EP0544650B1 - Procédé de phosphatation de surfaces métalliques - Google Patents

Procédé de phosphatation de surfaces métalliques Download PDF

Info

Publication number
EP0544650B1
EP0544650B1 EP93200125A EP93200125A EP0544650B1 EP 0544650 B1 EP0544650 B1 EP 0544650B1 EP 93200125 A EP93200125 A EP 93200125A EP 93200125 A EP93200125 A EP 93200125A EP 0544650 B1 EP0544650 B1 EP 0544650B1
Authority
EP
European Patent Office
Prior art keywords
ion
process according
phosphate
solution
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93200125A
Other languages
German (de)
English (en)
Other versions
EP0544650A1 (fr
Inventor
Satoshi Miyamoto
Masamichi Nagatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel Corp
Original Assignee
Henkel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25087256&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0544650(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel Corp filed Critical Henkel Corp
Publication of EP0544650A1 publication Critical patent/EP0544650A1/fr
Application granted granted Critical
Publication of EP0544650B1 publication Critical patent/EP0544650B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations

Definitions

  • the present invention relates to a process for phosphating a metal surface using an acidic aqueous phosphate solution. More particularly, it relates to a process for forming a phosphate film especially suitable for cationic electrocoating, and is particularly applicable to metal surfaces which include both an iron-based surface and a zinc-based surface such as an automobile body.
  • Japanese Patent Publication (unexamined) No. 107784/1980 discloses a process for treating a metal surface by dip treatment, followed by spray treatment, with an acidic aqueous phosphate solution containing from 0.5 to 1.5 g/l of zinc ion, from 5 to 30 g/l of phosphate ion, and from 0.01 to 0.2 g/l of nitrite ion and/or from 0.05 to 2 g/l of m-nitrobenzenesulfonate ion.
  • Said process is reported to be capable of providing a phosphate film which is effective for forming a coating by cationic-resistance on complicated articles having many pocket portions like car bodies.
  • Japanese Patent Publication (unexamined) No. 145180/1980 discloses a process for treating a metal surface by spray treatment with an acidic aqueous phosphate solution containing from 0.4 to 1.0 g/l of zinc ion, from 5 to 40 g/l of phosphate ion, from 2.0 to 5.0 g/l of chlorate ion, and from 0.01 to 0.2 g/l of nitrite ion.
  • Japanese Patent Publication (unexamined) No. 1512183/1980 discloses an acidic aqueous phosphate solution containing from 0.08 to 0.20 wt.
  • a protective coating can be formed on steel or other metal surfaces at low temperatures, for instance below 40°C, by contact with a solution that is generally free of chlorate and chloride and that contains 0.5 to 1.5 parts silicofluoride or borofluoride, 0.8 to 2.5 parts zinc, 10 to 25 parts phosphate, 1.5 to 10 parts nitrate, 0.1 to 1.2 parts nickel and 0.25 to 2 parts sodium nitrobenzene sulfonate.
  • the composition may also contain 0 to 0.7 parts manganese.
  • each spot having a diameter of from 1 mm to 2 mm.
  • These white spots will cause craters in subsequent treatment, thereby resulting in inferior coatings.
  • the mechanism by which white spots are formed is believed to be as follows: In a first stage, there appear many pits, at the edge portions of which the galvanized layer is gradually dissolved in the form of concentric circles through an excessive etching reaction. As the growth of each pit continues, zinc phosphate is precipitated in the centre portion thereof. However, at the peripheral portions, the ion surface is exposed, which forms a galvanic cell with the zinc metal, thereby continuing the dissolution of the zinc.
  • phosphating compositions which are chlorate-free or at least substantially chlorate-free and which have a chloride ion level below 0.5 g/l provide excellent phosphate-coatings on iron, zinc, and aluminium-based surfaces, without the formation of deleterious white spots. It is important to the beneficial results of the present invention that the chloride ion level be consistently maintained below 0.5 g/l, which means that not only the chloride ion itself, but also the chlorate ion should not be added to the phosphating compositions, since the chlorate ion will be reduced to the chloride ion as the phosphating composition is used.
