EP0607839B1 - Wärmeaustauschrohr sowie Herstellungsverfahren und Verwendung desselben - Google Patents

Wärmeaustauschrohr sowie Herstellungsverfahren und Verwendung desselben Download PDF

Info

Publication number
EP0607839B1
EP0607839B1 EP94100288A EP94100288A EP0607839B1 EP 0607839 B1 EP0607839 B1 EP 0607839B1 EP 94100288 A EP94100288 A EP 94100288A EP 94100288 A EP94100288 A EP 94100288A EP 0607839 B1 EP0607839 B1 EP 0607839B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
tube
exchanger tube
distribution troughs
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94100288A
Other languages
English (en)
French (fr)
Other versions
EP0607839A1 (de
Inventor
Klaus Dipl.-Ing. Menze
Gerhard Dr.-Ing. Schüz
Axel Dipl.-Ing. Kriegsmann (Fh)
Manfred Dipl.-Ing. Knab
Manfred Dr.-Ing. Hage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP0607839A1 publication Critical patent/EP0607839A1/de
Application granted granted Critical
Publication of EP0607839B1 publication Critical patent/EP0607839B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Definitions

  • the invention relates to a heat exchange tube according to the preamble of claim 1.
  • a tube is known, for example, from EP-A-0 495 453.
  • the invention also relates to a method for producing and using such a tube.
  • the heat exchange tube is, for example, a heat exchange tube for spray evaporation in a tube bundle heat exchanger (see FIG. 1).
  • spray evaporators the medium to be evaporated is applied or sprayed onto the pipes in the jacket space.
  • the advantage is that the free volume between the tubes does not have to be filled with liquid. In this way, the filling quantity of such apparatus can be minimized.
  • the type of spraying must ensure that the pipes are always adequately covered with liquid.
  • Tubes are known from the area of absorption heat pumps, which have V-shaped grooves on the outer side to improve the distribution of the liquid in the axial direction of the tube. Such tubes have been developed for use in expellers (brochure "F-tube” from Furukawa Electric Co., Ltd.).
  • the invention has for its object to design a heat exchange tube of the type mentioned so that in addition to good distribution of the liquid on the surface, good evaporation properties are guaranteed at the same time.
  • the distribution channels run parallel to one another, in particular two groups of parallel distribution channels intersect at an angle ⁇ .
  • the distribution channels are spaced apart from one another — preferably the spacing is a 3 3 ⁇ t — or adjoin one another directly.
  • the distribution channels have the task of distributing liquid that is dripped or sprayed on the outer surface and supplying it to the channels underneath.
  • the distribution channels can have corresponding openings in addition to the overflows.
  • the shape of the openings can vary. So the openings can be hole-like, i.e. the flanks of the channels are pierced, while the ridges and the bottom of the channels pass through. On the other hand, the openings can be slit-like, i.e. the ridges run through and the bottom of the channel is broken, or conversely the ridges are broken and the bottom of the channel is continuous.
  • the simultaneous arrangement of different types of openings on a heat exchange tube can be advantageous.
  • the driving forces for the liquid distribution are the inertial forces, the capillary forces and (in the case of inclined or vertically oriented surfaces) gravity.
  • the crossed version the liquid is redistributed at each crossing point, so that the distribution effect is considerably better than with the parallel channels.
  • the channels and distribution channels run helically, in particular the distribution channels run at an angle of inclination ⁇ to the pipe longitudinal axis, 0 ° ⁇ ⁇ 60 ° and 120 ° ⁇ ⁇ ⁇ 180 °.
  • the inner surface of the heat exchange tube is structured or finned.
