EP2801777A1 - Installation de décomposition de l'air dotée d'un entraînement de compresseur principal - Google Patents

Installation de décomposition de l'air dotée d'un entraînement de compresseur principal Download PDF

Info

Publication number
EP2801777A1
EP2801777A1 EP13002467.2A EP13002467A EP2801777A1 EP 2801777 A1 EP2801777 A1 EP 2801777A1 EP 13002467 A EP13002467 A EP 13002467A EP 2801777 A1 EP2801777 A1 EP 2801777A1
Authority
EP
European Patent Office
Prior art keywords
air
separation plant
air separation
slip
main compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13002467.2A
Other languages
German (de)
English (en)
Inventor
Max Holzer
Stefan Lochner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP13002467.2A priority Critical patent/EP2801777A1/fr
Priority to PCT/EP2014/059483 priority patent/WO2014180964A1/fr
Publication of EP2801777A1 publication Critical patent/EP2801777A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/22Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Definitions

  • the invention relates to an air separation plant, a method for the cryogenic separation of air by means of such an air separation plant and the corresponding use of a slip ring motor.
  • the distillation column systems are operated at different operating pressures in their respective separation columns.
  • the double column systems in this case have a so-called high-pressure column and a so-called low-pressure column.
  • the operating pressure of the high-pressure column is, for example, 4.3 to 6.9 bar, preferably about 5.0 bar.
  • the low-pressure column is operated at an operating pressure of, for example, 1.3 to 1.7 bar, preferably about 1.5 bar.
  • the pressures given here and below are absolute pressures.
  • Corresponding air separation plants can be operated for example with so-called internal compression.
  • a liquid stream is taken from the distillation column system and at least partially brought to liquid pressure.
  • the liquid brought to pressure is heated in a main heat exchanger of the air separation plant against a heat transfer medium and evaporated.
  • the liquid stream may in particular be liquid oxygen, but also, for example, nitrogen or argon.
  • the internal compression is thus used to obtain appropriate gaseous printed products.
  • Oxygen but also for example to act on nitrogen or argon.
  • the internal compression is thus used to obtain appropriate gaseous printed products.
  • the internal compression is described, for example, in the following documents: DE 830 805 B .
  • DE 901 542 B (equivalent to US 2 712 738 A respectively.
  • US 2 784 572 A ) DE 952 908 B .
  • DE 1 103 363 B ( US Pat. No. 3,083,544 A )
  • DE 1 112 997 B ( US Pat. No. 3,214,925 )
  • DE 1 124 529 B DE 1 117 616 B ( US Pat. No. 3,280,574 )
  • DE 1 226 616 A ( US 3 216 206 A ) DE 1 229 561 B ( US 3 222 878 A ) DE 1 199 293 B .
  • DE 1 187 248 B ( US 3,371,496A ) DE 1 235 347 B .
  • DE 1 258 882 A US 3 426 543 A ) DE 1 263 037 A ( US Pat. No. 3,401,531 A ) DE 1 501 722 A ( US 3 416 323 A ) DE 1 501 723 A ( US 3,500,651 A ) DE 25 351 32 B2 ( US 4,279,631 A ) DE 26 46 690 A1 .
  • EP 0 093 448 B1 ( US 4 555 256 A ) EP 0 384 483 B1 ( US 5 036 672 A ) EP 0 505 812 B1 ( US 5 263 328 A ) EP 0 716 280 B1 ( US 5,644,934 A ) EP 0 842 385 B1 ( US 5,953,937 A ) EP 0 758 733 B1 ( US 5,845,517 A ) EP 0 895 045 B1 ( US 6 038 885 A ) DE 198 03 437 A1 .
  • EP 0 949 471 B1 ( US Pat. No. 6,185,960 B1 ) EP 0 955 509 A1 ( US Pat. No.
  • EP 1 031 804 A1 ( US Pat. No. 6,314,755 B1 ) DE 199 09 744 A1 .
  • EP 1 067 345 A1 ( US Pat. No. 6,336,345 B1 )
  • EP 1 074 805 A1 ( US Pat. No. 6,332,337 B1 ) DE 199 54 593 A1 .
  • EP 1 134 525 A1 ( US Pat. No. 6,477,860 B2 ) DE 100 13 073 A1 .
  • EP 1 139 046 A1 EP 1 146 301 A1 .
  • EP 1 284 404 A1 ( US 2003/051504 A1 )
  • EP 1 308 680 A1 ( US 6 612 129 B2 )
  • DE 102 38 282 A1 .
  • DE 103 32 863 A1 .
  • WO 2007/033838 A1
  • the term "evaporation" includes in the internal compression cases in which there is a supercritical pressure and therefore no phase transition takes place in the true sense.
  • the liquid pressurized stream is then "pseudo-evaporated".
  • a heat transfer medium is liquefied (or pseudo-liquefied if it is under supercritical pressure) against a corresponding (pseudo) vaporising stream.
  • the heat transfer medium is usually formed by a part of the compressed air supplied to the air separation plant.
  • HAP high-air pressure
  • the total air supplied to the air separation plant or the total air used in a corresponding process in an air separation plant (referred to herein as the "total air amount") is included in a single main compressor (here also referred to as “main compressor unit”) - compressed to a pressure which is well above the operating pressure of the high pressure column.
  • the pressure difference is at least 4 bar and preferably between 6 and 16 bar.
  • HAP processes the compressed air quantity in the main compressor unit can be decoupled from the process air quantity. In such a case, only a portion of the compressed to the said pressure total amount of air is used as so-called process air, so used for the actual rectification and fed into the high-pressure column.
  • process air so used for the actual rectification and fed into the high-pressure column.
  • decoupling is not provided in all HAP methods.
