EP0716280B1 - Procédé et dispositif de séparation d'air à basse température - Google Patents

Procédé et dispositif de séparation d'air à basse température Download PDF

Info

Publication number
EP0716280B1
EP0716280B1 EP95118951A EP95118951A EP0716280B1 EP 0716280 B1 EP0716280 B1 EP 0716280B1 EP 95118951 A EP95118951 A EP 95118951A EP 95118951 A EP95118951 A EP 95118951A EP 0716280 B1 EP0716280 B1 EP 0716280B1
Authority
EP
European Patent Office
Prior art keywords
condenser
evaporator
air
substream
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95118951A
Other languages
German (de)
English (en)
Other versions
EP0716280A3 (fr
EP0716280A2 (fr
Inventor
Gerhard Dipl.-Ing. Pompl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0716280A2 publication Critical patent/EP0716280A2/fr
Publication of EP0716280A3 publication Critical patent/EP0716280A3/fr
Application granted granted Critical
Publication of EP0716280B1 publication Critical patent/EP0716280B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon

Definitions

  • the invention relates to a method and a device for cryogenic decomposition of air in which a first partial stream of compressed and cleaned air cools, fed to a main rectification system and there in liquid oxygen and gaseous nitrogen is broken down, being in a first condenser-evaporator a liquid product fraction in indirect heat exchange with a second Partial stream of compressed and cleaned air evaporates, the second partial stream at the indirect heat exchange in the first condenser-evaporator at least partially condensed and an argon-containing oxygen fraction from the Main rectification system fed to a raw argon column and there in raw argon and in an oxygen-rich residual liquid is separated and being vaporous Raw argon from the top of the raw argon column through indirect heat exchange with at least part of the second partial flow downstream of the first condenser-evaporator is liquefied in a second condenser-evaporator, wherein in the second condenser-evaporator at least part of the second partial flow evaporates.
  • the invention is therefore based on the object, the method and the device of the type mentioned at the outset to be particularly economical and in particular a particularly high product purity and / or a particularly large one Product yield with a particularly low equipment and operational technology To achieve effort and / or with a particularly low energy consumption.
  • This object is achieved in the invention in that the entire or in essentially all of the cold required to liquefy raw argon the evaporation of the second partial stream is made available.
  • the amount of refrigeration required for the liquefaction of raw argon corresponds at least the heat of vaporization of the return flow for the crude argon column. If liquid argon is withdrawn from the raw argon column, the Refrigeration quantity for product quantity, for example if the Product liquefaction takes place in the second condenser evaporator; alternatively can the product liquefaction of the raw argon with the help of another refrigerant be carried out, preferably in a separate capacitor. With “im essentially all "are at least 90%, preferably at least 95%, most preferably at least 99% of this amount of cold is meant. The rest of The amount of cold can be, for example, by adding a small amount further liquid fraction (e.g.
  • a single heat exchanger is preferably used as the second Condenser evaporator used It can also be used by more than one apparatus Block be realized, the evaporation spaces communicate with each other.
  • the nitrogen content of the liquefied air in the second partial flow higher than that in the sump liquid from one of the pillars of the Main rectification system, usually in the top condenser of the crude argon column is evaporated.
  • the Separation performance of the crude argon column can be improved, or you can (cheaper) Mass transfer elements with higher pressure loss per theoretical floor use and still achieve a high separation effect.
  • the liquid product fraction can in the invention by any air component or be formed by any mixture of air components, for example through oxygen or nitrogen or through an intermediate such as raw argon, which contains small amounts of oxygen and / or nitrogen in addition to argon.