  • helical circumferential channels are first produced in that the material of the channel walls is obtained by displacing material out of the tube wall of a smooth tube to the outside by means of a rolling process (cf. the usual rolling method for producing finned tubes, for example according to US Pat. No. 3,327,512) , and then the distribution channels are produced by pressing in the channel walls by means of a rolling process with appropriately shaped toothed disks, pressure rollers or the like (cf. for example DE-OS 1.501.656).
  • a rolling process cf. the usual rolling method for producing finned tubes, for example according to US Pat. No. 3,327,512
  • the distribution channels are produced by pressing in the channel walls by means of a rolling process with appropriately shaped toothed disks, pressure rollers or the like (cf. for example DE-OS 1.501.656).
  • first helically circumferential channels in the tube wall of a smooth tube are produced by a drawing process with a stationary or rotating drawing die, and then the distribution channels are produced by pressing the channel walls in with a rolling process with appropriately shaped toothed disks, spinning rollers or the like.
  • spiral channels are first produced in that the material of the channel walls is obtained by displacing material from the tube wall of a smooth tube to the outside by means of a rolling process and the distribution channels are then produced by a drawing process with a stationary or rotating drawing die.
  • helical circumferential channels are first produced in the tube wall of a smooth tube by a drawing process with a stationary or rotating drawing die, and then the distribution channels are produced by a drawing process with a stationary or rotating drawing die.
  • the heat exchange tube according to the invention is preferably used for spray evaporation in a tube-bundle heat exchanger with horizontally or inclined heat exchange tubes.
  • a metallic heat exchange tube 1 according to FIGS. 2 to 4 has a first medium 2 on one side and a second medium 3 to be evaporated on the other side.
  • the tube 1 On this other side, the tube 1 has channels 4 (with channel walls 5) which are parallel to one another and whose dimensions of pitch t, height h and wall thickness s are also entered.
  • the channels 4 are crossed by distribution channels 6 for the second medium 3, which are formed by laterally displaced material of the channel walls 5.
  • the channels 6 are essentially V-shaped.
  • the depth of the channels 6 calculated from the upper edge of the channel walls 5 is denoted by T, the opening angle of which is denoted by ⁇ (here the V-shaped channels 6 are drawn with a tapering channel bottom. Normally, however, the channel bottom will be widened).
  • the channels 6 are provided with overflows 7 and / or openings 8.
  • the overflows 7 and / or openings 8 are designed differently (cf. in particular FIG. 6).
  • slot-like openings 8 have formed.
  • the channels 6 are spaced from one another, so that when the second medium 3 evaporates, the steam (see arrow “steam”) can escape through the remaining intermediate spaces 9.
  • the distance a is calculated between the bottom of adjacent channels 6.
  • the openings 8 serve at the same time for the liquid to enter and to exit the steam (see arrows "liquid” and "steam").
  • FIG. 5 shows the surface condition of a heat exchange tube 1 according to the invention with intersecting distribution channels 6 (intersection angle ⁇ / intersection points K). To simplify the illustration of overflows 7 and openings 8 has been omitted. The remaining gaps 9 for the steam outlet are highlighted.
  • FIG. 6 shows various possibilities for the formation of the overflows 7 and openings 8 (cf. view according to section plane A - A through the channel bottom according to FIG. 2).
  • the openings 8 are hole-like, i.e. the flanks 10 of the channels 6 are pierced, whereby combs 11 and channel bottom 12 each pass through.
  • the combs 11 run through, but the channel bottom 12 is broken through, in the case of FIG. 6c the reverse is the case.
  • FIG. 7 schematically shows a heat exchange tube 1 with channels 4 (or channel walls 5) and distribution channels 6 that run helically on the outer surface and distribution channels 6.
  • the angle of inclination of the distribution channels 6 to the pipe longitudinal axis is designated by ⁇ .