  • HAP methods are for example from EP 2 466 236 A1 , of the EP 2 458 311 A1 and the US 5,329,776 A known.
  • Shares of the total amount of air can optionally be recompressed together or separately from one another in one or more after-compressors to an even higher pressure (referred to here as after-compressor pressure). They can then be decompressed via an expansion machine (so-called turbine stream) and / or via an expansion valve (so-called throttle flow) to the operating pressure of the high-pressure column or a slightly higher pressure. The respective relaxed portions can be fed into the high-pressure column.
  • after-compressor pressure even higher pressure
  • Another portion of the total amount of air can, if necessary, after previous recompression and expansion in the aforementioned expansion machine, be further relaxed in another expansion machine. As a result, the refrigeration demand of the air separation plant can be covered.
  • this proportion of the total amount of air is not fed into the high-pressure column, but ultimately relieved to a pressure, which is lower than the operating pressure of the high pressure column, for example, at atmospheric pressure or the operating pressure of the low pressure column.
  • This portion can then be compressed again, for example, in the main compressor, blown off into the atmosphere and / or fed into the low-pressure column.
  • asynchronous motors are known to have a high starting current.
  • start-up current the current is called, which flows through the asynchronous motor after switching on, in order to accelerate this from standstill.
  • the starting current of an asynchronous motor is always well above the rated current, ie the current that flows through the asynchronous motor at the rated speed.
  • the rated speed refers to the speed at which the asynchronous motor runs in normal operation or for which it is designed.
  • the starting current also depends on the load with which the. Motor must start, the so-called starting torque.
  • a typical asynchronous motor has a starting current of approx. Four to eight times its rated current in so-called heavy-duty starting. This results in increased loads in the power grid. For example, the increased power consumption can lead to voltage drops that affect other connected consumers. Already with a voltage dip of about 10 to 15%, for example, data processing equipment may fail or relays fall, which, for example, the operation of an air separation plant is disturbed.
  • asynchronous motors can basically provide a relatively high starting torque, so that the unit of asynchronous motor and connected machine starts up in a relatively short time.
  • high inertia and / or counter torques which can occur in a main compressor unit of an air separation plant, ie during heavy starting, several seconds can elapse. Due to the high starting current it can This can lead to overheating, which can lead to engine damage. In this case, all participating equipment (circuit breakers, fuses, cables, etc.) can be affected.
  • frequency converters In order to limit the starting current, frequency converters (frequency converters) can be used in the event of weak line power, which enable a guided, stepless motor start of the asynchronous motor with specification of a nominal torque.
  • frequency converters are expensive and expensive.
  • adapted starting methods e.g., direct starting or auto-starting occasion
  • the present invention is based on a known air separation plant with a distillation column system comprising at least one high-pressure column and a low-pressure column.
  • a corresponding air separation plant further comprises a main compressor unit, which is adapted to compress a total amount of air which is supplied to the air separation plant as a whole to a pressure which is at least 4 bar higher than an operating pressure for which the high-pressure column is set up.
  • the present invention is thus used in the HAP process explained in the introduction, in which correspondingly increased pressures are used for the total amount of air.
  • a “main compressor unit” is in the context of the present invention, a compressor or a compressor assembly, which is a driven with external energy machine for the compression of air in the air separation plant.
  • This can be designed as a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, wherein all stages can be accommodated in a housing or connected to a transmission.
  • such a main compressor unit may be the only external energy driven machine for compressing air in the air separation plant, whereby a “single machine” is also understood to mean the mentioned multi-stage compressors, the stages of which are all connected to the same drive.
  • a main compressor unit in this case comprises a drive, which, as explained above, is usually designed in the form of an electric motor, as well as the actual compressor with a plurality of compressor stages, which are adapted to compress the air supplied to the main compressor unit.
  • main compressor units used in HAP processes typically comprise four, five or six compressor stages. The compressor stages are driven by the drive via the common shaft.
  • the pressure with which the total amount of air is provided is substantially higher than the operating pressure of the high-pressure column.
  • substantially higher is understood to mean a pressure difference of at least 4 bar and preferably between 6 and 16 bar.
  • a slip-ring motor is an electric motor in the form of a three-phase asynchronous machine.
  • Slip ring motors differ essentially from common electric motors, which have so-called squirrel-cage rotors, in that the rotor winding is not short-circuited (permanently) but is led to the outside via the slip rings giving the name.
  • the starting current of such slip-ring motors can be reduced by increasing the resistance of the rotor circuit.
  • the contacts of the rotor winding which are short-circuited in squirrel cage rotors and guided in a slip ring motor to the outside, with adjustable resistors, so-called starting resistors, interconnected.
  • Slip ring motors are particularly suitable for application scenarios in which high starting torques are required with simultaneously low starting current.
  • slip-ring motors do not require complex electronics, especially in the performance class required here.
  • Slip ring motors of a defined power can be used in particular for several air separation plants of a particular type in particular, without having to take into account the respective present (local) network design at the place of use. The design and creation of such air separation plants is significantly cheaper by such standardization.
  • the cooling of the slip-ring motors can advantageously be done by means of air / water heat exchangers, which can also be integrated into corresponding circuits of an air separation plant.
  • slip-ring motors are particularly advantageous in the illustrated HAP method, because here a disproportionately higher starting torque than in conventional compressors is observed.
  • HAP main compressor units typically have four, five or six compressor stages connected to a common shaft. These have a disproportionately increased starting torque in comparison to the known main compressor / booster combinations (so-called Main Air Compressor / Booster Air Compressor or MAC / BAC combinations).
  • main compressor / booster combinations so-called Main Air Compressor / Booster Air Compressor or MAC / BAC combinations.
  • slip-ring motors can also be used in such MAC / BAC combinations. In such main compressor / booster combinations, there are separate shafts which, taken individually, require lower starting torques.
  • the present invention thus makes possible overall a reduction of the starting current with a simultaneous increase in the starting torque of corresponding drives for main compressor units.
  • the rotor winding of the rotor of the slip-ring motor has first connections, which are connected to each other via adjustable starting resistors. About this starting resistors, a resistance in the rotor or the rotor winding can be adjusted dosed.
  • the other (second) terminals of the rotor winding are advantageously interconnected in star connection with each other, as also below with reference to the FIG. 2 explained in more detail.
  • Slip ring motors can basically also have runners, which can be acted upon by an auxiliary voltage with adjustable frequency. Such a design of a rotor winding proves to be structurally or structurally complex, but has advantages in certain application scenarios with respect to the metering of starting torque or current.
  • a slip-ring rotor motor as used in accordance with the invention, has a rated current at a nominal speed.
  • the starting current of the slip-ring rotor motor can be limited to at most 1.1 times the value of the rated current.
  • the starting current is thus at most 10% above the rated current, but can also be limited to other values, for example.
  • the starting current can be, for example, 50%, 40%, 30%, 20%, 8%, 6%, 4% or 2% above the nominal current. This represents a significant improvement over known main compressor units of HAP air separation plants, where, as mentioned, the starting current is up to four to eight times the rated current.
  • the invention can be used in particular for high-performance main compressor units.
  • the present invention is suitable for main compressor units with a rated power of 1 to 25 MW, in particular 8 to 25 or 8 to 18 MW.
  • main compressor units as used in the mentioned performance class, are typically realized with four to six compression stages.
  • the invention enables a drive of such a compressor with a common shaft, without that the above-mentioned negative effects occur due to the increased current consumption during starting.
  • a slip-ring motor can be used in a particularly advantageous manner for driving a main compressor unit, which can be equipped with wheels of different impeller sizes. For example, four impeller sizes can be used here; the corresponding wheels are interchangeable. This results in different electrical power requirements for the electric drive, which can be operated by a slip ring motor significantly better than by a conventional asynchronous squirrel cage motor.
  • a slip ring motor for main compressor units and thus air separation plants of different performance classes can be used.
  • a slip-ring motor is particularly suitable for the main compressor units considered here because they have a high starting torque and very high mass moments of inertia.
  • the moment of inertia of a corresponding main compressor unit is for example up to forty times the engine moment of inertia.
  • the starting torque is e.g. 25 - 70% or 25 - 50% of the rated motor torque.
  • the maximum available starting torque corresponds to the rated motor torque with a maximum of 1.1 times the rated motor current.
  • a particular advantage results from the use of a slip ring motor and the fact that the specifically variable starting resistance Run-up time of the main compressor unit and the passage of critical speeds or speed ranges during startup can be specifically controlled. As a result, in particular loads on the compressor (eg due to vibrations in these critical speed ranges) during startup can be reduced.
  • An advantageous air separation plant further comprises a main heat exchanger, a first expansion machine and an expansion valve, and is adapted to cool a first portion of the total amount of air in the main heat exchanger to relax in the first expansion machine and feed it into the high-pressure column.
  • Such an air separation plant is further adapted to cool a second portion of the total amount of air sequentially in the main heat exchanger to relax in an expansion valve and feed it into the high-pressure column.
  • the relaxation of the first portion of the amount of feed air in the expansion machine can be used to operate a turbine booster, so that the released here mechanical power can be used meaningfully.
  • the "main heat exchanger” can be formed from one or more parallel and / or serially connected heat exchanger sections, for example from one or more plate heat exchanger blocks.
  • a main heat exchanger is used to cool the proportions of the total amount of air in the indirect heat exchange with return streams from the distillation column system or for evaporation in the internal compression.
  • expansion machine includes any machine for work-related expansion of a process stream, for example, one of the proportions of the total amount of air.
  • the expansion machines are preferred in the However, the present invention by the principle known from the field of cryogenics turboexpander or expansion turbines formed.
  • the proportions in the expansion machines or other expansion devices used, such as expansion valves are not necessarily relieved completely (i.e., to ambient pressure), but possibly only to some degree (partially relaxed).
  • An air separation plant advantageously also comprises a second expansion machine and is adapted to a third portion of the total amount of air to relax to a pressure which is less than the operating pressure for which the high-pressure column is established.
  • a method for the cryogenic separation of air which is carried out with an air separation plant explained above, is also the subject of the invention. Such a method benefits from the explained advantages, to which express reference is therefore made. The same applies to the inventive use of a slip ring motor.
  • FIG. 1 an air separation plant is shown schematically in the form of an installation diagram.
  • the air separation plant equipped for internal compression is designated 100 in total. It can with a main compressor unit 2 as previously explained and in the FIG. 2 be shown in more detail shown.
  • FIG. 1 thus serves primarily to explain the integration of the in the FIG. 2 schematically shown main compressor unit 2 in an overall context of an air separation plant 100th
  • a total amount of air of atmospheric air (AIR) is sucked through a filter 1 of the main compressor unit 2 and there compressed to a main compressor pressure, which is at least 4 bar higher than the operating pressure of a high-pressure column in a HAP process, as used here (see below).
  • the main compressor unit 2 is in the FIG. 1 shown greatly simplified. For the further details of the main compressor unit 2 is particularly to the above explanations and FIG. 2 directed.
  • the compressed air is fed to a cleaning device 5, which has a pair of containers filled with adsorption material, preferably molecular sieve.
  • adsorption material preferably molecular sieve.
  • the stream a is recompressed in the air separation plant 100 in a conventional manner, first in a first after-compressor 11 and then in a second after-compressor 21.
  • the first after-compressor 11 and the second after-compressor 21 are each mechanically coupled to a first expansion machine 12 or a second expansion machine 22, for example each via a common shaft.
  • Downstream of the first after-compressor 11 and the second after-compressor 21, aftercoolers 13 and 23 are respectively arranged.
  • the flow a ie the total amount of air, is divided into a partial flow b and a partial flow c. However, the division can also take place elsewhere.
  • the partial flow b and the partial flow c are cooled in a main heat exchanger 6.
  • the cooling is preferably carried out at different temperatures, so that the partial flow b is removed from the main heat exchanger 6 at an intermediate temperature and thus "partially cooled” and the partial flow c passes through the main heat exchanger 6 to its cold end.
  • the intermediate pressure is slightly above an operating pressure of a high-pressure column 71 of a distillation column system 7, which is explained in more detail below.
  • the designated further with b and relaxed to the intermediate pressure partial flow is fed to a separator 8, from the bottom of a liquid fraction can be withdrawn as a stream d.
