EP0935553A1 - Doppelpropeller-antrieb für wasserfahrzeuge - Google Patents

Doppelpropeller-antrieb für wasserfahrzeuge

Info

Publication number
EP0935553A1
EP0935553A1 EP97950145A EP97950145A EP0935553A1 EP 0935553 A1 EP0935553 A1 EP 0935553A1 EP 97950145 A EP97950145 A EP 97950145A EP 97950145 A EP97950145 A EP 97950145A EP 0935553 A1 EP0935553 A1 EP 0935553A1
Authority
EP
European Patent Office
Prior art keywords
propeller
water jet
housing
drive according
propellers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97950145A
Other languages
English (en)
French (fr)
Other versions
EP0935553B1 (de
Inventor
Reinhold Reuter
Stefan Kaul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schottel GmbH and Co KG
Original Assignee
Schottel GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27216860&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0935553(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE29619385U external-priority patent/DE29619385U1/de
Priority claimed from DE1996148417 external-priority patent/DE19648417A1/de
Application filed by Schottel GmbH and Co KG filed Critical Schottel GmbH and Co KG
Publication of EP0935553A1 publication Critical patent/EP0935553A1/de
Application granted granted Critical
Publication of EP0935553B1 publication Critical patent/EP0935553B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/103Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type of co-rotative type, i.e. rotating in the same direction, e.g. twin propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1258Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors

Definitions

  • the invention relates to a water jet drive with a prime mover and a double propeller which is driven by the prime mover.
  • Such drives are known in a design such that the actual drive machine, in particular a diesel engine, is arranged inside the ship's hull and a transmission as a further part of the drive machine is located in a nacelle below the ship's hull, from the shafts connected to the transmission at opposite ends are led out, which are connected at their outer ends with a propeller rotation test.
  • a solution is described in DE 44 30 738 AI, the essential feature being a guide device arranged between the two propellers, which eliminates the swirl in the water after leaving the propeller in the direction of travel, so that this water causes the rear propeller with higher energy in the direction of travel, but just as swirl-free as the front propeller.
  • Generic drives are also known in the training that the entire drive is in the aforementioned gondola.
  • an electric motor for the propellers at both ends of the nacelle is the prime mover, to which the electrical energy is supplied by a power generation system which is housed in the ship's hull.
  • a power generation system which is housed in the ship's hull.
  • a shaft is generated between the drive motor inside the ship's hull and its gearbox in the nacelle. see lines between the power generation system inside the hull and the electric motor in the nacelle surrounded by a cladding tube.
  • the cladding tube is assigned to the ship's hull at its upper end rotatable about its longitudinal axis and carries the nacelle at its lower end in a rotationally fixed manner, then a servomotor can be assigned to it, which forcibly rotates the cladding tube with the gondola and the propellers assigned to it about the longitudinal axis of the cladding tube is capable of changing the outflow direction of the rear propeller into the open water and a rudder double propeller system is available.
  • the cladding tube is formed as part of the guide grill.
  • the solution to this problem according to the invention consists in the combination of individual, appropriately selected individual problem solutions, not only for summation, but for potentiating the individual advantages to an overall concept that is optimal in its entirety.
  • the ship propulsion system is a water jet propulsion system with two propellers at the ends of a propeller led out of a gondola outside the ship's hull, a propulsion system arranged in the gondola Energy is supplied from the ship's hull through a cladding tube, one end of which is assigned to the ship's hull, the other end of which is assigned to the gondola, the cladding tube being part of a guide apparatus through which the propeller in the direction of travel of the watercraft at one end of the shaft and gondola arranged propeller with enriched flow energy leaving water jet swirl-free, in order to supply the water jet leaving the front propeller with high energy but little swirl to the rear propeller in the direction of travel of the watercraft, for which purpose both propellers are driven by the drive in the nacelle in the same direction of rotation and in the area of the jet cross section in are essentially the same.
  • the two propellers also have essentially the same diameter, the front propeller in the direction of travel of the watercraft in the entire diameter range and the rear propeller in the diameter range in the direction of travel of the watercraft, the diameter determined by the jet contraction when leaving the front propeller both different Blade configuration, the front propeller in the direction of travel of the watercraft and the rear propeller in the direction of travel of the watercraft in an annular area lying radially outside the diameter range determined by the jet contraction have the same blade configuration.
  • Fig. 1 shows a first embodiment of a water jet drive according to the invention, each with a propeller at the ends of a gondola-like, aerodynamically designed underwater housing, which is arranged by means of a housing shaft or foot on the underside of a ship below this ship and receives an electric motor on its shaft or the ends of which are each arranged a propeller;
  • FIG. 2 shows a second exemplary embodiment in a further embodiment which is expedient compared to FIG. 1;
  • Fig. 3 shows a third embodiment, in which an angular drive is arranged in the underwater housing, in which drive energy is supplied via a shaft line accommodated in a cladding tube or housing shaft from an inboard drive motor, which is not shown but a conventional internal combustion engine, an electric motor or the like.
  • FIG. 6 shows a double propeller design which is particularly expedient and which is a double propeller arrangement as is particularly the subject of the invention and can be used in all of the above-mentioned embodiments.
  • the drive essentially consists of an electric motor 1 "• ' in a housing 2 * •" outside, in particular below the hull and two propellers, 3 * - ' , 4 * ' " , which are driven by the electric motor 1 ' • * .
  • the two propellers will generally be structurally different, even though they have tip circles 5 "•” with the same diameter and a similar wing geometry. They have the same direction of rotation and the same speed and, for example, the flow is in the same direction according to arrow A.
  • the electric motor 1 * - " is arranged watertight in the underwater housing 2 '•” .
  • the output shaft is made of it on both sides! '•' led out and laterally rotatably mounted in one of two bearings 8 "• * , 9 " • “of the housing 2 " • “ on the side of the motor.
  • Seals 10, 11 ' - “ on the side of the bearing 8 " serve the seal • * , 9 " - * between shaft 7 '•” and front housing walls 2a * - " , 2b " * ' in connection with the design of the end faces as parts of labyrinth seals.
  • Outside the housing 2 '•' are on the shaft!
  • the end walls 14a * * " , 15a “•” of the hub caps 14 ' - ' , 15 " ' “ facing the housing 2 * - ' . are second parts of the labyrinth seals 16 " - “ , 17 * - " the first parts of which are the end faces 2a " - " , 2b " - " already mentioned.
  • the housing 2 " - ' is held on the hull with a foot 18 ' - * , which is hollow, the outer contour of which is part of the guide device 19 " - " between the propellers 3 * - “ , 4 ' - " , which has further blades associated with the housing 2 ' - ' , one of which is the base 18 ' - * diametrically opposite vane 20 ' "is referred to a total of the blades of the diffuser 19th *' -" gleichze ig about the longitudinal axis of the shaft 7 "• * distributed fixed to the housing 2" is assigned • ".
  • the propellers 3 " ⁇ ” , 4 “ - “ are designed so that the initial working level of the second propeller 4 "•” is approximately the final working level of the first propeller 3 " - “ and in conjunction with the guide device 19 * - " the initial twist of the first propeller 3 " - ' as well as the input twist of the second propeller 4 * - * are purposefully influenced in such a way that little energy losses occur when the liquid passes from the first to the second propeller.
  • the entire drive In order to be able to use the drive not only to generate a thrust in the longitudinal direction of the ship (longitudinal axis of the drive shaft), but also to steer the ship, the entire drive must be appropriately assigned to the ship and an appropriate swivel mechanism known per se around the vertical longitudinal axis 22 * - ' pivotable in the middle between the two propellers, optionally pivotable by 360 ° all around, the axis 22 ' - "being directed perpendicular to the axis of rotation of the shaft axis 23 '#" .
  • the drive essentially consists of an electric motor l “" in a housing 2 * " outside, in particular below the hull and two propellers 3 "' , 4 "” which are driven by the electric motor l ' * .
  • the two propellers will generally be structurally different, although they have tip circles 5 * " with the same diameter and may have a similar wing geometry. They have the same direction of rotation and the same speed and are flowed in in the same direction, for example, according to the arrow A "" .
  • the electric motor 1 '" is arranged in the underwater housing 2 * * in a watertight manner.
  • the output shaft 7 "" is led out of it on both sides and is rotatably supported in one of two bearings 8 "' , 9 * “of the housing 2 " in the side of the motor .
  • the seal is provided by seals 10 ′′ , 11 ′ ′′ on the side of the bearings 8 ′′ , 9 ′′ ′′ between shaft 7 ′′ and the front housing walls 2a * ′ , 2b ′′ ” in connection with the formation of the end faces as parts of labyrinth seals.
  • the housing 2 * " is held on the ship's hull with a foot 18 '" which is hollow, the outer contour of which is part of the guide apparatus 19 "" between the propellers 3 '" , 4 '” , the other being assigned to the housing 2 *' Has blades, of which a blade diametrically opposite the base 18 '" is designated 20 ** .
  • the blades of the guide apparatus 19 * * are uniformly assigned to the housing 2 "" distributed uniformly around the longitudinal axis of the shaft 7 *" .
  • the propellers 3 "' , 4 *' are designed such that the initial working level of the second propeller 4 ""is approximately the final working level of the first propeller 3 *" and, in conjunction with the guide device 19 * ', the initial twist of the first propeller 3 * " as well as the input twist of the second propeller 4 * * are purposefully influenced in such a way that at most small energy losses occur when the liquid passes from the first to the second propeller.
  • the energy supply to the electric motor takes place through lines 21 * ' , which are in the base 18 '' and in the housing 2 * * to the motor are introduced, which is why the interiors of the foot 18 "' and the housing 2 "' are connected.
  • the entire drive In order to be able to use the drive not only to generate a thrust in the longitudinal direction of the ship (longitudinal axis of the drive shaft), but also to steer the ship, the entire drive must be appropriately assigned to the ship and an appropriate swivel mechanism known per se around the vertical longitudinal axis 22 * "can be pivoted in the middle between the two propellers, possibly pivoting 360 ° all around; axis 22 ""is directed perpendicular to the axis of rotation of the longitudinal axis 23 * ' .
  • the motor 1 * ' is designed as a permanent synchronous motor and is therefore an electrical machine with a very high power density.
  • the technology of such an engine makes it possible to design the housing 2 ** between the two propellers to be hydrosdynamic in such a way that very high efficiency is achieved.
  • the shaft 18 "" is formed in its lower area close to the housing 2 '" so that together with a second, diametrically opposite guide fin 20 *” it forms a pair of guide fins and thus a guide apparatus, so that an optimal inflow of water to the seen in the flow direction A * * second propeller 4 * "is possible.
  • the guide fins end in the diameter circles 5 *" of the two propellers 3 * " , 4 *” .
  • the design of the motor 1 ** as a permanent synchronous motor makes it possible to reduce the diameter of the housing 2 * ' by up to 20% compared to other motors known per se.
  • the advantages are obvious: only smaller masses and more favorable flow conditions or lower flow resistance should be mentioned.
  • Another embodiment according to the invention relates to the rotor bearing of the permanent motor, which also includes the propeller shaft bearing.