  • These phosphating compositions are the subject of European Patent Application no. 86306622.1 (granted as EP 0 228 151) from which the present application has been divided.
  • a process for phosphating a metal surface comprising treating the metal surface with an acidic aqueous phosphate solution in which one establishes and maintains a concentration of at most 0.2 g/l and preferably no chlorate ion and wherein the chloride ion concentration is maintained below 0.5 g/l, said solution comprising:
  • the metal surface treated in accordance with the present invention includes iron-based surface, zinc-based surfaces, aluminum-based surfaces, and their respective alloy-based surfaces. These metal surfaces can be treated either separately or in combination.
  • the advantage of the present invention is most prominently exhibited when the treatment is carried out on metal surfaces which include both an iron-based surface and a zinc-based surface, as for example in a car body.
  • zinc-based surfaces include galvanized steel plate, galvanealed steel plate, electrogalvanized steel plate, electro zinc-alloy plated steel plate, complex electrogalvanized steel plate, electro zinc-alloy plated steel plate, complex electrogalvanized steel plate, etc.
  • the content of manganese ion is less then 0.2 g/l the manganese content in the phosphate film formed on zinc-based surfaces is very small; therefore the adhesion between the substrate and the coating after the cationic electrocoating becomes insufficient.
  • the manganese ion is present in an amount of more than 4 g/l, no further beneficial effects are obtained for the coating, and the solution forms excessive precipitates, making it impossible to obtain a stable solution.
  • the manganese content in the phosphate film formed on the metal substrates would be in the range of from about 1 to about 20% by weight, based on the weight of the film, in order to have a phosphate film which exhibits the performance requirements for cationic electrocoating.
  • the phosphate film containing the amount of manganese specified above also forms part of the present invention.
  • the manganese content can be calculated from the formula (W M /W C ) x 100 %.
  • the amount of fluoride ion in the phosphating solution is less than 0.05 g/l, micronization of the phosphate film, improvement of corrosion-resistance after coating, and phosphating treatment at a reduced temperature cannot be attained.
  • the fluoride ion can be present in an amount above 3 g/l, but use thereof in such quantities will not provide any greater effects than are obtainable by the phosphating solutions of the invention.
  • the fluoride ion is contained in the form of a complex fluoride ion, e.g. the fluoroborate ion or the fluorosilicate ion, although the F - ion itself can also be used.
  • the weight ratio of zinc ion to phosphate be 1 : (10 to 30). In this ratio an even phosphate film is obtained which exhibits all of the performance requirements needed for cationic electrocoating.
  • the weight ratio of zinc ion to manganese ion is preferably 1 : (0.5 to 2). In this ratio it is possible to obtain in an economic manner a phosphate film which contains the required amount of manganese and which displays all of the beneficial effects provided by the present invention.
  • the solutions used in the process of the invention it is desirable for the solutions to have a total acidity of 10 to 50 points, a free acidity of 0.3 to 2.0 points, and an acid ratio of 10 to 50.
  • the total acidity in the above range the phosphate film can be obtained economically, and with the free acidity in the above range the phosphate film can be obtained evenly without excessive etching of the metal surface.
  • Adjustments in the solution to obtain and maintain the above points and ratio can be achieved by use of an alkali metal hydroxide or ammonium hydroxide as required.