  • the distance a between the channel base 12 of adjacent channels 6 is also entered.
  • the channels 6 have been drawn in a simplified manner without overflows 7 or openings 8.
  • steel, aluminum and aluminum alloys, copper and copper alloys, stainless steels and titanium come into consideration as materials for the heat exchange tube 1.
  • ammonia and safety refrigerants such as R22, R134a etc., are available as the medium 3 to be evaporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft ein Wärmeaustauschrohr nach dem Oberbegriff des Anspruchs 1. Ein solches Rohr ist, z.B., aus der EP-A-0 495 453 bekannt. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung sowie die Verwendung eines solchen Rohres. Bei der Wärmeaustauschrohr handelt es sich beispielsweise um ein Wärmeaustauschrohr zur Sprühverdampfung in einem Rohrbündel-Wärmeaustauscher (vgl. Fig.1). In Sprühverdampfern wird das zu verdampfende Medium im Mantelraum auf die Rohre aufgegeben bzw. aufgesprüht. Der Vorteil besteht darin, daß das freie Volumen zwischen den Rohren nicht mit Flüssigkeit aufgefüllt zu werden braucht. Hierdurch läßt sich die Füllmenge solcher Apparate minimieren. Durch die Art des Aufsprühens muß sichergestellt werden, daß die Rohre stets ausreichend mit Flüssigkeit bedeckt sind. Um diese Anforderung zu erfüllen, werden diese Anlagen mit einem Flüssigkeitsüberschup betrieben, der bis um den Faktor 10 höher liegt als die zum Verdampfungsvorgang notwendige Flüssigkeitsmenge. Durch den Flüssigkeitsüberschuß wird allerdings der Wärmeübergangskoeffizient der Verdampfung erheblich reduziert. Zur Kompensation dieser Reduzierung muß der Rohrbündel-Wärmeaustauscher überdimensioniert werden. Für die Umwälzung der Flüssigkeitsmengen, die zur Verdampfung und für den Flüssigkeitsüberschup notwendig sind, muß die Pumpe entsprechend groß gewählt werden. Dies bedingt einen hohen Energieverbrauch der Pumpe, der ca um den Faktor 2 über dem Energieverbrauch liegt, als wenn nur die zur Verdampfung benötigte Flüssigkeitsmenge gefördert werden muß.
  • Aus dem Bereich der Absorptionswärmepumpen sind Rohre bekannt, die V-förmige Rillen an der Aupenseite zur Verbesserung der Verteilung der Flüssigkeit in axialer Richtung des Rohres aufweisen. Solche Rohre sind für den Einsatz in Austreibern entwickelt worden (Prospektblatt "F-tube" der Firma Furukawa Electric Co., Ltd.).
  • Der Erfindung liegt die Aufgabe zugrunde, ein Wärmeaustauschrohr der genannten Art so auszubilden, daß neben guter Verteilung der Flüssigkeit auf dessen Oberfläche gleichzeitig gute Verdampfungseigenschaften gewährleistet werden.
  • Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
  • Es wurde festgestellt, daß mit der beschriebenen Ausführungsform der Oberfläche eine vollkommene Benetzung der Oberfläche schon mit sehr kleinen Flüssigkeitsmengen zu erzielen ist. In Verbindung mit den deutlich verbesserten Verdampfungseigenschaften können somit insbesondere in Rohrbündelwärmeaustauschern die verwendete Rohrzahl und die im Kreislauf notwendige Flüssigkeitsmenge minimiert werden. Ein weiterer Vorteil besteht darin, daß die Gesamtanlage, in der der Rohrbündelwärmeaustauscher integriert ist, kleiner und kompakter gebaut werden kann.
  • Nach einer besonderen Ausführungsform der Erfindung verlaufen die Verteilungsrinnen parallel zueinander, insbesondere kreuzen sich zwei Gruppen paralleler Verteilungsrinnen unter einem Winkel β.
  • Nach alternativen Ausführungsformen sind die Verteilungsrinnen voneinander beabstandet - vorzugsweise beträgt der Abstand a ≤ 3 x t - oder schließen unmittelbar aneinander an.
  • Vorzugsweise sind die Verteilungsrinnen im wesentlichen V-förmig ausgebildet, wobei die Tiefe T = 0,3 bis 1,5 mm und der Öffnungswinkel α = 30 bis 90° beträgt. (Dabei wird die Tiefe T von der Oberkante der Kanalwände gemessen.)