  • the stream d can be fed (see junction point A, for example 0% to 15% of the stream b) into a low-pressure column 72 of the distillation column system 7.
  • a gaseous fraction from the head of the separator 8 can be withdrawn as stream e and divided again into a partial stream f and a partial stream g.
  • the partial stream f is fed into the high-pressure column 71 of the distillation column system 7, as explained in more detail below.
  • the partial flow g is heated in the main heat exchanger 6 and expanded in the second expansion machine 22 to a final pressure, for example atmospheric pressure.
  • the relaxed partial flow g can then in the Main heat exchanger 6 further heated and combined with other streams, at least partially blown into the atmosphere (ATM) and / or fed to an evaporative cooler.
  • the partial flow c is expanded after passing through the main heat exchanger 6 via a pressure relief valve 9 and also fed at the appropriate pressure in the high-pressure column 71 of the distillation column system 7.
  • the distillation column system 7 is a distillation column system 7 with a classical Linde double column which comprises the high-pressure column 71 and the low-pressure column 72 as a structural unit.
  • the use of the invention in distillation column systems 7 is possible in which a high pressure column and a low pressure column are arranged separately.
  • the high-pressure column 71 and the low-pressure column 72 are connected to one another in a heat-exchanging manner via a main condenser 73.
  • the operating or separating pressures -in each case at the top-are for example, 4.5 to 6.5 bar, preferably about 5.0 bar in the high-pressure column and 1.2 to 1.7 bar, preferably about 1.3 bar in the low-pressure column ,
  • a divided crude argon column 74, 75 and a pure argon column 76 are also provided, but the invention can also be used in plants without corresponding argon recovery.
  • Liquid raw oxygen is withdrawn as stream h from the bottom of the high-pressure column 71, subcooled in a subcooling countercurrent 77 and further cooled to a part in a bottom evaporator 78 of the pure argon column 76. Another part can be routed past the bottom evaporator 78. If no argon production is provided, the stream h can also be transferred directly to an intermediate point into the low-pressure column 72.
  • Gaseous nitrogen from the top of the high-pressure column 71 is passed to a first part as a current k to the cold end of the main heat exchanger 6, there warmed to about ambient temperature and can be used as a sealing gas (seal gas, SG) for the compressors used in the plant.
  • a sealing gas seal gas, SG
  • the remaining gaseous nitrogen from the top of the high-pressure column 71 is fed as stream I to the main condenser 73 where it is at least partially condensed.
  • the liquid nitrogen produced in this process can be partly supplied as reflux to the high-pressure column 71.
  • Another part is supplied as stream m to the subcooling countercurrent 77 where it is subcooled and passed to the top of the low pressure column 72.
  • There, a portion may be withdrawn as stream n to provide a liquid nitrogen product (LIN).
  • the liquid nitrogen product may for example be stored in a tank.
  • gaseous oxygen can be withdrawn as stream o and, if desired, combined with a stream p (impure nitrogen), which is also taken from the low-pressure column 72 and heated in the subcooling countercurrent 77, in a main heat exchanger 6.
  • stream p pure nitrogen
  • a liquid oxygen stream q from the bottom of the low-pressure column 72 can be pressure-increased by means of a pump 79 and at least partially supercooled as stream r in the supercooling countercurrent 77, discharged in a liquid product quantity from the air separation plant 100 and fed to a liquid tank (LOX).
  • Another part of the pressure-boosted by the pump 79 oxygen flow q from the bottom of the low-pressure column 72 can be evaporated as stream s in a gas product amount in the main heat exchanger 6 (or pseudo-vaporized at supercritical pressure), warmed to ambient temperature and then withdrawn as a gaseous pressure product (GOX-IC) become.
  • Gaseous nitrogen can be withdrawn as stream t from the top of the low pressure column 72 and subcooled in the subcooler 77.
  • the stream t can be externally compressed after heating in the main heat exchanger 6 in a compressor (without designation) and provided as gaseous pressure nitrogen (GAN-EC).
  • an argon-containing stream u can be removed from the low-pressure column 72 and fed to the lower part 74 of the crude argon column 74, 75 directly above the sump. Bottom liquid of the lower part 74 of the crude argon column 74, 75 can be returned as stream v to the low-pressure column 72.
  • the lower part 74 and the upper part 75 of the two-part crude argon column 74, 75 can be coupled to each other via lines w and x and corresponding pumps and valves (no designation).
  • the two-part crude argon column 74, 75 can also be realized as a column.
  • the top condensers of the upper part 75 of the crude argon column 74, 75 and the pure argon column 76 may be formed, for example, as reflux condensers or as bath condensers.