  • the rotor ie the drive shaft 7 "" is connected to the propeller shafts 12 “” , 13 “” via diaphragm couplings 23 “" , 24 “” .
  • This allows a minimal air gap between the stator and rotor, which means a significant, additional improvement in efficiency.
  • FIG. 3 shows a ship drive designed as a rudder double propeller with a drive machine arranged in the ship's hull with a vertical drive shaft 1 ' and drive propellers outside the ship's hull.
  • a drive machine comprising a motor and gear acts on the upper end of the vertical drive shaft 1 * in order to set the drive shaft 1 * in rotation about its longitudinal axis 2 ′′ at a variable speed.
  • the lower end the input shaft 3 "of an angular drive 3 * , 4 * is associated with the drive shaft 1 " , which is operatively connected to the output bevel gear 4 'of the angular gear 3 " , 4 * .
  • the output bevel gear 4 ' rotatably supports a horizontal output shaft 5 " which extends in both directions and at the free ends of which a propeller 6 * , 7 ' is arranged.
  • the propellers will generally be structurally different, although tip circles 14 " have the same Diameter and similar wing geometries may be possible. Due to the common assignment to the output shaft 5 ", they have the same direction of rotation and the same speed and, for example, the flow is in the same direction according to arrow A * .
  • the angular gear 3 " , 4 ' is surrounded by a housing 9 ' in which the output shaft 5 * is rotatably mounted by means of two bearings 10 ' , 11 " .
  • This housing 9 * is carried by a housing tube 9a " which concentrically surrounds the vertical drive axis 1 ' and can be pivoted about its longitudinal axis for the rowing function.
  • the underwater part of the drive system can be arranged within a nozzle 12 * .
  • the front propeller 6 * generates a residual or re-spin in its outflow, which represents lost energy.
  • the downstream, co-rotating propeller l ' is with the outflow of the front propeller. Without a guide device between the two propellers 6 " , 7 * , the above-mentioned unfavorable outflow would lead to increased cavitation and increased energy losses.
  • a guide device 8 ' is provided between the two propellers 6 * , 7 ' , with which the re-spin of the front propeller 6 'is directed.
  • lost energy is recovered by generating a propulsive force in the flow around the guide device.
  • a pre-twist is generated for the downstream propeller 7 " so that it can implement a higher energy gradient.
  • the second propeller 7 ' will preferably have a structural design that differs from the first propeller 6 " .
  • the guide device 8 ' is shown in FIG. 3 consists of two vanes 8a' and 8b ', said one vane 8a' through which the vertical drive shaft 1 surrounding casing tube "is formed.
  • the second vane 8b" 9a * is located 9b at the bottom " of the housing 9 " surrounding the horizontal output shaft 5 * , ie offset by 180 ° from the first guide vane.
  • Both guide blades 6 " , 7 " form a structural unit with the overall housing 9 " , 9a ' .
  • the drive essentially consists of an electric motor 1 in a housing 2 outside, in particular below of the hull and two propellers 3, 4, which are driven by the electric motor 1.
  • the two propellers will generally be structurally different, although they have tip circles 5 with the same diameter and may have a similar wing geometry. They have the same direction of rotation and the same speed and, for example, flow in the same direction according to arrow A (FIG. 1).
  • the electric motor 1 is arranged watertight in the underwater housing 2.
  • the output shaft 7 is guided out of it on both sides and is rotatably supported in the side of the motor in one of two bearings 8, 9 of the housing 2.
  • the seal is provided by seals 10, 11 on the side of bearings 8, 9 between shaft 7 and end housing walls 2a, 2b in connection with the formation of the end faces as parts of labyrinth seals.
  • shaft ends 12, 13 are flanged to the shaft 7, each of which carries one of the two propellers 3, 4 in a rotationally fixed manner.
  • Hub caps 14, 15 connect to the end of the housing, a continuous, flow-favorable outer contour with head 14 being formed in the region of the front propeller 3, middle part in the form of the housing 2 and end part 15 in the region of the rear propeller 4.
  • the end walls 14a, 15a of the hub caps 14, 15 facing the housing 2 are second parts of the labyrinth seals 16, 17, the first parts of which are the end surfaces 2a, 2b already mentioned.
  • the housing 2 is held on the ship's hull with a foot 18 which is hollow, the outer contour of which is part of the guide apparatus 19 between the propellers 3, 4 and which has further blades associated with the housing 2, one of which has a blade diametrically opposite the foot 18 is designated by 20.
  • Overall are the blades of the diffuser 19 uniformly distributed around the longitudinal axis of the shaft 7 and assigned to the housing 2.
  • the propellers 3, 4 are designed in such a way that the initial working level of the second propeller 4 is approximately the final working level of the first propeller 3 and, in conjunction with the guide device 19, the output swirl of the first propeller 3 as well as the input swirl of the second propeller 4 are purposefully influenced that at most small energy losses occur when the liquid passes from the first to the second propeller.
  • the energy supply to the electric motor takes place through lines 21 which are brought to the motor in the foot 18 and in the housing 2, which is why the interiors of the foot 18 and the housing 2 are connected to one another.
  • the entire drive In order to be able to use the drive not only to generate a thrust in the longitudinal direction of the ship (longitudinal axis of the drive shaft), but also to steer the ship, the entire drive must be appropriately assigned to the ship and an appropriate swivel mechanism known per se about the vertical longitudinal axis 22 in the middle between the two propellers can be pivoted, possibly pivoted 360 ° all around, the axis 22 being directed perpendicular to the axis of rotation of the shaft axis 23.
  • the electric motor 1 is a permanently excited synchronous motor with the permanent magnet rotor 25 and the stator laminated core 26. Such motors are known per se, which is why the electric motor designed as a permanently excited synchronous motor does not have to be described in detail either.
  • Such a permanently excited synchronous motor 1 is now arranged in a further embodiment in the nacelle-like housing 2 such that the continuous propeller shaft 12, 13 and the rotor 25 have a common bearing with the two bearings 8, 9. Specifically, this is done in such a way that the permanent rotor 25 is seated on a support tube 27 which it concentrically surrounds and which, near its two ends, is assigned to the propeller shaft 12, 13 in a rotationally fixed manner via one of two annular membrane couplings 28, 29, with both shaft ends the diaphragm coupling 28 or 29 and the associated bearing 8 or 9 are close together.
  • the fact that the propeller shaft and the electric motor tube have a common bearing means that the drive unit is minimized in components and the reliability is increased.
  • This slender underwater housing shaft 18 is profiled in cross section in such a way that in connection with a lateral pair of guide fins (not shown) offset by 90 ° and the counter fin 20 offset by 180 °, an additional jet swirl of the propeller outflow of the front propeller 3 is achieved, which
  • the improvement in efficiency means that the concept on which the drive is based should bring the two propellers that are essentially the same and rotate in the same direction (speed and direction of rotation).
  • a parking brake for holding the propeller shaft 12, 13 and thus the assembly, the parts of which are the propeller shaft, is arranged within the underwater pod 2 and is identified by 33.
  • the present invention in particular in the embodiment according to FIGS. 2, 3, enables a greatly simplified underwater assembly / disassembly at the separation point of the underwater housing shaft support cone.
  • the underwater housing shaft is also identified in FIG. 3 by the reference symbol 18, its upper end lies in the plane 24 of the ship's outer skin and is connected to the supporting cone 30. At the upper end, the support cone is mounted in a control bearing 31 in the support structure of a ship.
  • This control bearing 31 has an inner ring 31a with an inner ring gear 31b and this inner bearing ring 31a is firmly assigned to the outer circumference of the support cone 30.
  • the outer ring 31c interacts with the inner ring via the rolling elements and it is firmly integrated into the supporting structure of the ship.
  • the pinion (not shown) of a drive (not shown) engages in the inner ring gear of the inner ring of the control bearing, so that the entire drive can be rotated through 360 ° about the longitudinal axis 22 to control the ship.
  • the detachable connection between housing shaft 18 and support cone 30 is symbolized by a flange connection 32.
  • the front propeller 3 in the inflow direction A has optimal blading for increasing the energy of the fluid.
  • the propeller 4 at the rear in the inflow direction A has the same blading in a peripheral area.
  • This peripheral area surrounds a central area in which the blading deviates from that of the front propeller 3, as has been described several times above, ie it increases the energy increased in the first propeller again from this energy level after that of the first propeller 3 leaving fluid swirled in the diffuser 19 and the energy loss caused by the swirl was compensated.
  • the core and peripheral areas are separated from one another by the contraction surface 100, ie the lateral surface which surrounds the flowing fluid after it has left the first propeller 3 and which circumscribes a cross section which is significantly smaller than the inflow cross section.
  • the second propeller is consequently flowed by the fluid B in the same way as the first propeller by the fluid, which is indicated by the arrows A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

Doppelpropeller-Antrieb für Wasserfahrzeuge mit zwei gleichchsig angeordneten Propellern (3, 4) ausserhalb der enden eines gondelargien strömungsgünstig ausgestalteten Unterwassergehäuses (2) unter dem Rumpf des Wasserfahrzeugs mit einem in dem Unterwassergehäuse angeodneten Antriebsmittel für die beiden Propeller (3, 4), dem Energie aus dem Rumpf des Wasserfahrzeugs heraus durch einen Gehäuseschaft (18) zugeführt wird, dessen eines Ende dem Wasserfahrzeugrumpf (24) und dessen anderes Ende dem Unterwassergehäuse (2) zugeordnet ist, dadurch gekennzeichnet, dass das Unterwassergehäuse (2) Teil eines Leitapparates (20) ist, durch den der den in dern Fahrtrichtung des Wasserfahrzeugs vorderen Propeller (3) mit erhöhter Energie verlassende Wasserstrahl mit minimiertem Energieverlust und optimierter Drallfreiheit dem in der Fahrtrichtung des Wasserfahrzeugs hinteren Propeller (4) am anderen Unterwassergehäuseende zugeführt wird, wobei beide Propeller (3, 4) von dem Antriebsmittel in dem Unterwassergehäuse in gleicher Drehrichtung angetrieben werden und im Bereich des Jeweiligen Strahlquerschnittes so ausgebildet sind, dass die am Einlass beinder Propeller (3, 4) unterschiedlich Strömungsenergie optimal ausgenutzt wird.