  • Sources of the ingredients of the phosphating solutions used in the process of the invention include the following: as to the zinc ion, one can use zinc oxide, zinc carbonate, zinc nitrate, etc.; as to the phosphate ion, one can use phosphoric acid, zinc phosphate, zinc monohydrogen phosphate, zinc dihydrogen phosphate, manganese phosphate, manganese monohydrogen phosphate, manganese dihydrogen phosphate, etc.; as to the manganese ion, one can use manganese carbonate, manganese nitrate, the above-mentioned manganese phosphate compounds, etc.; as to the fluoride ion, one can use hydrofluoric acid, fluoroboric acid, fluorosilicic acid, fluorotitanic acid, and their metal salts (e.g.
  • the sodium salt is excluded as it does not produce the desired effect
  • the phosphating accelerator one can use sodium nitrite, ammonium nitrite, sodium m-nitrobenzenesulfonate, sodium m-nitrobenzoate, aqueous hydrogen peroxide, nitric acid, zinc nitrate, manganese nitrate, nickel nitrate, etc..
  • the phosphating solutions used in the process of the invention can further contain, as an optional ingredient, nickel ion.
  • the content of the nickel ion should be from 0.1 to 4 g/l, preferably from 0.3 to 2 g/l.
  • performance of the resulting phosphate film is further improved, i.e. the adhesion and corrosion-resistance of the coating obtained after cationic electrocoating are further improved.
  • the weight ratio of zinc ion to the sum of the manganese ion and the nickel ion is desirably 1 : (0.5 to 5.0), preferably 1 : (0.8 to 2.5).
  • the supply source of nickel ion can be for example nickel carbonate, nickel nitrate, nickel phosphate, etc..
  • the phosphate film formed by the process of the present invention is a zinc phosphate-type film.
  • Such films formed on iron based metal surfaces contain from about 25 to about 40 wt. % of zinc, from about 3 to about 11 wt. % of iron, from about 1 to about 20 wt. % of manganese, and from 0 to about 4 wt. % of nickel.
  • the process of the present invention for phosphating metal surfaces can be carried out using the phosphating solutions by spray treatment, dip treatment, or by a combination of such treatments.
  • Spray treatment can usually be effected by spraying for 5 or more seconds in order to form an adequate phosphate film which exhibits the desired performance characteristics.
  • Spray treatment can be conveniently carried out using a cycle comprising first a spray treatment for about 5 to about 30 seconds, followed by discontinuing the treatment for about 5 to 30 seconds, and then spray treating again for at least 5 seconds, with a total spray treatment time of at least 40 seconds. This cycle can be carried out once, twice or three times.
  • Dip treatment is usually more to be preferred than spray treatment in the process of the present invention.
  • the dip treatment is usually effected for at least 15 seconds, preferably for about 30 to about 120 seconds.
  • treatment can be carried out by first dip treating for at least 15 seconds and then spray treating for at least 2 seconds.
  • the treatment can be effected by first spray treating for at least 5 seconds, and then dip treating for at least 15 seconds.
  • the former combination of first dip treating and then spray treating is especially advantageous for articles having complicated shapes like a car body. For such articles, it is preferable to first carry out a dip treatment for from 30 to 90 seconds, and then carry out the spray treatment for from 5 to 45 seconds. In this process, it is advantageous to effect the spray treatment for as long a time as possible within the limitations of the automotive production line, in order to remove the sludge which adheres to the article during the dip treatment stage.
  • the treating temperature can be from 30 to 70°C, preferably from 35 to 60°C. This temperature range is approximately 10 to 15°C lower than that which is used in the prior art processes. Treating temperatures below 30°C should not be used due to an unacceptable increase in the time required to produce an acceptable coating. Conversely, when the treating temperature is too high, the phosphating accelerator is decomposed and excess precipitate is formed causing the components in the solution to become unbalanced and making it difficult to obtain satisfactory phosphate films.
  • a convenient spray pressure is from 0.6 to 2 Kg/cm 2 G.
  • a preferred mode of treatment in the process of the present invention is a dip treatment or a combined treatment using a dip treatment first and then a spray treatment.