  • Die Verteilungsrinnen haben die Aufgabe, Flüssigkeit, die aufgetropft oder aufgesprüht wird, auf der äußeren Oberfläche zu verteilen und den darunterliegenden Kanälen gezielt zuzuführen. Hierzu können die Verteilungsrinnen zusätzlich zu den Überläufen entsprechende Öffnungen aufweisen. Die Öffnungen können in ihrer Form unterschiedlich ausgeführt werden. So können die Öffnungen lochartig ausgebildet sein, d.h. die Flanken der Rinnen sind durchbrochen, während jeweils die Kämme und der Rinnengrund durchlaufen. Andererseits können die Öffnungen schlitzartig ausgebildet sein, d.h. die Kämme laufen durch, und der Rinnengrund ist durchbrochen, oder umgekehrt sind die Kämme durchbrochen, und der Rinnengrund ist durchlaufend. Für bestimmte Anwendungsfälle kann die gleichzeitige Anordnung verschiedener Arten von Öffnungen auf einem Wärmeaustauschrohr vorteilhaft sein.
  • Entscheidend ist, daß die Abmessungen der Öffnungen so gewählt werden, daß an jeder Öffnung nur ein Teil der Flüssigkeit die Rinne verläßt, der größte Teil jedoch entlang der Rinne weitergeleitet wird. Treibende Kräfte für die Flüssigkeitsverteilung sind die Trägheitskräfte, die Kapillarkräfte sowie (bei geneigten bzw. vertikal orientieren Flächen) die Schwerkraft. Bei der gekreuzten Ausführung wird an jedem Kreuzungspunkt die Flüssigkeit neu aufgeteilt, so daß die Verteilwirkung erheblich besser ist als bei den parallelen Rinnen.
  • Es empfiehlt sich, daß die parallelen Kanäle folgende Abmessungen aufweisen:
  • Teilung t =
    0,40 bis 1,5 mm,
    Höhe h =
    0,5 x t bis 2 x t,
    Kanalwanddicke s =
    0,2 x t bis 0,8 x t.
  • Die Kanäle und Verteilungsrinnen laufen schraubenlinienförmig um, insbesondere verlaufen die Verteilungsrinnen unter einem Steigungswinkel γ zur Rohrlängsachse, wobei 0°< γ ≤60° bzw. 120°≤ γ <180°. Insbesondere zur weiteren Verbesserung der Verdampfungseigenschaften ist die Innenoberfläche des Wärmeaustauschrohres strukturiert bzw. berippt.
  • Es wird vorgeschlagen, das erfindungsgemäße Rohr nach folgenden Verfahren herzustellen:
  • Nach einem ersten Vorschlag werden zuerst schraubenlinienförmig umlaufende Kanäle hergestellt, indem das Material der Kanalwände durch Verdrängen von Material aus der Rohrwandung eines Glattrohres nach außen mittels eines Walzvorgangs (vgl. das übliche Walzverfahren zur Rippenrohrherstellung beispielsweise nach der US-PS 3.327.512) gewonnen wird, und anschließend werden die Verteilungsrinnen hergestellt, indem die Kanalwände durch einen Walzvorgang mit entsprechend geformten Zahnscheiben, Drückrollen oder dgl. eingedrückt werden (vgl. beispielsweise DE-OS 1.501.656).
  • Nach einem zweiten Vorschlag werden zuerst schraubenlinienförmig umlaufende Kanäle in der Rohrwandung eines Glattrohres durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt und anschließend werden die Verteilungsrinnen hergestellt, indem die Kanalwände durch einen Walzvorgang mit entsprechend geformten Zahnscheiben, Drückrollen oder dgl. eingedrückt werden.
  • Nach einem dritten Vorschlag werden zuerst schraubenlinienförmig umlaufende Kanäle hergestellt, indem das Material der Kanalwände durch Verdrängen von Material aus der Rohrwandung eines Glattrohres nach außen mittels eines Walzvorgangs gewonnen wird und anschließend werden die Verteilungsrinnen durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt.
  • Nach einem vierten Vorschlag werden zuerst schraubenlinienförmig umlaufende Kanäle in der Rohrwandung eines Glattrohres durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt und anschließend werden die Verteilungsrinnen durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt.
  • Das erfindungsgemäße Wärmeaustauschrohr kommt vorzugsweise zur Sprühverdampfung in einem Rohrbündel-Wärmeaustauscher mit waagerecht oder geneigt angeordneten Wärmeaustauschrohren zum Einsatz.
  • Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:
  • Es zeigt
    • Fig. 2 ein erstes erfindungsgemäßes Wärmeaustauschrohr mit parallel verlaufenden Verteilungsrinnen,
    • Fig. 3 eine weitere Ausführungsform eines erfindungsgemäßen Wärmeaustauschrohr mit parallelen Verteilungsrinnen,
    • Fig. 4 ein erfindungsgemäßes Wärmeaustauschrohr mit zwei sich kreuzenden Verteilungsrinnen,
    • Fig. 5 schematisch die Oberflächenbeschaffenheit eines erfindungsgemäßen Wärmeaustauschrohres mit sich kreuzenden Verteilungsrinnen,
    • Fig. 6 unterschiedliche Ausführungsformen der Öffnungen in den Flanken der Verteilungsrinnen, und
    • Fig. 7 schematisch ein Wärmeaustauschrohr mit schraubenlinienförmig umlaufenden Kanälen und Verteilungsrinnen.
  • Ein metallisches Wärmeaustauschrohr 1 nach den Fig. 2 bis 4 weist auf einer Seite ein erstes Medium 2 und auf der anderen Seite ein zu verdampfendes, zweites Medium 3 auf. Das Rohr 1 weist auf dieser anderen Seite zueinander parallele Kanäle 4 (mit Kanalwänden 5) auf, deren Abmessungen Teilung t, Höhe h und Wanddicke s ebenfalls eingetragen sind. Die Kanäle 4 werden von Verteilungsrinnen 6 für das zweite Medium 3 gekreuzt, die von seitlich verdrängtem Material der Kanalwände 5 gebildet sind. Die Rinnen 6 sind im wesentlichen V-förmig. Die von der Oberkante der Kanalwände 5 gerechnete Tiefe der Rinnen 6 ist mit T, deren Öffnungswinkel mit α bezeichnet (hier sind die V-förmigen Rinnen 6 mit spitz zulaufendem Rinnengrund gezeichnet. Im Normalfall wird der Rinnengrund jedoch verbreitert sein). Um das aufgetropfte bzw. aufgesprühte zweite Medium 3 in die Kanäle 4 verteilen zu können, sind die Rinnen 6 mit Überläufen 7 und/oder Öffnungen 8 versehen. Je nach Verformung der Kanalwände 5 sind die Überläufe 7 und/oder Öffnungen 8 unterschiedlich ausgebildet (vgl. insbesondere Fig.6).
  • Im Fall der Fig.2 und 4 sind lediglich Überläufe 7 vorhanden, das jeweils verdrängte Material benachbarter Kanalwände 5 berührt sich.
  • Im Fall der Fig. 3 haben sich schlitzartige Öffnungen 8 ausgebildet.
  • Im Fall der Fig. 2 sind die Rinnen 6 voneinander beabstandet, so daß beim Verdampfen des zweiten Mediums 3 der Dampf (s. Pfeil "Dampf") durch die verbleibenden Zwischenräume 9 austreten kann.
  • Der Abstand a wird jeweils zwischen dem Grund benachbarter Rinnen 6 gerechnet.
  • Im Fall der Fig.3, in dem die Rinnen 6 unmittelbar aneinander anschließen, dienen die Öffnungen 8 gleichzeitig zum Flüssigkeitseintritt und Dampfaustritt (s. Pfeile "Flüssigkeit" und "Dampf").
  • Fig.4 zeigt die Verhältnisse schematisch bei zwei sich kreuzenden Rinnen 6.
  • Fig.5 zeigt die Oberflächenbeschaffenheit eines erfindungsgemäßen Wärmeaustauschrohres 1 mit sich kreuzenden Verteilungsrinnen 6 (Kreuzungswinkel β/Kreuzungspunkte K). Zur Vereinfachung wurde auf die Darstellung von Überläufen 7 und Öffnungen 8 verzichtet. Die verbleibenden Zwischenräume 9 für den Dampfaustritt sind punktiert hervorgehoben.
  • In Fig.6 sind verschiedene Möglichkeiten für die Ausbildung der Überläufe 7 und Öffnungen 8 angedeutet (vgl. Ansicht gemäß Schnittebene A - A durch den Rinnengrund nach Fig.2). Gemäß Fig.6a sind die Öffnungen 8 lochartig, d.h. die Flanken 10 der Rinnen 6 sind durchbrochen, wobei jeweils Kämme 11 und Rinnengrund 12 durchlaufen. Gemäß Fig.6b laufen die Kämme 11 durch, jedoch ist der Rinnengrund 12 durchbrochen, im Fall der Fig.6c ist es umgekehrt.
  • Fig.7 zeigt schematisch ein Wärmeaustauschrohr 1 mit auf der Außenoberfläche schraubenlinienförmig umlaufenden Kanälen 4 (bzw. Kanalwänden 5) und Verteilungsrinnen 6. Der Steigungswinkel der Verteilungsrinnen 6 zur Rohrlängsachse ist mit γ bezeichnet. Der Abstand a jeweils zwischen dem Rinnengrund 12 benachbarter Rinnen 6 ist ebenfalls eingetragen. Die Rinnen 6 wurden vereinfacht ohne Überläufe 7 bzw. Öffnungen 8 gezeichnet.
  • Als Werkstoffe für das Wärmeaustauschrohr 1 kommen insbesondere Stahl, Aluminium und Aluminium-Legierungen, Kupfer und Kupfer-Legierungen, Edelstähle und Titan in Frage.
  • Als zu verdampfendes Medium 3 stehen insbesondere Ammoniak und Sicherheitskältemittel, wie beispielsweise R22, R134a usw. zur Verfügung.
  • Zahlenbeispiel:
  • Es wurden strukturierte Wärmeaustauschrohre 1 aus Stahl mit folgenden Abmessungen hergestellt:
    Außendurchmesser des Rohres DR = 19 mm
    Teilung der Kanäle 4 t = 0,63 mm
    Höhe der Kanäle 4 h = 1,0 mm
    Dicke der Kanalwände 5 s = 0,25 mm
    kreuzweise verlaufende Verteilungsrinnen 6 mit einem Steigungswinkel γ = 30° (d. h. Kreuzungswinkel β = 120°)
    Tiefe der Rinnen 6 T = 0,5 mm
    Öffnungswinkel der Rinnen 6 α = 90°.
  • Bei Einsatz dieser Wärmeaustauscherrohre 1 in einem Rohrbündelwärmeaustauscher zur Sprühverdampfung von Ammoniak wurden hervorragende Ergebnisse erzielt.

Claims (20)

  1. Wärmeaustauschrohr (1) zur Übertragung von Wärme von einem ersten Medium (2) auf dessen Innenoberfläche auf ein zweites, zu verdampfendes Medium (3) auf dessen Außenoberfläche, wobei diese Außenoberfläche mit integralen, fluchtenden Verteilungsrinnen (6) zur Verteilung der flüssigen Phase des zweiten Mediums (3) versehen ist,
    mit folgenden Merkmalen:
    a) die Verteilungsrinnen (6) kreuzen sich mit darunterliegenden Kanälen (4) der Teilung (t),
    b) die Verteilungsrinnen (6) sind von seitlich verdrängtem Material der Kanalwände (5) gebildet, wobei die Tiefe (T) der Verteilungsrinnen (6) etwa zwischen 30 und 90 % der Kanalhöhe h liegt,
    c) die Verteilungsrinnen (6) stehen mit den Kanälen (4) durch Überläufe (7) und/oder Öffnungen (8) in den Verteilungsrinnen (6) in Verbindung,
    gekennzeichnet durch folgende Merkmale:
    d) die Verteilungsrinnen (6) und die Kanäle (4) laufen schraubenlinienförmig um; und
    e) das verdrängte Material benachbarter Kanalwände (5) berührt sich zumindest teilweise.
  2. Wärmeaustauschrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Verteilungsrinnen (6) parallel zueinander verlaufen.
  3. Wärmeaustauschrohr nach Anspruch 2, dadurch gekennzeichnet, daß sich zwei Gruppen paralleler Verteilungsrinnen (6) unter einem Winkel β kreuzen.
  4. Wärmeaustauschrohr nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Verteilungsrinnen (6) voneinander beabstandet angeordnet sind.
  5. Wärmeaustauschrohr nach Anspruch 4, dadurch gekennzeichnet, daß der Abstand der Verteilungsrinnen (6) a ≦ 3 x t beträgt.
  6. Wärmeaustauschrohr nach Anspruch 2 oder 3, dadurch gekennzeichnet,
    daß die Verteilungsrinnen (6) unmittelbar aneinander anschließen.
  7. Wärmeaustauschrohr nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Verteilungsrinnen (6) im wesentlichen V-förmig ausgebildet sind, wobei die Tiefe T = 0,3 bis 1,5 mm und der Öffnungswinkel α = 30 bis 90° beträgt.
  8. Wärmeaustauschrohr nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Öffnungen (8) lochartig ausgebildet sind.
  9. Wärmeaustauschrohr nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Öffnungen (8) schlitzartig ausgebildet sind.
  10. Wärmeaustauschrohr nach den Ansprüchen 8 oder 9 dadurch gekennzeichnet,
    daß auf einem Wärmeaustauschrohr (1) gleichzeitig verschiedene Arten von Öffnungen (8) angeordnet sind.
  11. Wärmeaustauschrohr nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die parallelen Kanäle (4) folgende Abmessungen aufweisen: Teilung t = 0,40 bis 1,5 mm, Höhe h = 0,5 x t bis 2 x t, Kanalwanddicke s = 0,2 x t bis 0,8 x t.
  12. Wärmeaustauschrohr nach einem oder mehreren der Ansprüche 1-11, dadurch gekennzeichnet, daß die Verteilungsrinnen (6) unter einem Steigungswinkel γ zur Rohrlängsachse verlaufen, wobei 0° < γ ≤ 60° bzw. 120° ≤ γ < 180°.
  13. Wärmeaustauschrohr nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Innenoberfläche des Wärmeaustauschrohres strukturiert oder berippt ist.
  14. Verfahren zur Herstellung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet,
    daß zuerst schraubenlinienförmig umlaufende Kanäle (4) hergestellt werden, indem das Material der Kanalwände (5) durch Verdrängen von Material aus der Rohrwandung eines Glattrohres nach außen mittels eines Walzvorgangs gewonnen wird,
    und daß anschließend die Verteilungsrinnen (6) hergestellt werden, indem die Kanalwände (5) durch einen Walzvorgang mit entsprechend geformten Zahnscheiben, Drückrollen oder dgl. eingedrückt werden.
  15. Verfahren zur Herstellung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet,
    daß zuerst schraubenlinienförmig umlaufende Kanäle (4) in der Rohrwandung eines Glattrohres durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt und anschließend die Verteilungsrinnen (6) hergestellt werden, indem die Kanalwände (5) durch einen Walzvorgang mit entsprechend geformten Zahnscheiben, Drückrollen oder dgl. eingedrückt werden.
  16. Verfahren zur Herstellung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet,
    daß zuerst schraubenlinienförmig umlaufende Kanäle (4) hergestellt werden, indem das Material der Kanalwände (5) durch Verdrängen von Material aus der Rohrwandung eines Glattrohres nach außen mittels eines Walzvorgangs gewonnen wird, und daß anschließend die Verteilungsrinnen (6) durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt werden.
  17. Verfahren zur Herstellung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet,
    daß zuerst schraubenlinienförmig umlaufende Kanäle (4) in der Rohrwandung eines Glattrohres durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt werden und daß anschließend die Verteilungsrinnen (6) durch einen Ziehvorgang mit ruhender oder rotierender Ziehmatrize hergestellt werden.
  18. Verwendung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13 zur Sprühverdampfung in einem Rohrbündel-Wärmeaustauscher.
  19. Verwendung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13 in einem Rohrbündel-Wärmeaustauscher mit waagerecht angeordneten Wärmeaustauschrohren für den Zweck nach Anspruch 18.
  20. Verwendung eines Wärmeaustauschrohres nach einem oder mehreren der Ansprüche 1 bis 13 in einem Rohrbündel-Wärmeaustauscher mit geneigt angeordneten Wärmeaustauschrohren für den Zweck nach Anspruch 18.
EP94100288A 1993-01-22 1994-01-11 Wärmeaustauschrohr sowie Herstellungsverfahren und Verwendung desselben Expired - Lifetime EP0607839B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4301668A DE4301668C1 (de) 1993-01-22 1993-01-22 Wärmeaustauschwand, insbesondere für Sprühverdampfung
DE4301668 1993-01-22