Description

DOPPELPROPELLER-ANTRIEB FÜR WASSERFAHRZEUGE
Die Erfindung bezieht sich auf einen Wasserstrahlantrieb mit einer Antriebsmaschine und einem Doppelpropeller, der von der Antriebsmaschine angetrieben wird.
Solche Antriebe sind in einer Ausbildung derart bekannt, daß die eigentliche Antriebsmaschine, insbesondere ein Dieselmotor innerhalb des Schiffsrumpfes angeordnet ist und ein Getriebe als weiterer Teil der Antriebsmaschine sich in einer Gondel unterhalb des Schiffsrumpfes befindet, aus der an einander entgegengesetzten Enden an das Getriebe angeschlossene Wellen herausgeführt sind, die an ihren äußeren Enden mit je einem Propeller drehtest verbunden sind. Eine solche Lösung ist in DE 44 30 738 AI beschrieben, wobei wesentliches Merkmal ein zwischen beiden Propellern angeordneter Leitapparat ist, der den Drall im Wasser nach dem Verlassen des in Fahrtrichtung vorderen Propellers beseitigt, sodaß dieses Wasser den in Fahrtrichtung hinteren Propeller mit höherer Energie, aber ebenso drallfrei wie den vorderen Propeller, anströmt. Gattungsgemäße Antriebe sind auch in der Ausbildung bekannt, daß der gesamte Antrieb sich in der vorerwähnten Gondel befindet. (Bei dieser Lösung bietet sich als Antriebsmaschine ein Elektromotor für die Propeller an beiden Gondelenden an, dem die elektrische Energie von einer Stromerzeugungsanlage zugeführt wird, die im Schiffsrumpf untergebracht ist. Eine solche Lösunq ist in EP 0 590 867 AI beschrieben.
Bei dem Antrieb der erstgenannten Ausbildung wird eine Welle zwischen dem Antriebsmotor innerhalb des Schiffsrumpfes und seinem Getriebe in der Gondel, bei dem Antrieb der zweitgenannten Ausbildung werden die elektri- sehen Leitungen zwischen der Stromerzeugungsanlage innerhalb des Schiffsrumpfes und dem Elektromotor in der Gondel von einem Hüllrohr umgeben. Wird das Hüllrohr am oberen Ende um seine Längsachse drehbar dem Schiffsrumpf zugeordnet und trägt an seinem unteren Ende drehfest die Gondel, so kann ihm ein Stellmotor zugeordnet werden, der das Hüllrohr mit der Gondel und den dieser zugeordneten Propellern zwangsweise um die Längsachse des Hüllrohres zu drehen vermag, sodaß sich die Abströmrichtung des hinteren Propellers ins freie Wasser ändert und eine Ruderdoppelpropelleranlage vorliegt. Außerdem ist bei der erstgenannten Ausführungsform das Hüllrohr als Teil des Leitgitters ausgebildet.
Vor diesem und weiterem Stand der Technik, der jedoch im Hinblick auf die vorliegende Erfindung keine weiteren Aspekte bringt, ist es Aufgabe der vorliegenden Erfindung, einen Schiffsantrieb mit Doppelpropeller so zu optimieren, daß ein gemäß dem heutigen Erkenntnisstand optimaler Wirkungsgrad erreicht wird, der bauliche und fertigungstechnische Aufwand nicht wesentlich über dem liegt, der mit dem Stand der Technik verbunden ist.
Die erfindungsgemäße Lösung dieser Aufgabe besteht in der Kombination einzelner, in zweckmäßiger Weise ausgewählter Einzelproblemlösungen, nicht nur zur Summierung, sondern zur Potenzierung der Einzelvorteile zu einem in seiner Gesamtheit optimalen Gesamtkonzept .
Demzufolge ist der erfindungsgemäße Schiffsantrieb ein Wasserstrahlantrieb mit zwei an den Enden einer aus einer Gondel außerhalb des Schiffsrumpfes herausgeführten Propellern, einem in der Gondel angeordneten Antrieb, dem Energie aus dem Schiffsrumpf heraus durch ein Hüllrohr zugeführt wird, dessen eines Ende dem Schiffsrumpf, dessen anderes Ende der Gondel zugeordnet ist, wobei das Hüllrohr Teil eines Leitapparates ist, durch den der den in der Fahrtrichtung des Wasserfahrzeuges vordere Propeller am einen Wellen- und Gondelende angeordneten Propeller mit angereicherter Strömungsenergie verlassende Wasserstrahl Drallfrei macht, um den den vorderen Propeller verlassenden Wasserstrahl energiereich aber drallarm dem in der Fahrtrichtung des Wasserfahrzeuges hinteren Propeller zuzuführen, wozu beide Propeller von dem Antrieb in der Gondel in gleicher Drehrichtung angetrieben werden und im Bereich des Strahlquerschnittes im wesentlichen gleich ausgebildet sind.
In weiterer Ausgestaltung haben die beiden Propeller im wesentlichen auch gleiche Durchmesser, wobei der in der Fahrtrichtung des Wasserfahrzeuges vordere Propeller im gesamten Durchmesserbereich und der in der Fahrtrichtung des Wasserfahrzeuges hintere Propeller im Durchmesserbereich, der durch die Strahlkontraktion beim Verlassen des vorderen Propellers bestimmten Durchmesser beide unterschiedliche Schaufelkonfiguration, der in Fahrtrichtung des Wasserfahrzeugs vordere Propeller und der in Fahrtrichtung des Wasserfahrzeugs hintere Propeller in einem radial außerhalb des durch die Strahlkontraktion bestimmten Durchmesserbereichs liegenden ringförmigen Bereich gleiche Schaufelkonfiguration haben.
Diese und weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung von mehreren Ausführungsbeispielen der Erfindung, den in der Zeichnung dargestellten Ausführungsbeispielen der Erfindung und schließlich aus den Ansprüchen.
In der Zeichnung zeigen
Fig. 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Wasserstrahlantriebes mit je einem Propeller an den Enden einer aus einem gondelartigen, strömungsgünstig ausgebildeten Unterwassergehäuse, das mittels eines Gehäuseschaftes bzw. Fußes an der Unterseite eines Schiffes unterhalb dieses Schiffes angeordnet ist und einen Elektromotor aufnimmt, an dessen Welle bzw. deren Enden je ein Propeller angeordnet ist;
Fig. 2 ein zweites Ausführungsbeispiel in einer gegenüber Fig. 1 zweckmäßigen weiteren Ausgestaltung;
Fig. 3 ein drittes Ausführungsbeispiel, bei dem im Unterwassergehäuse ein Winkeltrieb angeordnet ist, in den Antriebsenergie über einen in einem Hüllrohr bzw. Gehäuseschaft untergebrachten Wellenstrang von einem innenbords angeordneten Antriebsmotor aus zugeführt wird, der nicht dargestellt ist aber ein üblicher Verbrennungsmotor, ein Elektromotor oder dergl. sein kann;
Fig. 4 bis
Fig. 6 in Darstellungen, die den vorherigen entsprechen, ein nochmals weiteres Ausführungsbeispiel in drei Varianten und mit einem Elektromotor im Unterwassergehäuse, dem Energie von einem Stromerzeuger innenbords über Kabel zugeführt wird, die durch den Gehäuseschaft geführt sind, und Fig. 7 eine Doppelpropellerausbildung, die besonders zweckmäßig ist und die eine Doppelpropelleranordnung ist, wie sie insbesondere Gegenstand der Erfindung ist und bei allen obengenannten Ausfüh- rungsformen angewendet werden kann.
Beschreibung der Ausführungsform gemäß Fig. 1
Der Antrieb besteht im wesentlichen aus einem Elektromotor 1 "•' in einem Gehäuse 2 *•" außerhalb, insbesondere unterhalb des Schiffsrumpfes und zwei Propellern, 3*-', 4*'", die von dem Elektromotor 1 '•* angetrieben werden. Die beiden Propeller werden in der Regel baulich unterschiedlich sein, obwohl sie Spitzenkreise 5 "•" mit gleichem Durchmesser haben sowie eine ähnliche Flügelgeometrie haben können. Sie haben gleiche Drehrichtung und gleiche Drehzahl und werden zum Beispiel gemäß dem Pfeil A in gleicher Richtung angeströmt.
Der Elektromotor 1*-" ist in dem Unterwassergehäuse 2 '•" wasserdicht angeordnet. Aus ihm ist beidseitig die Abtriebswelle ! ' •' herausgeführt und seitlich vom Motor in je einen von zwei Lagern 8 "•* , 9 "•" des Gehäuses 2 "•" drehbar in diesem gelagert. Der Dichtung dienen Dichtungen 10 , 11'-" seitlich der Lager 8 "•* , 9"-* zwischen Welle 7 '•" und stirnseitigen Gehäusewänden 2a*-" , 2b"*' in Verbindung mit der Ausbildung der Stirnflächen als Teile von Labyrinthdichtungen. Außerhalb des Gehäuses 2 '•' sind an die Welle ! '' Wellenstummel 12*-', 13'-" angeflanscht, von denen je einer einen der beiden Propeller 3"-', 4 '" drehfest trägt. Stirnseitig schließen an das Gehäuse 2 '•' Nabenkappen 14"-", 15"** an, wobei eine stetige strömungs- gümstige Außenkontur mit Kopf 14"-' im Bereich des vorderen Propellers 3*-', Mittelteil in der Form des Gehäuses 2 '•" und Endteil 15*-* im Bereich des hinteren Propellers 4"" gebildet wird. Die dem Gehäuse 2*-' zugekehrten Stirnwände 14a**", 15a "•" der Nabenkappen 14'-', 15"'" sind zweite Teile der Labyrinthdichtungen 16"-", 17*-" deren erste Teile die schon erwähnten Stirnflächen 2a"-", 2b"-" sind. Das Gehäuse 2"-' ist am Schiffsrumpf mit einem Fuß 18'-* gehalten, der hohl ausgebildet ist, dessen Außenkontur Teil des Leitapparates 19"-" zwischen den Propellern 3*-" ,4'-" ist, der weitere, dem Gehäuse 2'-' zugeordnete Schaufeln aufweist, von denen eine dem Fuß 18'-* diametral gegenüberliegende Schaufel mit 20'*" bezeichnet ist. Insgesamt sind die Schaufeln des Leitapparates 19'-" gleichmäßig um die Längsachse der Welle 7 "•* verteilt fest dem Gehäuse 2 "•" zugeordnet.
Insgesamt sind die Propeller 3 "■" , 4"-" so ausgebildet, daß das Ausgangsarbeitsniveau des zweiten Proupellers 4 "•" etwa das Endarbeitsniveau des ersten Propellers 3"-" ist und in Verbindung mit dem Leitapparat 19*-" der Ausgangsdrall des ersten Propellers 3"-' ebenso wie der Eingangsdrall des zweiten Propellers 4*-* zweckgerichtet so beeinflußt werden, daß allenfalls geringe Energieverluste beim Übergang der Flüssigkeit vom ersten zum zweiten Propeller eintreten.
Die Energiezufuhr zum Elektromotor erfolgt durch Leitungen 21*-", die im Fuß 18*-* und im Gehäuse 2"-" an den Motor herangeführt sind, weshalb die Innenräume des Fußes 18*-" und des Gehäuses 2"-" miteinander in Verbindung stehen. Um den Antrieb nicht nur zur Erzeugung eines Schubes in Schiffslängsrichtung (Längsachse der Antriebswelle) , sondern auch zum Steuern des Schiffes einsetzen zu können, ist der gesamte Antrieb durch entsprechende Zuordnung zum Schiff und einen angemessenen Schwenkmechanismus an sich bekannter Art um die vertikale Längsachse 22*-' in der Mitte zwischen den beiden Propellern verschwenkbar, gegebenenfalls um 360° rundum schwenkbar, wobei die Achse 22'-" senkrecht zur Drehachse der Wellenlängsachse 23'#" gerichtet ist.