  • a metal surface is first subjected to a spray treatment and/or a dip treatment with an alkaline degreasing agent at a temperature of 50 to 60°C for 2 minutes; followed by washing with tap water; spray treatment and/or dip treatment with a surface conditioner at room temperature for 10 to 30 seconds; dip treatment with the solution of the present invention at a temperature of about 30 to about 70°C for at least 15 seconds; and washing with tap water and then with deionized water, in that order. Thereafter, it is desirable to after-treat with an acidulated rinse common to the industry such as a dilute chromate solution.
  • This after-treatment is preferably adopted even when the present invention is carried out by spray treatment or by a combined treatment comprising a spray treatment, followed by a dip treatment. By introducing this after-treatment, a phosphate film which gives greater corrosion-resistance to a siccative coating can be obtained.
  • an acidic aqueous phosphate solution of the present invention comprising:
  • concentrated aqueous compositions are employed for formulating the acidic aqueous phosphate solutions used in the process of the present invention.
  • the acidic aqueous treating solutions are conveniently prepared by diluting an aqueous concentrate which contains a number of the solution ingredients in proper weight ratios, and then adding other ingredients as needed to prepare the treating solutions.
  • the concentrates are advantageously formulated to contain zinc ion, phosphate ion, manganese ion, fluoride ion, and optionally nickel ion, in a weight proportion of 0.1 to 2 : 5 to 50 : 0.2 to 4 : at least 0.05 : 0.1 to 4.
  • the concentrates preferably contain a weight proportion of the above ingredients of 0.5 to 1.5 : 10 to 30 : 0.1 to 3 : 0.3 to 2.
  • the concentrates are preferably formulated to contain at least about 25 g/l, more preferably from about 50 g/l to 130 g/l of zinc ion.
  • care must be taken in forming the concentrates. For example, when manganese ion and complex fluoride ion are present together in a concentrate with sodium ion, a precipitate is formed. Also, it is not advisable to add any phosphating accelerator to the concentrate, since the accelerators tend to decompose and cause other problems.
  • a concentrated composition comprising 3.0 wt. % of zinc oxide, 1.8 wt. % of nickel carbonate (II), 48.2 wt. % of 75 % phosphoric acid, 10.0 wt. % of manganese nitrate (II) hydrate (20 wt. % manganese content), 7.9 wt. % of 40 % fluorosilicic acid, and 29.1 wt. % of water.
  • This concentrate is then diluted with water to 2.5 vol. %, followed by the addition of an aqueous solution of 20 % sodium nitrite to give an acidic phosphating solution of the invention.
  • Example 1 contained a small quantity of chlorate ion (0.2 g/l) which did not deleteriously affect the results obtained using the fresh bath, it is not recommended that the composition of Example 1 be employed commercially since maintaining even this low chlorate level in the bath as the bath continues to be used will eventually result in the reduction of sufficient chlorate ion to elevate the chloride ion above 0.5 g/l.
  • the solution employed in the process preferably contains not more than about 0.2 g/l of chlorate ion. It is especially preferred that the solution contains no chlorate.
  • the present invention is advantageous in avoiding white spots, especially on galvanized steel, particularly when the phosphating treatment comprises dipping.
  • the solution contains at least about 1.05 g/l, especially at least about 1.1 g/l of zinc ion, for instance from about 1.05 to about 1.5 g/l of zinc ion, especially when the phosphating treatment comprises dipping.
  • the solution employed contains at least about 15 g/l of phosphate ion, for instance from about 15 to about 50 g/l, especially from about 15 to about 30 g/l, of phosphate ion.
  • the solution employed contains more than about 4.0 g/l, especially more than about 5 g/l, of nitrate ion.
  • the solution may contain from about 5 to about 15 g/l, especially from about 5 to about 10 g/l, on nitrate ion
  • the solution employed contains from about 0.3 g/l, especially more than about 0.4 g/l, of nickel ion.
  • the solution may contain from about 0.4 to about 4 g/l, especially from about 0.4 to about 2 g/l, of nickel ion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)

