens einem Elektromagneten Heizenergie zugeführt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Heizenergie durch Beaufschlagung wenigstens eines Elektromagneten mit einem Heizstrom zugeführt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Heizstrom ein hochfrequenter Wechselstrom verwendet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Elektromagneten abwechselnd mit Heizstrom beaufschlagt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Heizenergie durch wechselnde Bestromung der Elektromagneten bei gleichzeitiger geringer Ankerbewegung erfolgt.
  9. Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine, der zwei mit Abstand zueinander angeordnete Elektromagneten aufweist, zwischen denen ein mit dem Gaswechselventil in Verbindung stehender Anker gegen die Kraft von wenigstens einer Rückstellfeder jeweils aus seiner Mittellage zur Anlage an einer Polfläche eines der Elektromagneten hin und her bewegbar geführt ist, wobei über eine Motorsteuerung die Elektromagneten abwechselnd mit einem Fangstrom beaufschlagt werden, dessen Höhe in Abhängigkeit der über eine Sensorik erfaßten Annäherung des Ankers an zumindest eine Polfläche geregelt wird, insbesondere nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß wenigstens einer der Elektromagneten mit einem Strom in Form eines Startimpulses beaufschlagt wird und in Abhängigkeit der hierbei vom Sensor erfaßten Anfangsbewegung des Ankers die anschließende Bestromung der Elektromagneten entweder in der normalen Anschwingbestromung gesteuert wird oder aber der Strom für den Kaltstartbetrieb durch Beaufschlagung der Elektromagneten mit Heizenergie und/oder einem Stromimpuls oder mit Heizstrom und anschließender Anschwingbestromung erfolgt.
  10. Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine, der zwei mit Abstand zueinander angeordnete Elektromagneten aufweist, zwischen denen ein mit dem Gaswechselventil in Verbindung stehender Anker gegen die Kraft von wenigstens einer Rückstellfeder jeweils aus seiner Mittellage zur Anlage an einer Polfläche eines der Elektromagneten hin und her bewegbar geführt ist, wobei über eine Motorsteuerung die Elektromagneten abwechselnd mit einem Fangstrom beaufschlagt werden, dessen Höhe in Abhängigkeit der über eine Sensorik erfaßten Annäherung des Ankers an zumindest eine Polfläche geregelt wird, insbesondere nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß durch die Motorsteuerung ein als fangender Magnet bestromter Elektromagnet mit einem Hochstromimpuls beaufschlagt wird, wenn der Sensor aus der Ankerbewegung ein Umkehren des Ankers vor Erreichen der Polfläche erfaßt.
  11. Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine, der zwei mit Abstand zueinander angeordnete Elektromagneten aufweist, zwischen denen ein mit dem Gaswechselventil in Verbindung stehender Anker gegen die Kraft von wenigstens einer Rückstellfeder jeweils aus seiner Mittellage zur Anlage an einer Polfläche eines der Elektromagneten hin und her bewegbar geführt ist, wobei über eine Motorsteuerung die Elektromagneten abwechselnd mit einem Fangstrom beaufschlagt werden, dessen Höhe in Abhängigkeit der über eine Sensorik erfaßten Annäherung des Ankers an zumindest eine Polfläche geregelt wird, insbesondere nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Anpassung der Stromhöhe bei der Bestromung im Anschwingbetrieb in Abhängigkeit der über den Sensor erfaßten Weg- und/oder Geschwindigkeistwerte erfolgt.
EP00109582A 1999-05-19 2000-05-05 Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine Expired - Lifetime EP1054138B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19922971 1999-05-19
DE19922971A DE19922971A1 (de) 1999-05-19 1999-05-19 Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1054138A2 EP1054138A2 (de) 2000-11-22
EP1054138A3 EP1054138A3 (de) 2001-02-07
EP1054138B1 true EP1054138B1 (de) 2002-08-14

Family

ID=7908515

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00109582A Expired - Lifetime EP1054138B1 (de) 1999-05-19 2000-05-05 Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Country Status (5)

Country Link
US (1) US6333843B2 (de)
EP (1) EP1054138B1 (de)
JP (1) JP2000352325A (de)
AT (1) ATE222322T1 (de)
DE (2) DE19922971A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565100B2 (ja) * 1999-08-10 2004-09-15 日産自動車株式会社 エンジンの電磁動弁制御装置
JP3617414B2 (ja) * 2000-06-06 2005-02-02 日産自動車株式会社 電磁駆動弁の制御装置
IT1320679B1 (it) * 2000-09-29 2003-12-10 Fiat Ricerche Dispositivo di controllo di un elettromagnete di comando di unavalvola di dosaggio di un iniettore di combustibile per un motore a
US6474620B2 (en) * 2000-12-20 2002-11-05 Caterpillar Inc Method of controlling hydraulically actuated valves and engine using same
DE10106156A1 (de) * 2001-02-10 2002-09-26 Bayerische Motoren Werke Ag Verfahren zum Starten einer Brennkraftmaschine mit elektromagnetischen Ventiltrieben
DE10236612A1 (de) * 2002-08-09 2004-02-26 Bayerische Motoren Werke Ag Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
JP2004285962A (ja) * 2003-03-25 2004-10-14 Toyota Motor Corp 電磁駆動バルブの制御装置
US7028650B2 (en) 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7021289B2 (en) 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7240663B2 (en) 2004-03-19 2007-07-10 Ford Global Technologies, Llc Internal combustion engine shut-down for engine having adjustable valves
US7128687B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7032545B2 (en) 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7079935B2 (en) 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US7107947B2 (en) 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7031821B2 (en) 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US7194993B2 (en) 2004-03-19 2007-03-27 Ford Global Technologies, Llc Starting an engine with valves that may be deactivated
US7072758B2 (en) 2004-03-19 2006-07-04 Ford Global Technologies, Llc Method of torque control for an engine with valves that may be deactivated
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US6938598B1 (en) 2004-03-19 2005-09-06 Ford Global Technologies, Llc Starting an engine with electromechanical valves
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7555896B2 (en) 2004-03-19 2009-07-07 Ford Global Technologies, Llc Cylinder deactivation for an internal combustion engine
US7140355B2 (en) 2004-03-19 2006-11-28 Ford Global Technologies, Llc Valve control to reduce modal frequencies that may cause vibration
US7066121B2 (en) 2004-03-19 2006-06-27 Ford Global Technologies, Llc Cylinder and valve mode control for an engine with valves that may be deactivated
US7032581B2 (en) 2004-03-19 2006-04-25 Ford Global Technologies, Llc Engine air-fuel control for an engine with valves that may be deactivated
US7383820B2 (en) 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7559309B2 (en) 2004-03-19 2009-07-14 Ford Global Technologies, Llc Method to start electromechanical valves on an internal combustion engine
US7055483B2 (en) 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7017539B2 (en) 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7063062B2 (en) 2004-03-19 2006-06-20 Ford Global Technologies, Llc Valve selection for an engine operating in a multi-stroke cylinder mode
US7165529B2 (en) * 2004-12-02 2007-01-23 Ford Global Technologies, Llc Method to control electromechanical valves in a DISI engine
US7600494B2 (en) * 2006-12-05 2009-10-13 Ford Global Technologies, Llc Operation of electrically actuated valves at lower temperatures
DE102009050127B4 (de) * 2009-10-21 2019-06-13 Continental Automotive Gmbh Vorrichtung zur Ansteuerung des Aktuators eines Einspritzventils einer Verbrennungskraftmaschine
FR2969694B1 (fr) * 2010-12-22 2015-08-07 Valeo Sys Controle Moteur Sas Procede de commande d'un actionneur de soupape et dispositif de commande correspondant.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636601A (en) * 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device
JP3683300B2 (ja) * 1995-01-27 2005-08-17 本田技研工業株式会社 内燃機関の制御装置
US5771884A (en) * 1997-03-14 1998-06-30 Nellcor Puritan Bennett Incorporated Magnetic exhalation valve with compensation for temperature and patient airway pressure induced changes to the magnetic field
JP3831104B2 (ja) * 1997-05-13 2006-10-11 株式会社日立製作所 吸排気弁の電磁駆動装置
DE19736137C1 (de) * 1997-08-20 1998-10-01 Daimler Benz Ag Verfahren zum Starten eines Verbrennungsmotors
DE19739840C2 (de) * 1997-09-11 2002-11-28 Daimler Chrysler Ag Verfahren zur Steuerung einer elektromagnetisch betätigbaren Stellvorrichtung, insbesondere eines Ventils für Brennkraftmaschinen

Also Published As

Publication number Publication date
DE19922971A1 (de) 2000-11-23
EP1054138A2 (de) 2000-11-22
US20010013323A1 (en) 2001-08-16
EP1054138A3 (de) 2001-02-07
ATE222322T1 (de) 2002-08-15
DE50000374D1 (de) 2002-09-19
US6333843B2 (en) 2001-12-25
JP2000352325A (ja) 2000-12-19

Similar Documents

Publication Publication Date Title
EP1054138B1 (de) Verfahren zur Inbetriebnahme eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
EP1262639B1 (de) Verfahren zur Steuerung einer elektromagnetisch betätigten Stellvorrichtung, insbesondere zur Steuerung eines Gaswechselventils einer Brennkraftmaschine
DE102010022109B3 (de) Bestimmung des Schließzeitpunkts eines Einspritzventils basierend auf einer Auswertung der Ansteuerspannung unter Verwendung eines adaptierten Referenzspannungssignals
EP0973178B1 (de) Verfahren zur Bewegungssteuerung eines Ankers eines elektromagnetischen Aktuators
DE3843138C2 (de)
DE112015000965B4 (de) Wechselstrom Antrieb für Kraftstoffinjektoren
DE19821548C2 (de) Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Ventils
DE19529155B4 (de) Verfahren zur Messung des Ventilspiels an einem durch einen elektromagnetischen Aktuator betätigten Gaswechselventil
DE19530798A1 (de) Verfahren zur Erkennung des Auftreffens eines Ankers auf einen Elektromagneten an einer elektromagnetischen Schaltanordnung
DE19518056A1 (de) Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
EP1001142B1 (de) Verfahren zum Betreiben eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils
DE102011087418B4 (de) Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
DE102010041320A1 (de) Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE102011016895B4 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP1041252A2 (de) Gaswechselventilanordnung mit elektromagnetischem Aktuator
DE10019745A1 (de) Verfahren zur Ansteuerung eines elektromagnetischen Aktuators zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
EP1101015B1 (de) Verfahren zur ansteuerung eines elektromagnetischen aktuators zur betätigung eines gaswechselventils an einer kolbenbrennkraftmaschine
DE102014208753B4 (de) Ermittlung von Parameterwerten für einen Kraftstoffinjektor
DE19724900A1 (de) Verfahren und Einrichtung zum Steuern eines elektromechanischen Stellgeräts
DE102016217415A1 (de) Verfahren und Vorrichtung zum Kalibrieren von Kraftstoffinjektoren mit Leerhub
EP3394866B1 (de) Ankerhubbestimmung durch messung magnetischer hysteresekurven
DE19913869A1 (de) Positionssensor, geeignet für elektromagnetisch betriebene Ventilsteuerung, und Verfahren zu dessen Betrieb
DE10205383B4 (de) Verfahren zur Steuerung der Bewegung eines Ankers eines elektromagnetischen Aktuators
DE19835431C1 (de) Verfahren zur Überprüfung eines Positionssensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010317

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010525

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020814

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020814

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020814

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020814

REF Corresponds to:

Ref document number: 222322

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50000374

Country of ref document: DE

Date of ref document: 20020919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021202

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1054138E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030505

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030505

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030515

BERE Be: lapsed

Owner name: *FEV MOTORENTECHNIK G.M.B.H.

Effective date: 20030531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090527

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201