  • the crude argon column 75 can in the example shown at the upper end of the return passages of the top condenser, which is shown here as a reflux condenser, taken over a side header a Rohargonstrom y gaseous and the pure argon column 76 are fed at a suitable intermediate point.
  • the bottom liquid of the pure argon column 76 can be partially vaporized in the bottom evaporator 78, wherein the steam generated thereby can be used as ascending gas in the pure argon column 76.
  • the remainder can be taken from the pure argon column 76 as a liquid pure argon product stream z.
  • the liquid pure argon (LAR) can be transferred to a tank. At least part of the pure argon can be brought to liquid pressure, evaporated in the main heat exchanger 6 and discharged as gaseous pressure product (LAR IC) (see the right chamber of the main heat exchanger 6, so-called argon internal compression).
  • FIG. 2 shows a main compressor unit according to an embodiment of the invention in the form of a schematic system diagram.
  • the main compressor unit is as in the FIG. 1 , generally designated 2.
  • the main compressor unit 2 comprises an electric drive 210 and a group of compressor stages, here indicated generally at 220.
  • the main compressor unit 2 has six compressor stages in the example shown. As explained above, however, corresponding main compressor units can also be designed with a smaller or larger number of compressor stages.
  • Each of the compressor stages comprises in the illustrated example in each case a compressor 221 and an aftercooler 222 (only provided at a compressor stage with reference numerals).
  • the specific embodiment may be different from the illustrated example.
  • the atmospheric air AIR sucked in via the filter 1 can also be passed successively through a plurality of compressors 221 and then subsequently cooled in an aftercooler 222.
  • the aftercooler 3 can also be dispensed with, or one of the aftercoolers 222 of the group 220 of compressor stages can assume the function of the aftercooler 3.
  • At any point between the respective compressor stages of the group 220 of compressor stages further air streams can be fed, which may be, for example, an air stream, which was previously relaxed to atmospheric pressure. This can be the current g, for example FIG. 1 be.
  • the electric drive 210 of the compressor unit 2 is designed as a slip-ring rotor motor 210 according to this embodiment of the invention. In the example shown, it is a three-phase slip ring motor 210. Basically, however, slip ring motors 210 with a different number of phases are known.
  • the slip ring motor 210 includes a stator 211 and a rotor 212.
  • the stator 211 may be formed according to a stator of a squirrel-cage motor. It is energized via corresponding phase connections U, V and W. A commutation circuit used for this purpose is not shown.
  • the rotor 212 comprises a rotor winding provided with suitable starting resistors R and externally controllable.
  • the rotor winding of the rotor 212 is constructed as a three-phase winding.
  • the windings are preferably connected in the star, in other embodiments in the triangle.
  • the neutral point of the windings is arranged inside the rotor 212. Alternatively, the neutral point can also be led to the outside via a slip ring.
  • the winding ends, here denoted by K, L and M, are connected to slip rings, to which suitable brushes can be applied as current collectors.
  • the material of the brushes is preferably optimized for cranking operation and need not be designed for sustained loading.
  • the rotor winding is preferably short-circuited via a suitable slip ring short-circuiting device (not shown). Subsequently, the brushes are lifted off the slip rings by means of a brush lifting device. During normal operation, the brushes are lifted off and the rotor is short-circuited.
  • the slip rings can be housed in a separate housing from the actual motor housing. This allows easier maintenance of slip rings and brushes. Brush abrasion is kept away from the actual engine in this way. Maintaining a corresponding slip-ring motor 210 essentially involves replacing worn brushes and cleaning. However, as the brushes only rest during start-up and then lift off, replacement and cleaning are kept to a minimum. The maintenance intervals are thus not extended compared to those of comparable squirrel-cage motors.
  • the terminals K, L and M are connected to a connection point 213.
  • the resistance value of the starting resistors R is determined after the turn-on time, i. at the start of the slip-ring rotor motor 210, continuously reduced until the terminals K, L and M at the rated speed of the slip-ring motor 210 can be short-circuited via the connection point 213. This is done as mentioned, e.g. by means of a slip ring short-closing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP13002467.2A 2013-05-08 2013-05-08 Installation de décomposition de l'air dotée d'un entraînement de compresseur principal Withdrawn EP2801777A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13002467.2A EP2801777A1 (fr) 2013-05-08 2013-05-08 Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
PCT/EP2014/059483 WO2014180964A1 (fr) 2013-05-08 2014-05-08 Installation de séparation d'air équipée d'un entraînement de compresseur principal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13002467.2A EP2801777A1 (fr) 2013-05-08 2013-05-08 Installation de décomposition de l'air dotée d'un entraînement de compresseur principal

Publications (1)

Publication Number Publication Date
EP2801777A1 true EP2801777A1 (fr) 2014-11-12

Family

ID=48430420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13002467.2A Withdrawn EP2801777A1 (fr) 2013-05-08 2013-05-08 Installation de décomposition de l'air dotée d'un entraînement de compresseur principal

Country Status (2)

Country Link
EP (1) EP2801777A1 (fr)
WO (1) WO2014180964A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048401A1 (fr) * 2015-01-20 2016-07-27 Linde Aktiengesellschaft Procédé et dispositif destinés à l'extraction variable d'argon par la séparation cryogénique de l'air
WO2018114052A2 (fr) 2016-12-23 2018-06-28 Linde Aktiengesellschaft Procédé de séparation cryogénique d'air et système de séparation de l'air

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
DE2535132B2 (de) 1975-08-06 1979-07-19 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Herstellung von Drucksauerstoff durch zweistufige Tieftemperaturrektifikation von Luft
EP0144848A2 (fr) * 1983-12-12 1985-06-19 BBC Brown Boveri AG Procédé pour démarrer un convertisseur de courant sous-synchrone en cascade
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5329776A (en) 1991-03-11 1994-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of gaseous oxygen under pressure
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (fr) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Procédé et appareil pour la production d'oxygène à haute pureté
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP1031804A1 (fr) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Procédé de séparation des gaz de l'air avec recyclage d'azote
DE19954593A1 (de) 1999-11-12 2000-09-28 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1067345A1 (fr) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP1074805A1 (fr) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Procédé et dispositif pour la production d'oxygène sous pression
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (fr) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Procédé de production d'azote liquide et gazeux avec une quantité variable de liquide
EP1139046A1 (fr) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Procédé et installation de production d'un produit sous haute pression par séparation cryogénique de l'air
EP1146301A1 (fr) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Procédé et dispositif de production d'azote à haute pression par séparation d'air
EP1150082A1 (fr) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Procédé et dispositif d'échange de chaleur
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (fr) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Système à machines pour la détente de deux courants de procédé
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
EP1284404A1 (fr) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
EP1308680A1 (fr) 2001-10-31 2003-05-07 Linde AG Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1357342A1 (fr) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Système de séparation d'air cryogénique à trois colonnes avec production d'argon
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1544559A1 (fr) 2003-12-20 2005-06-22 Linde AG Procédé et dispositif pour la séparation cryogénique d'air
EP1585926A1 (fr) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. Systeme pour extraction liquide et procedes
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666824A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
EP1672301A1 (fr) 2004-12-03 2006-06-21 Linde AG Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
WO2007033838A1 (fr) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Procede et dispositif pour analyser la temperature de l'air
WO2007104449A1 (fr) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Procédé et dispositif de décomposition de l'air à basse température
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP1845324A1 (fr) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
EP1892490A1 (fr) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Procédé et dispositif de production variable d'un produit comprimé par séparation cryogénique d'un gaz
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
EP2026024A1 (fr) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Procédé et dispositif pour la production d'argon par séparation cryogénique d'air
WO2009095188A2 (fr) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Procédé et dispositif de séparation de l'air à basse température
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1229561B (de) 1962-12-21 1966-12-01 Linde Ag Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
DE1501722A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung zur Erzeugung von hochverdichtetem gasfoermigem und/oder fluessigem Sauerstoff
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE2535132B2 (de) 1975-08-06 1979-07-19 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Herstellung von Drucksauerstoff durch zweistufige Tieftemperaturrektifikation von Luft
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (fr) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
EP0144848A2 (fr) * 1983-12-12 1985-06-19 BBC Brown Boveri AG Procédé pour démarrer un convertisseur de courant sous-synchrone en cascade
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (fr) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
US5329776A (en) 1991-03-11 1994-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of gaseous oxygen under pressure
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0505812B1 (fr) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Procédé de séparation d'air à basse température
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (fr) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Procédé et dispositif de séparation d'air à basse température
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0842385B1 (fr) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Procede et dispositif de production variable d'un produit gazeux comprime
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (fr) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Procédé de séparation d'air par rectification à basse température
EP0895045B1 (fr) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Procédé de séparation d'air
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP0949471B1 (fr) 1998-04-08 2002-12-18 Linde AG Unité de séparation de l'air à deux modes de fonctionnement
EP0955509A1 (fr) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Procédé et appareil pour la production d'oxygène à haute pureté
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP1031804A1 (fr) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Procédé de séparation des gaz de l'air avec recyclage d'azote
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP1067345A1 (fr) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Procédé et dispositif pour la séparation cryogénique des constituants de l'air
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (fr) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Procédé et dispositif pour la production d'oxygène sous pression
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (de) 1999-11-12 2000-09-28 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1134525A1 (fr) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Procédé de production d'azote liquide et gazeux avec une quantité variable de liquide
EP1139046A1 (fr) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Procédé et installation de production d'un produit sous haute pression par séparation cryogénique de l'air
EP1146301A1 (fr) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Procédé et dispositif de production d'azote à haute pression par séparation d'air
EP1150082A1 (fr) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Procédé et dispositif d'échange de chaleur
EP1213552A1 (fr) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Système à machines pour la détente de deux courants de procédé
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
EP1284404A1 (fr) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
EP1308680A1 (fr) 2001-10-31 2003-05-07 Linde AG Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
EP1357342A1 (fr) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Système de séparation d'air cryogénique à trois colonnes avec production d'argon
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
EP1585926A1 (fr) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. Systeme pour extraction liquide et procedes
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1544559A1 (fr) 2003-12-20 2005-06-22 Linde AG Procédé et dispositif pour la séparation cryogénique d'air
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666824A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
EP1672301A1 (fr) 2004-12-03 2006-06-21 Linde AG Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2007033838A1 (fr) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Procede et dispositif pour analyser la temperature de l'air
WO2007104449A1 (fr) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Procédé et dispositif de décomposition de l'air à basse température
EP1845324A1 (fr) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
EP1892490A1 (fr) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Procédé et dispositif de production variable d'un produit comprimé par séparation cryogénique d'un gaz
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
EP2026024A1 (fr) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Procédé et dispositif pour la production d'argon par séparation cryogénique d'air
WO2009095188A2 (fr) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Procédé et dispositif de séparation de l'air à basse température
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Slip Ring Induction Motor Advantages Disadvantages and Applications | Electrical Interview Questions & Answers", 13 December 2011 (2011-12-13), XP055103638, Retrieved from the Internet <URL:http://electricalquestionsguide.blogspot.de/2011/12/slip-ring-induction-motor-advantages.html> [retrieved on 20140221] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048401A1 (fr) * 2015-01-20 2016-07-27 Linde Aktiengesellschaft Procédé et dispositif destinés à l'extraction variable d'argon par la séparation cryogénique de l'air
WO2018114052A2 (fr) 2016-12-23 2018-06-28 Linde Aktiengesellschaft Procédé de séparation cryogénique d'air et système de séparation de l'air
WO2018114052A3 (fr) * 2016-12-23 2018-10-11 Linde Aktiengesellschaft Procédé de séparation cryogénique d'air et système de séparation de l'air

Also Published As

Publication number Publication date
WO2014180964A1 (fr) 2014-11-13

Similar Documents

Publication Publication Date Title
EP3164654B1 (fr) Procédé et dispositif de fractionnement de l&#39;air à basse température à consommation d&#39;énergie variable
EP0949471B1 (fr) Unité de séparation de l&#39;air à deux modes de fonctionnement
WO2016015860A1 (fr) Procédé de séparation cryogénique de l&#39;air et installation de séparation d&#39;air
EP3101374A2 (fr) Procede et installation cryogeniques de separation d&#39;air
EP2880267B1 (fr) Procédé et dispositif pour produire de l&#39;énergie électrique
EP3410050B1 (fr) Procédé de production d&#39;un ou de plusieurs produits pneumatiques et installation de séparation d&#39;air
WO2014026738A2 (fr) Procédé et dispositif servant à produire de l&#39;énergie électrique
EP2835507B1 (fr) Procédé pour la production d&#39;énergie électrique et installation de production d&#39;énergie
DE10060678A1 (de) Maschinensystem zur arbeitsleistenden Entspannung zweier Prozess-Ströme
EP3196573A1 (fr) Procede de production d&#39;un produit pneumatique et installation de decomposition d&#39;air
WO2015003808A2 (fr) Procédé de production d&#39;au moins un produit dérivé de l&#39;air, installation de décomposition d&#39;air, procédé et dispositif de production d&#39;énergie électrique
EP2801777A1 (fr) Installation de décomposition de l&#39;air dotée d&#39;un entraînement de compresseur principal
WO2014154339A2 (fr) Procédé de séparation d&#39;air et installation de séparation d&#39;air
EP3924677A1 (fr) Procédé et installation pour fournir un ou plusieurs produits présents dans l&#39;air, gazeux et à teneur élevée en oxygène
EP3034974A1 (fr) Procédé et installation de liquéfaction d&#39;air et de stockage et de récupération d&#39;énergie électrique
WO2015014485A2 (fr) Procédé et dispositif de production d&#39;azote comprimé
EP2824407A1 (fr) Procédé de génération d&#39;au moins un produit de l&#39;air, installation de décomposition de l&#39;air, procédé et dispositif de production d&#39;énergie électrique
EP2647934A1 (fr) Procédé et dispositif de génération d&#39;énergie électrique
EP2835506A1 (fr) Procédé pour la production d&#39;énergie électrique et installation de production d&#39;énergie
EP4133227A2 (fr) Procédé de séparation d&#39;air à basse température, installation de séparation d&#39;air et ensemble composé d&#39;au moins deux installations de séparation d&#39;air
EP2784420A1 (fr) Procédé de séparation de l&#39;air et installation de séparation de l&#39;air
EP2863156A1 (fr) Procédé de collecte d&#39;au moins un produit de l&#39;air dans une installation de traitement de l&#39;air et installation de traitement de l&#39;air
EP3870916B1 (fr) Procédé de production d&#39;un produit ou d&#39;une pluralité de produits de l&#39;air et installation de séparation de l&#39;air
EP4127583B1 (fr) Procédé et installation de séparation d&#39;air à basse température
EP3179188B1 (fr) Procédé de décomposition à basse température de l&#39;air et installation de décomposition de l&#39;air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150513