Claims (31)

  1. Procédé pour la phosphatation d'une surface métallique, comprenant le traitement de la surface métallique avec une solution de phosphate aqueuse acide ayant une concentration d'au plus 0,2 g/l et de préférence aucun ion chlorate et la concentration d'ions chlorure étant maintenue au-dessous de 0,5 g/l, la solution comprenant :
    a) de 0,1 à 1,5 g/l d'ions zinc,
    b) de 5 à 50 g/l d'ions phosphate,
    c) d'au moins 0,2 à 4 g/l d'ions manganèse,
    d) au moins 0,05 g/l d'un ion fluorure, et
    e) au moins l'un des accélérateurs de phosphatation suivants dans les concentrations suivantes :
    i) de 0,01 à 0,2 g/l d'ions nitrite,
    ii) de 1 à 15 g/l d'ions nitrate,
    iii) de 0,5 à 5 g/l de peroxyde d'hydrogène (rapportés à 100 % H2O2),
    iv) de 0,05 à 2 g/l d'ions m-nitro-benzène-sulfonate,
    v) de 0,05 à 2 g/l d'ions m-nitro-benzoate, et
    vi) de 0,05 à 2 g/l de p-nitrophénol,
    de sorte qu'après le traitement, la surface métallique est sensiblement exempte de taches blanches.
  2. Procédé selon la revendication 1, dans lequel la solution comprend des ions chlorure et facultativement des ions chlorate.
  3. Procédé selon la revendication 1 ou 2, dans lequel la solution employée comprend de 0,5 à 1,4 g/l d'ions zinc.
  4. Procédé selon la revendication 3, dans lequel la solution employée comprend de 0,7 à 1,2 g/l d'ions zinc.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend de 5 à 30 g/l d'ions phosphate.
  6. Procédé selon la revendication 5, dans lequel la solution employée comprend au moins 10 g/l d'ions phosphate.
  7. Procédé selon la revendication 6, dans lequel la solution employée comprend de 10 à 20 g/l d'ions phosphate.
  8. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la solution employée comprend de 15 à 50 g/l d'ions phosphate.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend de 0,6 à 3 g/l d'ions manganèse.
  10. Procédé selon la revendication 9, dans lequel la solution employée comprend au moins 0,8 g/l d'ions manganèse.
  11. Procédé selon la revendication 10, dans lequel la solution employée comprend de 0,8 à 2 g/l d'ions manganèse.
  12. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend de 0,1 à 3 g/l d'ions fluorure.
  13. Procédé selon la revendication 12, dans lequel la solution employée comprend de 0,1 à 2 g/l d'ions fluorure.
  14. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend de 1 à 10 g/l d'ions nitrate.
  15. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend un ou plusieurs des accélérateurs suivants dans les quantités suivantes :
    i) de 0,04 à 0,15 g/l d'ions nitrite,
    il) de 2 à 8 g/l d'ions nitrate,
    iii) de 1 à 1,5 g/l de peroxyde d'hydrogène (rapportés à 100 % H2O2),
    iv) de 0,1 à 5 g/l d'ions m-nitro-benzène-sulfonate,
    v) de 0,1 à 1,5 g/l d'ions m-nitro-benzoate, et
    vi) de 0,1 à 1,5 g/l de p-nitrophénol.
  16. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend:
    a) de 0,7 à 1,2 g/l d'ions zinc,
    b) de 10 à 20 g/l d'ions phosphate,