  • the liquid can be, for example Rectification column or a storage or buffer tank.
  • Be the first Condenser evaporators can be the main heat exchanger in which also the Heating of the gaseous products against feed air takes place, or a separate heat exchanger (secondary condenser) can be used.
  • the second partial air flow can, for example, 35 to 45 mol%, preferably contain 35 to 40 mol% of the total amount of feed air; the rest of Feed air or part of it forms the first partial air flow.
  • the invention can advantageously be applied to a double column process, so if the main rectification system is a pressure column and a low pressure column
  • the first partial air flow is introduced into the pressure column and the deducted argon-containing oxygen fraction from the low pressure column.
  • the liquid product fraction against which the second partial air flow condenses in in this case formed by a liquid oxygen stream from the low pressure column.
  • the condenser-evaporator vaporized the second partial stream without further Pressure increase is initiated in the main rectification system.
  • the entire liquefied second air stream are passed into the second condenser-evaporator, wherein some or all of the steam generated therein is transferred to a rectification column (for example, the low pressure column of a double column).
  • the second partial flow in the indirect Heat exchange with the liquid oxygen flow is under a pressure that is higher than the highest pressure in the main rectification system, for example under one supercritical pressure; the pressure of the second partial air flow can be 30 to, for example 55 bar, preferably 45 to 52 bar above the highest pressure in the Main rectification system (e.g. the operating pressure of a pressure column).
  • the Liquefaction temperature against the evaporating product fraction condensing air can thus reach the evaporation temperature of the Product fraction to be adjusted.
  • the post-compressed air can also be used to generate refrigeration work-related relaxation can be used.
  • the Partial pressure energy in the second partial flow in a work-relieving relaxation be recovered (see EP-B-93448).
  • the standard volume at least 21%, for example 21 to 30%, preferably 22 to 25% of the amount of feed air corresponds to the main rectification system in liquid form.
  • the amount refers to the standard volume.
  • This liquid withdrawal can be done both by Lead out of the rectifying column or columns in a liquid state and subsequent external evaporation, preferably under pressure (e.g. Evaporation of the liquid product fraction in the first condenser-evaporator), as also by removal as a liquid product, for example for storage in Tanks.
  • the share of 21% can be achieved, for example, that the entire oxygen product in the first condenser evaporator evaporates and additionally a small amount of nitrogen and / or oxygen as a liquid product be won.
  • a third partial flow of compressed and cleaned air is preferred relaxed workload and fed to the main rectification system. Its amount is, for example, 0 to 45 mol%, preferably 15 to 40 mol% of the total Feed air; the second partial air flow contains, for example, 35 to 45 mol%, preferably 35 to 40 mol% of the total amount of feed air; the rest of Feed air forms the first partial air flow.
  • the third partial flow can be branched off from the second partial flow, for example, preferably downstream of a post-compressor, the second partial flow brings a pressure above the maximum pressure of the main rectification system.
  • the third can Partial stream branched off from the first or even identical to the first partial stream his.
  • the relaxed third partial flow preferably fed into the pressure column.
  • the work-relieving relaxation of the third partial flow can (for example after branching off from the first partial flow) also of about Bring pressure column pressure to low pressure column pressure; the relaxed air must then be led into the low pressure column.
  • a further liquid product stream can advantageously be operated in an indirect manner Heat exchange with compressed and cleaned air can be evaporated.
  • Heat exchange with compressed and cleaned air can be evaporated.
  • a smaller one Liquid flow of nitrogen and / or raw argon latent heat with condensing Exchange air for example with the second partial air flow.
  • a first partial stream 101 of compressed and cleaned air 1 is under pressure from 5 to 10 bar, preferably 5.5 to 6.5 bar in a main heat exchanger 2 in indirect heat exchange with product streams cooled to about dew point.
  • the main rectification system has a double column 4 with a pressure column 5 (5 to 10 bar, preferably 5.5 to 6.5 bar), low pressure column 6 (1.3 to 2 bar, preferably 1.5 to 1.7 bar) and intermediate main condenser 7. Bottom liquid 9 out the pressure column 5 is in a counterflow 8 against product flows Low-pressure column supercooled and fed into the low-pressure column 6 (line 10).
  • Gaseous nitrogen 11 from the top of the pressure column 5 is in the main condenser 7 liquefied against evaporating liquid in the sump of the low pressure column 6
  • Some of the condensate 12 is fed to the pressure column 5 as a return (Line 13) and to another part 14 after hypothermia 8 in the Low pressure column 6 fed (15).
  • Low pressure nitrogen 16 and impure nitrogen 17 are after removal from the low pressure column 6 in the heat exchangers 8 and 2 warmed to about ambient temperature.
  • Product oxygen is the liquid oxygen stream 18 from the bottom of the Low pressure column 6 withdrawn and by means of a pump 19 to an increased pressure brought from, for example, 5 to 80 bar, depending on the product pressure required. (Of course there are also other methods for increasing the pressure in the liquid Phase applicable, for example by using a hydrostatic potential or by pressure build-up evaporation on a storage tank.)
  • the liquid High pressure oxygen 20 is evaporated in the main heat exchanger 2 and as withdrawn internally compressed gaseous product 21.
  • a second partial flow 201, 202 of the compressed and cleaned air condenses after being in a post-compressor 206 was brought to a pressure of 12 to 60 bar, preferably 15 to 40 bar.
  • An argon-containing oxygen fraction 22 from the low pressure column 6 is in a Raw argon column 24 in raw argon at the top of the column and in an oxygen-rich Residual liquid disassembled. The latter is via line 23, optionally through a Pump pumped, fed back into the low pressure column 6. To generate Return 25 and possibly to obtain liquid raw argon 26 that gaseous raw argon in a top condenser 27 by indirect Liquefied heat exchange. (The raw argon product can alternatively or additionally are removed as gas.)
  • Argon production by air separation is also described in EP-B-377117 and the older applications DE 4406051 (EP-A-669508), DE 4406049 and DE 4406069 (EP-A-669509).
  • the liquefied second partial stream 203/204 is fed to the Evaporation side of the top condenser 27 of the crude argon column passed and there evaporates.
  • the second partial flow is previously subcooled in counterflow 8 and throttled to about low pressure column pressure (e.g. not by a expansion valve shown).
  • the indirect heat exchange with Vapor produced from crude argon is fed via line 205 to the low pressure column 6 and / or passed via 205a into the product line 17 for impure nitrogen.
  • liquid nitrogen from the pressure column via the lines 28 and 29 led to the main heat exchanger 2 and via line 30 as gaseous Product will be deducted.
  • the liquid nitrogen can be internally compressed if necessary by a pump 31, for example.
  • liquid crude argon which is gaseous increased pressure is required.
  • Raw argon can - just like the one to be vaporized Nitrogen and oxygen flows - either from a column or from a buffer or Storage tank can be removed.
  • the invention is applicable in particular on the raw argon internal compression according to EP-A-171711, EP-B-331028 or EP-B-363861.
  • the evaporation of the liquid product (s) against the second partial flow of air can also deviate from the representation in the drawing in one or more Secondary condensers, which are separated from the main heat exchanger become.
  • Part of the oxygen product can be obtained as a liquid product (line 33); it is also possible to remove a certain amount of oxygen from the gas Remove low pressure column 6 and heat it up in the main heat exchanger 2 (in the drawing not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (10)