Beschreibung der Ausführungsform gemäß Fig. 2
Der Antrieb besteht im wesentlichen aus einem Elektromotor l" " in einem Gehäuse 2* " außerhalb, insbesondere unterhalb des Schiffsrumpfes und zwei Propellern 3" ', 4" " die von dem Elektromotor l' * angetrieben werden. Die beiden Propeller werden in der Regel baulich unterschiedlich sein, obwohl sie Spitzenkreise 5* " mit gleichem Durchmesser haben sowie eine ähnliche Flügelgeometrie haben können. Sie haben gleiche Drehrichtung und gleiche Drehzahl und werden zum Beispiel gemäß dem Pfeil A"" in gleicher Richtung angeströmt.
Der Elektromotor l' " ist in dem Unterwassergehäuse 2* * wasserdicht angeordnet. Aus ihm ist beidseitig die Abtriebswelle 7" " herausgeführt und seitlich vom Motor in je einen von zwei Lagern 8" ', 9* " des Gehäuses 2 " drehbar in diesem gelagert. Der Dichtung dienen Dichtungen 10' ', 11' " seitlich der Lager 8" ', 9" " zwischen Welle 7"' und stirnseitigen Gehäusewänden 2a* ', 2b"" in Verbindung mit der Ausbildung der Stirnflächen als Teile von Labyrinthdichtungen. Außer- halb des Gehäuses 2*' sind an die Welle 7' " Wellenstummel 12' ", 13' " angeflanscht, von denen je einer einen der beiden Propeller 3"', 4*" drehfest trägt. Stirnseitig schließen an das Gehäuse 2"" Nabenkappen 14' *, 15* ' an, wobei eine stetige strömungsgünstige Außenkontur mit Kopf 14' * im Bereich des vorderen Propellers 3* ", Mittelteil in der Form des Gehäuses 2** und Endteil 15*' im Bereich des hinteren Propellers 4*' gebildet wird. Die dem Gehäuse 2** zugekehrten Stirnwände 14a*", 15a*' der Nabenkappen 14" ", 15"' sind zweite Teile der Labyrinthdichtungen 16" ", 17* ', deren erste Teile die schon erwähnten Stirnflächen 2a" *, 2b* " sind. Das Gehäuse 2* " ist am Schiffsrumpf mit einem Fuß 18'" gehalten, der hohl ausgebildet ist, dessen Außenkontur Teil des Leitapparates 19"" zwischen den Propellern 3'", 4'" ist, der weitere, dem Gehäuse 2*' zugeordnete Schaufeln aufweist, von denen eine dem Fuß 18'" diametral gegenüberliegende Schaufel mit 20** bezeichnet ist. Insgesamt sind die Schaufeln des Leitapparates 19* * gleichmäßig um die Längsachse der Welle 7*" verteilt fest dem Gehäuse 2 " " zugeordnet.
Insgesamt sind die Propeller 3"', 4*' so ausgebildet, daß das Ausgangsarbeitsniveau des zweiten Propellers 4 " " etwa das Endarbeitsniveau des ersten Propellers 3*" ist und in Verbindung mit dem Leitapparat 19* ' der Ausgangsdrall des ersten Propellers 3* " ebenso wie der Eingangsdrall des zweiten Propellers 4* * zweckgerichtet so beeinflußt werden, daß allenfalls geringe Energieverluste beim Übergang der Flüssigkeit vom ersten zum zweiten Propeller eintreten .
Die Energiezufuhr zum Elektromotor erfolgt durch Leitungen 21* ', die im Fuß 18'" und im Gehäuse 2* * an den Motor herangeführt sind, weshalb die Innenräume des Fußes 18" ' und des Gehäuses 2" ' miteinander in Verbindung stehen.
Um den Antrieb nicht nur zur Erzeugung eines Schubes in Schiffslängsrichtung (Längsachse der Antriebswelle) , sondern auch zum Steuern des Schiffes einsetzen zu können, ist der gesamte Antrieb durch entsprechende Zuordnung zum Schiff und einen angemessenen Schwenkmechanismus an sich bekannter Art um die vertikale Längsachse 22* " in der Mitte zwischen den beiden Propellern verschwenkbar, gegebenenfalls um 360° rundum schwenkbar; wobei die Achse 22"" senkrecht zur Drehachse der Wellenlängsachse 23*' gerichtet ist.
Der Motor 1* ' ist als ein Permanent-Synchron-Motor ausgeführt und ist damit eine Elektro-Maschine mit sehr hoher Leistungsdichte. Durch die Technologie eines solchen Motors ist es möglich, das Gehäuse 2** zwischen den beiden Propellern hydrosdynamisch so auszugestalten, daß ein sehr hoher Wirkungsgrad erzielt wird.
Bei dieser Technologie ist es möglich, daß der Fuß 18* ' als ein Schaft ausgebildet werden kann, daß auch er eine optimale hydrodynamische Gestaltung hat.
Der Schaft 18"" ist in seinem unteren, dem Gehäuse 2'" nahen Bereich, so ausgebildet, daß er zusammen mit einer zweiten, diametral gegenüberliegenden Leitflosse 20*" ein Leitflossenpaar und damit einen Leitapparat bildet, sodaß eine optimale Zuströmung des Wassers zu dem in der Anströmrichtung A* * gesehen zweiten Propeller 4*" möglich ist. Die Leitflossen enden in den durchmessergleichen Spitzenkreisen 5*" der beiden Propeller 3*", 4*". Durch die Kombination des Permanent-Synchron-Motors mit hoher Leistungsdichte auf einem kleinen Durchmesser mit der optimalen Leiteinrichtung (Leitflossenpaar bzw. Leitapparat 20* ") sowie den beiden Propellern 3**, 4* ' wird eine Antriebsanlage erreicht, die sich durch eine extreme Wirkungsverbesserung sowohl elektrisch als auch hydrodynamisch auszeichnet.
Die Ausbildung des Motors 1** als Permanent-Synchron- Motor macht gegenüber anderen an sich bekannten Motoren eine Verringerung des Durchmessers des Gehäuses 2* ' um bis zu 20% möglich. Die Vorteile liegen auf der Hand, es sollen nur geringere Massen und günstigere Strömungs- verhältnisse bzw. geringerer Strömungswiderstand genannt werden .
Eine weitere erfindungsgemäße Ausgestaltung betrifft die Rotorlagerung des Permanentmotors , die auch die Propellerwellenlagerung beinhaltet. Um die Verlagerungen und Verformungen sowie die dynamischen Belastungen aus den Propellern zu reduzieren bzw. zu eliminieren, erfolgt die Verbindung von Rotor, also der Antriebswelle 7"" zu den Propellerwellen 12"", 13" " über Membrankupplungen 23"", 24"". Dadurch ist ein minimaler Luftspalt zwischen Stator und Rotor möglich, was eine erhebliche, zusätzliche Wirkungsgradverbesserung bedeutet.
Beschreibung des Ausführungsbeispiels gemäß Fig. 3.
Fig. 3 zeigt einen als Ruder-Doppelpropeller ausgebildeten Schiffsantrieb mit einer im Schiffsrumpf angeordneten Antriebsmaschine mit vertikaler Antriebswelle 1 ' und Antriebspropellern außerhalb des Schiffsrumpfes . In üblicher Weise und deshalb in Fig. 3 nicht dargestellt, wirkt auf das obere Ende der vertikalen Antriebswelle 1* eine Antriebsmaschine aus Motor und Getriebe, um die Antriebswelle 1* mit veränderbarer Drehzahl in Umdrehung um ihre Längsachse 2" zu versetzen. Dem unteren Ende der Antriebswelle l" ist das Eingangskegelrad 3" eines Winkeltriebes 3*, 4* drehfest zugeordnet, das in Wirkverbindung mit dem Ausgangskegelrad 4' des Winkelgetriebes 3", 4* steht. Das Ausgangskegelrad 4' trägt drehfest eine in beide Richtungen sich erstreckende, horizontale Ausgangswelle 5", an deren freien Enden jeweils ein Propeller 6*, 7' drehtest angeordnet ist. Die Propeller werden in der Regel baulich unterschiedlich sein, obwohl Spitzenkreise 14" mit gleichem Durchmesser sowie ähnliche Flügelgeometrien möglich sein können. Sie haben durch die gemeinsame Zuordnung zur Ausgangswelle 5" gleiche Drehrichtung und gleiche Drehzahl und werden zum Beispiel gemäß dem Pfeil A* in gleicher Richtung angeströmt.
Das Winkelgetriebe 3", 4' ist von einem Gehäuse 9' umgeben, in dem mittels zweier Lager 10 ', 11" die Ausgangswelle 5* drehbar gelagert ist. Dieses Gehäuse 9* wird von einem die vertikale Antriebsachse 1 ' konzentrisch umgebenden und für die Ruderfunktion um seine Längsachse schwenkbaren Gehäuserohr 9a" getragen.
Der Unterwasserteil des Antriebssystems kann innerhalb einer Düse 12* angeordnet sein.
Der vordere Propeller 6* erzeugt in seinem Abstrom einen Rest bzw. Nachdrall, der verlorene Energie darstellt. Der nachgeschaltete , gleichdrehende Propeller l ' wird mit dem Abstrom des vorderen Propellers beaufschlagt. Ohne eine Leiteinrichtung zwischen beiden Propellern 6", 7* würde der vorstehend genannte ungünstige Abstrom zur verstärkten Kavitation und Vergrößerung der Energieverluste führen.
Um diesem Energieverlust entgegenzuwirken, ist zwischen den beiden Propellern 6*, 7' eine Leiteinrichtung 8' vorgesehen, mit der der Nachdrall des vorderen Propellers 6' gerichtet wird. Dabei wird verlorene Energie zurückgewonnen, indem bei der Leiteinrichtungsumströmung eine Vortriebskraft erzeugt wird. Ferner wird ein Vordrall für den nachgeschalteten Propeller 7" erzeugt, damit dieser ein höheres Energiegefälle umsetzen kann. Diesem Kriterium Rechnung tragend, wird der zweite Propeller 7' vorzugsweise eine vom ersten Propeller 6" sich unterscheidende bauliche Ausgestaltung haben.
Die Leiteinrichtung 8' besteht gemäß Fig. 3 aus zwei Leitschaufeln 8a" und 8b", wobei die eine Leitschaufel 8a' durch das die vertikale Antriebswelle 1* umgebende Gehäuserohr 9a" gebildet ist. Die zweite Leitschaufel 8b" befindet sich an der Unterseite 9b" des die horizontale Ausgangswelle 5* umgebenden Gehäuses 9", d.h. um 180° von der ersten Leitschaufel versetzt. Beide Leitschaufeln 6", 7" bilden mit dem Gesamtgehäuse 9", 9a' eine Baueinheit.
Beschreibung der Ausführungsformen gemäß Fig. 4 bis Fig.6.
Der Antrieb besteht im wesentlichen aus einem Elektromotor 1 in einem Gehäuse 2 außerhalb, insbesondere unterhalb des Schiffsrumpfes und zwei Propellern 3,4, die von dem Elektromotor 1 angetrieben werden. Die beiden Propeller werden in der Regel baulich unterschiedlich sein, obwohl sie Spitzenkreise 5 mit gleichem Durchmesser haben sowie eine ähnliche Flügelgeometrie haben können. Sie haben gleiche Drehrichtung und gleiche Drehzahl und werden zum Beispiel gemäß dem Pfeil A in gleicher Richtung angeströmt (Fig. 1).