    c) de 0,8 à 2 g/l d'ions manganèse, et
    d) de 0,1 à 2 g/l d'ions fluorure.
  17. Procédé selon l'une quelconque des revendications précédentes, dans lequel la solution employée comprend de 0,4 à 4 g/l d'ions nickel.
  18. Procédé selon l'une quelconque des revendications précédentes, dans lequel on traite un article qui ne présente pas une surface à base de fer, une surface à base d'aluminium ou une combinaison de ces surfaces.
  19. Procédé selon la revendication 18, dans lequel l'article traité a une surface comprenant un acier électrogalvanisé.
  20. Procédé selon l'une quelconque des revendications précédentes, dans lequel le traitement est conduit à une température dans la plage de 30 à 70°C.
  21. Procédé selon l'une quelconque des revendications précédentes, dans lequel la concentration de fluorure est maintenue au-dessous de 0,5 g/l en rejetant une portion de la solution lorsque le taux de chlorure approche 0,5 g/l et en réalimentant la solution selon les besoins avec un ou plusieurs des composants des solutions qui sont sensiblement exempts d'ions chlorure.
  22. Procédé selon la revendication 21, dans lequel le poids de revêtement après traitement de la surface métallique est au moins de 2 g/m2.
  23. Procédé selon la revendication 21 ou 22, dans lequel après traitement, la surface métallique est sensiblement exempte de précipité de phosphate de zinc excédentaire.
  24. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins la dernière étape du traitement s'effectue par pulvérisation.
  25. Procédé selon l'une quelconque des revendications précédentes, dans lequel au moins une étape du traitement s'effectue par immersion.
  26. Procédé selon les revendications 25 et 26, dans lequel le traitement s'effectue par immersion pendant au moins 15 secondes et il est suivi par pulvérisation pendant au moins deux secondes.
  27. Surface métallique phosphatée par un procédé selon l'une quelconque des revendications précédentes.
  28. Surface métallique selon la revendication 27, dans laquelle la pellicule de phosphate formée sur la surface métallique a une teneur en manganèse dans la plage de 1 à 20 % en poids, rapportés au poids de la pellicule.
  29. Surface métallique selon la revendication 27 ou 28, dans laquelle la pellicule de phosphate formée présente un poids de revêtement d'au moins 2 g/m2.
  30. Procédé selon l'une quelconque des revendications 1 à 26, dans lequel après le traitement, la surface métallique est rincée et électrolaquée.
  31. Procédé selon la revendication 30, dans lequel la surface métallique est électrolaquée par voie cationique.
EP93200125A 1985-08-27 1986-08-27 Procédé de phosphatation de surfaces métalliques Revoked EP0544650B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US77003185A 1985-08-27 1985-08-27
US770031 1985-08-27
EP86306622A EP0228151B1 (fr) 1985-08-27 1986-08-27 Solutions aqueuses acides de phosphatation pour leur utilisation dans un procédé de phosphatation de surfaces métalliques