Publications (2)

Publication Number Publication Date
EP0607839A1 EP0607839A1 (de) 1994-07-27
EP0607839B1 true EP0607839B1 (de) 1996-09-11

Family

ID=6478714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94100288A Expired - Lifetime EP0607839B1 (de) 1993-01-22 1994-01-11 Wärmeaustauschrohr sowie Herstellungsverfahren und Verwendung desselben

Country Status (4)

Country Link
US (1) US5513699A (de)
EP (1) EP0607839B1 (de)
DE (2) DE4301668C1 (de)
DK (1) DK0607839T3 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
US5697430A (en) * 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
TW327205B (en) * 1995-06-19 1998-02-21 Hitachi Ltd Heat exchanger
US6176302B1 (en) * 1998-03-04 2001-01-23 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer tube
US6182743B1 (en) 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
US6176301B1 (en) 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
WO2006133211A2 (en) * 2005-06-07 2006-12-14 Wolverine Tube, Inc. Heat transfer surface for electronic cooling
DE102005028032A1 (de) * 2005-06-17 2006-12-21 Basf Ag Verfahren und Vorrichtung zur Verdampfung thermisch empfindlicher Stoffe
DE102006008083B4 (de) * 2006-02-22 2012-04-26 Wieland-Werke Ag Strukturiertes Wärmeaustauscherrohr und Verfahren zu dessen Herstellung
EP1930679B1 (de) 2006-12-01 2009-07-15 Basf Se Verfahren und Vorrichtung zur Kühlung von Reaktoren mit siedenden Flüssigkeiten
CN100498187C (zh) * 2007-01-15 2009-06-10 高克联管件(上海)有限公司 一种蒸发冷凝兼备型传热管
CN101338987B (zh) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 一种冷凝用传热管
US9844807B2 (en) * 2008-04-16 2017-12-19 Wieland-Werke Ag Tube with fins having wings
DE102009007446B4 (de) * 2009-02-04 2012-03-29 Wieland-Werke Ag Wärmeübertragerrohr und Verfahren zu dessen Herstellung
US8490679B2 (en) 2009-06-25 2013-07-23 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
MX2013002944A (es) * 2010-09-20 2014-01-24 Un sistema y metodo para almacenar energia y purificar fluido.
DE102011121436A1 (de) * 2011-12-16 2013-06-20 Wieland-Werke Ag Verflüssigerrohre mit zusätzlicher Flankenstruktur
DE102014002829A1 (de) * 2014-02-27 2015-08-27 Wieland-Werke Ag Metallisches Wärmeaustauscherrohr
CN111854502A (zh) * 2020-07-08 2020-10-30 珠海格力电器股份有限公司 换热管及空调机组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE669560A (de) * 1964-12-28
US3326283A (en) * 1965-03-29 1967-06-20 Trane Co Heat transfer surface
US3566514A (en) * 1968-05-01 1971-03-02 Union Carbide Corp Manufacturing method for boiling surfaces
US3906605A (en) * 1973-06-18 1975-09-23 Olin Corp Process for preparing heat exchanger tube
JPS6033240B2 (ja) * 1981-07-24 1985-08-01 三井アルミニウム工業株式会社 熱交換用管状体の製造法
JPS5946490A (ja) * 1982-09-08 1984-03-15 Kobe Steel Ltd 沸騰型熱交換器用伝熱管
JPS6064194A (ja) * 1983-09-19 1985-04-12 Sumitomo Light Metal Ind Ltd 伝熱管
JPH0612222B2 (ja) * 1985-08-12 1994-02-16 三菱重工業株式会社 内壁に交差溝を有する伝熱管
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JPS62237295A (ja) * 1986-04-04 1987-10-17 Kobe Steel Ltd 異形伝熱管及びその製造方法
JPH0244165A (ja) * 1988-08-04 1990-02-14 Yazaki Corp 流下液膜式蒸発器用伝熱管
JP2788793B2 (ja) * 1991-01-14 1998-08-20 古河電気工業株式会社 伝熱管
US5203404A (en) * 1992-03-02 1993-04-20 Carrier Corporation Heat exchanger tube
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube

Also Published As

Publication number Publication date
DE4301668C1 (de) 1994-08-25
DE59400607D1 (de) 1996-10-17
EP0607839A1 (de) 1994-07-27
DK0607839T3 (de) 1997-03-17
US5513699A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
EP0607839B1 (de) Wärmeaustauschrohr sowie Herstellungsverfahren und Verwendung desselben
DE3332282C2 (de) Wärmetauschrohr
DE3780648T2 (de) Kondensator.
DE69703638T2 (de) Flachrohr mit einem in der Mitte befindlichen Distanzhalter für Wärmetauscher
DE4404357C1 (de) Wärmeaustauschrohr zum Kondensieren von Dampf
DE69423595T2 (de) Plattenwärmetauscher
DE2546444C3 (de) Wärmeaustauscherwand und Verfahren zu ihrer Herstellung
DE4420756C1 (de) Mehrgängiges Rippenrohr und Verfahren zu dessen Herstellung
DE19728247C2 (de) Flache Röhre für einen Wärmetauscher
DE3148375A1 (de) &#34;plattenverdampfer&#34;
EP2859295B1 (de) Wärmeübertrager
EP0394718B1 (de) Rieseleinbauelement
EP1182416B1 (de) Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
DE2657307A1 (de) Rohrbuendel fuer einen waermetauscher
DE3606253C2 (de)
DE2222269C2 (de) Rieselkolonne zum Rektifizieren von Flüssigkeiten
DE112015000146B4 (de) Verdampfer
DE69500676T2 (de) Wärmetauscher
DE69729836T2 (de) Verdampfer
DE69611868T2 (de) Kühlrohre für Wärmetauscher
WO2017167458A1 (de) Gewickelter wärmeübertrager
DE19716836A1 (de) Plattenwärmetauscher, insbesondere Verdampfer für Klimatisierungskreislauf
DD147912A5 (de) Fluessigkeitsverteiler fuer waermeaustauscher mit vertikalen rohren
DE60006321T2 (de) Verdampferkondensor mit hartgelöteten Platten und deren Verwendung in einer Luftdestillationsvorrichtung
DE3634871A1 (de) Doppelspiralwaermeaustauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB

17Q First examination report despatched

Effective date: 19950724

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB

REF Corresponds to:

Ref document number: 59400607

Country of ref document: DE

Date of ref document: 19961017

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961025

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970130

Year of fee payment: 4

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980202

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120202

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120111

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59400607

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130111

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131