EP0935714A1 - Ventilanordnung mit druckwaage - Google Patents

Ventilanordnung mit druckwaage

Info

Publication number
EP0935714A1
EP0935714A1 EP97945768A EP97945768A EP0935714A1 EP 0935714 A1 EP0935714 A1 EP 0935714A1 EP 97945768 A EP97945768 A EP 97945768A EP 97945768 A EP97945768 A EP 97945768A EP 0935714 A1 EP0935714 A1 EP 0935714A1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
piston
control
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97945768A
Other languages
English (en)
French (fr)
Other versions
EP0935714B1 (de
Inventor
Burkhard KNÖLL
Winfried RÜB
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Rexroth AG
Original Assignee
Mannesmann Rexroth AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7811247&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0935714(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mannesmann Rexroth AG filed Critical Mannesmann Rexroth AG
Publication of EP0935714A1 publication Critical patent/EP0935714A1/de
Application granted granted Critical
Publication of EP0935714B1 publication Critical patent/EP0935714B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30555Inlet and outlet of the pressure compensating valve being connected to the directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87169Supply and exhaust

Definitions

  • the invention relates to a valve arrangement for supplying pressure and volume flow adapted to at least one consumer according to the preamble of patent claim 1.
  • Valve arrangements of this type are used, for example, in mobile hydraulics to control consumers, in particular single- and double-acting cylinders.
  • Double-acting cylinders are often used in front linkages on agricultural tractors.
  • the rear linkages have so far been designed with single-acting cylinders in most cases, but due to the versatile uses of modern tractors, there is an increasing tendency to also design the rear linkages with double-acting cylinders.
  • various peripheral devices such as packers, plows, cultivators, rollers etc. can be coupled and operated on a tractor.
  • valve arrangements In mobile hydraulics, efforts are made to make the valve arrangements as compact as possible, so that they are often designed in a plate construction or as a compact or monoblock.
  • the necessary connections such as, for example, pump connection, control connection, working connection, tank connection and the housing bores required for receiving the control elements of the valve arrangement are formed in the base body of the valve plate or the compact block.
  • load-sensing systems are used, through which a flow pressure independent of the load pressure and thus a sensitive speed control of the consumer is achieved.
  • the pressure difference across the directional control valve is kept constant by switching individual pressure compensators into the consumer connections, which measure the system pressure, i.e. Reduce the pressure of the highest load in the system to the respective consumer pressure.
  • DE 36 34 728 C2 discloses a valve arrangement for the load-independent control of a plurality of double-acting hydraulic consumers, in which the measuring orifice is designed by means of fine control grooves in the directional control valve spool and, downstream of this orifice, an individual pressure compensator is accommodated in a valve housing bore via which the hydraulic fluid, depending on the control of the directional valve spool can be fed to a first or a second working connection.
  • the individual pressure compensator has a piston which is pressurized after the orifice in the opening direction and by a spring and a control pressure in the closing direction.
  • a disadvantage of this embodiment is that a receiving bore for the piston of the individual pressure compensator and corresponding line systems for supplying the control pressure to the piston rear must be formed in the housing of the valve arrangement, so that a considerable manufacturing outlay is required to create the valve housing.
  • Another disadvantage is that when using a different individual pressure compensator, the valve housing bore may have to be changed, so that there is a need to provide different valve housing types.
  • DE-OS 36 05 312 discloses a valve arrangement in which the directional valve spool is designed as a hollow spool in which blind holes are provided from both end sections for receiving a piston of an individual pressure compensator.
  • the metering orifice of the directional control valve is formed by a jacket bore in the directional control valve spool and by an annular space in the valve housing, which is connected to the pump connection. Through this jacket hole, the hydraulic fluid can enter one of the blind holes, depending on the control of the directional spool valve, so that the corresponding piston of the individual pressure compensator is moved against a spring preload and the corresponding work port is opened to provide the consumer, in this case a double-acting hydraulic cylinder, with hydraulic fluid to supply.
  • the invention has for its object to provide a valve assembly for pressure and volume flow adapted supply, through which a safe control of a consumer is guaranteed with minimal expenditure on device technology.
  • the invention thus makes it possible to make the valve housing extremely compact, with all essential control and connecting lines being formed in the directional valve slide or in the piston of the individual pressure compensator, while the pump connection, tank connection, control connection etc. are provided in the valve housing.
  • the latter can thus be used essentially unchanged in a large number of different valve arrangements, while the individual adaptations can be carried out relatively simply by varying the directional valve spool and the pressure compensator piston.
  • control pressure which can be, for example, the individual load pressure of the consumer, a pressure derived therefrom, for example artificially increased, or the highest system load pressure, so that it is ensured that on both directional control valve sides the same control pressure prevails.
  • a separate control line for controlling the individual pressure compensator piston can be saved by the control pressure at the control sides of the directional control valve spool through a control passage to the spring side of the
  • Pressure compensator piston is guided.
  • the pressure compensator piston can be designed with a connecting hole through which the pressure compensator piston spring chamber can be connected to the piston front side when the pressure compensator piston is axially displaced, so that the individual load pressure can also be applied the back (spring chamber) of the pressure compensator piston. Due to the tax passage in the This individual load pressure is also passed on to the control sides of the directional valve spool so that it is ensured that the control pressure corresponds to the highest system load pressure.
  • the pressure compensator piston fulfills the function of a shuttle valve, as is used in conventional solutions, in order to transmit the highest load pressure in the system.
  • the axial movement in the closing direction can be particularly easily limited by providing the pressure compensator piston with a radial collar which can be brought into contact with a correspondingly designed shoulder of the valve slide bore. This shoulder can also be used to open the connecting hole, so that the shoulder has a dual function.
  • a particularly versatile valve arrangement has two directional valve spools, each of which is designed as a hollow spool with an individual pressure compensator piston guided therein, so that in the valve housing only the working connections, the tank connection, the working connection, the corresponding channels and the connecting channels for applying the Control pressure must be formed on the hollow slide end faces.
  • the supply line to the consumer can be shut off without oil leakage by providing an electrically unlockable non-return built-in valve, only the screw-in section for the non-return built-in valve having to be provided in the valve housing.
  • FIG. 1 shows a section through a valve arrangement according to the invention with two directional valves.
  • FIG. 2 shows an enlarged illustration of a directional valve of the valve arrangement from FIG. 1;
  • FIG. 3 shows a schematic circuit diagram of part of the valve arrangement from FIG. 1;
  • FIG. 4 shows a simplified variant of a single-acting directional valve.
  • valve arrangement 1 shows an output example of a valve arrangement 1 according to the invention in plate construction, a pump connection P, a tank connection T and a control connection LS being implemented in a valve plate 2. Furthermore, two electrically operated, continuously adjustable directional valves 4, 6 are accommodated in the valve plate, via which the pump connection P and the tank connection T can optionally be connected to work connections AI, B1, A2 or B2. These working connections are connected, for example, to the two cylinder spaces of a double-acting hydraulic cylinder of a lifting mechanism via working lines, not shown.
  • Each directional control valve 4, 6 is assigned an individual pressure compensator 16 or 18 and a measuring orifice 19 via which the system pressure, ie the pressure applied to the pump connection P, is throttled to the respective individual consumer pressure (load pressure).
  • An electrically operated check valve 8, 10 is screwed into the work connections AI, A2, which is designed in a cartridge design.
  • FIG. 2 shows the directional control valve 6 in an enlarged view.
  • the directional control valve 6 has a valve spool 12 which is axially displaceably guided in a valve bore 14 of the valve plate 2.
  • valve spool 12 The axial displacement of the valve spool 12 takes place via pushing electromagnets 15, 17 arranged on both sides, the plungers 21, 23 of which act on the two end or control sides 20, 22 of the valve spool 12.
  • a spring plate 24, 26 On this end face 20, 22 a spring plate 24, 26 is supported, on which in turn a compression spring 28, 30 engages, which are supported on the inner bore of a screw-in section of the electromagnets 15 and 17, respectively.
  • the spring plates 24, 26 rest against a shoulder of the valve bore 14 with a radial flange.
  • the valve slide 12 is provided with an axial bore 32 designed as a blind hole, which opens into the left-hand end face 22 of the valve slide 12 in FIG. 2. Since this end face (22) is designed as an annular end face, the associated tappet 23 acts on a stop disk 34, which rests on a shoulder of the axial bore 32, and for example via a locking washer (not shown) is fixed in the axial direction in the axial bore 32.
  • the valve bore is provided with annular spaces 35, 36, 38, 40, 42, 44, 46 and 48, the annular spaces 35 and 48 being connected to the connection LS via a load reporting channel 50.