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP86306622.1 Division 1986-08-27

Publications (2)

Publication Number Publication Date
EP0544650A1 EP0544650A1 (fr) 1993-06-02
EP0544650B1 true EP0544650B1 (fr) 1997-11-26

Family

ID=25087256

Family Applications (2)

Application Number Title Priority Date Filing Date
EP93200125A Revoked EP0544650B1 (fr) 1985-08-27 1986-08-27 Procédé de phosphatation de surfaces métalliques
EP86306622A Revoked EP0228151B1 (fr) 1985-08-27 1986-08-27 Solutions aqueuses acides de phosphatation pour leur utilisation dans un procédé de phosphatation de surfaces métalliques

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP86306622A Revoked EP0228151B1 (fr) 1985-08-27 1986-08-27 Solutions aqueuses acides de phosphatation pour leur utilisation dans un procédé de phosphatation de surfaces métalliques

Country Status (5)

Country Link
EP (2) EP0544650B1 (fr)
AT (2) ATE99002T1 (fr)
DE (2) DE3650659T2 (fr)
HK (2) HK1007771A1 (fr)
SG (1) SG52645A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630246A1 (de) * 1986-09-05 1988-03-10 Metallgesellschaft Ag Verfahren zur erzeugung von phosphatueberzuegen sowie dessen anwendung
US5238506A (en) * 1986-09-26 1993-08-24 Chemfil Corporation Phosphate coating composition and method of applying a zinc-nickel-manganese phosphate coating
US5200000A (en) * 1989-01-31 1993-04-06 Nihon Parkerizing Co., Ltd. Phosphate treatment solution for composite structures and method for treatment
DE3913089A1 (de) * 1989-04-21 1990-10-25 Henkel Kgaa Chlorat- und nitritfreies verfahren zur herstellung von nickel- und manganhaltigen zinkphosphatschichten
DE3918136A1 (de) * 1989-06-03 1990-12-06 Henkel Kgaa Verfahren zur erzeugung von manganhaltigen phosphatueberzuegen auf metalloberflaechen
DE3927131A1 (de) * 1989-08-17 1991-02-21 Henkel Kgaa Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl
JPH0525652A (ja) * 1990-01-26 1993-02-02 Ppg Ind Inc リン酸塩被膜組成物および亜鉛・ニツケル・マンガンホスフエート塗料の適用方法
JP2695963B2 (ja) * 1990-03-16 1998-01-14 マツダ株式会社 金属表面のリン酸塩処理方法
DE4326388A1 (de) * 1993-08-06 1995-02-09 Metallgesellschaft Ag Verfahren zur phosphatierenden Behandlung von einseitig verzinktem Stahlband
ATE162233T1 (de) * 1993-09-06 1998-01-15 Henkel Kgaa Nickelfreies phosphatierverfahren
US5597465A (en) * 1994-08-05 1997-01-28 Novamax Itb S.R.L. Acid aqueous phosphatic solution and process using same for phosphating metal surfaces
US5714047A (en) * 1994-08-05 1998-02-03 Novamax Itb S.R.L. Acid aqueous phosphatic solution and process using same for phosphating metal surfaces
DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
US5711996A (en) * 1995-09-28 1998-01-27 Man-Gill Chemical Company Aqueous coating compositions and coated metal surfaces
EP0974682A1 (fr) 1998-07-18 2000-01-26 Henkel Kommanditgesellschaft auf Aktien Procédé et dispositif pour le traitement chimique des surfaces métalliques
DE19834796A1 (de) 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE10010355A1 (de) 2000-03-07 2001-09-13 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
DE10109480A1 (de) * 2001-02-28 2002-09-05 Volkswagen Ag Verfahren zur Beschichtung einer Aluminiumoberfläche
CN104032293B (zh) * 2014-06-11 2016-02-17 安徽江南机械有限责任公司 一种不含镍单组分高耐蚀性环保黑色磷化液
JP6675297B2 (ja) * 2016-12-09 2020-04-01 Dmg森精機株式会社 情報処理方法、情報処理システム、および情報処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811513B2 (ja) 1979-02-13 1983-03-03 日本ペイント株式会社 金属表面の保護方法
JPS5811514B2 (ja) * 1979-05-02 1983-03-03 日本ペイント株式会社 金属表面の保護方法
JPS5811515B2 (ja) 1979-05-11 1983-03-03 日本ペイント株式会社 金属表面にリン酸亜鉛皮膜を形成するための組成物
JPS57152472A (en) 1981-03-16 1982-09-20 Nippon Paint Co Ltd Phosphating method for metallic surface for cation type electrodeposition painting
JPS5935681A (ja) * 1982-08-24 1984-02-27 Nippon Paint Co Ltd カチオン型電着塗装用金属表面のリン酸塩処理方法
GB8329250D0 (en) * 1983-11-02 1983-12-07 Pyrene Chemical Services Ltd Phosphating processes
EP0172806A4 (fr) * 1984-01-06 1986-05-16 Ford Motor Co Revetement de conversion de phosphate a resistance alcaline.
US4595424A (en) * 1985-08-26 1986-06-17 Parker Chemical Company Method of forming phosphate coating on zinc