Der Elektromotor 1 ist in dem Unterwassergehäuse 2 wasserdicht angeordnet. Aus ihm ist beidseitig die Abtriebswelle 7 herausgeführt und seitlich vom Motor in je einen von zwei Lagern 8, 9 des Gehäuses 2 drehbar in diesem gelagert. Der Dichtung dienen Dichtungen 10, 11 seitlich der Lager 8, 9 zwischen Welle 7 und stirnseitigen Gehäusewänden 2a, 2b in Verbindung mit der Ausbildung der Stirnflächen als Teile von Labyrinthdichtungen. Außerhalb des Gehäuses 2 sind an die Welle 7 Wellenstummel 12, 13 angeflanscht, von denen je einer einen der beiden Propeller 3,4 drehfest trägt. Stirnseitig schließen an das Gehäuse 2 Nabenkappen 14, 15 an, wobei eine stetige strömungs- günstige Außenkontur mit Kopf 14 im Bereich des vorderen Propellers 3, Mittelteil in der Form des Gehäuses 2 und Endteil 15 im Bereich des hinteren Propellers 4 gebildet wird. Die dem Gehäuse 2 zugekehrten Stirnwände 14a, 15a der Nabenkappen 14, 15 sind zweite Teile der Labyrinthdichtungen 16, 17, deren erste Teile die schon erwähnten Stirnflächen 2a, 2b sind. Das Gehäuse 2 ist am Schiffsrumpf mit einem Fuß 18 gehalten, der hohl ausgebildet ist, dessen Außenkontur Teil des Leitapparates 19 zwischen den Propellern 3,4 ist, der weitere, dem Gehäuse 2 zugeordnete Schaufeln aufweist, von denen eine dem Fuß 18 diametral gegenüberliegende Schaufel mit 20 bezeichnet ist. Insgesamt sind die Schaufeln des Leitapparates 19 gleichmäßig um die Längsachse der Welle 7 verteilt fest dem Gehäuse 2 zugeordnet .
Insgesamt sind die Propeller 3,4 so ausgebildet, daß das Ausgangsarbeitsniveau des zweiten Propellers 4 etwa das Endarbeitsniveau des ersten Propellers 3 ist und in Verbindung mit dem Leitapparat 19 der Ausgangsdrall des ersten Propellers 3 ebenso wie der Eingangsdrall des zweiten Propellers 4 zweckgerichtet so beeinfluß werden, daß allenfalls geringe Energieverluste beim Übergang der Flüssigkeit vom ersten zum zweiten Propeller eintreten.
Die Energiezufuhr zum Elektromotor erfolgt durch Leitungen 21, die im Fuß 18 und im Gehäuse 2 an den Motor herangeführt sind, weshalb die Innenräume des Fußes 18 und des Gehäuses 2 miteinander in Verbindung stehen.
Um den Antrieb nicht nur zur Erzeugung eines Schubes in Schiffslängsrichtung (Längsachse der Antriebswelle) , sondern auch zum Steuern des Schiffes einsetzen zu können, ist der gesamte Antrieb durch entsprechende Zuordnung zum Schiff und einem angemessenen Schwenkmechanismus an sich bekannter Art um die vertikale Längsachse 22 in der Mitte zwischen den beiden Propellern verschwenkbar, gegebenenfalls um 360° rundum schwenkbar, wobei die Achse 22 senkrecht zur Drehachse der Wellenlängsachse 23 gerichtet ist .
Nachfolgend wird nun unter Bezugnahme auf Fig. 2 und 3 eine besonders zweckmäßige Ausbildung des erfindungsgemäßen Antriebes beschrieben. Dabei ist der Elektromotor 1 ein permanenterregter Synchronmotor mit dem Permanentmagnet- rotor 25 und dem Statorblechpaket 26. An sich sind solche Motoren bekannt, weshalb der als permanenterregter Synchronmotor ausgebildete Elektromotor auch nicht näher im einzelnen beschrieben werden muß.
Die Anwendung eines solchen Motors in dem gondelartig ausgebildeten Gehäuse 2, das unterhalb der Schiffsaußen- haut 24 unterhalb der Wasseroberfläche angeordnet ist, zum Antrieb der beiden gleichdrehenden und in derselben Richtung A fördernden Propeller 3, 4 hat verschiedene anwendungsspezifische Vorteile, insbesondere hinsichtlich des elektrischen Wirkungsgrades der Maschine und sie ermöglicht den Wegfall von Zwangskühlungseinrichtungen. Zusätzlich wird ein geringes Bauvolumen ermöglicht, was wiederum eine widerstandsoptimale Form des Unterwassergehäuses möglich macht, insbesondere ein Gehäuse mit einem geringen maximalen Durchmesser möglich macht.
Ein solcher permanenterregter Synchronmotor 1 ist nun in weiterer Ausgestaltung derart im gondelartigen Gehäuse 2 angeordnet, daß die durchgehende Propellerwelle 12, 13 und der Rotor 25 eine gemeinsame Lagerung mit den beiden Lagern 8, 9 haben. Im einzelnen erfolgt das in der Weise, daß der Permanentrotor 25 auf einem von ihm konzentrisch umschlossenen Stützrohr 27 sitzt, das nahe seinen beiden Enden über je eine von zwei ringförmigen Membrankupplungen 28, 29 drehfest der Propellerwelle 12, 13 zugeordnet ist, wobei an beiden Wellenenden die Membrankupplung 28 bzw. 29 sowie das zugehörige Lager 8 bzw. 9 nahe beieinander sich befinden. Dadurch, daß Propellerwelle und Elektromotorrohr eine gemeinsame Lagerung haben, werden eine Bauteile- minimierung und Zuverlässigkeitserhöhung der Antriebseinheit erzielt. Durch die Verwendung von dicht an der je- weiligen Radiallagerung befindlichen jeweiligen Membrankupplung wird eine sehr exakte, von der Propellerwellendurchbiegung weitgehend unabhängige Zentrierung des Rotors innerhalb des Stators erreicht. Das bringt erhebliche Vorteile hinsichtlich des dynamischen Verhaltens des Rotors innerhalb der Maschine (z.B. Körperschallanregung wird minimiert) mit sich.
Ebenfalls als Folge der Ausbildung des Elektromotors als permanenterregten Synchronmotor 1 (Fig. 2, 3) ist eine Integration des Unterwassergehäuseschaftes 18 (im Zusammenhang mit Fig. 1 als "Fuß" bezeichnet) in den Antrieb in besonders zweckmäßiger Weise möglich. Dieser Gehäuseschaft ist sehr schlank ausführbar, wodurch der Strömungswiderstand der Anlage beträchtlich reduziert wird. Dieser schlanke Unterwassergehäuseschaft 18 ist im Querschnitt so profiliert, daß in Verbindung mit einem seitlichen, um jeweils 90° versetzten Leitflossenpaar (nicht dargestellt) und der um 180° versetzten Gegenflosse 20 eine zusätzliche Strahl- entdrallung des Propellerabstromes des vorderen Propellers 3 erreicht wird, was die Wirkungsgradverbesserung bedeutet, die das dem Antrieb zugrundeliegende Konzept mit den beiden im wesentlichen gleichen und gleichdrehenden (Drehzahl und Drehrichtung) Propellern bringen soll.
Eine Feststellbremse zum Festhalten der Propellerwelle 12, 13 und damit der Baugruppe, deren Teile die Propellerwelle ist, ist innerhalb der Unterwassergondel 2 angeordnet und mit 33 gekennzeichnet.
Die Ausbildung gemäß Fig. 2, 3 ergibt schließlich eine wesentliche Vereinfachung des Unterwassermontageaufwandes. Bei schwimmendem Schiff montierbare/demontierbare Ruderpropeller werden von verschiedenen Ruderpropeller-Her- stellern angeboten. Der entsprechende Montageaufwand ist dabei noch erheblich. Die vorliegende Erfindung insbesondere in der Ausführungsform gemäß Fig. 2, 3 ermöglicht eine stark vereinfachte Unterwassermontage/-demontage an der Trennstelle Unterwassergehäuseschaft-Tragkegel . Der Unterwassergehäuseschaft ist auch in Fig. 3 mit dem Bezugszeichen 18 gekennzeichnet, sein oberes Ende liegt in der Ebene 24 der Schiffsaußenhaut und ist mit dem Tragkegel 30 verbunden. Am oberen Ende ist der Tragkegel in einem Steuerungslager 31 in der Tragkonstruktion eines Schiffes gelagert. Dieses Steuerungslager 31 weist einen Innenring 31a mit einem Innenzahnkranz 31b auf und dieser Lagerinnenring 31a ist dem Außenumfang des Tragkegels 30 fest zugeordnet. Der Außenring 31c wirkt über die Wälzkörper mit dem Innenring zusammen und er ist fest in die Tragstruktur des Schiffes integriert. In den Innenzahnkranz des Innenringes des Steuerungslagers greift das Ritzel (nicht gezeichnet) eines Antriebes (nicht gezeichnet) ein, sodaß der gesamte Antrieb um 360° um die Längsachse 22 zur Steuerung des Schiffes gedreht werden kann.
Die lösbare Verbindung zwischen Gehäuseschaft 18 und Tragkegel 30 ist durch eine Flanschverbindung 32 symbolisiert.
Allen Ausführungsformen ist die Merkmalskombination des Anspruchs 1 gemeinsam, daß es sich um einen Wasserstrahlantrieb für Wasserfahrzeuge, insbesondere Schiffe handelt, der eine Antriebsmaschine und zwei von dieser angetriebene Propeller hat, die an den beiden Enden eines gondelartigen, stromlinienförmigen Unterwassergehäuses außerhalb dieses Wassergehäuses angeordnet sind und von einem Antriebsmittel angetrieben werden, das sich innerhalb des Unterwassergehäuses befindet und auf die beiden Propellern gemeinsame Antriebswelle einwirkt, wobei der erste Propeller die Strömungsenergie des Strömungsmittels deutlich erhöht und dieses Strömungsmittel mit hohem Energiegehalt nach Beseitigung des unvermeidlichen Nachdralles in einer Leiteinrichtung dem zweiten Propeller zugeführt wird, der sich insofern in seiner Beschaufelung vom ersten Propeller unterscheidet, daß die relativ geringe Strömungsenergie im ersten Propeller optimal erhöht wird, während im zweiten Propeller die relativ hohe Strömungsenergie nochmals erhöht wird; in einer besonderen, nachfolgend anhand der Fig.2 beschriebenen Ausführungsform weist der zweite Propeller einen zentralen Teil auf, der sich vom ersten Propeller in der beschriebenen Weise unterscheidet und einen periphe- ren Teil, der insoweit dem ersten Propeller gleicht und in der gleichen Weise wie der erste Propeller angeströmt wird.
Beschreibung der Ausführungsform gemäß Fig. 7.
Der in der Zuströmrichtung A vordere Propeller 3 hat eine zur Energieerhöhung des Strömungsmittels optimale Beschaufelung. Der in der Zuströmrichtung A hintere Propeller 4 hat eine insoweit gleiche Beschaufelung in einem periphe- ren Bereich. Dieser periphere Bereich umgibt einen zentralen Bereich, in dem die Beschaufelung so von der des vorderen Propellers 3 abweicht, wie es oben mehrfach beschrieben worden ist, d.h. er erhöht die im ersten Propeller erhöhte Energie von diesem Energieniveau aus nochmals, nachdem das dem ersten Propeller 3 verlassende Strömungsmittel im Leitapparat 19 entdrallt und der durch den Drall verursachte Energieverlust kompensiert wurde. Kern- und periphe- rer Bereich sind durch die Kontraktionsfläche 100 voneinander getrennt, d.h. die Mantelfläche, die das strömende Fluid umgibt, nachdem es den ersten Propeller 3 verlassen hat und die einen Querschnitt umschreibt, der deutlich kleiner ist als der Zuströmquerschnitt. Im peripheren Bereich wird konsequenterweise der zweite Propeller vom Strömungsmittel B in der gleichen Weise angeströmt wie der erste Propeller vom Strömungsmittel, das durch die Pfeile A gekennzeichnet ist.

Claims

Patentansprüche
1. Wasserstrahlantrieb für Wasserfahrzeuge mit zwei gleich- achsig angeordneten Propellern (3,4) außerhalb der Enden eines gondelartigen strömungsgünstig ausgestalteten Unterwassergehäuses (2) unter dem Rumpf des Wasserfahrzeugs mit einem in dem Unterwassergehäuse angeordneten Antriebsmittel für die beiden Propeller (3,4) , dem Energie aus dem Rumpf des Wasserfahrzeugs heraus durch einen Gehäuseschaft (18) zugeführt wird, dessen eines Ende dem Wasserfahrzeugrumpf (24) und dessen anderes Ende dem Unterwasse- gehäuse (2) zugeordnet ist, dadurch gekennzeichnet, daß das Unterwassergehäuse (2) Teil eines Leitapparates (20) ist, durch den der den in der Fahrtrichtung des Wasserfahrzeugs vorderen Propeller (3) mit erhöhter Energie verlassende Wasserstrahl mit minimiertem Energieverlust und optimierter Drallfreiheit dem in der Fahrtrichtung des Wasserfahrzeugs hinteren Propeller (4) am anderen Unterwassergehäuseende zugeführt wird, wobei beide Propeller (3,4) von dem Antriebsmittel in dem Unterwassergehäuse in gleicher Drehrichtung angetrieben werden und im Bereich des jeweiligen Strahlquerschnittes so ausgebildet sind, daß die am Einlaß beider Propeller (3,4) unterschiedliche Strömungsenergie optimal ausgenutzt wird.
2 . Wasserstrahlantrieb nach Anspruch 1, dadurch gekennzeichnet, daß der in der Fahrtrichtung des Wasserfahrzeuges hintere Propeller (4) einen um das Maß der Kontraktion des Strahles kleineren Querschnittbereich als der in Fahrtrichtung des Wasserfahrzeugs vordere Propeller (3) mit entsprechend der unterschiedlichen Anströmenergie in den Einlaßbereichen beider Propeller (3,4) verschieden ausgestalteter Beschaufelung beider Propeller aufweist. Wasserstrahlantrieb nach Anspruch 2 , dadurch gekennzeichnet, daß der entsprechend der Strahlkontraktion kleinere Querschnittsbereich des in der Fahrtrichtung des Wasserfahrzeugs hinteren Propellers (4) der Gesamtquerschnittsbereich dieses Propellers ist, d.h. beide Propeller (3,4) verschiedene Durchmesser haben.
Wasserstrahlantrieb nach Anspruch 2, dadurch gekennzeichnet, daß beide Propeller (3,4) im wesentlichen gleichen Durchmesser haben, wobei der in der Fahrtrichtung des Wasserfahrzeugs hintere Propeller (4) im Kernbereich eine andere Beschaufelung als im Randbereich hat, wobei weiter der Kernbereich den Querschnitt des den in Fahrtrichtung des Wasserfahrzeugs vorderen Propeller (3) kontraktiert verlassenden Wasserstrahls hat, wobei weiter der hintere Propeller (4) in diesem Bereich, wie der vordere Propeller (3), eine der Anströmenergie optimal angepaßte Beschaufelung hat, sodaß sich insoweit die Beschaufelungen beider Propeller unterscheiden, und wobei schließlich der radial auf den Kernbereich folgende Randbereich des zweiten Propellers (4) wie der erste Propeller frei angeströmt wird und seine Beschaufelung der Beschaufelung des ersten Propellers (3) entspricht.
Wasserstrahlantrieb nach Anspruch 3 oder 4 in der jeweiligen Rückbeziehung auf die Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Steigung der Schaufeln der Beschaufelung des in der Fahrtrichtung des Wasserfahrzeugs hintere Propellers (4) in dem der Strahlkontraktion entsprechenden Bereich das 1,04 bis 1,52-fache der Steigung der Schaufeln der Beschaufelung des in der Fahrtrichtung des Wasserfahrzeugs vorderen Propellers (3) beträgt.
6. Wasserstrahlantrieb nach Anspruch 4, dadurch gekennzeichnet, daß die Gleichbeschaufelung beider Propeller (3,4) im gesamten Querschnittsbereich des in der Fahrtrichtung des Wasserfahrzeugs vorderen Propellers (3) und im ringförmigen Außenbereich des in der Fahrtrichtung des Wasserfahrzeugs hinteren Propellers (4) eine Streuung von +/-
5% zuläßt.
7. Wasserstrahlantrieb nach Anspruch 5, dadurch gekennzeichnet, daß die unterchiedliche Beschaufelung beider Propeller (3,4) außer durch unterschiedliche Steigung der Schaufeln auch durch unterschiedliche Schaufelwölbung erzielt wird, wobei der im Anspruch 5 genannte Bereich unterschiedlicher Schaufelsteigung bei 0,9 - 1,6 liegt.
8. Wasserstrahlantrieb nach Anspruch 7, dadurch gekennzeichnet, daß die unterschiedliche Beschaufelung beider Propeller (3,4) statt durch unterschiedliche Schaufelsteigung durch entsprechend unterschiedliche Schaufelwölbung erzielt wird .
9. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Leitapparat Teile vom vom Unterwassergehäuse (2) umfaßt.
10. Wasserstrahlantrieb nach Anspruch 9, dadurch gekennzeichnet, daß der Leitapparat Teile des Unterwassergehäuses (2) umfaßt und der Gehäuseschaft (18) so ausgebildet ist, daß es die Wirkung der Teile daß er die Wirkung des Teiles des Unterwassergehäuses (2) umfassenden Leitapparates unbeeinflußt läßt.
11. Wasserstrahlantrieb nach einem der Ansprüche 1, 9 und 10, dadurch gekennzeichnet, daß der Leitapparat im wesentlichen von Leitschaufeln (20) gebildet wird.
12. Wasserstrahlantrieb nach Anspruch 11, dadurch gekennzeichnet, daß die Leitschaufeln (20) über ein Wölbungslängenverhältnis im Bereich von 0,0 bis 0,2 und eine Anstellung im Bereich von -7° bis + 7° verfügen.
13. Wasserstrahlantrieb nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Leitapparat zwei ratationssymme- trische um die gemeinsame Drehachse der Propeller (3,4) angeordnete Leitschaufeln aufweist.
14. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Antriebsmittel im Unterwassergehäuse (2) ein Getriebe (4' ,5') mit zwei Abtriebswellenteilen für die beiden Propeller (3,4) an den Unterwassergehäuseenden und mechanischer Krafteinleitung (2') von einem Motor im Rumpf des Wasserfahrzeugs, vorzugsweise einem Verbrennungsmotor oder einem hydraulichen Motor aus, mittels einer durch den Gehäuseschaft geführten Verbindungswelle ist.
15. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Antriebsmittel im Unterwassergehäuse (2) ein Elektromotor mit zwei Wellenteilen
(13,14) der Abtriebswelle für die beiden Propeller (3,4) an den Unterwassergehäuseenden und Energiezufuhr von einem Stromerzeuger im Rumpf des Wasserfahrzeugs aus über Leitungen ist, die durch den Gehäuseschaft (18) hindurchgeführt sind.
16. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Antriebsmittel im Unterwassergehäuse (2) ein Hydraulikmotor mit zwei Abtriebswellenteilen (12,13) für die beiden Propeller (3,4) an den Unterwassergehäuseenden und Energiemittelzufuhr von einer die Energie des hydraulischen Motorbetriebsmittels erhöhenden Einrichtung im Rumpf des Wasserfahrzeugs durch rohrförmige Leitmittel erfolgt, die durch den Gehäuseschaft hindurchgeführt sind.
17. Wasserstrahlantrieb nach Anspruch 15, dadurch gekennzeichnet, daß die Wärmeabfuhr vom Motor (1) über die Wand des Unterwassergehäuses (2) erfolgt, mit der wärmeerzeugende Teile des Motors (1) wärmeleitend verbunden sind.
18. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der in Fahrtrichtung des Wasserfahrzeugs vordere Propeller (3) durch eine Beschleunigungsdüse ummantelt ist, deren Querschnitt sich vom Eintritt bis zur Propellerebene verringert.
19. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß jeder Propeller (3,4) von einer Verzögerungsdüse ummantelt ist, deren Querschnitt sich vom jeweiligen Düseneintritt bis zur Propellerebene des ersten Propellers (3) vergrößert.
20. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 19, gekennzeichnet durch den Anschluß des vertikalen Gehäuseschaft (18) am Rumpf des Wasserfahrzeuges so, daß er mit dem Unterwassergehäuse an seinem unteren Ende um seine Längsachse drehbar ist.
21. Wasserstrahlantrieb nach Anspruch 20, dadurch gekennzeichnet, daß die Drehbarkeit des Gehäuseschafts (18) um seine Längsachse mittels eines Stellmotors um 360° möglich ist.
22. Wasserstrahlantrieb nach Anspruch 15, dadurch gekennzeichnet, daß die Befestigung jedes Propellers (3,4) auf der Welle (7) bzw. jeder Teilwelle (12,17) von jeweils einer Nabe (14,15) umschlossen ist und die Außenkontur von Unterwassergehäuse (2) und Naben (14,15) ein strömungsgünstig ausgebildetes Strömungsprofil ergeben, dessen Nase (14) den Propeller (3) in diesem Bereich als den in Anströmrichtung (A) vorderen Propeller ausweist, während der Schwanz (15) des Strömungsprofils den Propeller (4) in diesem Bereich als den in Anströmrichtung hinteren Propeller ausweist.
23. Wasserstrahlantrieb nach Anspruch 15 und/oder 22, dadurch gekennzeichnet, daß der Elektromotor (1) ein permanenterregter Synchronmotor ist.
24. Wasserstrahlantrieb nach Anspruch 23, dadurch gekennzeichnet, daß der Rotor (25) des Motors (1) konzentrisch innerhalb des Stators (26) ist.
25. Wasserstrahlantrieb nach Anspruch 24, dadurch gekennzeichnet, daß der Rotor (25) über Membrankupplungen (28,29) mit der der konzentrisch durch den Rotor hindurchgeführten, an beiden Enden zur Aufnahme der Propeller (3,4) aus dem Rotor (25) herausgeführten Propellerwelle (7 bzw. 12,13) drehfest verbunden ist.
26. Wasserstrahlantrieb nach Anspruch 25, dadurch gekennzeichnet, daß außerhalb des Rotors (25) unmittelbar neben jeder der Membrankupplungen (28,29) ein Lager (8,9) angeordnet ist und daß mit diesen Lagern die Baugruppe aus Rotor (25). und Propellerwelle (12,13) im Unterwassergehäuse (2) des Wasserfahrzeugantriebes gelagert ist.
28. Wasserstrahlantrieb nach einem der Ansprüche 22 bis 28, dadurch gekennzeichnet, daß der Rotor (25) über ein Rotorstützrohr (27) mit Propellerwelle (12,13) gekuppelt ist.
29. Wasserstrahlantrieb nach einem der Ansprüche 22 bis 28, dadurch gekennzeichnet, daß das Unterwassergehäuse (2) über den Gehäuseschaft (18) mit einem Tragkegel (30) um eine zur Propellerwelle (12,13) senkrecht verlaufende, die Längsachse (23) der Propellerwelle schneidende Schwenkachse (22) um 360° durchgehend schwenkbar ist.
30. Wasserstrahlantrieb nach Anspruch 29, dadurch gekennzeichnet, daß Gehäuseschaft (18) und Tragkegel (30) in der Ebene der Schiffsaußenhaut (24) lösbar miteinander verbunden sind (Flanschverbindung).
31. Wasserstrahlantrieb nach einem der Ansprüche 29 und 30, dadurch gekennzeichnet, daß der kleinere Querschnitt dem Gehäuseschaft (18) zugekehrt ist und der Tragkegel im Bereich des größeren, oberen Querschnitts um die Vertikale, die Längsachse (23) der Propellerwelle (12,13) schneidende Achse (22) schwenkbar im Wasserfahrzeug gelagert ist (Lager 31).
32. Wasserstrahlantrieb nach einem der Ansprüche 22 bis 31, gekennzeichnet dadurch, daß der Gehäuseschaft (18) als eine von mehreren gleichen Leitschaufeln (18,20) des Leitapparates (19) zwischen den beiden Propellern (3,4) ausgebildet ist, die gleichbeabstandet auf den Umfang des Gehäuses (2) verteilt sind.
33. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der in Fahrtrichtung des Wasserfahrzeuges vordere Propeller (3) durch eine Verzögerungsdüse ummantelt ist, deren Querschnitt sich vom Einlaß zur Propellerebene erweitert.
34. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß jeder Propeller von einer Beschleunigungsdüse ummantelt ist, deren Querschnitt sich vom Einlaß zur Propellerebene verringert bzw. von einer Verzögerungsdüse umgeben ist, deren Querschnitt sich om Einlaß zur Propellerebene vergrößert.
35. Wasserstrahlantrieb nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß beide Propeller von einer gemeinsamen Düse umgeben sind, die eine Beschleunigungsdüse ist, indem sich ihr Querschnitt vom Düseneintritt zur Propellerebene des ersten Propellers hin verringert bzw. eine Verzögerungsdüse ist, indem sich ihr Querschnitt vom Düseneintritt zur Propellerebene des ersten Propellers hin vergrößert.
EP97950145A 1996-11-07 1997-11-07 Doppelpropeller-antrieb für wasserfahrzeuge Expired - Lifetime EP0935553B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE29619385U DE29619385U1 (de) 1996-11-07 1996-11-07 Schiffsantrieb mit einem Ruderpropeller
DE29619385U 1996-11-07
DE19648417 1996-11-22
DE1996148417 DE19648417A1 (de) 1996-11-22 1996-11-22 Schiffsantrieb mit einem Ruderpropeller
DE29707028U DE29707028U1 (de) 1996-11-07 1997-04-18 Schiffsantrieb mit einem Ruderpropeller
DE29707028U 1997-04-18
PCT/EP1997/006207 WO1998019907A1 (de) 1996-11-07 1997-11-07 Doppelpropeller-antrieb für wasserfahrzeuge

Publications (2)

Publication Number Publication Date
EP0935553A1 true EP0935553A1 (de) 1999-08-18
EP0935553B1 EP0935553B1 (de) 2001-09-19

Family

ID=27216860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97950145A Expired - Lifetime EP0935553B1 (de) 1996-11-07 1997-11-07 Doppelpropeller-antrieb für wasserfahrzeuge

Country Status (11)

Country Link
EP (1) EP0935553B1 (de)
JP (1) JP3214568B2 (de)
KR (1) KR100306261B1 (de)
CN (1) CN1080677C (de)
CA (1) CA2271034C (de)
DK (1) DK0935553T3 (de)
ES (1) ES2163204T3 (de)
HK (1) HK1023971A1 (de)
NO (1) NO324212B1 (de)
PT (1) PT935553E (de)
WO (1) WO1998019907A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE280709T1 (de) * 1998-12-21 2004-11-15 Mitsubishi Heavy Ind Ltd Azimut-vortriebsvorichtung und damit ausgerüstetes schiff
FI115042B (fi) * 2000-01-28 2005-02-28 Abb Oy Aluksen moottoriyksikkö
US6244912B1 (en) * 2000-03-20 2001-06-12 Electric Boat Corporation Strut-mounted marine propulsion unit
DE10044101A1 (de) * 2000-09-07 2002-04-04 Schottel Gmbh & Co Kg Antrieb für schnelle Wasserfahrzeuge
JP4674841B2 (ja) * 2001-06-08 2011-04-20 ヤマハ発動機株式会社 小型船舶における電動式推進装置
US7029339B2 (en) * 2001-08-30 2006-04-18 Siemens Aktiengesellschaft Shock-proof electric marine engine, e.g. engine or generator
DE102004008805B4 (de) * 2004-02-20 2008-08-14 Siemens Ag Zweipropellerantrieb für Schiffe
CN103786854B (zh) * 2005-06-09 2016-08-17 施奥泰尔有限公司 船舶动力装置
EP2432689B1 (de) * 2009-05-22 2013-07-17 Bell Helicopter Textron Inc. Sich gleichzeitig drehende gestapelte rotorscheiben für verbesserte schwebeflugleistung
US20110263165A1 (en) * 2010-04-26 2011-10-27 Twin Disc, Inc. Electric Marine Surface Drive
KR20130024467A (ko) * 2011-08-31 2013-03-08 에스티엑스조선해양 주식회사 언더워터 마운팅 아지무스 스러스터의 평판 형 수밀 장비 및 그 탑재 방법
US9751603B2 (en) * 2012-05-10 2017-09-05 Samsung Heavy Ind. Co., Ltd. Propulsion device for ship and ship comprising the same
CN104229113B (zh) * 2014-09-24 2017-11-17 江苏科技大学 吊舱式船舶电力直驱推进装置、推进***及推进方法
EP3069985A1 (de) * 2015-03-20 2016-09-21 ABB Oy Schiff mit einem rumpf und einer antriebseinheit
CN105015753B (zh) * 2015-07-01 2017-08-22 胡景威 一种船舵
CN105151265B (zh) * 2015-10-25 2017-06-20 宁波市鄞州发辉机械科技有限公司 一种潜水器的传动装置
FR3054999B1 (fr) * 2016-08-09 2018-08-17 Aetc Sapphire Unite de propulsion pour vehicule marin comprenant un systeme de freinage et de blocage de l'arbre d'entrainement
CN107963196A (zh) * 2017-12-07 2018-04-27 张立 一种船舶用推进器
CN108045534A (zh) * 2017-12-30 2018-05-18 殷红平 一种用于万向机器人的定向桨叶驱动机构
EP3604117B1 (de) * 2018-08-03 2020-07-15 Sealence S.R.L. Antriebsvorrichtung mit aussenbordwasserstrahl für wasserfahrzeuge
CN109436268A (zh) * 2018-09-26 2019-03-08 湖北环电磁装备工程技术有限公司 船舶吊舱式推进器
CN109278969A (zh) * 2018-10-12 2019-01-29 邓建军 同轴双桨电动喷水推进器
CN110316345A (zh) * 2019-07-15 2019-10-11 南京高精船用设备有限公司 一种新型对转桨船舶侧向推进***
CN112937822A (zh) * 2021-03-09 2021-06-11 北京航空航天大学 一种单驱动可折叠共轴螺旋桨装置
CN114572370A (zh) * 2021-12-28 2022-06-03 深圳潜行创新科技有限公司 一种对转双桨水下推进器
CN115009489A (zh) * 2022-05-22 2022-09-06 哈尔滨广瀚动力传动有限公司 一种电动对转对转桨推进吊舱

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE293611C (de) *
GB515469A (en) * 1938-03-05 1939-12-06 John Taylor Mcintyre Improvements in cased screw propeller type fans, pumps and the like
US2691356A (en) * 1950-11-28 1954-10-12 Waterval William Multiple propeller drive for ships
DE1094622B (de) * 1957-10-12 1960-12-08 Volkswerft Stralsund Veb Doppelpropeller, vorzugsweise fuer Schiffe
GB832164A (en) * 1958-09-26 1960-04-06 Murray & Tregurtha Inc Reversible propeller
DE1556851A1 (de) * 1967-02-01 1970-01-29 Grim Otto Dr Ing Schiffsschraube
US4182118A (en) * 1971-04-18 1980-01-08 Chronic Bill M Jet propulsion engine
US4074652A (en) * 1976-07-26 1978-02-21 Jackson William M Steering and propulsion device for watercraft
DE2911830A1 (de) * 1979-03-26 1980-10-09 Ernst August Werner Wasserstrahlantrieb fuer wasserfahrzeuge, insbesondere gleitboote
FI79991C (fi) * 1986-04-29 1990-04-10 Hollming Oy Propelleranordning foer ett fartyg.
US5222863A (en) * 1991-09-03 1993-06-29 Jones Brian L Turbine multisection hydrojet drive
FI96590B (fi) 1992-09-28 1996-04-15 Kvaerner Masa Yards Oy Laivan propulsiolaite
JPH07132469A (ja) 1993-11-08 1995-05-23 Kaijirushi Hamono Kaihatsu Center:Kk 各種道具の柄及びその製造方法
DE4440138C1 (de) * 1994-11-10 1996-01-25 Volker Wagner Vorrichtung zur Halterung von Kerzen
DE4440738A1 (de) * 1994-11-15 1996-05-23 Schottel Werft Schiffsantrieb mit einer Antriebsmaschine im Schiffsrumpf und einem von der Antriebsmaschine angetriebenen Propeller außerhalb des Schiffsrumpfes
JPH08207895A (ja) * 1995-02-06 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd 船舶の操舵装置
DE19618247A1 (de) * 1996-05-07 1997-11-13 Blohm & Voss Int Propulsionseinrichtung für Schiffe, bestehend aus zwei gleichsinnig drehenden Propellern
DE29619385U1 (de) * 1996-11-07 1997-03-13 Schottel-Werft Josef Becker GmbH & Co KG, 56322 Spay Schiffsantrieb mit einem Ruderpropeller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9819907A1 *

Also Published As

Publication number Publication date
JP3214568B2 (ja) 2001-10-02
WO1998019907A1 (de) 1998-05-14
JP2000515095A (ja) 2000-11-14
DK0935553T3 (da) 2002-01-28
PT935553E (pt) 2002-03-28
NO324212B1 (no) 2007-09-10
CA2271034C (en) 2004-06-22
CA2271034A1 (en) 1998-05-14
CN1080677C (zh) 2002-03-13
ES2163204T3 (es) 2002-01-16
KR100306261B1 (ko) 2001-09-24
CN1236347A (zh) 1999-11-24
HK1023971A1 (en) 2000-09-29
EP0935553B1 (de) 2001-09-19
NO992215L (no) 1999-05-06
NO992215D0 (no) 1999-05-06
KR20000053042A (ko) 2000-08-25

Similar Documents

Publication Publication Date Title
EP0935553B1 (de) Doppelpropeller-antrieb für wasserfahrzeuge
DE102009040471B4 (de) Mechanisch angetriebener Schiffpropulsor mit hohem Wirkungsgrad
EP2279111B1 (de) Unterseeboot mit einem propulsionsantrieb mit einem elektroringmotor
DE2934871A1 (de) Schiffsschraube
DE69200164T2 (de) Verbesserung an einer hohlstrahlantriebsvorrichtung.
EP0790921B1 (de) Schiffsantrieb mit einem ruderpropeller
DE1302418B (de)
DE19648417A1 (de) Schiffsantrieb mit einem Ruderpropeller
EP2445783B1 (de) Schiff mit zwei hintereinander angeordneten propellern
EP1445193A1 (de) Turbopropantrieb mit zwei mitläufigen und axial versetzten Propeller
WO2021048230A1 (de) Mantelstromtriebwerk mit mindestens einer drehmomentstufe
EP2223853A1 (de) Strömungsdynamische Fläche mit einer von einer durch die angeströmte Fläche induzierten Strömung angetriebenen Turbine
WO2012052155A1 (de) Schiff mit einem antrieb
DE3508203A1 (de) Schiffsantrieb
DE1506372A1 (de) Zusatzschuberzeuger an Wasserfahrzeugen
DE29707028U1 (de) Schiffsantrieb mit einem Ruderpropeller
EP2948366B1 (de) Schiffsantriebsanordnung
EP1315653B1 (de) Antrieb für schnelle schiffe
DE10158320A1 (de) Schiffsantrieb
DE4440791A1 (de) Unterwasser-Strahlantrieb
DE102004008805B4 (de) Zweipropellerantrieb für Schiffe
EP1336561B1 (de) Antrieb für Wasserfahrzeuge
DE1808637A1 (de) Propellersystem
DE19960577A1 (de) Vorrichtung zur Veränderung der Fahrtrichtung eines Wasserfahrzeugs
DE10152977C1 (de) Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FI FR GB GR IE IT NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010308

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOTTEL GMBH & CO KG.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FI FR GB GR IE IT NL PT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010919

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59704689

Country of ref document: DE

Date of ref document: 20011025

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163204

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20011207

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20010402484

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20121126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20121120

Year of fee payment: 16

Ref country code: FI

Payment date: 20121122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120507

Year of fee payment: 16

Ref country code: IT

Payment date: 20121122

Year of fee payment: 16

Ref country code: GR

Payment date: 20121121

Year of fee payment: 16

Ref country code: ES

Payment date: 20121122

Year of fee payment: 16

Ref country code: GB

Payment date: 20121126

Year of fee payment: 16

Ref country code: BE

Payment date: 20121129

Year of fee payment: 16

Ref country code: SE

Payment date: 20121122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121217

Year of fee payment: 16

Ref country code: NL

Payment date: 20121122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130130

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140507

BERE Be: lapsed

Owner name: *SCHOTTEL G.M.B.H. & CO. K.G.

Effective date: 20131130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20131130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131107

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20010402484

Country of ref document: GR

Effective date: 20140603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131108

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704689

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131108