  • a load reporting channel 50 As can be seen from FIG. 1, all end faces 20, 22 of the valve slide 12 are connected to one another via the load reporting channels 50 and a dash-dotted connecting channel 51 and the associated annular spaces 35 and 48 (FIG. 2), so that a uniform control pressure is applied to them.
  • the remaining annular web between the two annular spaces 36, 38 is designed as an orifice bore 52 which, together with a valve slide section 54, form the orifice 19.
  • the valve spool section 54 is provided with fine control notches 56, so that the cross-section of the metering orifice is continuously adjustable by appropriate energization of the electromagnets 15, 17.
  • the hydraulic fluid volume flow supplied to the consumer is thus set via the orifice plate 52, 54, so that, for example, the extension speed of a hoist can be adjusted.
  • the jacket of the valve spool 12 is provided with an inlet bore 57 (bore star) which opens into the axial bore 32.
  • the two annular spaces 40 and 46 are connected to the tank connection T via a tank channel 58.
  • the two annular spaces 42, 44 located between the annular spaces 46 and 40 are connected to the working connections AI and B1 via connecting channels 60 and 62, respectively.
  • the connections B1 and B2 are designed as double connections with two connection bores 64 lying in parallel.
  • Each of the annular spaces 36 to 48 is assigned a corresponding annular groove on the outer circumference of the valve slide 12, these being given no reference numerals in FIG. 2 for the sake of clarity. Via these ring grooves, a connection between the adjacent channels, i. be established between the work connection and the tank connection or pump connection. In the corner areas of the annular spaces 36ff. notches or adaptations are formed which enable the respective connections to be opened in an optimal manner.
  • a pressure compensator piston 66 is accommodated in the axial bore 32 and closes the casing bore star 64 in its basic position shown.
  • the pressure compensator piston hereinafter referred to as piston 66, has a radial collar 68 on its left end section in FIG. 2, on which a control spring 70 which is supported on the stop disk 34 acts. In the starting position shown, the piston 66 is biased by the control spring 70 with its radial collar 68 against a shoulder of the axial bore 32.
  • the piston 66 also has a connecting bore which is formed from a longitudinal bore 72 and a radial throttle bore 74 which intersects it.
  • the longitudinal bore 72 is designed as a blind bore and opens into the right end face of the piston 66 in FIG. 2.
  • the radial throttle bore 74 has a smaller cross section than the longitudinal bore and serves as a damping throttle.
  • the stop plate 34 and the spring plate 26 are provided with a control passage (not shown) via which the pressure in the spring chamber of the compression spring 28 is also transmitted to the spring chamber for the control spring 70, so that the piston 66 by the action of the control spring 70 and by the the control pressure acting on the control connection LS is pressed into its stop position (FIG. 2).
  • connection AI is to be supplied with hydraulic fluid and the connection B1 is to be connected to the tank T
  • the electromagnet 15 is energized so that the plunger 21 executes a stroke to the left depending on the current intensity.
  • the working connection B1 is connected accordingly to the pump connection P and the working connection AI is connected to the tank connection T.
  • the prevailing system pressure i.e. the control orifice with the radial bore star 64 and the piston 66
  • the pressure in the axial bore 32 is throttled to the load pressure of the connected consumer, so that the pressure drop across the measuring orifice (orifice bore 52, valve spool section 54) remains constant and a volume flow independent of the load pressure is thus ensured.
  • the control spring 70 has a very low spring rate, the pressure upstream of the piston 66 corresponds in a first approximation to the load pressure at the working connection AI (Bl).
  • Piston 66 and thus also in the spring chamber of the compression spring 28 is transmitted.
  • the piston 66 acts practically as a shuttle valve, which ensures that the highest load pressure is present in the load signaling channels 50, 51 and thus at the control connection LS.
  • a check valve 8 is provided in the working connection AI. This check valve was described in the applicant's parallel application 196 ... (11MA7196), so that reference is made to this application in terms of construction details, the disclosure of which is to be counted towards the present application.
  • the check valve 8 shown in FIG. 1 is a check valve with a pre-opening, the pre-opening cone 78 being connected directly to the armature of an electromagnet. By energizing this electromagnet, the check valve 8 can be unlocked, so that the main cone 76 lifts from its valve seat when flowing through from the consumer to the working connection AI and thus enables a backflow to the tank T.
  • the check valve 8 is provided with a radial connection 80 which can be pivoted about the longitudinal axis of the valve and which permits extremely flexible adaptation to the connection conditions of the valve arrangement 1.
  • the check valve 10 (connection AI) has the same structure.
  • FIG. 3 schematically shows a circuit diagram of the essential elements of the valve arrangement from FIG. 1.
  • valve plates 2 each consisting of the continuously adjustable directional valves 4, 6 and the pressure compensators 16, 18 assigned to them.
  • the directional control valve spools are each biased into their basic position by the two compression springs 28, 30 and the control pressure (load signaling pressure) in the load signaling channel 50.
  • the electromagnet 30 When the electromagnet 30 is energized, for example, the corresponding directional valve slide is shifted to the left in the illustration according to FIG. 3, so that the pressure applied to the pump connection P is scales 16 is passed.
  • the inlet pressure of the pressure compensator 16 pressure after the metering orifice of the directional control valve 4) is applied to the control side of the pressure compensator 16 on the right in FIG. 3, while the load signaling pressure is present on the left control side.
  • the piston 66 is pushed to the left (FIG. 2), so that the control orifice (casing bore star 64, piston 66) is also controlled and the hydraulic fluid is passed via the directional control valve 4 to the working connection AI.
  • the hydraulic fluid is passed by the consumer bypassing the pressure compensator via the connection B1 and the directional control valve 4 to the tank connection T.
  • the piston 66 is pushed further to the left until the connecting bore (72, 74) is opened and the inlet pressure of the pressure compensator is fed into the load-sensing channel 50, so that this pressure is subsequently used as the control pressure works.
  • the check valves 8, 10 are omitted in FIG. 3 for the sake of simplicity.
  • FIG. 4 shows a simplified exemplary embodiment of a valve arrangement, which is a single-acting directional valve for closed-center load-sensing systems. Since the essential components of such a one-way valve are identical to the components of the previously described valve arrangement, the structure of the simplified valve is only indicated schematically in FIG. 4.
  • This valve arrangement has a pump connection P, a single working connection A and a tank connection T, which open into annular spaces 82, 84 and 86 of the valve bore 14.
  • the directional control valve is in turn designed as an electrically actuated proportional valve, the valve spool 12 via electromagnets 15, 17 arranged on both sides can be actuated.
  • two compression springs 28, 30 are formed and the spring spaces of these compression springs 28, 30 are connected via connecting lines to the working connection A or (not shown) to the load signaling channel 50.
  • the valve spool 12 is in turn designed as a hollow valve spool, in the axial bore 32 of which a pressure compensator piston 66 is guided, via which a casing bore star 64 can be opened.
  • the piston 66 is biased into its illustrated closed position by a control spring 70.
  • the pressure compensator piston 66 can have the same structure as that in FIG. 2, so that further descriptions can be dispensed with.
  • the spring chamber for the control spring 70 is connected via a control passage 88 to the spring chamber for the compression spring 28, so that the same pressure prevails in both spring chambers.
  • the input bore 57 is opened by the control edge 90 of the annular space 86, so that the pump connection is connected to the axial bore 32 and the piston 66 against the tension of the control spring 70 and the control pressure in the spring space in the axial direction to the left (FIG. 4) is moved.
  • the control orifice opens so that the pump port P is connected to the working port A via the orifice plate of the directional control valve (inlet bore 57, control edge 90) and the control orifice (piston 66, radial bore star 64) and a single-acting consumer, for example a single-acting lifting cylinder is controlled.
  • valve plate 2 can be selected by connecting the two spring spaces of the directional valve spool 12 and by guiding the pressure compensator in an axial bore 32 of the directional valve spool 12, so that it can be used in different arrangements without major modifications .
  • the valve arrangements described above can be used, for example, as hoist valves for constant current systems (constant pump) with single- and double-acting hoist cylinders or for hoist valves for pressure / flow controlled systems or, more generally, for directional control valves in load-sensing systems, such as those used for forklift trucks, Tractors and agricultural machines are used.
  • the solution according to the invention is characterized by a very simple and compact structure, the overall length in particular being reduced to a minimum, since a substantial part of the pressure compensator and the load pressure signaling line can be integrated into the hollow slide valve.
  • a valve arrangement for supplying at least one consumer adapted to the pressure and volume flow, which can be supplied with hydraulic fluid or connected to a tank via two working connections of a continuously adjustable directional valve.
  • a common pressure compensator is assigned to the two working connections of the valve arrangement, the piston of which is guided axially displaceably in an axial bore of the directional valve spool, so that one of the two working connections can optionally be connected to the pump connection when the directional control valve is suitably actuated.
  • a control pressure acts, for example that highest system load pressure, the individual load pressure or a pressure derived therefrom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Multiple-Way Valves (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

Offenbart ist eine Ventilanordnung (1) zur Druck- und Volumenstrom angepassten Versorgung zumindest eines Verbrauchers, der über zwei Arbeitsanschlüsse (A1, B1, A2, B2) eine stetig verstellbaren Wegeventils (4, 6) mit Hydraulikfluid versorgbar oder mit einem Tank (T) verbindbar ist. Den beiden Arbeitsanschlüssen (A1, B1, A2, B2) der Ventilanordnung (1) ist eine gemeinsame Druckwaage (16, 18) zugeordnet, deren Kolben (66) in einer Axialbohrung (32) des Wegeventilschiebers (12) axial verschiebbar geführt ist, so dass bei geeigneter Ansteuerung des Wegeventils (4, 6) wahlweise einer der beiden Arbeitsanschlüsse (A1, B1, A2, B2) mit dem Pumpenanschluss (P) verbindbar ist. An beiden Stirnseiten des Wegeventilschiebers (12) und an der Federseite des Druckwaagen-Kolbens (66) wirkt jeweils ein Steuerdruck (25), der beispielsweise dem höchsten Systemlastdruck, dem Individuallastdruck oder einem davon abgeleiteten Druck entspricht.

Description

Beschreibung
VENTILANORDNUNG MIT DRUCKWAAGE
Die Erfindung betrifft eine Ventilanordnung zur Druck- und Volumenstrom angepaßten Versorgung zumindest eines Verbrauchers gemäß dem Oberbegriff des Patentanspruchs 1.
Derartige Ventilanordnungen werden beispielsweise in der Mobilhydraulik zur Ansteuerung von Verbrauchern, insbesondere von einfach- und doppelwirkenden Zylindern eingesetzt. Doppeltwirkende Zylinder werden häufig bei Frontkrafthebern von Ackerschleppern verwendet. Die Heckkraftheber wurden bisher in den meisten Fällen mit einfachwirkenden Zylindern ausgeführt, aufgrund der vielseitigen Einsatzmöglichkeiten moderner Schlepper geht man jedoch in zunehmendem Maße dazu über, auch die Heckkraftheber mit doppeltwirkenden Zylindern auszuführen. Mit Hilfe dieser Kraftheber lassen sich unterschiedliche Peripheriegeräte, wie beispielsweise Packer, Pflüge, Grubber, Walzen etc. an einen Schlepper ankoppeln und betätigen.
In der Mobilhydraulik ist man bestrebt, die Ventilanordnungen möglichst kompakt auszuführen, so daß diese häufig in Plattenbauweise oder auch als Kompakt- oder Mo- noblock ausgeführt werden. Dazu werden im Grundkörper der Ventilplatte bzw. des Kompaktblocks die erforderlichen Anschlüsse, wie beispielsweise Pumpenanschluß, Steueranschluß, Arbeitsanschluß, Tankanschluß und die zur Aufnahme der Stellelemente der Ventilanordnung erforderlichen Gehäusebohrungen ausgebildet.
Bei handbetätigten Ventilanordnungen wird der mechanische Schieber aus dem Ventilgehäuse (Platte, Block) herausgeführt und diese außenliegende Kammer der Ventilachse mit dem Tank verbunden. Um dem Baukastenprinzip genüge zu tun, wird diese für mechanisch betätigte Ventilanordnungen vorgesehene Bauweise auch bei elektrisch betätigten Ventilen übernommen, so daß ein erheblicher vorrichtungstechnischer Aufwand betrieben werden muß, um die außenliegenden Druckkammern und die entsprechenden Verbindungsleitungen zum Tank auszubilden.
In der Mobilhydraulik werden Load-Sensing-Systeme eingesetzt, durch die ein lastdruckunabhängiger Durchflußstrom und damit eine feinfühlige Geschwindigkeitssteuerung des Verbrauchers erreicht wird. Dabei wird die Druckdifferenz über dem Wegeventil konstant ge- halten, indem in die Verbraucheranschlüsse Indivi- dualdruckwaagen geschaltet werden, die den Systemdruck, d.h. den Druck der höchsten Last im System auf den jeweiligen Verbraucherdruck abdrosseln.
Bei derartigen Load-Sensing-Systemen müssen die Indi- vidualdruckwaagen und deren Steuerleitungen demgemäß ebenfalls in dem Ventilgehäuse (Platte, Block) der Ventilanordnung untergebracht werden.
In der DE 36 34 728 C2 wird eine Ventilanordnung zum lastunabhängigen Steuern mehrerer doppeltwirkender hydraulischer Verbraucher offenbart, bei der die Meßblende durch Feinsteuernuten des Wegeventilschiebers ausgeführt ist und stromabwärts dieser Meßblende eine Indivi- dualdruckwaage in einer Ventilgehäusebohrung aufgenommen ist, über die das Hydraulikfluid je nach Ansteuerung des Wegeventilschiebers einem ersten oder einem zweiten Arbeitsanschluß zuführbar ist. Die Individualdruckwaage hat einen Kolben, der in Öffnungsrichtung mit dem Druck nach der Meßblende und in Schließrichtung durch eine Feder und einen Steuerdruck beaufschlagt ist. Nachteilig bei dieser Ausführungsform ist, daß in dem Gehäuse der Ventilanordnung eine Aufnahmebohrung für den Kolben der Individualdruckwaage und entsprechende Lei- tungsSysteme zur Zuführung des Steuerdrucks an die Kolbenrückseite ausgebildet sein müssen, so daß ein erheblicher fertigungstechnischer Aufwand zur Erstellung der Ventilgehäuse erforderlich ist. Ein weiterer Nachteil besteht darin, daß bei Verwendung einer anderen Indivi- dualdruckwaage unter Umständen die Ventilgehäusebohrung verändert werden muß, so daß die Notwendigkeit besteht, unterschiedliche Ventilgehäusebauarten zur Verfügung zu stellen.
In der DE-OS 36 05 312 ist eine Ventilanordnung offenbart, bei der der Wegeventilschieber als Hohlschieber ausgeführt ist, bei dem von beiden Endabschnitten her Sacklochbohrungen zur Aufnahme jeweils eines Kolbens einer Individualdruckwaage vorgesehen sind. Die Meßblende des Wegeventils wird durch eine Mantelbohrung des Wegeventilschiebers und durch einen Ringraum des Ventilgehäuses gebildet, der mit dem Pumpenanschluß verbunden ist. Durch diese Mantelbohrung kann das Hydraulikfluid je nach Ansteuerung des Wegeventilschiebers in eine der Sacklochbohrungen eintreten, so daß der entsprechende Kolben der Individualdruckwaage gegen eine Federvorspannung verschoben und der entsprechende Arbeitsanschluß aufgesteuert wird, um dem Verbraucher, in diesem Fall einem doppeltwirkenden Hydraulikzylinder, mit Hydraulik- fluid zu versorgen.
Bei dieser Variante muß zwar im Gegensatz zur oben beschriebenen Konstruktion keine eigene Ventilgehäusebohrung zur Aufnahme der Individualdruckwaagen ausgebildet werden. Die aus dem DE-OS 3 605 312 bekannte Variante hat jedoch den Nachteil, daß jedem Arbeitsan- schluß eine eigene Individualdruckwaage zugeordnet ist, so daß der Hohlkolben sehr kompliziert aufgebaut ist. Desweiteren ist es bei einer derartigen Konstruktion erforderlich, daß die Toleranzen bei der Herstellung der beiden Individualdruckwaagen sehr eng gewählt werden, um in beiden Arbeitsanschlüssen ein identisches Ansprechverhalten zu erzielen. Etwaige Unterschiede im Ansprechverhalten könnten zu Instabilitäten bei der Ansteuerung des Verbrauchers führen, die bei den heutzutage anzusetztenden Qualitätskriterien keinesfalls akzeptabel sind.
Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Ventilanordnung zur Druck- und Volumenstrom angepaßten Versorgung zu schaffen, durch die bei minimalem vorrichtungstechnischen Aufwand eine sichere Ansteuerung eines Verbrauchrs gewährleistet ist.
Diese Aufgabe wird durch eine Ventilanordnung mit den Merkmalen des Patentanspruchs 1 gelöst.
Durch die Maßnahme, den Kolben der Individualdruckwaage in einen Hohlschieber zu führen, der mit einer Mantelbohrung versehen ist, die einerseits durch die Axial- Verschiebung des Druckwaagen-Kolbens aufsteuerbar und andererseits je nach Stellung des Wegeventilschiebers (Hohlschieber) eine Verbindung zu einem ersten oder einem zweiten Arbeitsanschluß herstellt, kann der vorrichtungstechnische Aufwand gegenüber den eingangs be- schriebenen Lösungen ganz erheblich verringert werden, da weder eine eigene Aufnahmebohrung für die Individualdruckwaage im Ventilgehäuse noch entsprechende Einrichtungen zur Aufnahme eines zweiten Druckwaage-Kolbens im Wegeventilschieber vorgesehen werden müssen. Durch die Erfindung wird es somit ermöglicht, das Ventilgehäuse äußerst kompakt auszuführen, wobei alle wesentlichen Steuer- und Verbindungsleitungen im Wegeventilschieber oder im Kolben der Individualdruck- waage ausgebildet sind, während Pumpenanschluß, Tankanschluß, Steueranschluß etc. im Ventilgehäuse vorgesehen werden. Letzteres kann somit im wesentlichen unverändert bei einer Vielzahl von unterschiedlichen Ventilanordnungen verwendet werden, während die individuellen Anpassun- gen verhältnismäßig einfach durch Variation des Wegeventilschiebers und des Druckwaagenkolbens durchführbar sind.
Besonders vorteilhaft ist es, wenn die Stirnseiten des Wegeventilschiebers mit dem Steuerdruck beaufschlagt werden, der beispielsweise der individuelle Lastdruck des Verbrauchers, ein davon abgeleiteter, beispielsweise künstlich erhöhter Druck oder der höchste Systemlastdruck sein kann, so daß sichergestellt ist, daß an beiden Wege- ventilsteuerseiten der gleiche Steuerdruck herrscht.
Eine eigene Steuerleitung zur Ansteuerung des Indivi- dualdruckwaagenkolbens läßt sich einsparen, indem der an den Steuerseiten des Wegeventilschiebers anstehende Steu- erdruck durch einen Steuerdurchlaß zur Federseite des
Druckwaagenkolbens geführt ist.
Für den Fall, daß der individuelle Lastdruck am jeweiligen Verbraucher größer ist als der anstehende Steuerdruck, kann der Druckwaagenkolben mit einer Verbindungsbohrung ausgeführt werden, über die bei einer vorbestimmten Axialverschiebung des Druckwaagenkolbens der Druckwaagenkolbenfederraum mit der Kolbenvorderseite verbindbar ist, so daß der individuelle Lastdruck auch an der Rückseite (Federraum) des Druckwaagenkolbens anliegt. Aufgrund des vorher beschriebenen Steuerdurchlasses im Hauptventilschieber wird dieser individuelle Lastdruck auch an die Steuerseiten des Wegeventilschiebers weitergegeben, so daß sichergestellt ist, daß der Steuerdruck dem jeweils höchsten Systemlastdruck entspricht. In die- sem Fall erfüllt der Druckwaagenkolben die Funktion eines Wechselventils, wie es bei herkömmlichen Lösungen verwendet wird, um den höchsten Lastdruck im System weiterzuleiten.
Die Axialbewegung in Schließrichtung läßt sich besonders einfach begrenzen, indem der Druckwaagenkolben mit einem Radialbund versehen wird, der an eine entsprechend ausgebildetete Schulter der Ventilschieberbohrung in Anlage bringbar ist. Diese Schulter kann gleichzeitig zum Aufsteuern der Verbindungsbohrung verwendet werden, so daß der Schulter eine Doppelfunktion zukommt.
Eine besonders vielseitig anwendbare Ventilanordnung hat zwei Wegeventilschieber, von denen jeder als Hohl- Schieber mit einem darin geführten Individualdruckwaa- genkolben ausgeführt ist, so daß im Ventilgehäuse lediglich noch die Arbeitsanschlüsse, der Tankanschluß, der Arbeitsanschluß, die entsprechenden Kanäle und die Verbindungskanäle zum Anlegen des Steuerdrucks an die Hohlschieberstirnseiten ausgebildet werden müssen.
Die Zuleitung zum Verbraucher läßt sich leckölfrei durch Vorsehen eines elektisch entsperrbaren Rückschlag- Einbauventils absperren, wobei im Ventilgehäuse lediglich der Einschraubabschnitt für das Rückschlag-Einbauventil vorgesehen sein muß.
Sonstige vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der weiteren Unteransprüche. Im folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand schematischer Zeichnungen näher erläutert. Es zeigen:
Fig. 1 einen Schnitt durch eine erfindungsgemäße Ventilanordnung mit zwei Wegeventilen;
Fig. 2 eine vergrößerte Darstellung eines Wegeventils der Ventilanordnung aus Fig. 1;
Fig. 3 einen schematischen Schaltplan eines Teils der Ventilanordnung aus Fig. 1; und
Fig. 4 eine vereinfachte Variante eines einfachwir- kenden Wegeventils .
In Fig. 1 ist ein Ausgangsbeispiel einer erfindungsgemäßen Ventilanordnung 1 in Plattenbauweise dargestellt, wobei in einer Ventilplatte 2 ein Pumpenanschluß P, ein Tankanschluß T und ein Steueranschluß LS ausgeführt sind. In der Ventilplatte sind desweiteren zwei elektrisch betätigte, stetig verstellbare Wegeventile 4, 6 aufgenommen, über die der Pumpenanschluß P und der Tankanschluß T wahlweise mit Arbeitsanschlüssen AI, Bl, A2 oder B2 verbindbar ist. Diese Arbeitsanschlüsse sind beispielsweise über nicht dargestellte Arbeitsleitungen mit den beiden Zylinderräumen eines doppeltwirkenden Hydraulikzylinders eines Hubwerks verbunden.
Jedem Wegeventil 4, 6 sind eine Individualdruckwaage 16 bzw. 18 und eine Meßblende 19 zugeordnet, über die der Systemdruck, d.h. der am Pumpenanschluß P anliegende Druck auf den jeweiligen individuellen Verbraucherdruck (Lastdruck) abgedrosselt wird. In die Arbeitsanschlüsse AI, A2 wird jeweils ein elektrisch betätigtes Rückschlagventil 8, 10 eingeschraubt, das in Patronenbauweise ausgeführt ist.
Der identische konstruktive Aufbau der beiden Wegeventile 4, 6 wird im folgenden anhand der Fig. 2 beschrieben, die das Wegeventil 6 in vergrößerter Ansicht zeigt .
Das Wegeventil 6 hat einen Ventilschieber 12, der in einer Ventilbohrung 14 der Ventilplatte 2 axial verschiebbar geführt ist.
Die Axialverschiebung des Ventilschiebers 12 erfolgt über beidseitig angeordnete stoßende Elektromagnete 15, 17, deren Stößel 21, 23 auf die beiden Stirn- oder Steuerseiten 20, 22 des Ventilschiebers 12 wirken. An dieser Stirnseite 20, 22 ist jeweils ein Federteller 24, 26 abgestützt, an dem wiederum jeweils eine Druckfeder 28, 30 angreift, die an der Innenbohrung eines Einschraubabschnitts der Elektromagneten 15 bzw. 17 abgestützt sind.
In der durch die Federvorspannung vorgegebenen Aus- gangsstellung des Ventilschiebers 12 liegen die Federteller 24, 26 mit einem Radialflansch an einer Schulter der Ventilbohrung 14 an.
Der Ventilschieber 12 ist mit einer als Sackloch aus- geführten Axialbohrung 32 versehen, die in der in Fig. 2 linken Stirnseite 22 des Ventilschiebers 12 mündet. Da diese Stirnseite (22) als Ringstirnfläche ausgebildet ist, wirkt der zugeordnete Stößel 23 auf eine Anschlagscheibe 34, die an einer Schulter der Axialbohrung 32 anliegt, und beispielsweise über eine Sicherungsscheibe (nicht gezeigt) in Axialrichtung in der Axialbohrung 32 festgelegt ist.
Die Ventilbohrung ist mit Ringräumen 35, 36, 38, 40, 42, 44, 46 und 48 versehen, wobei die Ringräume 35 und 48 über einen Lastmeldekanal 50 mit dem Anschluß LS verbunden sind. Wie aus Fig. 1 hervorgeht, sind über die Lastmeldekanäle 50 sowie einen strichpunktierten Verbindungskanal 51 und die zugeordneten Ringräume 35 und 48 (Fig. 2) sämtliche Stirnseiten 20, 22 der Ventilschieber 12 miteinander verbunden, so daß an diesen ein einheitlicher Steuerdruck anliegt.
Der verbleibende Ringsteg zwischen den beiden Ring- räumen 36, 38 ist als Blendenbohrung 52 ausgebildet, die gemeinsam mit einem Ventilschieberabschnitt 54 die Meßblende 19 bilden. Der Ventilschieberabschnitt 54 ist mit Feinsteuerkerben 56 versehen, so daß der Meßblendenquerschnitt durch entsprechende Bestromung der Elektro- magnete 15, 17 stetig verstellbar ist. Über die Meßblende 52, 54 wird somit der dem Verbraucher zugeführte Hydrau- likfluidvolumenstrom eingestellt, so daß beispielsweise die Ausfahrgeschwindigkeit eines Hubwerks einstellbar ist .
Im Bereich des Ringraums 38 ist der Mantel des Ventilschiebers 12 mit einer Eingangsbohrung 57 (Bohrungsstern) versehen, die in der Axialbohrung 32 mündet. Die beiden Ringräume 40 und 46 sind über einen Tank- kanal 58 mit dem Tankanschluß T verbunden. Die beiden zwischen den Ringräumen 46 und 40 liegenden Ringräume 42, 44 sind über Verbindungskanäle 60 bzw. 62 mit den Arbeitsanschlüssen AI bzw. Bl verbunden. Wie aus Fig. 1 hervorgeht, sind die Anschlüsse Bl und B2 als Dop- pelanschluß mit zwei parallel liegenden Anschlußbohrungen 64 ausgeführt. Zwischen den den beiden Arbeitsanschlüssen AI und Bl zugeordneten Ringräume 42 und 44 ist eine Mantelbohrung oder genauer gesagt, ein Mantelbohrungsstern 64 im Ventilschieber 12 ausgebildet, der ebenfalls in der Axialbohrung 32 mündet.
Jedem der Ringräume 36 bis 48 ist eine entsprechende Ringnut am Außenumfang des Ventilschiebers 12 zugeordnet, wobei diese der Übersichtlichkeit halber in Fig. 2 keine Bezugszeichen erhalten haben. Über diese Ringnuten kann durch Verschieben des Ventilschiebers 12 eine Verbindung zwischen den nebeneinanderliegenden Kanälen, d.h. zwischen Arbeitsanschluß und Tankanschluß oder Pumpenanschluß hergestellt werden. In den Eckbereichen der Ringräume 36ff. sind Kerben oder Anpassungen ausgebildet, die ein optimales Aufsteuern der jeweiligen Verbindungen ermöglicht .
In der Axialbohrung 32 ist ein Druckwaagen-Kolben 66 aufgenommen, der in seiner gezeigten Grundstellung den Mantelbohrungsstern 64 verschließt. Der Druckwaagen- Kolben, im folgenden Kolben 66 genannt, hat an seinem in Fig. 2 linken Endabschnitt einen Radialbund 68, an dem eine Steuerfeder 70 angreift, die an der Anschlagscheibe 34 abgestützt ist. In der gezeigten Ausgangsposition wird der Kolben 66 über die Steuerfeder 70 mit seinem Radialbund 68 gegen eine Schulter der Axialbohrung 32 vorgespannt .
Der Kolben 66 hat desweiteren eine Verbindungsboh- rung, die aus einer Längsbohrung 72 und eine diese schneidende Radialdrosselbohrung 74 gebildet ist. Die Längsbohrung 72 ist als Sacklochbohrung ausgeführt und mündet in der in Fig. 2 rechten Stirnseite des Kolbens 66. Die Radialdrosselbohrung 74 hat einen geringeren Querschnitt als die Längsbohrung und dient als Dämpfungsdrossel . Die Anschlagscheibe 34 und der Federteller 26 sind mit einem Steuerdurchlaß versehen (nicht gezeigt) über den der Druck im Federraum der Druckfeder 28 auch auf den Federraum für die Steuerfeder 70 übertragen wird, so daß der Kolben 66 durch die Wirkung der Steuerfeder 70 und durch den am Steueranschluß LS wirkenden Steuerdruck in seine Anschlagposition (Fig. 2) gedrückt wird.
Soll nun beispielsweise der Anschluß AI mit Hydrau- likfluid versorgt und der Anschluß Bl mit dem Tank T verbunden werden, so wird der Elektromagnet 15 bestromt, so daß der Stößel 21 in Abhängigkeit von der Stromstärke einen Hub nach links ausführt.
Dieser Hub wird unmittelbar auf den Steuerschieber 12 übertragen, so daß die Blendenbohrung 52 durch den sich in der Darstellung nach Fig. 2 nach links bewegenden Ventilschieberabschnitt 54 aufgesteuert wird. Das Hydrau- likfluid kann dann vom Pumpenanschluß P in den Ringraum 38 strömen und von dort durch die Eingangsbohrung 57 in den Innenraum der Axialbohrung 32 gelangen.
Die benachbarte Stirnfläche des Kolbens 66 wird dann mit dem stromabwärts der Blendenbohrung 52 herrschenden
Druck beaufschlagt und gegen die Kraft der Steuerfeder 70 und den herrschenden Steuerdruck nach links verschoben bis sich ein Gleichgewicht einstellt.
Durch diese Axialverschiebung des Kolbens 66 wird der Mantelbohrungsstern 64 aufgesteuert , so daß das Hydrau- likfluid durch die vom Kolben 66 und dem Radialbohrungs- stern 64 gebildete Regelblende der Druckwaage 18 (Fig. 1) hindurch in den Verbindungskanal 60 und weiter zum Anschluß AI strömt. Das vom Verbraucher zurückströmende Fluid tritt vom Arbeitsanschluß Bl über den Verbindungskanal 62 und die zugeordnete Ringnut des Ventilschiebers 12 in den Ringraum 40 und von dort in den Tankkanal 58 und dann zum Tankanschluß T.
Bei Bestromung des Elektromagneten 17 wird entsprechender Weise der Arbeitsanschluß Bl mit dem Pumpenanschuß P und der Arbeitsanschluß AI mit dem Tankanschluß T verbunden.
Durch die Druckwaage (Regelblende mit dem Radialboh- rungsstern 64 und dem Kolben 66) wird der herrschende Systemdruck, d.h. der Druck in der Axialbohrung 32 auf den Lastdruck des angeschlossenen Verbrauchers abgedrosselt, so daß der Druckabfall über der Meßblende (Blendenbohrung 52, Ventilschieberabschnitt 54) konstant bleibt und somit ein lastdruckunabhängiger Volumenstrom gewährleistet ist. Da die Steuerfeder 70 eine sehr geringe Federrate hat, entspricht der Druck stromaufwärts des Kolbens 66 in erster Näherung etwa dem Lastdruck am Arbeitsanschluß AI (Bl).
Für den Fall, daß der Systemdruck (Lastdruck) größer als der im Federraum für die Ξteuerfeder 70 herrschende Steuerdruck ist, wird der Kolben 66 soweit nach links bewegt, bis die Radialdrosselbohrung 74 von der als Anschlag für den Radialbund 68 wirkenden Axialbohrungs- schulter aufgesteuert wird, so daß der höhere Druck stromaufwärts des Kolbens 66 auch auf die Federseite des
Kolbens 66 und damit auch in den Federraum der Druckfeder 28 übertragen wird. Auf diese Weise wirkt der Kolben 66 praktisch als Wechselventil, durch das sichergestellt ist, daß der jeweils höchste Lastdruck in den Lastmelde- kanälen 50, 51 und damit am Steueranschluß LS anliegt. Wie aus Fig. 1 hervorgeht, ist im Arbeitsanschluß AI ein Rückschlagventil 8 vorgesehen. Dieses Rückschlagventil wurde in der parallelen Anmeldung 196... (11MA7196) der Anmelderin beschrieben, so daß hinsichtlich konstruk- tiver Details auf diese Anmeldung verwiesen wird, deren Offenbarung zur vorliegenden Anmeldung zu zählen ist.
Bei dem in Fig. 1 dargestellten Rückschlagventil 8 handelt es sich um ein Rückschlagventil mit Voröffnung, wobei der Voröffnungskegel 78 direkt mit dem Anker eines Elektromagneten verbunden ist. Durch Bestromung dieses Elektromagneten läßt sich das Rückschlagventil 8 entsperren, so daß der Hauptkegel 76 bei einer Durchströmung vom Verbraucher zum Arbeitsanschluß AI hin von seinem Ventilsitz abhebt und somit eine Rückströmung zum Tank T ermöglicht. Das Rückschlagventil 8 ist mit einem um die Ventillängsachse verschwenkbar Radialanschluß 80 versehen, der eine äußerst flexible Anpassung an die Anschlußbedingungen der Ventilanordnung 1 erlaubt. Das Rückschlagventil 10 (Anschluß AI) hat den gleichen Aufbau .
In Fig. 3 ist schematisch ein Schaltplan der wesentlichen Elemente der Ventilanordnung aus Fig. 1 darge- stellt.
Demgemäß sind in der Ventilplatte 2 zwei Ventilgruppen, jeweils bestehend aus den stetig verstellbaren Wegeventilen 4, 6 und den diesen zugeordneten Druckwaagen 16, 18 ausgebildet. Die Wegeventilschieber werden jeweils durch die beiden Druckfedern 28, 30 und den Steuerdruck (Lastmeldedruck) im Lastmeldekanal 50 in ihre Grundposition vorgespannt. Bei Bestromung beispielsweise des Elektromagneten 30 wird der entsprechende Wegeventilschieber in der Darstellung nach Fig. 3 nach links verschoben, so daß der am Pumpenanschluß P anliegende Druck zur Druck- waage 16 geleitet wird. Der Eingangsdruck der Druckwaage 16 (Druck nach der Meßblende des Wegeventils 4) wird an die in Fig. 3 rechte Steuerseite der Druckwaage 16 gelegt, während an der linken Steuerseite der Lastmeldedruck anliegt. Dadurch wird der Kolben 66 nach links (Fig. 2) geschoben, so daß die Regelblende (Mantelbohrungsstern 64, Kolben 66) au gesteuert und das Hydraulikfluid über das Wegeventil 4 zum Arbeitsanschluß AI geleitet wird.
In dieser Stellung des Ventilschiebers 12 wird das Hydraulikfluid unter Umgehung der Druckwaage vom Verbraucher über den Anschluß Bl und das Wegeventil 4 zum Tankanschluß T geleitet. Beim weiteren Ansteigen des Drucks am Eingang der Druckwaage 16 wird der Kolben 66 weiter nach links geschoben, bis die Verbindungsbohrung (72, 74) aufgesteuert und der Eingangsdruck der Druckwaage in den Lastmeldekanal 50 eingespeist wird, so daß dieser Druck nun in der Folge als Steuerdruck wirkt. In Fig. 3 sind der Einfachheit halber die Rückschlagventile 8, 10 weggelassen.
In Fig. 4 ist schließlich ein vereinfachtes Ausführungsbeispiel einer Ventilanordnung gezeigt, wobei es sich um ein einfachwirkendeε Wegeventil für Closed-Cen- ter-Load-Sensing-Systeme handelt. Da die wesentlichen Bauelemente eines derartigen Einwegeventils identisch sind mit den Bauelementen der vorher beschriebenen Ventilanordnung ist in Fig. 4 lediglich schematisch der Aufbau des vereinfachten Ventils angedeutet. Diese Ventilanordnung hat einen Pumpenanschluß P, einen einzigen Arbeitsanschluß A und einen Tankanschluß T, die in Ringräumen 82, 84 bzw. 86 der Ventilbohrung 14 münden. Das Wegeventil ist wiederum als elektrisch betätigbares Proportionalventil ausgebildet, wobei der Ventilschieber 12 über beidseitig angeordnete Elektromagnete 15, 17 betätigbar ist. An beiden Stirnseiten des Ventilschiebers 12 sind zwei Druckfedern 28, 30 ausgebildet und die Federräume dieser Druckfedern 28, 30 sind über Verbindungsleitungen mit dem Arbeitsanschluß A oder (nicht dargestellt) mit dem Lastmeldekanal 50 verbunden.
Der Ventilschieber 12 ist wiederum als Hohlventilschieber ausgeführt, in dessen Axialbohrung 32 ein Druckwaagen-Kolben 66 geführt ist, über den ein Mantel- bohrungsstern 64 aufsteuerbar ist. Der Kolben 66 ist durch eine Steuerfeder 70 in seine dargestellte Schließposition vorgespannt. Prinzipiell kann der Druckwaagen- Kolben 66 den gleichen Aufbau wie derjenige in Fig. 2 haben, so daß auf weitergehende Beschreibungen verzichtet werden kann. Der Federraum für die Steuerfeder 70 ist über einen Steuerdurchlaß 88 mit dem Federraum für die Druckfeder 28 verbunden, so daß in beiden Federräumen der gleiche Druck herrscht.
Bei Bestromung des Elektromagneten 17 wird die Eingangsbohrung 57 durch die Ξteuerkante 90 des Ringraums 86 aufgesteuert , so daß der Pumpenanschluß mit der Axialbohrung 32 verbunden ist und der Kolben 66 gegen die Spannung der Steuerfeder 70 und den Steuerdruck im Federraum in Axialrichtung nach links (Fig. 4) verschoben wird. In der Folge öffnet sich die Regelblende, so daß der Pumpenanschluß P über die Meßblende des Wegeventils (Eingangsbohrung 57, Steuerkante 90) und die Regelblende (Kolben 66, Radialbohrungsstern 64) mit dem Arbeitsan- schluß A verbunden ist und ein einfachwirkender Verbraucher, beispielsweise ein einfachwirkender Hubzylinder angesteuert wird.
Bei Bestromung des Elektromagneten 15 wird die Ver- bindung zwischen P und A zugesteuert und die Verbindung zwischen dem Tank T und dem Arbeitsanschluß A aufgesteu- ert, so daß das Hydraulikfluid vom Verbraucher zurückströmen kann. Auch bei dieser Variante kann durch die Verbindung der beiden Federräume des Wegeventilschiebers 12 und durch die Führung der Druckwaage in ei- ner Axialbohrung 32 des Wegeventilschiebers 12 ein sehr einfacher Aufbau der Ventilplatte 2 gewählt werden, so daß diese bei unterschiedlichen Anordnungen ohne größere Abwandlungen anwendbar ist.
Die vorher beschriebenen Ventilanordnungen lassen sich beispielsweise als Hubwerksventile für Konstantstromanlagen (Konstantpumpe) mit einfach- und doppeltwirkenden Hubwerkzylindern oder für Hubwerkventile für druck-/fOrderstromgeregelte Systeme oder, noch allgemeiner, für Wegeventile in Load-Sensing-Systemen verwenden, wie sie beispielsweise bei Hubstaplern, Traktoren und Landmaschinen Anwendung finden. Die erfindungsgemäß Lösung zeichnet sich durch einen sehr einfachen und kompakten Aufbau aus, wobei insbesondere die Baulänge auf ein Minimum reduziert wird, da ein wesentlicher Teil der Druckwaage und der Lastdruckmeldeleitung in den Hohlschieber integriert werden kann.
Offenbart ist eine Ventilanordnung zur Druck- und Vo- lumenstrom angepaßten Versorgung zumindest eines Verbrauchers, der über zwei Arbeitsanschlüsse eines stetig verstellbaren Wegeventils mit Hydraulikfluid versorgbar oder mit einem Tank verbindbar ist. Den beiden Arbeitsan- schlüssen der Ventilanordnung ist eine gemeinsame Druck- waage zugeordnet, deren Kolben in einer Axialbohrung des Wegeventilschiebers axial verschiebbar geführt ist, so daß bei geeigneter Ansteuerung des Wegeventils wahlweise einer der beiden Arbeitsanschlüsse mit dem Pumpenanschluß verbindbar ist. An beiden Stirnseiten des Wegeventil- Schiebers und an der Federseite des Druckwaagen-Kolbens wirkt jeweils ein Steuerdruck, der beispielsweise dem höchsten Systemlastdruck, dem Individuallastdruck oder einem davon abgeleiteten Druck entspricht.

Claims

Ansprüche
1. Ventilanordnung zur Druck- und Volumenstrom angepaßten Versorgung zumindest eines Verbrauchers, der über zwei Arbeitsanschlüsse (A^, B]_, A2 , B2 ) eines stetig verstellbaren Wegeventils (4, 6) mit Hydraulikfluid versorgbar oder mit einem Tank T verbindbar ist, wobei dem Wegeventil (4, 6) eine Druckwaage (16, 18) zugeordnet ist, deren Kolben (66) in Öffnungsrichtung durch den Druck stromabwärts einer durch das Wegeventil (4, 6) ausgebildeten Meßblende (19) und in Schließrichtung durch eine Steuerfeder (70) und einen Steuerdruck beaufschlagt ist,
dadurch gekennzeichnet ,
daß ein Ventilschieber (12) des Wegeventils (4, 6) ein Hohlschieber ist, in dem der Kolben (66) der Druckwaage (16, 18) geführt ist, durch dessen Axialbewegung eine Mantelbohrung (64) des Ventilschiebers (12) derart aufsteuerbar ist, daß je nach Ventilschieberstellung wahlweise eine Verbindung zu einem der beiden Arbeitsanschlüsse (AT, BI, A2 , B2) herstellbar ist.
2. Ventilanordnung nach Patentanspruch 1, dadurch gekennzeichnet, daß beide Steuerseiten des Ventilschiebers (12) mit dem Steuerdruck beaufschlagt sind.
3. Ventilanordnung nach Patentanspruch 1 oder 2, da- durch gekennzeichnet, daß der Kolben (66) eine Verbindungsbohrung (72, 74) hat, über die bei einer vorbestimmten Axialverschiebung des Kolbens (66) die Kolben- stirnseite mit dem Kolbenfederraum verbindbar ist.
4. Ventilanordnung nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß die Meßblende (19) durch eine Blendenbohrung (52) und einen Kolbenabschnitt (54) am Außenumfang des Ventilschiebers (12) gebildet ist und stromabwärts der Meßblende (19) eine in eine Axialbohrung (32) des Ventilschiebers mündende Ein- gangsbohrung (57) ausgebildet ist, über die die Stirnseite des Kolbens (66) mit Hydraulikdruck beaufschlagbar ist.
5. Ventilanordnung nach Patentanspruch 3 oder 4, da- durch gekennzeichnet, daß der Kolben (66) mit einem Radialbund (68) gegen eine Schulter der Axialbohrung (32) vorgespannt ist, wobei die Schulter als Steuerkante zum Aufsteuern der Verbindungsbohrung (72, 74) wirkt.
6. Ventilanordnung nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß die zur Federseite des Kolbens (66) benachbarte Ventilschieber-Stirnseite (22, 34, 26) mit einem Steuerdurchlaß versehen ist, über den der Steuerdruck an dieser Ventilschieber-Stirn- seite (22) zur Kolbenfederseite führbar ist.
7. Ventilanordnung nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß der Steuerdruck ein individueller Lastdruck des Verbrauchers ist.
8. Ventilanordnung nach einem der vorhergehenden Patentansprüche mit zwei elektrisch betätigten Wegeventilen (4,6), denen jeweils eine Druckwaage (16, 18) zugeordnet ist, wobei im Ventilgehäuse (2) ein gemeinsamer Pumpenan- Schluß P, ein gemeinsamer Tankanschluß T und ein gemeinsamer Steuerdruckanschluß LS ausgebildet sind, sowie jedem Wegeventil (4, 6) zumindest zwei Arbeitsanschlüsse (AT, B]_, A2 , B2 ) zugeordnet sind und die Stirnseiten der Wegeventilschieber (12) mit dem gleichen Steuerdruck beaufschlagt sind.
9. Ventilanordnung nach Patentanspruch 8, dadurch gekennzeichnet, daß der Steuerdruck der höchste Lastdruck ist .
10. Ventilanordnung nach Patentanspruch 8 oder 9, dadurch gekennzeichnet, daß in dem Ausgangsanschluß (Ai, ein elektrisch betätigbares Rückschlag-Einbauventil (8, 10) eingeschraubt ist.
EP97945768A 1996-11-11 1997-10-20 Ventilanordnung mit druckwaage Revoked EP0935714B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19646445 1996-11-11
DE19646445A DE19646445A1 (de) 1996-11-11 1996-11-11 Ventilanordnung
PCT/DE1997/002425 WO1998021485A1 (de) 1996-11-11 1997-10-20 Ventilanordnung mit druckwaage

Publications (2)

Publication Number Publication Date
EP0935714A1 true EP0935714A1 (de) 1999-08-18
EP0935714B1 EP0935714B1 (de) 2003-01-08

Family

ID=7811247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97945768A Revoked EP0935714B1 (de) 1996-11-11 1997-10-20 Ventilanordnung mit druckwaage

Country Status (6)

Country Link
US (1) US6192928B1 (de)
EP (1) EP0935714B1 (de)
JP (1) JP2001504198A (de)
DE (2) DE19646445A1 (de)
PL (1) PL333275A1 (de)
WO (1) WO1998021485A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948390B4 (de) * 1999-10-07 2008-11-06 Bosch Rexroth Aktiengesellschaft Ventilanordnung
EP1370773B1 (de) 2001-03-21 2005-06-22 Bucher Hydraulics GmbH Wegeventil
US6990999B2 (en) * 2003-05-05 2006-01-31 Kjp Investments Llc Digitally controlled modular valve system
US7182097B2 (en) * 2004-08-17 2007-02-27 Walvoil S.P.A. Anti-saturation directional control valve composed of two or more sections with pressure selector compensators
KR100680841B1 (ko) * 2005-12-06 2007-02-08 현대자동차주식회사 자동 변속기 유압 제어시스템의 매뉴얼 밸브
DE102007054134A1 (de) * 2007-11-14 2009-05-20 Hydac Filtertechnik Gmbh Hydraulische Ventilvorrichtung
US8333218B2 (en) * 2010-01-27 2012-12-18 Mac Valves, Inc. Proportional pressure controller
US10024445B2 (en) 2014-06-25 2018-07-17 Parker-Hannifin Corporation Reverse flow check valve in hydraulic valve with series circuit
EP3128216B1 (de) * 2015-08-07 2019-03-13 Claverham Limited Hydraulikventil
CN106122141B (zh) * 2016-05-31 2018-04-03 上海人豪液压技术有限公司 采用模块化可配组插装阀rhcv组合的电液控制终端
DE102018001303A1 (de) * 2018-02-20 2019-08-22 Hydac Fluidtechnik Gmbh Ventilvorrichtung
DE102021001960A1 (de) 2021-04-14 2022-10-20 Hydac Fluidtechnik Gmbh Ventil

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888943A (en) 1957-09-25 1959-06-02 American Brake Shoe Co Control valve having constant volume output features
US3744518A (en) * 1971-12-13 1973-07-10 Parker Hannifin Corp Directional control valve
US3910311A (en) * 1974-08-26 1975-10-07 Koehring Co Pressure compensated control valve
US3985153A (en) * 1974-08-28 1976-10-12 Tomco, Inc. Pressure compensating valve spool assembly for a hydraulic control valve
US4187877A (en) * 1975-01-13 1980-02-12 Commercial Shearing Inc. Compensated work port fluid valves
DE2647140A1 (de) * 1976-10-19 1978-04-20 Linde Ag Ventil mit einem laengsschieber
DE2649775A1 (de) * 1976-10-29 1978-05-03 Linde Ag Ventil mit einem laengsschieber
US4117862A (en) * 1977-02-07 1978-10-03 Tomco, Inc. Pressure compensated control valve
DE2831697A1 (de) * 1978-07-19 1980-01-31 Friedrich Freimuth Bruchgesichertes hydraulisch entsperrbares rueckschlagventil
US4290447A (en) * 1979-10-05 1981-09-22 Dynex/Rivett Inc. Electrohydraulic proportional valve
DE3115114A1 (de) * 1980-04-14 1982-04-01 Linde Ag, 6200 Wiesbaden Schieberventil
US4388946A (en) * 1981-04-20 1983-06-21 Linde Aktiengesellschaft Valves
CS231935B1 (en) * 1982-12-31 1984-12-14 Augustin Leiter Distributor with controlled load independent flow
US4617798A (en) * 1983-04-13 1986-10-21 Linde Aktiengesellschaft Hydrostatic drive systems
US4631923A (en) * 1983-10-21 1986-12-30 Devron Engineering Limited Solenoid operated check valve
US4520841A (en) * 1983-12-27 1985-06-04 Glen Brand Four-way valve
DE3446945C2 (de) * 1984-12-21 1994-12-22 Rexroth Mannesmann Gmbh Wegeventil mit eingebautem vorgesteuerten Stromregelventil
US4719753A (en) 1985-02-22 1988-01-19 Linde Aktiengesellschaft Slide valve for load sensing control in a hydraulic system
DE3605312A1 (de) * 1985-02-22 1986-08-28 Linde Ag, 6200 Wiesbaden Schieberventil
US4738279A (en) * 1985-12-17 1988-04-19 Linde Aktiengesellschaft Multiway valves with load feedback
US4723475A (en) * 1986-09-29 1988-02-09 Deere & Company Fully metered compensation steering system
DE3634728A1 (de) 1986-10-11 1988-04-21 Rexroth Mannesmann Gmbh Ventilanordnung zum lastunabhaengigen steuern mehrerer gleichzeitig betaetigter hydraulischer verbraucher
DE3918926A1 (de) * 1989-06-09 1991-02-14 Heilmeier & Weinlein Stromregelventil
DE4234037C2 (de) * 1992-10-09 2001-03-22 Mannesmann Rexroth Ag Ventilanordnung, insbesondere für mobile Arbeitsgeräte
DE4446142B4 (de) * 1994-12-23 2004-08-19 Robert Bosch Gmbh Längsschieberventil mit hydraulischer Antriebsverstärkung
DE19646425A1 (de) 1996-11-11 1998-05-14 Rexroth Mannesmann Gmbh Ventilanordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9821485A1 *

Also Published As

Publication number Publication date
PL333275A1 (en) 1999-11-22
DE59709115D1 (de) 2003-02-13
EP0935714B1 (de) 2003-01-08
WO1998021485A1 (de) 1998-05-22
JP2001504198A (ja) 2001-03-27
US6192928B1 (en) 2001-02-27
DE19646445A1 (de) 1998-05-14

Similar Documents

Publication Publication Date Title
EP1092095B2 (de) Hydraulische schaltung
DE1601729C3 (de) Mit Vorsteuerung arbeitende hydraulische Steuerventileinrichtung
DE3201546C2 (de) Vorrichtung zum Steuern eines Hydromotors
DE3413866A1 (de) Hydrostatisches antriebssystem
DE4417962A1 (de) Steueranordnung für wenigstens zwei hydraulische Verbraucher
EP0935714B1 (de) Ventilanordnung mit druckwaage
DE19831595B4 (de) Hydraulische Schaltung
EP1711715B1 (de) Messblendenanordnung für ein hydraulisches stromteil- und stromsummiergerät
EP0182100B1 (de) Hydraulische Steuereinrichtung
DE3611244A1 (de) Stromregelventil
EP0219052B1 (de) Hydraulische Steuervorrichtung
EP1629207B1 (de) Hydraulische steueranordnung
DE2537957A1 (de) Steuer- bzw. regelanordnung fuer pumpen mit variabler verdraengung
EP0347562A2 (de) Sicherheitsventil (II)
EP1729014B1 (de) Steuerblock und Steuerblocksektion
DE19923345A1 (de) Elektrohydraulische Steuereinrichtung
EP0491155B1 (de) Hydraulisches Wegeventil zur Steuerung eines Hydromotors
EP0935716A1 (de) Rückschlagventilanordnung
EP1452744B1 (de) Hydraulische Steueranordnung
EP1481167B1 (de) Ventilanordnung
EP0376023B1 (de) Elektrohydraulisches Proportionalwegeventil
WO2002093018A1 (de) Ventilanordnung
WO1998021510A1 (de) Wegeventil
EP1369596A2 (de) Hydraulische Ventilanordnung
DE4420164A1 (de) Kombiniertes Druck- und Schaltventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOSCH REXROTH AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709115

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030307

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031017

Year of fee payment: 7

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20031020

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031030

Year of fee payment: 7

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20031007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031225

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041021

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20041218

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20041218

EUG Se: european patent has lapsed