  1. Procédé de séparation d'air à basse température, lors duquel un premier courant partiel (101) d'air comprimé et purifié (1) est refroidi (2), est acheminé à un système de rectification principal (4) et y est fractionné en oxygène liquide et en azote gazeux, une fraction de produit liquide (20; 29) étant évaporée dans un premier évaporateur-condenseur (2) en échange thermique indirect avec un deuxième courant partiel (202, 203) d'air comprimé et purifié, le deuxième courant partiel (202, 203) étant condensé au moins partiellement dans le premier évaporateur-condenseur (2) lors de l'échange thermique indirect et une fraction d'oxygène contenant de l'argon (22) en provenance du système de rectification principal (4) étant acheminée à une colonne d'argon brut (24) et y étant séparée en argon brut et en un liquide résiduel riche en oxygène et l'argon brut sous forme de vapeur étant liquéfié par échange thermique indirect avec au moins une partie du deuxième courant partiel (203) en aval du premier évaporateur-condenseur (2) dans un deuxième séparateur-condenseur (27), au moins une partie du deuxième courant partiel (203) étant vaporisée dans le deuxième séparateur-condenseur (27), caractérisé en ce que la totalité du froid ou pour l'essentiel la totalité du froid nécessaire à la liquéfaction de l'argon brut est mise à disposition par l'évaporation du deuxième courant partiel (203).
  2. Procédé selon la revendication 1, caractérisé en ce que l'on introduit au moins une partie du deuxième courant partiel (205), évaporé dans le deuxième évaporateur-condenseur (27) lors de l'échange thermique indirect, sans augmentation de pression supplémentaire dans le système de rectification principal (4).
  3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la fraction de produit liquide est formée par un courant d'oxygène liquide (18) en provenance du système de rectification principal (4), en particulier de la colonne basse pression (6) d'un système à colonnes doubles.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la pression de la fraction de produit liquide (20; 29) est augmentée (19; 31) en amont de l'échange thermique indirect (2) à l'aide du deuxième courant partiel (202, 203).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le deuxième courant partiel (202, 203), lors de l'échange thermique indirect (2) avec la fraction de produit liquide (20; 29) est soumise à une pression qui est plus élevée que la pression la plus élevée dans le système de rectification principal (4).
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'on extrait, sous forme liquide, au moins 21% de la quantité d'air de charge du système de rectification principal (4).
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'un troisième courant partiel (301) d'air comprimé et purifié est détendu en fournissant du travail (32) et est acheminé au système de rectification principal (4).
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'un courant de produit liquide supplémentaire est évaporé par échange thermique indirect avec l'air comprimé et purifié.
  9. Dispositif de séparation d'air à basse température selon le procédé conformément à l'une quelconque des revendications 1 à 8, présentant un système de rectification principal (4), un premier conduit d'air (101) et un deuxième conduit d'air (202, 203), qui sont reliés à une source (1) pour l'air comprimé et purifié, le premier conduit d'air (101) conduisant (3) au système de rectification principal (4), un conduit de liquide (20; 29), qui est relié d'une part à une source pour une fraction de produit liquide, et, d'autre part, à un espace d'évaporation d'un premier évaporateur-condenseur (2), à travers l'espace de liquéfaction duquel conduit le deuxième conduit d'air (202, 203) et une colonne d'argon brut (24), qui est reliée (par l'intermédiaire de 22, 23) au système de rectification principal (4) et à l'espace d'évaporation d'un deuxième évaporateur-condenseur (27), le deuxième conduit d'air (202, 203) étant relié (204), en aval du premier évaporateur-condenseur (2), à l'espace d'évaporation unique du deuxième évaporateur-condenseur (27), caractérisé en ce que le deuxième évaporateur-condenseur (27) constitue le condenseur de tête unique (27) de la colonne d'argon brut (24).
  10. Dispositif selon la revendication 9, caractérisé par un conduit de vapeur (205), qui relie l'espace d'évaporation du deuxième évaporateur-condenseur (27) au système de rectification principal (4) et qui ne contient aucun dispositif en vue de l'augmentation de la pression.
EP95118951A 1994-12-05 1995-12-01 Procédé et dispositif de séparation d'air à basse température Expired - Lifetime EP0716280B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4443190 1994-12-05
DE4443190A DE4443190A1 (de) 1994-12-05 1994-12-05 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Publications (3)

Publication Number Publication Date
EP0716280A2 EP0716280A2 (fr) 1996-06-12
EP0716280A3 EP0716280A3 (fr) 1997-04-16
EP0716280B1 true EP0716280B1 (fr) 2001-05-16

Family

ID=6534925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95118951A Expired - Lifetime EP0716280B1 (fr) 1994-12-05 1995-12-01 Procédé et dispositif de séparation d'air à basse température

Country Status (7)

Country Link
US (1) US5644934A (fr)
EP (1) EP0716280B1 (fr)
JP (1) JPH08233458A (fr)
KR (1) KR960024196A (fr)
CN (1) CN1125838A (fr)
DE (2) DE4443190A1 (fr)
TW (1) TW299244B (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636306A1 (de) 1996-09-06 1998-02-05 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
US6347534B1 (en) * 1999-05-25 2002-02-19 Air Liquide Process And Construction Cryogenic distillation system for air separation
US6276170B1 (en) 1999-05-25 2001-08-21 Air Liquide Process And Construction Cryogenic distillation system for air separation
US6202441B1 (en) * 1999-05-25 2001-03-20 Air Liquide Process And Construction, Inc. Cryogenic distillation system for air separation
US6196024B1 (en) * 1999-05-25 2001-03-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic distillation system for air separation
WO2013053425A2 (fr) * 2011-09-20 2013-04-18 Linde Aktiengesellschaft Procédé et dispositif de production de deux courants d'air partiels purifiés
CN105758114A (zh) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 氩气制备装置
JP6440232B1 (ja) * 2018-03-20 2018-12-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 製品窒素ガスおよび製品アルゴンの製造方法およびその製造装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555256A (en) * 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
DE3428968A1 (de) * 1984-08-06 1986-02-13 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur zerlegung von rohargon
US4715873A (en) * 1986-04-24 1987-12-29 Air Products And Chemicals, Inc. Liquefied gases using an air recycle liquefier
US4871382A (en) * 1987-12-14 1989-10-03 Air Products And Chemicals, Inc. Air separation process using packed columns for oxygen and argon recovery
DE3840506A1 (de) * 1988-12-01 1990-06-07 Linde Ag Verfahren und vorrichtung zur luftzerlegung
US5049173A (en) * 1990-03-06 1991-09-17 Air Products And Chemicals, Inc. Production of ultra-high purity oxygen from cryogenic air separation plants
US5049174A (en) * 1990-06-18 1991-09-17 Air Products And Chemicals, Inc. Hybrid membrane - cryogenic generation of argon concurrently with nitrogen
US5108476A (en) * 1990-06-27 1992-04-28 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with dual temperature feed turboexpansion
US5159816A (en) * 1991-05-14 1992-11-03 Air Products And Chemicals, Inc. Method of purifying argon through cryogenic adsorption
US5315833A (en) * 1991-10-15 1994-05-31 Liquid Air Engineering Corporation Process for the mixed production of high and low purity oxygen
US5245831A (en) * 1992-02-13 1993-09-21 Air Products And Chemicals, Inc. Single heat pump cycle for increased argon recovery
US5365741A (en) * 1993-05-13 1994-11-22 Praxair Technology, Inc. Cryogenic rectification system with liquid oxygen boiler
DE4317916A1 (de) * 1993-05-28 1994-12-01 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon
GB9410696D0 (en) * 1994-05-27 1994-07-13 Boc Group Plc Air separation
US5440884A (en) * 1994-07-14 1995-08-15 Praxair Technology, Inc. Cryogenic air separation system with liquid air stripping
US5522224A (en) * 1994-08-15 1996-06-04 Praxair Technology, Inc. Model predictive control method for an air-separation system
US5469710A (en) * 1994-10-26 1995-11-28 Praxair Technology, Inc. Cryogenic rectification system with enhanced argon recovery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Also Published As

Publication number Publication date
KR960024196A (ko) 1996-07-20
TW299244B (fr) 1997-03-01
DE4443190A1 (de) 1996-06-13
JPH08233458A (ja) 1996-09-13
CN1125838A (zh) 1996-07-03
DE59509262D1 (de) 2001-06-21
EP0716280A3 (fr) 1997-04-16
US5644934A (en) 1997-07-08
EP0716280A2 (fr) 1996-06-12

Similar Documents

Publication Publication Date Title
EP0716280B1 (fr) Procédé et dispositif de séparation d'air à basse température
EP1308680B1 (fr) Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
EP2235460B1 (fr) Procédé et installation pour la séparation cryogénique d'air
EP0955509B1 (fr) Procédé et appareil pour la production d'oxygène à haute pureté
EP1243882B1 (fr) Production d'argon dans un système de séparation d'air à triple pression et une colonne d'argon
DE69214409T3 (de) Verfahren zur Herstellung unreinen Sauerstoffs
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1482266B1 (fr) Procédé et dispositif pour la récupération de Krypton et/ou Xénon par séparation cryogénique d'air
EP0948730B1 (fr) Procede et dispositif de production d'azote comprime
EP0669508B1 (fr) Procédé et appareil permettant d'obtenir de l'argon pur
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
WO2020169257A1 (fr) Procédé et installation de décomposition d'air à basse température
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE60008455T2 (de) Tieftemperaturdestillationsanlage zur Luftzerleggung
DE10103968A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
DE10161584A1 (de) Vorrichtung und Verfahren zur Erzeugung gasförmigen Sauerstoffs unter erhöhtem Druck
DE10232430A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE20319823U1 (de) Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
DE19950570A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19819338A1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Druckstickstoff
EP0828122A1 (fr) Procédé et dispositif pour l'obtention d'argon par séparation d'air à basse température
DE19819263A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE10009977A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19970612

17Q First examination report despatched

Effective date: 19990526

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD AND APPARATUS FOR THE LOW TEMPERATURE AIR SEPARATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20010516

REF Corresponds to:

Ref document number: 59509262

Country of ref document: DE

Date of ref document: 20010621

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010731

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011231

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20011231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071128

Year of fee payment: 13

Ref country code: FR

Payment date: 20071210

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071129

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231