Also Published As

Publication number Publication date
EP0544650A1 (fr) 1993-06-02
EP0228151B1 (fr) 1993-12-22
EP0228151A1 (fr) 1987-07-08
ATE99002T1 (de) 1994-01-15
HK1012681A1 (en) 1999-08-06
DE3650659D1 (de) 1998-01-08
HK1007771A1 (en) 1999-04-23
SG52645A1 (en) 1998-09-28
ATE160592T1 (de) 1997-12-15
DE3650659T2 (de) 1998-07-02
DE3689442T2 (de) 1994-06-16
DE3689442D1 (de) 1994-02-03

Similar Documents

Publication Publication Date Title
US4961794A (en) Phosphate coatings for metal surfaces
EP0544650B1 (fr) Procédé de phosphatation de surfaces métalliques
EP0596947B1 (fr) Revetement a base de phosphate de zinc et procede correspondant
US4793867A (en) Phosphate coating composition and method of applying a zinc-nickel phosphate coating
US5238506A (en) Phosphate coating composition and method of applying a zinc-nickel-manganese phosphate coating
EP0060716B1 (fr) Phosphatation de surfaces métalliques
CA1333147C (fr) Phosphatation d'acier ou d'acier galvanise avant l'application de peinture
PL166676B1 (pl) Sposób fosforanowania powierzchni metali PL
CA1322147C (fr) Procede de phosphatation et composition a base de zinc et de nickel pour ledit procede
CA1224121A (fr) Procede de phosphatation de metaux
EP0452638B1 (fr) Méthode de traitement pour la phosphatation de surfaces métalliques
US4622078A (en) Process for the zinc/calcium phosphatizing of metal surfaces at low treatment temperatures
JP3137535B2 (ja) 塗装性に優れた亜鉛含有金属めっき鋼板複合体、およびその製造方法
EP0564287A2 (fr) Procédé de zinc-phosphatation d'une surface métallique par traitement de revêtement par électro-déposition cationique
EP0321059B1 (fr) Procédé pour phosphater des surfaces métalliques
KR940010457B1 (ko) 금속표면의 인산아연처리방법
US6342107B1 (en) Phosphate coatings for metal surfaces
US5232523A (en) Phosphate coatings for metal surfaces
JPH08134661A (ja) 金属表面のリン酸亜鉛皮膜形成方法
EP0135622B1 (fr) Phosphatation de surfaces métalliques
EP0439377A1 (fr) MÀ©thode d'application d'un revêtement de phosphatation au zinc-nickel-manganèse
EP0407015A1 (fr) Produit métallique à revêtement de phosphate, procédé de sa production, concentré à utiliser dans ce procédé et concentré pour le remontage de la solution de revêtement
JPH0788585B2 (ja) リン酸塩皮膜処理剤
JPH0819532B2 (ja) 金属表面のリン酸亜鉛処理方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 228151

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19931130

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL CORPORATION (A DELAWARE CORP.)

17Q First examination report despatched

Effective date: 19960329

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 228151

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 160592

Country of ref document: AT

Date of ref document: 19971215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3650659

Country of ref document: DE

Date of ref document: 19980108

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: METALLGESELLSCHAFT AG

Effective date: 19980826

Opponent name: BRENT INTERNATIONAL PLC

Effective date: 19980826

NLR1 Nl: opposition has been filed with the epo

Opponent name: METALLGESELLSCHAFT AG

Opponent name: BRENT INTERNATIONAL PLC

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990802

Year of fee payment: 14

Ref country code: FR

Payment date: 19990802

Year of fee payment: 14

Ref country code: DE

Payment date: 19990802

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990803

Year of fee payment: 14

Ref country code: AT

Payment date: 19990803

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990810

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990819

Year of fee payment: 14

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BRENT INTERNATIONAL PLC * 19980826 METALLGESELLSCH

Effective date: 19980826

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

NLR1 Nl: opposition has been filed with the epo

Opponent name: METALLGESELLSCHAFT AG

Opponent name: BRENT INTERNATIONAL PLC

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20000915

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20000915

NLR2 Nl: decision of opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO