EP3394866B1 - Ankerhubbestimmung durch messung magnetischer hysteresekurven - Google Patents

Ankerhubbestimmung durch messung magnetischer hysteresekurven Download PDF

Info

Publication number
EP3394866B1
EP3394866B1 EP16801793.7A EP16801793A EP3394866B1 EP 3394866 B1 EP3394866 B1 EP 3394866B1 EP 16801793 A EP16801793 A EP 16801793A EP 3394866 B1 EP3394866 B1 EP 3394866B1
Authority
EP
European Patent Office
Prior art keywords
electromagnet
valve
armature
curve
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16801793.7A
Other languages
English (en)
French (fr)
Other versions
EP3394866A1 (de
Inventor
Gerald Aydt
Markus Rueckle
Klemens Steinberg
Oezguer Tuerker
Marco Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3394866A1 publication Critical patent/EP3394866A1/de
Application granted granted Critical
Publication of EP3394866B1 publication Critical patent/EP3394866B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1855Monitoring or fail-safe circuits using a stored table to deduce one variable from another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1861Monitoring or fail-safe circuits using derivative of measured variable

Definitions

  • the present invention relates to a method for determining the armature stroke on an electromagnetically actuated valve and a method for determining a hysteresis curve of such a valve.
  • the anchor stroke should be between a lower threshold and an upper threshold. If the armature stroke is too small, the valve will throttle. If the armature stroke is too large, closer bouncing can occur.
  • DE 10 2010 063 009 A1 discloses a method for determining the point in time of the start of a movement of a fuel injector having a coil drive for an internal combustion engine of a motor vehicle, the method including detecting a current curve through a coil of the coil drive, detecting a voltage curve of a voltage applied to the coil, determining a magnetic hysteresis curve based on the recorded current curve and the recorded voltage curve, comparing the determined magnetic hysteresis curve with a first predetermined magnetic hysteresis curve, which is characteristic of a fuel injector fixed in a first end position, and determining the point in time of the start of the movement based on the comparison of the determined magnetic hysteresis curve with the first specified magnetic hysteresis curve.
  • the present invention consists in a method for determining a hysteresis curve of an electromagnetically actuated valve according to claim 1 and in a method for determining the armature stroke of an electromagnetically actuated valve according to claim 13.
  • Preferred method features are specified in the dependent claims. These methods are to be considered with a view to the production of an electromagnetically actuatable valve from an electromagnet, an armature that can be moved by the electromagnet and a valve body.
  • the valve body contains means for converting a movement of the armature into a Open or close the valve.
  • the electromagnet and the armature are inserted into the valve body.
  • a magnetic hysteresis curve of a combination of the electromagnet with a test armature resting on this electromagnet is recorded.
  • the slope m 1 of a first, essentially linear curve section of the hysteresis curve in the unsaturated state is determined.
  • the test armature preferably has the same dimensions and the same magnetic properties as the armature of the valve.
  • the slope m 1 * of a curve section corresponding to the first curve section of a hysteresis curve of the fully assembled valve with the armature permanently in contact with the electromagnet is determined.
  • U K is the terminal voltage across the electromagnet
  • I the current through the electromagnet
  • R the ohmic resistance of the electromagnet.
  • the dependence ⁇ (I) of the magnetic flux ⁇ on the current I through the electromagnet shows a typical ferromagnetic hysteresis loop, since magnetic energy is stored at least in the ferromagnetic core of the electromagnet and in the ferromagnetic armature. If an air gap is formed between the armature and the electromagnet as a result of the armature falling from the electromagnet to a rest position, this air gap also contains a magnetic energy amount ⁇ E, which depends on the width of the air gap and thus on the armature stroke AH sought. This energy contribution ⁇ E is reflected in a change in the ferromagnetic hysteresis curve and can therefore be evaluated from the comparison of hysteresis curves that were measured with and without an air gap.
  • the restoring force of the valve which can be a spring force, outweighs the magnetic force that the armature on the Attracts electromagnet.
  • the armature returns to its rest position, and the actual state to be examined, in which the armature is in contact with the electromagnet, is lost.
  • the inventors have recognized that the curve section of the hysteresis curve with the armature permanently attached to the electromagnet, which represents the unsaturated state of the electromagnet and in which the flux ⁇ depends essentially linearly on the current I, can be obtained at least approximately by the electromagnet before assembly is placed in the valve on a test anchor and the hysteresis curve is measured with this.
  • This curve section is essentially characterized by its gradient m 1 . From this, the slope m 1 * of the corresponding curve section of a hysteresis curve of the fully assembled valve with the armature permanently attached to the electromagnet, which is no longer accessible for direct measurement, can be determined in various ways. In this respect, the slope m 1 obtained before the assembly of the valve is a very important reference value which, after the assembly of the valve, enables the armature stroke AH of the valve to be measured in a particularly simple and transparent manner.
  • the valve has a slope m 0 which is less than the slope m 1 * .
  • the reason for this is that an air gap has formed due to the armature falling away from the electromagnet and the amount of energy ⁇ E is stored in this air gap has been. From the area between corresponding curve sections with gradients m 0 or m 1 * , the amount of energy ⁇ E, and thus ultimately the armature stroke AH sought, can be evaluated. The amount of energy ⁇ E is given by ⁇ E.
  • n is the number of turns of the coil of the electromagnet.
  • ⁇ 0 is the magnetic permeability of the vacuum.
  • a 1 and A 2 are cross-sectional areas of the air gap that are independent of its width, that is, of the armature stroke AH.
  • m 1 as a reference value before the valve is installed and the subsequent determination of m 1 * from m 1 enables the armature stroke AH to be determined on the finished valve by determining m 0 from a further hysteresis curve.
  • a hysteresis curve of the magnetic circuit which is recorded in the fully assembled state of the valve, is referred to below as the "hysteresis curve of the valve”.
  • the slope m 1 * is determined from the slope m 1 via a predetermined first functional relationship.
  • m 1 * is identical to m 1 .
  • the first functional relationship can advantageously be refined in such a way that this influence is taken into account. The more precisely m 1 * is determined, the more precisely the armature stroke AH can be determined from this.
  • the armature of the solenoid valve was determined and the hysteresis curve was recorded in this state.
  • This valve is a special test or data entry copy which differs from the series-produced valves in that the armature stroke AH is always zero and the valve cannot switch. Apart from this difference, the valve behaves magnetically exactly like the series-produced valves.
  • the first hysteresis curve is recorded on the magnetic circuit of a valve before assembly and m 1 is determined from this, and after this magnetic circuit has been assembled in the valve, the second hysteresis curve is recorded and m 1 * is determined from this.
  • the slope m 1 * can also be obtained, for example, from the slope m 1 by using numerical methods, such as the finite element method, to calculate the influence of other ferromagnetic materials in the valve on the magnetic circuit formed by the electromagnet and armature.
  • m 1 * can also be refined by comparing reference values of further variables determined before the valve was installed with values of these variables determined after the valve was installed.
  • the slope m 2 of a second linear curve section of the hysteresis curve, which is recorded on the combination of the electromagnet with the test armature, is determined in the saturated state before the electromagnet is inserted into the valve body.
  • the current value I 0 is advantageously also determined, at which a linear continuation of the second curve section to the current axis I intersects the current axis I.
  • Both variables are also accessible for measurement on the fully assembled valve, because when the electromagnet is saturated, the armature is attracted to the electromagnet, so that the magnetic circuit is in the same state as during the reference measurement on the combination of the electromagnet and the test armature.
  • a further magnetic hysteresis curve of the valve is advantageously recorded after the valve has been installed.
  • the slope m 3 of a second, essentially linear curve section of the further magnetic hysteresis curve, which represents the saturated state, is determined.
  • This second curve section corresponds to the second curve section of the magnetic hysteresis curve measured before the assembly of the valve on the combination of electromagnet and test armature.
  • the current value I 1 is also advantageously determined at which a linear continuation of the second curve section to the current axis I intersects the current axis I.
  • the inventors have recognized that the comparison of the current value I 1 with the current value I 0 offers an additional possibility of quality control for the magnetic properties of the components used in the valve.
  • it can be monitored whether the armature and / or a residual air gap disc (RLSS) arranged between the armature and the electromagnet corresponds to the desired specification.
  • RLSS residual air gap disc
  • a large deviation of the current value I 1 from the current value I 0 can indicate a relevant standard deviation or also an undesirable particle formation on the contact surfaces of the residual air gap disc to the armature and / or to the electromagnet.
  • the absolute difference ⁇ l between the current value I 1 and the current value I 0 is determined and the valve is classified as faulty if this absolute difference exceeds a predetermined threshold value.
  • a parameterized approach to the form I. 0 k 1 ⁇ m 2 m 1 + k 0 can be set up with two parameters ko and k 1 .
  • the refined approximate value for m 1 * can be used to evaluate the amount of energy ⁇ E and finally the armature stroke AH according to equations (1) and (2).
  • the functional relationship according to equation (3) can be represented by the parameters k 0 and k 1 .
  • the mass production of the electromagnets can then be decoupled in a particularly simple manner from the mass production of the electromagnetically actuated valves.
  • a plant can pre-produce electromagnets for several other plants, which use them to manufacture various types of electromagnetically actuated valves.
  • the machine-readable information carrier can for example contain a data matrix code, for example a QR code.
  • the decoupling of the production of electromagnets on the one hand and valves on the other hand can be simplified in a further particularly advantageous embodiment of the invention by adding a large number of electromagnets according to the value of the slopes m 1 and / or m 2 , and / or according to the functional relationship and / or the correlation between the slopes m 1 and m 2 , is classified.
  • the functional relationship can, for example, be classified using the parameters k 0 and k 1 in equation (3).
  • the classification discretizes the accuracy of the reference values for the electromagnet, but speeds up mass production, since electromagnets from one class can be processed in an identical form and no longer have to go into magnet-specific reference values. Furthermore, conspicuous electromagnets that cannot be assigned to any class according to the specification can be sorted out as scrap from the start.
  • the invention also relates to a method for determining the armature stroke AH on an electromagnetically actuated valve.
  • This valve comprises an electromagnet, an armature that can be moved by the electromagnet and preferably a valve body, within which the electromagnet, the armature and means for converting a movement of the armature into opening or closing of the valve are arranged.
  • a magnetic hysteresis curve of the valve is recorded and a first slope m 0 of a first linear curve section of the hysteresis curve of the valve in the unsaturated state is determined. In this state, the armature has fallen away from the electromagnet due to the restoring force effective in the valve, so that an air gap exists between the armature and the electromagnet.
  • the magnetic energy ⁇ E in the air gap is derived from the difference between the first slope m 0 and a second slope m 1 * of the first, essentially linear curve section, which corresponds to the first curve section of the hysteresis curve, of a further magnetic hysteresis curve which the valve would have evaluated with the armature held on the electromagnet.
  • the second slope m 1 * at least one reference value m 1 for this slope m 1 * determined before the electromagnet is inserted into the valve body can be used.
  • the reference value m 1 can in particular have been obtained in the context of the production method described above.
  • the second slope m 1 * is derived from the slope m 3 of a second linear curve section of the magnetic hysteresis curve of the valve in the saturated state in connection with a functional relationship and / or a correlation between the slopes m 1 , m 2 of the curve sections of the further hysteresis curve are determined.
  • the correlation or the functional relationship can also be determined before the electromagnet is inserted into the valve body and preserved as a reference value.
  • Equation (3) can have been preserved in the form of the parameters k 0 and k 1 .
  • the armature stroke AH is evaluated in the air gap between the armature and the electromagnet, work synergistically hand in hand in order to ultimately enable an exact determination of the armature stroke AH.
  • the armature stroke AH determined according to the invention can particularly advantageously be used as a feedback in order to precisely set the armature stroke in the factory during the production of electromagnetically operated valves for fuel injectors and to monitor it during operation.
  • valve 1 shown here by way of example as a 2/2-way valve comprises a valve body 5 with an inlet 1a and an outlet 1b.
  • the valve 1 switches the flow of a medium between the inlet 1a and the outlet 1b.
  • an electromagnet 2 is arranged within the valve body 5 and consists of a ferromagnetic magnetic core 2a and a coil 2b wound onto the ferromagnetic magnetic core 2a.
  • a machine-readable information carrier 7 which contains a barcode with reference values is attached to the electromagnet 2. These reference values were measured on a combination 6 of the electromagnet 2 with a test anchor 3 a before the electromagnet 2 was inserted into the valve body 5.
  • an armature 3 is arranged relative to the electromagnet 2 in such a way that the electromagnet 2 can attract the armature 3.
  • the actuator 4c of the valve 1 is then counteracted by the return force exerted by the valve spring 4b from the in Figure 1a switching position shown in which the valve 1 is closed, into the in Figure 1a switching position, not shown, in which the valve 1 is open, transferred.
  • the coupling mechanism 4a, the valve spring 4b and the actuator 4c together form the means 4 which convert the movement of the armature 3 into opening or closing of the valve 1.
  • the electromagnet 2 and the armature 3 together form a magnetic circuit through which a magnetic flux ⁇ passes. From this magnetic flux ⁇ are in Figure 1a two flow lines drawn as an example.
  • Figure 1b shows the combination 6 of the electromagnet 2 and the test anchor 3a, on which at least the slope m 1 of a curve section 11 of a hysteresis curve 10 in the unsaturated state is determined as a reference value.
  • the test anchor 3a is in Figure 1b Means not shown also kept in contact with the magnetic core 2a of the electromagnet 2 when the coil 2b of the electromagnet 2 is not energized.
  • Figure 2 shows a section of the hysteresis curve 10, which was recorded on the combination 6 of the electromagnet 2 and the test anchor 3a.
  • the magnetic flux ⁇ is plotted against the current I through the coil 2b of the electromagnet 2.
  • a first curve section 11 which represents the unsaturated state of the electromagnet 2
  • a second curve section 12 which represents the saturated state of the electromagnet 2
  • a linear continuation 13 of this second curve section 12 with the same slope m 2 to the current axis I intersects the current axis I at the current value I 0 .
  • the in Figure 2 The section of the hysteresis curve 10 shown was recorded on the basis of the saturated state of the electromagnet 2. Starting from the highest current I through the coil 2b of the electromagnet 2, the current I was successively reduced.
  • Figure 3 shows a section of the hysteresis curve 20 that was recorded on the fully assembled valve 1.
  • the magnetic flux ⁇ in the magnetic circuit of the valve 1 formed from the electromagnet 2 and armature 3 is plotted against the current I through the coil 2b of the electromagnet 2.
  • Analogous to Figure 1 the highest value of the current I in the saturated state of the electromagnet 2 was assumed and the current I was successively reduced.
  • FIG 4 shows the second functional relationship 8 between the slope ratio m 2 / m 1 and the current value l 0 , which in a Serial examination of electromagnet 2 was determined.
  • the second functional relationship 8 corresponds to equation (3).
  • Each measuring point marked with a rhombus as a symbol represents an electromagnet 2 to which the second functional relationship 8 applies approximately.
  • Each measuring point marked with a circle as a symbol represents an electromagnet 2 that deviates significantly from the second functional relationship 8.
  • two groups 8a and 8b of such outliers can be seen. Electromagnets 2 that are conspicuous in this way are preferably sorted out as rejects.
  • Figure 5 shows, for a better understanding, a complete hysteresis curve 20 of the valve 1 with symmetrical control.
  • branch 28 is first traversed towards lower current values I.
  • the second curve section 21 which runs essentially linearly, is passed.
  • the magnetic flux ⁇ in the sloping curve section 24 decreases faster than linearly, before the armature 3 drops off the electromagnet 2 at point 27a due to the restoring force exerted by the valve spring 4b of the valve 1 and the air gap 9 between the armature 3 and the electromagnet 2 is formed. This can be seen in a discontinuous decrease in the magnetic flux ⁇ .
  • the branch 28 of the hysteresis curve 20 then changes over to the first curve section 21 in the unsaturated state.
  • the magnetic flux ⁇ runs essentially linearly with the current l.
  • the branch 29 of the hysteresis curve 20 is traversed.
  • the hysteresis curve 20 changes again into a falling curve section 24 in which the armature 3 drops from the electromagnet 2 at point 27b.
  • the branch 29 of the hysteresis curve 29 crosses into the right upper quadrant, the next attractive one begins Curve section 25.
  • armature 3 is again attracted to electromagnet 2.
  • Figure 6 uses a few examples to illustrate how the specimen variance between different electromagnets 2 can influence the course of the hysteresis curve 10 of a combination 6 of the respective electromagnet 2 with the test armature 3a.
  • Figure 6b shows the opposite case, that within a series of five electromagnets 2 the hysteresis curves 10, 10a-10d measured in the combination 6 with a test anchor 3a only differ significantly in the saturated state, while the hysteresis curves 10, 10a-10d practically in the unsaturated state run parallel to each other.
  • the second curve sections 12 and 12a of the hysteresis curves 10 and 10a have different slopes m 2 in the saturated state, and the linear continuations 13 and 13a of these second curve sections 12 and 12a for The current axis I intersect the current axis I at different current values l 0 .
  • the slope m 1 in the unsaturated state is almost identical for all hysteresis curves 10, 10a-10d.
  • Figure 6c shows the case that within a series of three electromagnets 2, the hysteresis curves 10, 10a, 10b measured in combination 6 with a test anchor 3a are both in their slopes m 1 in the unsaturated area and in their slopes m 2 in the second Clearly distinguish curve sections 12, 12a in the saturated area.
  • the linear continuations 13, 13a of the second curve sections 12, 12a for the current axis I also intersect the current axis l at different current values l 0 .
  • the manufacturing method can be used in a simplified form. There is then no need to record a hysteresis curve 10 on each individual electromagnet 2. Instead, it is sufficient to measure a random sample of a few electromagnets 2 of a batch of nominally identically dimensioned and manufactured electromagnets 2 and from this to determine the functional relationship 8 according to equation (3). For example, reference valves in which the armature 3 is fixed as a test armature 3a on the electromagnet 2 can be used for this random sample. m 1 can then be evaluated for all further electromagnets 2 from the batch according to equation (4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung des Ankerhubs an einem elektromagnetisch betätigbaren Ventil sowie ein Verfahren zur Ermittlung einer Hysteresekurve eines solchen Ventils.
  • Stand der Technik
  • Bei modernen schnellschaltenden elektromagnetischen Ventilen, wie sie beispielsweise in Dieseleinspritzventilen zum Einsatz kommen, ist eine genaue Kenntnis bzw. Einstellung des Ankerhubs für eine optimale Funktionalität des Ventils notwendig. Der Ankerhub sollte zwischen einer unteren Schwelle und einer oberen Schwelle liegen. Ist der Ankerhub zu klein, kommt es zu einem Androsseln des Ventils. Ist der Ankerhub zu groß, können verstärkt Schließpreller auftreten.
  • Aus der DE 10 2012 206 484 A1 und aus der DE 10 2013 223 121 A1 sind elektromagnetische Kraftstoffinjektoren mit Messsystemen für den Ankerhub bekannt. Diese Messsysteme übertragen die Hubbewegung des Ankers jeweils mit zusätzlichen Ubertragungselementen zu einer Messeinrichtung.
  • DE 10 2010 063 009 A1 offenbart ein Verfahren zum Ermitteln des Zeitpunkts des Beginns einer Bewegung eines einen Spulenantrieb aufweisenden Kraftstoffinjektors für einen Verbrennungsmotor eines Kraftfahrzeuges, das Verfahren aufweisend Erfassen eines Stromverlaufs durch eine Spule des Spulenantriebs, Erfassen eines Spannungsverlaufs einer an der Spule anliegenden Spannung, Bestimmen einer magnetischen Hysteresekurve basierend auf dem erfassten Stromverlauf und dem erfassten Spannungsverlauf, Vergleichen der bestimmten magnetischen Hysteresekurve mit einer ersten vorgegebenen magnetischen Hysteresekurve, welche für einen in einer ersten Endposition fixierten Kraftstoffinjektor charakteristisch ist, und Ermitteln des Zeitpunkts des Beginns der Bewegung basierend auf dem Vergleich der bestimmten magnetischen Hysteresekurve mit der ersten vorgegebenen magnetischen Hysteresekurve.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung besteht in einem Verfahren zur Ermittlung einer Hysteresekurve eines elektromagnetisch betätigbaren Ventils gemäß Anspruch 1 und in einem Verfahren zur Bestimmung des Ankerhubs an einem elektromagnetisch betätigbaren Ventil gemäß Anspruch 13. Bevorzugte Verfahrensmerkmale sind in den abhängigen Ansprüchen spezifiziert. Diese Verfahren sind mit Blick auf die Herstellung eines elektromagnetisch betätigbaren Ventils aus einem Elektromagneten, einem durch den Elektromagneten bewegbaren Anker und einem Ventilkörper zu betrachten. Der Ventilkörper enthält Mittel zur Umsetzung einer Bewegung des Ankers in ein Öffnen oder Schließen des Ventils. Der Elektromagnet und der Anker werden in den Ventilkörper eingesetzt.
  • Erfindungsgemäß wird vor dem Einsetzen des Elektromagneten in den Ventilkörper eine magnetische Hysteresekurve einer Kombination des Elektromagneten mit einem an diesem Elektromagneten anliegenden Prüfanker aufgenommen. Die Steigung m1 eines ersten, im Wesentlichen linearen Kurvenabschnitts der Hysteresekurve im ungesättigten Zustand wird ermittelt. Dabei hat der Prüfanker vorzugsweise die gleichen Abmessungen und die gleichen magnetischen Eigenschaften wie der Anker des Ventils.
  • Aus der Steigung m1 wird die Steigung m1 * eines zu dem ersten Kurvenabschnitt korrespondierenden Kurvenabschnitts einer Hysteresekurve des fertig montierten Ventils mit dauerhaft am Elektromagneten anliegendem Anker ermittelt.
  • Der Elektromagnet und der Anker bilden gemeinsam einen Magnetkreis mit einem magnetischen Fluss Ψ, der beispielsweise direkt über eine zusätzliche Messspule oder indirekt durch zeitliche Integration der im Elektromagneten induzierten Spannung Uind=UK-I·R bestimmt werden kann. Hierin sind UK die Klemmenspannung über dem Elektromagneten, I der Strom durch den Elektromagneten und R der Ohmsche Widerstand des Elektromagneten. Der Ohmsche Widerstand R des Elektromagneten kann beispielsweise in einer Phase konstanten Stroms I gemäß R=UK/I bestimmt werden.
  • Die Abhängigkeit Ψ(I) des magnetischen Flusses Ψ vom Strom I durch den Elektromagneten zeigt eine typische ferromagnetische Hystereseschleife, da mindestens im ferromagnetischen Kern des Elektromagneten sowie im ebenfalls ferromagnetischen Anker jeweils magnetische Energie gespeichert wird. Wird durch den Abfall des Ankers vom Elektromagneten in eine Ruhelage ein Luftspalt zwischen dem Anker und dem Elektromagneten gebildet, enthält auch dieser Luftspalt einen magnetischen Energiebetrag ΔE, der von der Breite des Luftspalts und somit vom gesuchten Ankerhub AH abhängt. Dieser Energiebeitrag ΔE schlägt sich in einer Abänderung der ferromagnetischen Hysteresekurve nieder und lässt sich somit aus dem Vergleich von Hysteresekurven, die ohne und mit Luftspalt gemessen wurden, auswerten.
  • Ist das Ventil jedoch erst einmal fertig montiert, kann keine vollständige Hysteresekurve des Magnetkreises mit dauerhaft am Elektromagneten anliegendem Anker mehr gemessen werden. Speziell in dem Kurvenabschnitt der Hysteresekurve, der den ungesättigten Zustand des Elektromagneten repräsentiert und in dem der Fluss Ψ im Wesentlichen linear vom Strom I abhängt, überwiegt die Rückstellkraft des Ventils, die beispielsweise eine Federkraft sein kann, die magnetische Kraft, die den Anker an den Elektromagneten anzieht. Der Anker kehrt also in seine Ruhelage zurück, und der eigentlich zu untersuchende Zustand, in dem der Anker am Elektromagneten anliegt, geht verloren. Um eine Hysteresekurve in diesem Zustand aufzunehmen, wäre es erforderlich, den Anker gegen die Rückstellkraft mechanisch am Elektromagneten festzuhalten. Hierfür ist der Anker im fertig montierten Zustand des Ventils aber nicht mehr zugänglich.
  • Die Erfinder haben erkannt, dass der Kurvenabschnitt der Hysteresekurve mit dauerhaft am Elektromagneten anliegendem Anker, der den ungesättigten Zustand des Elektromagneten repräsentiert und in dem der Fluss Ψ im Wesentlichen linear vom Strom I abhängt, zumindest näherungsweise beschafft werden kann, indem der Elektromagnet vor der Montage in das Ventil an einen Prüfanker angelegt und mit diesem die Hysteresekurve gemessen wird. Dieser Kurvenabschnitt ist im Wesentlichen durch seine Steigung m1 charakterisiert. Hieraus lässt sich auf verschiedenen Wegen die Steigung m1 * des korrespondierenden Kurvenabschnitts einer Hysteresekurve des fertig montierten Ventils mit dauerhaft am Elektromagneten anliegendem Anker, die einer direkten Messung nicht mehr zugänglich ist, ermitteln. Insofern handelt es sich bei der vor der Montage des Ventils gewonnenen Steigung m1 um einen sehr wichtigen Referenzwert, der nach der Montage des Ventils in besonders einfacher und einsichtiger Weise eine Messung des Ankerhubs AH des Ventils ermöglicht.
  • Wird ein den ungesättigten Zustand des Elektromagneten repräsentierender Kurvenabschnitt der Hysteresekurve im fertig montierten Zustand des Ventils durchlaufen, so hat dieser eine Steigung m0, die geringer ist als die Steigung m1 *. Ursache hierfür ist, dass sich durch den Abfall des Ankers vom Elektromagneten ein Luftspalt gebildet hat und der Energiebetrag ΔE in diesem Luftspalt hinterlegt wurde. Aus der Fläche zwischen korrespondierenden Kurvenabschnitten mit Steigungen m0 bzw. m1 * lässt sich der Energiebetrag ΔE, und somit schließlich der gesuchte Ankerhub AH, auswerten. Der Energiebetrag ΔE ist gegeben durch Δ E = Ψ 2 2 1 m 0 1 m 1 ,
    Figure imgb0001
    und hieraus ergibt sich der Ankerhub AH als AH = 2 Δ E n 2 μ 0 Ψ 2 1 A 1 + 1 A 2 = n 2 μ 0 1 A 1 + 1 A 2 1 m 0 1 m 1 .
    Figure imgb0002
  • Hierin ist n die Windungszahl der Spule des Elektromagneten. µ0 ist die magnetische Permeabilität des Vakuums. A1 und A2 sind Querschnittsflächen des Luftspalts, die von seiner Breite, also vom Ankerhub AH, unabhängig sind.
  • Somit ermöglicht die Konservierung von m1 vor der Montage des Ventils als Referenzwert und anschließende Bestimmung von m1 * aus m1 die Bestimmung des Ankerhubs AH am fertigen Ventil durch Ermittlung von m0 aus einer weiteren Hysteresekurve. Der Übersichtlichkeit halber wird im Folgenden eine Hysteresekurve des Magnetkreises, die im fertig montierten Zustand des Ventils aufgenommen wird, als "Hysteresekurve des Ventils" bezeichnet.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung wird die Steigung m1 * über einen vorgegebenen ersten funktionalen Zusammenhang aus der Steigung m1 ermittelt. In der einfachsten Näherung kann beispielsweise davon ausgegangen werden, dass m1 * identisch zu m1 ist. Diese Näherung ist für viele Anwendungen bereits genau genug. Enthalten nun aber beispielsweise der Ventilkörper, und/oder die Mittel zur Umsetzung einer Bewegung des Ankers in ein Öffnen oder Schließen des Ventils, ferromagnetische Materialien, so beeinflussen diese Materialien den magnetischen Fluss Ψ des Magnetkreises, und damit auch m1 *. Der erste funktionale Zusammenhang lässt sich vorteilhaft dahingehend verfeinern, dass dieser Einfluss berücksichtigt wird. Je genauer m1 * bestimmt wird, desto genauer lässt sich hieraus der Ankerhub AH bestimmen.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung wird zur Ermittlung des ersten funktionalen Zusammenhangs an mindestens einem fertig montierten Ventil der Anker am Elektromagneten festgestellt und in diesem Zustand die Hysteresekurve aufgenommen. Bei diesem Ventil handelt es sich um ein spezielles Prüf- bzw. Bedatungsexemplar, das sich von den in Serie gefertigten Ventilen dahingehend unterscheidet, dass der Ankerhub AH immer gleich Null ist und das Ventil nicht schalten kann. Abgesehen von diesem Unterschied verhält sich das Ventil magnetisch genau wie die in Serie gefertigten Ventile. Idealerweise wird am Magnetkreis eines Ventils vor der Montage die erste Hysteresekurve aufgenommen und hieraus m1 bestimmt, und nach der Montage dieses Magnetkreises in das Ventil wird die zweite Hysteresekurve aufgenommen und hieraus m1 * bestimmt.
  • Die Steigung m1 * kann aber auch beispielsweise aus der Steigung m1 gewonnen werden, indem mit Hilfe numerischer Methoden, etwa der Finite-Elemente-Methode, der Einfluss weiterer ferromagnetischer Materialien im Ventil auf den aus Elektromagnet und Anker gebildeten Magnetkreis berechnet wird.
  • Alternativ oder in Kombination hierzu kann m1 * auch durch den Vergleich von Referenzwerten weiterer vor der Montage des Ventils ermittelter Größen mit nach der Montage des Ventils ermittelten Werten dieser Größen verfeinert werden.
  • Daher wird in einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung vor dem Einsetzen des Elektromagneten in den Ventilkörper zusätzlich die Steigung m2 eines zweiten linearen Kurvenabschnitts der Hysteresekurve, die an der Kombination des Elektromagneten mit dem Prüfanker aufgenommen wird, im gesättigten Zustand ermittelt. Weiterhin wird vorteilhaft zusätzlich der Stromwert I0 ermittelt, bei dem eine lineare Fortsetzung des zweiten Kurvenabschnitts zur Stromachse I die Stromachse I schneidet.
  • Beide Größen sind auch am fertig montierten Ventil der Messung zugänglich, denn im gesättigten Zustand des Elektromagneten ist der Anker an den Elektromagneten angezogen, so dass sich der Magnetkreis insoweit im gleichen Zustand befindet wie bei der Referenzmessung an der Kombination aus dem Elektromagneten und dem Prüfanker.
  • Um nach der Montage des Ventils an einen zu m2 korrespondierenden Vergleichswert zu gelangen, wird vorteilhaft nach der Montage des Ventils eine weitere magnetische Hysteresekurve des Ventils aufgenommen. Die Steigung m3 eines zweiten, im wesentlichen linearen Kurvenabschnitts der weiteren magnetischen Hysteresekurve, der den gesättigten Zustand repräsentiert, wird ermittelt. Dieser zweiten Kurvenabschnitt korrespondiert zu dem zweiten Kurvenabschnitt der vor der Montage des Ventils an der Kombination aus Elektromagnet und Prüfanker gemessenen magnetischen Hysteresekurve.
  • Um weiterhin nach der Montage des Ventils an einen zu I0 korrespondierenden Vergleichswert zu gelangen, wird vorteilhaft weiterhin zusätzlich der Stromwert I1 ermittelt, bei dem eine lineare Fortsetzung des zweiten Kurvenabschnitts zur Stromachse I die Stromachse I schneidet. Die Erfinder haben erkannt, dass der Vergleich des Stromwerts I1 mit dem Stromwert I0 eine zusätzliche Möglichkeit der Qualitätskontrolle für die magnetischen Eigenschaften der im Ventil verwendeten Bauteile bietet. Insbesondere kann überwacht werden, ob der Anker, und/oder eine zwischen dem Anker und dem Elektromagneten angeordnete Restluftspaltscheibe (RLSS), der gewünschten Spezifikation entspricht. Eine große Abweichung des Stromwerts I1 vom Stromwert I0 kann auf eine diesbezügliche Normabweichung oder auch auf eine unerwünschte Partikelbildung an den Kontaktflächen der Restluftspaltscheibe zum Anker und/oder zum Elektromagneten hinweisen.
  • Daher wird in einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung die betragsmäßige Differenz Δl zwischen dem Stromwert I1 und dem Stromwert I0 ermittelt und das Ventil als fehlerhaft klassiert, wenn diese betragsmäßige Differenz einen vorgegebenen Schwellwert überschreitet.
  • In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung wird aus den Steigungen m1 und m2 eine Korrelation und/oder ein zweiter funktionaler Zusammenhang zwischen den Steigungen m1 und m2 ermittelt. Der zweite funktionale Zusammenhang setzt vorteilhaft das Verhältnis m2/m1 in eine lineare Beziehung zu dem Stromwert I0. Beispielsweise kann für den funktionalen Zusammenhang ein parametrisierter Ansatz der Form I 0 = k 1 m 2 m 1 + k 0
    Figure imgb0003
    mit zwei Parametern ko und k1 aufgestellt werden.
  • Die Erfinder haben bei Reihenuntersuchungen von Elektromagneten erkannt, dass zwar m1, m2 und I0 für sich genommen einer Exemplarstreuung unterliegen. Innerhalb einer Charge von Elektromagneten mit nominell identischer Geometrie, die auf nominell identische Weise gefertigt wurden, ist jedoch in guter Näherung die Korrelation zwischen m1, m2 und I0 gemäß Gleichung (3) mit den gleichen Parametern k0 und k1 gültig. Die wichtigsten Fertigungsparameter, die einen Einfluss auf die Parameter k0 und k1 haben, sind das für die Herstellung des Magnetkerns des Elektromagneten verwendete Magnetpulver, die Pressdichte sowie eine eventuelle Wärmebehandlung des Magnetkerns.
  • Ein Ansatz für eine Verfeinerung der ursprünglichen Näherung, dass der vor der Montage des Ventils ermittelte Referenzwert m1 auch nach der Montage des Ventils unverändert als Steigung m1 * verwendbar ist, besteht somit darin, bei der Auswertung des Energiebetrags ΔE und des Ankerhubs AH gemäß den Gleichungen (1) und (2) nicht unmittelbar den Referenzwert m1 zu verwenden, sondern m1 * mit Hilfe des zweiten funktionalen Zusammenhangs zwischen m1 und m2 und optional auch l0 zu bestimmen. Wird hierfür beispielsweise der Ansatz gemäß Gleichung (3) gemacht, so wird der funktionale Zusammenhang durch die Parameter k0 und k1 charakterisiert.
  • Die vor der Montage des Ventils gewonnenen Parameter k0 und k1 lassen sich beispielsweise nutzen, indem am fertig montierten Ventil die Steigung m3 eines Kurvenabschnitts der Hysteresekurve, der den gesättigten Zustand repräsentiert, ermittelt und in Gleichung (3) als m2 eingesetzt wird. Gemäß m 1 = k 1 m 3 I 0 k 0
    Figure imgb0004
    ist dann ein verfeinerter Näherungswert für m1 * im fertig montierten Zustand des Ventils erhältlich, der näher an dem der Messung nicht mehr unmittelbar zugänglichen Wert ist als der an der Kombination aus Elektromagnet und Prüfanker vor der Montage des Ventils ermittelte Referenzwert m1.
  • Zusammen mit dem im abgefallenen Zustand des Ankers am fertig montierten Ventil gewonnenen Wert für m0 kann der verfeinerte Näherungswert für m1 * genutzt werden, um gemäß den Gleichungen (1) und (2) den Energiebetrag ΔE, und schließlich den Ankerhub AH, auszuwerten.
  • In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung wird die Steigung m1, die Steigung m2, die Steigung m1 *, und/oder der erste funktionale Zusammenhang, und/oder der zweite funktionale Zusammenhang, und/oder die Korrelation zwischen den Steigungen m1 und m2, auf dem Elektromagneten, und/oder auf einem mit dem Elektromagneten verbundenen maschinenlesbaren Informationsträger, vermerkt, und/oder in einer Datenbank eindeutig mit dem Elektromagneten verknüpft. Insbesondere kann hierbei der funktionale Zusammenhang gemäß Gleichung (3) durch die Parameter k0 und k1 repräsentiert sein. Die Massenfertigung der Elektromagnete lässt sich dann besonders einfach von der Massenfertigung der elektromagnetisch betätigbaren Ventile entkoppeln. Beispielsweise kann ein Werk Elektromagnete für mehrere andere Werke vorproduzieren, die hieraus verschiedene Typen von elektromagnetisch betätigbaren Ventilen fertigen. Der maschinenlesbare Informationsträger kann beispielsweise einen Datamatrix-Code, etwa einen QR-Code, beinhalten.
  • Die Entkopplung der Fertigung von Elektromagneten einerseits und Ventilen andererseits lässt sich in einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung vereinfachen, indem eine Vielzahl von Elektromagneten nach dem Wert der Steigungen m1 und/oder m2, und/oder nach dem funktionalen Zusammenhang und/oder der Korrelation zwischen den Steigungen m1 und m2, klassiert wird. Der funktionale Zusammenhang kann beispielsweise an Hand der Parameter k0 und k1 in Gleichung (3) klassiert werden. Die Klassierung diskretisiert die Genauigkeit der Referenzwerte für den Elektromagneten, beschleunigt aber die Massenfertigung, da Elektromagnete aus einer Klasse jeweils in identischer Form weiterverarbeitet werden können und nicht mehr auf magnetindividuelle Referenzwerte eingegangen werden muss. Weiterhin können auffällige Elektromagnete, die sich keiner Klasse gemäß Spezifikation zuordnen lassen, von vornherein als Ausschuss aussortiert werden.
  • Nach dem zuvor Gesagten bezieht sich die Erfindung auch auf ein Verfahren zur Bestimmung des Ankerhubs AH an einem elektromagnetisch betätigbaren Ventil. Dieses Ventil umfasst einen Elektromagneten, einen durch den Elektromagneten bewegbarer Anker sowie vorzugsweise einen Ventilkörper, innerhalb dessen der Elektromagnet, der Anker sowie Mittel zur Umsetzung einer Bewegung des Ankers in ein Öffnen oder Schließen des Ventils angeordnet sind. Zur Bestimmung des Ankerhubs AH wird eine magnetische Hysteresekurve des Ventils aufgenommen und eine erste Steigung m0 eines ersten linearen Kurvenabschnitts der Hysteresekurve des Ventils im ungesättigten Zustand bestimmt. In diesem Zustand ist der Anker durch die im Ventil wirksame Rückstellkraft vom Elektromagneten abgefallen, so dass ein Luftspalt zwischen dem Anker und dem Elektromagneten existiert.
  • Erfindungsgemäß wird zur Bestimmung des Ankerhubs AH die magnetische Energie ΔE im Luftspalt aus dem Unterschied zwischen der ersten Steigung m0 und einer zweiten Steigung m1 * des zum ersten Kurvenabschnitt der Hysteresekurve korrespondierenden ersten, im Wesentlichen linearen Kurvenabschnitts einer weiteren magnetischen Hysteresekurve, die das Ventil bei am Elektromagneten festgehaltenem Anker hätte, ausgewertet. Hierbei kann zur Ermittlung der zweiten Steigung m1 * insbesondere mindestens ein vor dem Einsetzen des Elektromagneten in den Ventilkörper ermittelter Referenzwert m1 für diese Steigung m1 * herangezogen werden. Der Referenzwert m1 kann insbesondere im Rahmen des zuvor beschriebenen Herstellungsverfahrens gewonnen worden sein.
  • Für die Ermittlung von m1 * unter Heranziehung des Referenzwerts m1 stehen beispielsweise die im Zusammenhang mit dem Verfahren zu Ermittlung der Hysteresekurve offenbarten Methoden zur Verfügung.
  • In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung wird die zweite Steigung m1 * aus der Steigung m3 eines zweiten linearen Kurvenabschnitts der magnetischen Hysteresekurve des Ventils im gesättigten Zustand in Verbindung mit einem funktionalen Zusammenhang und/oder einer Korrelation zwischen den Steigungen m1, m2 der Kurvenabschnitte der weiteren Hysteresekurve ermittelt. Dabei kann die Korrelation, bzw. der funktionale Zusammenhang, ebenfalls vor dem Einsetzen des Elektromagneten in den Ventilkörper ermittelt und als Referenzwert konserviert worden sein.
  • Beispielsweise kann der funktionale Zusammenhang gemäß Gleichung (3) in Form der Parameter k0 und k1 konserviert worden sein.
  • Das Verfahren zur Ermittlung der Hysteresekurve, mit dem vor der Montage des Ventils ein oder mehrere Referenzwerte am Elektromagneten gewonnen und konserviert werden, und das Verfahren zur Bestimmung des Ankerhubs, mit dem nach der Montage des Ventils vorteilhaft unter Nutzung dieser Referenzwerte über die magnetische Energie ΔE im Luftspalt zwischen Anker und Elektromagnet der Ankerhub AH ausgewertet wird, arbeiten synergistisch Hand in Hand, um im Endeffekt eine genaue Bestimmung des Ankerhubs AH zu ermöglichen. Durch die vorteilhaft lückenlose Messung von Hysteresekurven an allen zum Einsatz kommenden Elektromagneten (Magnetbaugruppen) und Konservierung der bei dieser Messung erhaltenen Referenzwerte wird der Einfluss von Chargenschwankungen der verwendeten Bauteile auf die Genauigkeit des bestimmten Ankerhubs AH minimiert. Der gemäß der Erfindung bestimmte Ankerhub AH kann insbesondere vorteilhaft als Rückkopplung genutzt werden, um bei der Fertigung von elektromagnetisch betätigten Ventilen für Kraftstoffinjektoren den Ankerhub werksseitig präzise einzustellen und im laufenden Betrieb zu überwachen.
  • Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand von Figuren näher dargestellt.
  • Ausführungsbeispiele
  • Es zeigt:
    • Figur 1 Schematische Darstellung eines elektromagnetisch betätigbaren Ventils 1 (Figur 1a) und einer Kombination 6 aus Elektromagnet 2, 2a, 2b und Prüfanker 3a (Figur 1b);
    • Figur 2 Ausschnitt der an der Kombination 6 gemessenen Hysteresekurve 10.
    • Figur 3 Ausschnitt der am fertig montierten Ventil 1 gemessenen Hysteresekurve 20.
    • Figur 4 In einer Reihenuntersuchung von Elektromagneten 2 ermittelter funktionaler Zusammenhang 8 zwischen dem Steigungsverhältnis m2/m1 und dem Stromwert I0.
    • Figur 5 Vollständige Hysteresekurve 20 des Ventils 1.
    • Figur 6 Beispielhafte Einflüsse der Exemplarstreuung zwischen Elektromagneten 2 auf die Hysteresekurve 10 der Kombination 6 aus Elektromagnet 2 und Prüfanker 3a.
  • Nach Figur 1a umfasst das hier beispielhaft als 2/2-Wegeventil dargestellte Ventil 1 einen Ventilkörper 5 mit einem Einlass 1a und einem Auslass 1b. Das Ventil 1 schaltet den Durchfluss eines Mediums zwischen dem Einlass 1a und dem Auslass 1b. Zu diesem Zweck ist innerhalb des Ventilkörpers 5 ein Elektromagnet 2 angeordnet, der aus einem ferromagnetischen Magnetkern 2a und einer auf den ferromagnetischen Magnetkern 2a gewickelten Spule 2b besteht. Auf dem Elektromagneten 2 ist ein maschinenlesbarer Informationsträger 7 angebracht, der einen Barcode mit Referenzwerten enthält. Diese Referenzwerte wurden an einer Kombination 6 des Elektromagneten 2 mit einem Prüfanker 3a vor dem Einsetzen des Elektromagneten 2 in den Ventilkörper 5 gemessen.
  • Im Ventil 1 ist ein Anker 3 so relativ zum Elektromagneten 2 angeordnet, dass der Elektromagnet 2 den Anker 3 anziehen kann. Über einen Kopplungsmechanismus 4a wird dann das Stellglied 4c des Ventils 1 gegen die von der Ventilfeder 4b ausgeübte Rückstellkraft von der in Figur 1a gezeigten Schaltstellung, in der das Ventil 1 geschlossen ist, in die in Figur 1a nicht gezeigte Schaltstellung, in der das Ventil 1 geöffnet ist, überführt. Der Kopplungsmechanismus 4a, die Ventilfeder 4b und das Stellglied 4c bilden gemeinsam die Mittel 4, die die Bewegung des Ankers 3 in ein Öffnen oder Schließen des Ventils 1 umsetzen.
  • In der in Figur 1a gezeigten geschlossenen Schaltstellung des Ventils 1 besteht zwischen dem Anker 3 und dem Elektromagneten 2 ein Luftspalt 9. Ist der Anker 3 hingegen an den Elektromagneten 2 angezogen, verschwindet dieser Luftspalt 9. Die Breite des Luftspalts 9 in der geschlossenen Schaltstellung, in der der Anker 3 vom Elektromagneten 2 abgefallen ist, entspricht dem Ankerhub AH des Ventils 1.
  • Der Elektromagnet 2 und der Anker 3 bilden gemeinsam einen Magnetkreis, der von einem magnetischen Fluss Ψ durchsetzt ist. Von diesem magnetischen Fluss Ψ sind in Figur 1a beispielhaft zwei Flusslinien eingezeichnet.
  • Figur 1b zeigt die Kombination 6 aus dem Elektromagneten 2 und dem Prüfanker 3a, an der zumindest die Steigung m1 eines Kurvenabschnitts 11 einer Hysteresekurve 10 im ungesättigten Zustand als Referenzwert ermittelt wird. Der Prüfanker 3a wird mit in Figur 1b nicht dargestellten Mitteln auch dann im Kontakt mit dem Magnetkern 2a des Elektromagneten 2 gehalten, wenn die Spule 2b des Elektromagneten 2 nicht bestromt ist.
  • Figur 2 zeigt einen Ausschnitt der Hysteresekurve 10, die an der Kombination 6 aus dem Elektromagneten 2 und dem Prüfanker 3a aufgenommen wurde. Der magnetische Fluss Ψ ist über dem Strom I durch die Spule 2b des Elektromagneten 2 aufgetragen. In einem ersten Kurvenabschnitt 11, der den ungesättigten Zustand des Elektromagneten 2 repräsentiert, verläuft die Hysteresekurve 10 im Wesentlichen linear mit einer Steigung m1, so dass in diesem Kurvenabschnitt 11 näherungsweise Ψ(l)=m1·l+c1 mit einer Konstanten c1 gilt. In einem zweiten Kurvenabschnitt 12, der den gesättigten Zustand des Elektromagneten 2 repräsentiert, verläuft die Hysteresekurve 10 ebenfalls im Wesentlichen linear mit einer Steigung m2, so dass in diesem Kurvenabschnitt 12 näherungsweise Ψ(l)=m2·l+c2 mit einer Konstanten c2 gilt. Eine lineare Fortsetzung 13 dieses zweiten Kurvenabschnitts 12 mit gleicher Steigung m2 zur Stromachse I schneidet die Stromachse I beim Stromwert I0. Der in Figur 2 dargestellte Ausschnitt der Hysteresekurve 10 wurde ausgehend vom gesättigten Zustand des Elektromagneten 2 aufgenommen. Es wurde also ausgehend vom höchsten Strom I durch die Spule 2b des Elektromagneten 2 der Strom I sukzessive vermindert.
  • Figur 3 zeigt einen Ausschnitt der Hysteresekurve 20, die am fertig montierten Ventil 1 aufgenommen wurde. Analog zu Figur 1 ist der magnetische Fluss Ψ im aus Elektromagnet 2 und Anker 3 gebildeten Magnetkreis des Ventils 1 über dem Strom I durch die Spule 2b des Elektromagneten 2 aufgetragen. Analog zu Figur 1 wurde vom höchsten Wert des Stroms I im gesättigten Zustand des Elektromagneten 2 ausgegangen und der Strom I sukzessive vermindert.
  • Auch die Hysteresekurve 20 weist im ungesättigen Zustand einen ersten Kurvenabschnitt 21 auf, in dem sie im Wesentlichen linear verläuft mit einer Steigung m0. In diesem Kurvenabschnitt 21 gilt somit näherungsweise Ψ(l)=m0·l+c0 mit einer Konstanten c0. In einem zweiten Kurvenabschnitt 22, der den gesättigten Zustand repräsentiert, verläuft die Hysteresekurve 20 ebenfalls im Wesentlichen linear mit einer Steigung m3. In diesem Kurvenabschnitt 22 gilt näherungsweise Ψ(l)=m3·l+c3 mit einer Konstanten c3. Die lineare Fortsetzung 23 des Kurvenabschnitts 22 mit gleicher Steigung m3 zur Stromachse I schneidet die Stromachse I beim Stromwert l1.
  • Zum Vergleich ist in Figur 3 zusätzlich der Kurvenabschnitt 31 der in Figur 2 gezeigten Hysteresekurve 30 eingezeichnet, die das fertig montierte Ventil bei dauerhaft am Elektromagneten anliegendem Anker hätte. In diesem Kurvenabschnitt 31 gilt näherungsweise Ψ(l)=m1 *·l+c1 * mit einer Konstanten c1 *.
  • Am Verlauf der Hysteresekurve 20 ausgehend vom zweiten Kurvenabschnitt 22 hin zu geringeren Stromwerten I ist deutlich zu erkennen, dass das Abfallen des Ankers 3 vom Elektromagneten 2 den magnetischen Fluss Ψ diskontinuierlich vermindert. Ursache hierfür ist, dass sich durch das Abfallen des Ankers 3 der Luftspalt 9 zwischen dem Anker 3 und dem Elektromagneten 2 bildet und eine magnetische Energie ΔE in dem Luftspalt 9 hinterlegt wird. Diese Energie ΔE entspricht der Fläche zwischen dem ersten Kurvenabschnitt 21 der Hysteresekurve 20 und dem ersten Kurvenabschnitt 31 der Hysteresekurve 30. Aus der Energie ΔE ist der gesuchte Ankerhub AH ermittelbar.
  • Figur 4 zeigt den zweiten funktionalen Zusammenhang 8 zwischen dem Steigungsverhältnis m2/m1 und dem Stromwert l0, der in einer Reihenuntersuchung von Elektromagneten 2 ermittelt wurde. Der zweite funktionale Zusammenhang 8 entspricht Gleichung (3). Jeder mit einem Rhombus als Symbol gekennzeichnete Messpunkt repräsentiert einen Elektromagneten 2, auf den der zweite funktionale Zusammenhang 8 näherungsweise zutrifft. Jeder mit einem Kreis als Symbol gekennzeichnete Messpunkt repräsentiert einen Elektromagneten 2, der von dem zweiten funktionalen Zusammenhang 8 deutlich abweicht. In Figur 4 sind zwei Gruppen 8a und 8b derartiger Ausreißer erkennbar. Elektromagnete 2, die in dieser Weise auffällig sind, werden vorzugsweise als Ausschuss aussortiert.
  • Figur 5 zeigt zum besseren Verständnis eine vollständige Hysteresekurve 20 des Ventils 1 bei symmetrischer Aussteuerung. Ausgehend vom höchsten Stromwert I im gesättigten Zustand wird zunächst der Zweig 28 hin zu geringeren Stromwerten I durchlaufen. Dabei wird zunächst der im Wesentlichen linear verlaufende zweite Kurvenabschnitt 21 passiert. Im Anschluss an diesen zweiten Kurvenabschnitt 21 verringert sich der magnetische Fluss Ψ im abfallenden Kurvenabschnitt 24 schneller als linear, bevor am Punkt 27a der Anker 3 durch die von der Ventilfeder 4b des Ventils 1 ausgeübte Rückstellkraft vom Elektromagneten 2 abfällt und der Luftspalt 9 zwischen dem Anker 3 und dem Elektromagneten 2 gebildet wird. Dies zeigt sich in einem diskontinuierlichen Abfall des magnetischen Flusses Ψ. Der Zweig 28 der Hysteresekurve 20 geht anschließend in den ersten Kurvenabschnitt 21 im ungesättigten Zustand über. Hier verläuft der magnetische Fluss Ψ im Wesentlichen linear mit dem Strom l.
  • Im linken unteren Quadranten von Figur 5 geht der Zweig 28 der Hysteresekurve 20 in einen anziehenden Kurvenabschnitt über. Am Punkt 26b wird der Anker 3 an den Elektromagneten 2 angezogen, was sich in einer kleinen Diskontinuität im Kurvenverlauf zeigt.
  • Wird anschließend im gesättigten Zustand der Strom I wieder erhöht, wird der Zweig 29 der Hysteresekurve 20 durchlaufen. Hier geht die Hysteresekurve 20 wieder in einen abfallenden Kurvenabschnitt 24 über, in dem am Punkt 27b der Anker 3 vom Elektromagneten 2 abfällt. Wenn der Zweig 29 der Hysteresekurve 29 in den rechten oberen Quadranten übertritt, beginnt der nächste anziehende Kurvenabschnitt 25. Am Punkt 26a wird der Anker 3 wieder an den Elektromagneten 2 angezogen.
  • Analog zu Figur 3 sind in Figur 5 auch die lineare Fortsetzung 23 des zweiten Kurvenabschnitts 21 zur Stromachse I sowie der Stromwert l1, an dem die Fortsetzung 23 die Stromachse I schneidet, eingezeichnet.
  • Figur 6 verdeutlicht an Hand einiger Beispiele, wie die Exemplarstreuung zwischen verschiedenen Elektromagneten 2 den Verlauf der Hysteresekurve 10 einer Kombination 6 aus dem jeweiligen Elektromagneten 2 mit dem Prüfanker 3a beeinflussen kann.
  • In Figur 6a sind Abweichungen zwischen einer ersten Hysteresekurve 10 und einer zweiten Hysteresekurve 10a von einer Art dargestellt, wie sie beispielsweise durch Unterschiede in der Wärmebehandlung der Magnetkerne 2a verschiedener Elektromagneten 2, oder auch durch eine unterschiedliche chemische Zusammensetzung des für beide Magnetkerne 2a verwendeten Magnetpulvers, bewirkt werden können. Im gesättigten Zustand, der durch den zweiten Kurvenabschnitt 12 repräsentiert wird, ist der Verlauf der beiden Hysteresekurven 10 und 10a identisch. Somit ändert die Abweichung in der Zusammensetzung der Magnetkerne 2a nicht die Steigung m2 im zweiten Kurvenabschnitt 12 und auch nicht den Stromwert l0, bei dem die lineare Fortsetzung 13 des zweiten Kurvenabschnitts 12 die Stromachse I schneidet. Die Verläufe der ersten Kurvenabschnitte 11 und 11a im ungesättigten Zustand sind jedoch unterschiedlich und weisen insbesondere auch unterschiedliche Steigungen m1 auf.
  • Figur 6b zeigt den umgekehrten Fall, dass sich innerhalb einer Serie aus fünf Elektromagneten 2 die jeweils in der Kombination 6 mit einem Prüfanker 3a gemessenen Hysteresekurven 10, 10a-10d nur im gesättigten Zustand stark unterscheiden, während die Hysteresekurven 10, 10a-10d im ungesättigten Zustand praktisch parallel zueinander verlaufen. Es haben also beispielsweise die zweiten Kurvenabschnitte 12 und 12a der Hysteresekurven 10 und 10a im gesättigten Zustand unterschiedliche Steigungen m2, und die linearen Fortsetzungen 13 und 13a dieser zweiten Kurvenabschnitte 12 und 12a zur Stromachse I schneiden die Stromachse I bei unterschiedlichen Stromwerten l0. Hingegen ist die Steigung m1 im ungesättigten Zustand für alle Hysteresekurven 10, 10a-10d nahezu identisch.
  • Figur 6c zeigt demgegenüber den Fall, dass sich innerhalb einer Serie aus drei Elektromagneten 2 die jeweils in der Kombination 6 mit einem Prüfanker 3a gemessenen Hysteresekurven 10, 10a, 10b sowohl in ihren Steigungen m1 im ungesättigten Bereich als auch in ihren Steigungen m2 in den zweiten Kurvenabschnitten 12, 12a im gesättigten Bereich deutlich unterscheiden. Dementsprechend schneiden auch die linearen Fortsetzungen 13, 13a der zweiten Kurvenabschnitte 12, 12a zur Stromachse I die Stromachse l bei unterschiedlichen Stromwerten l0.
  • Sofern sich die Exemplarstreuung zwischen Elektromagneten 2 nur in solchen Veränderungen der Hysteresekurve 10 zeigt, die m1, m2 und l0 in korrelierter Weise ändern, so kann das Herstellungsverfahren in vereinfachter Form angewendet werden. Es kann dann darauf verzichtet werden, an jedem einzelnen Elektromagneten 2 eine Hysteresekurve 10 aufzunehmen. Stattdessen genügt es, eine Stichprobe von einigen wenigen Elektromagneten 2 einer Charge aus nominell identisch dimensionierten und gefertigten Elektromagneten 2 zu vermessen und daraus den funktionalen Zusammenhang 8 gemäß Gleichung (3) zu ermitteln. Für diese Stichprobe können beispielsweise Referenzventile verwendet werden, in denen der Anker 3 als Prüfanker 3a am Elektromagneten 2 fixiert ist. m1 kann dann für alle weiteren Elektromagneten 2 aus der Charge gemäß Gleichung (4) ausgewertet werden.

Claims (15)

  1. Verfahren zur Ermittlung einer Hysteresekurve eines elektromagnetisch betätigbaren Ventils (1) aus einem Elektromagneten (2, 2a, 2b), einem durch den Elektromagneten (2, 2a, 2b) bewegbaren Anker (3) und einem Ventilkörper (5) mit Mitteln (4, 4a, 4b, 4c) zur Umsetzung einer Bewegung des Ankers (3) in ein Öffnen oder Schließen des Ventils (1), wobei der Elektromagnet (2, 2a, 2b) und der Anker (3) in den Ventilkörper (5) eingesetzt werden, wobei vor dem Einsetzen des Elektromagneten (2, 2a, 2b) in den Ventilkörper (5) eine magnetische Hysteresekurve (10) einer Kombination (6) des Elektromagneten (2, 2a, 2b) mit einem an diesem Elektromagneten (2, 2a, 2b) anliegenden Prüfanker (3a) aufgenommen wird, gekennzeichnet dadurch, dass die Steigung m1 eines ersten, im Wesentlichen linearen Kurvenabschnitts (11) der Hysteresekurve (10) im ungesättigten Zustand ermittelt wird und dass aus der Steigung m1 die Steigung m1 * eines zu dem ersten Kurvenabschnitt (11) korrespondierenden Kurvenabschnitts (31) einer Hysteresekurve (30) des fertig montierten Ventils (1) mit dauerhaft am Elektromagneten (2, 2a, 2b) anliegendem Anker (3) ermittelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Steigung m1 * über einen vorgegebenen ersten funktionalen Zusammenhang aus der Steigung m1 ermittelt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Ermittlung des ersten funktionalen Zusammenhangs an mindestens einem fertig montierten Ventil (1) der Anker (3) am Elektromagneten (2, 2a, 2b) festgestellt und in diesem Zustand eine Hysteresekurve (30) aufgenommen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass vor dem Einsetzen des Elektromagneten (2, 2a, 2b) in den Ventilkörper (5) zusätzlich die Steigung m2 eines zweiten, im Wesentlichen linearen Kurvenabschnitts (12) der Hysteresekurve (10) der Kombination (6) im gesättigten Zustand ermittelt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zusätzlich der Stromwert l0 ermittelt wird, bei dem eine lineare Fortsetzung (13) des zweiten Kurvenabschnitts (12) zur Stromachse I die Stromachse I schneidet.
  6. Verfahren nach einem der Ansprüche 4 bis 5, dadurch gekennzeichnet, dass nach der Montage des Ventils (1) eine weitere magnetische Hysteresekurve (20) des Ventils (1) aufgenommen wird und dass die Steigung m3 eines zum zweiten Kurvenabschnitt (12) der magnetischen Hysteresekurve (10) korrespondierenden zweiten, im wesentlichen linearen Kurvenabschnitts (22) der weiteren magnetischen Hysteresekurve (20) im gesättigten Zustand ermittelt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zusätzlich der Stromwert l1 ermittelt wird, bei dem eine lineare Fortsetzung (23) des zweiten Kurvenabschnitts (22) der weiteren Hysteresekurve (20) zur Stromachse I die Stromachse I schneidet.
  8. Verfahren nach Anspruch 7 in Abhängigkeit von Anspruch 5, dadurch gekennzeichnet, dass die betragsmäßige Differenz Δl zwischen dem Stromwert l1 und dem Stromwert l0 ermittelt wird und das Ventil (1) als fehlerhaft klassiert wird, wenn die betragsmäßige Differenz Δl einen vorgegebenen Schwellwert überschreitet.
  9. Verfahren nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass aus den Steigungen m1 und m2 eine Korrelation und/oder ein zweiter funktionaler Zusammenhang (8) zwischen den Steigungen m1 und m2 ermittelt wird.
  10. Verfahren nach Anspruch 9 in Abhängigkeit von Anspruch 5, dadurch gekennzeichnet, dass der zweite funktionale Zusammenhang (8) das Verhältnis m2/m1 in eine lineare Beziehung zu dem Stromwert l0 setzt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Steigung m1, die Steigung m2, die Steigung m1 *, und/oder der erste funktionale Zusammenhang, und/oder der zweite funktionale Zusammenhang (8), und/oder die Korrelation zwischen den Steigungen m1 und m2, auf dem Elektromagneten (2, 2a, 2b), und/oder auf einem mit dem Elektromagneten (2, 2a, 2b) verbundenen maschinenlesbaren Informationsträger (7), vermerkt, und/oder in einer Datenbank eindeutig mit dem Elektromagneten (2, 2a, 2b) verknüpft, wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass eine Vielzahl von Elektromagneten (2, 2a, 2b) nach dem Wert der Steigungen m1 und/oder m2, und/oder nach dem zweiten funktionalen Zusammenhang (8) und/oder der Korrelation zwischen den Steigungen m1 und m2, klassiert wird.
  13. Verfahren zur Bestimmung des Ankerhubs (AH) an einem elektromagnetisch betätigbaren Ventil (1), welches einen Elektromagneten (2, 2a, 2b) und einen durch den Elektromagneten (2, 2a, 2b) bewegbaren Anker (3) umfasst, gekennzeichnet dadurch, dass eine magnetische Hysteresekurve (20) des Ventils (1) aufgenommen und eine erste Steigung m0 eines ersten, im Wesentlichen linearen Kurvenabschnitts (21) der Hysteresekurve (20) des Ventils (1) im ungesättigten Zustand bestimmt wird, wobei aus dem Unterschied zwischen der ersten Steigung m0 und einer zweiten Steigung m1 * des zum ersten Kurvenabschnitt (21) der Hysteresekurve (20) korrespondierenden ersten, im Wesentlichen linearen Kurvenabschnitts (31) einer weiteren magnetischen Hysteresekurve (30), die das Ventil (1) bei am Elektromagneten (2, 2a, 2b) festgehaltenem Anker (3) hätte, die magnetische Energie ΔE in einem zwischen dem Anker (3) und dem Elektromagneten (2, 2a, 2b) gebildeten Luftspalt (9), und somit der zu bestimmende Ankerhub (AH) ausgewertet wird.
  14. Verfahren nach Anspruch 13, wobei das Ventil (1) einen Ventilkörper (5) umfasst und wobei der Elektromagnet (2, 2a, 2b), der Anker (3) sowie Mittel (4, 4a, 4b, 4c) zur Umsetzung einer Bewegung des Ankers (3) in ein Öffnen oder Schließen des Ventils (1) innerhalb des Ventilkörpers (5) angeordnet sind, dadurch gekennzeichnet, dass zur Ermittlung der zweiten Steigung m1 * mindestens ein vor dem Einsetzen des Elektromagneten (2, 2a, 2b) in den Ventilkörper (5) ermittelter Referenzwert m1 für diese Steigung m1 * herangezogen wird.
  15. Verfahren nach einem der Ansprüche 13 bis 14, dadurch gekennzeichnet, dass die zweite Steigung m1 * aus der Steigung m3 eines zweiten linearen Kurvenabschnitts (22) der magnetischen Hysteresekurve (20) des Ventils (1) im gesättigten Zustand in Verbindung mit einem zweiten funktionalen Zusammenhang (8) und/oder einer Korrelation zwischen den Steigungen m1, m2 von Kurvenabschnitten (11, 12) einer weiteren Hysteresekurve (10) ermittelt wird, die vor dem Einsetzen des Elektromagneten in den Ventilkörper mit einem am Elektromagneten anliegenden Prüfanker aufgenommen wurde, wobei m1 die Steigung eines ersten, im Wesentlichen linearen Kurvenabschnitts dieser Hysteresekurve im ungesättigten Zustand und m2 die Steigung eines zweiten, im Wesentlichen linearen Kurvenabschnitts dieser Hysteresekurve im gesättigten Zustand darstellt.
EP16801793.7A 2015-12-21 2016-11-28 Ankerhubbestimmung durch messung magnetischer hysteresekurven Active EP3394866B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226189.1A DE102015226189A1 (de) 2015-12-21 2015-12-21 Ankerhubbestimmung durch Messung magnetischer Hysteresekurven
PCT/EP2016/079028 WO2017108342A1 (de) 2015-12-21 2016-11-28 Ankerhubbestimmung durch messung magnetischer hysteresekurven

Publications (2)

Publication Number Publication Date
EP3394866A1 EP3394866A1 (de) 2018-10-31
EP3394866B1 true EP3394866B1 (de) 2020-10-21

Family

ID=57406252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16801793.7A Active EP3394866B1 (de) 2015-12-21 2016-11-28 Ankerhubbestimmung durch messung magnetischer hysteresekurven

Country Status (6)

Country Link
US (1) US10770212B2 (de)
EP (1) EP3394866B1 (de)
KR (1) KR102560239B1 (de)
CN (1) CN108431909B (de)
DE (1) DE102015226189A1 (de)
WO (1) WO2017108342A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586789B (zh) * 2021-07-14 2024-03-29 杭州群科荟科技有限公司 一种气隙磁导式电磁阀的磁导计算方法及行程取值方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208497B1 (en) * 1997-06-26 2001-03-27 Venture Scientifics, Llc System and method for servo control of nonlinear electromagnetic actuators
DE102010036941B4 (de) * 2010-08-11 2012-09-13 Sauer-Danfoss Gmbh & Co. Ohg Verfahren und Vorrichtung zur Ermittlung des Zustands eines elektrisch angesteuerten Ventils
DE102010063009B4 (de) 2010-12-14 2020-10-08 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Charakterisierung einer Bewegung eines Kraftstoffinjektors mittels Erfassung und Auswertung einer magnetischen Hysteresekurve
AT510600B1 (de) * 2011-06-07 2012-05-15 Ge Jenbacher Gmbh & Co Ohg Endlageüberwachung eines gaseinblaseventils
DE102012206484A1 (de) 2012-04-19 2013-10-24 Robert Bosch Gmbh Kraftstoffinjektor mit einer Vorrichtung zur Messung eines Ankerhubs
DE102013223121A1 (de) 2013-11-13 2015-05-13 Robert Bosch Gmbh Kraftstoffinjektor
DE102014224321A1 (de) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Verfahren zum Ermitteln des Ankerhubs eines Magnetaktors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108431909A (zh) 2018-08-21
KR20180095630A (ko) 2018-08-27
KR102560239B1 (ko) 2023-07-28
CN108431909B (zh) 2020-12-08
EP3394866A1 (de) 2018-10-31
US20190006073A1 (en) 2019-01-03
US10770212B2 (en) 2020-09-08
WO2017108342A1 (de) 2017-06-29
DE102015226189A1 (de) 2017-06-22

Similar Documents

Publication Publication Date Title
EP2422066B1 (de) Verfahren zum betreiben eines einspritzventils
DE102011075521B4 (de) Verfahren zum Erkennen eines Schließzeitpunktes eines einen Spulenantrieb aufweisenden Ventils und Ventil
DE102011005672B4 (de) Verfahren, Vorrichtung und Computerprogramm zur elektrischen Ansteuerung eines Aktuators zur Bestimmung des Zeitpunkts eines Ankeranschlags
DE102011087418B4 (de) Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
WO2011042281A1 (de) Verfahren und steuergerät zum betreiben eines ventils
WO1998038656A1 (de) Verfahren zur bewegungserkennung, insbesondere zur regelung der ankerauftreffgeschwindigkeit an einem elektromagnetischen aktuator sowie aktuator zur durchführung des verfahrens
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
EP1819566A1 (de) Elektromagnetisch ansteuerbares stellgerät und verfahren zu dessen herstellung und/oder justage
EP1165944B1 (de) Verfahren zum bestimmen der position eines ankers
EP1651485A1 (de) Verfahren und vorrichtung zur herstellung und/oder justage eines elektromagnetisch ansteuerbaren stellgeräts
DE102011016895A1 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP3394866B1 (de) Ankerhubbestimmung durch messung magnetischer hysteresekurven
WO2008090047A1 (de) Vorrichtung und verfahren zur steuerung eines elektromagnetischen ventils
DE102015206739A1 (de) Bestimmung eines Hubes eines Magnetventils
DE102018207417A1 (de) Bestimmung einer Kenngröße eines magnetischen Schaltventils
WO2016102255A1 (de) Einspritzventil zur injektion eines fluids, verwendung eines einspritzventils und verfahren zur herstellung eines einspritzventils
EP1651486B1 (de) Verfahren und vorrichtung zum messen eines fluiddrucks mittels eines stellgeräts
DE102008040250A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102016217415A1 (de) Verfahren und Vorrichtung zum Kalibrieren von Kraftstoffinjektoren mit Leerhub
DE4425987A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE102009054589A1 (de) Verfahren und Steuergerät zum Betreiben eines Ventils
DE102008001397A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
WO2000052715A1 (de) Verfahren zur erfassung der ankerbewegung an einem elektromagnetischen aktuator
WO2008037464A1 (de) Regeleinheit und verfahren zur regelung einer elektromagnetischen ventilanordnung
WO2011082901A1 (de) Verfahren und steuergerät zum betreiben eines ventils

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 65/00 20060101ALI20200527BHEP

Ipc: F02D 41/24 20060101ALI20200527BHEP

Ipc: F02D 41/20 20060101ALI20200527BHEP

Ipc: H01F 7/18 20060101AFI20200527BHEP

INTG Intention to grant announced

Effective date: 20200622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011517

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1326686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011517

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

26N No opposition filed

Effective date: 20210722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1326686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 8

Ref country code: FR

Payment date: 20231124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 8