EP0511549B1 - Galette zum Erhitzen eines laufenden Fadens - Google Patents

Galette zum Erhitzen eines laufenden Fadens Download PDF

Info

Publication number
EP0511549B1
EP0511549B1 EP92106470A EP92106470A EP0511549B1 EP 0511549 B1 EP0511549 B1 EP 0511549B1 EP 92106470 A EP92106470 A EP 92106470A EP 92106470 A EP92106470 A EP 92106470A EP 0511549 B1 EP0511549 B1 EP 0511549B1
Authority
EP
European Patent Office
Prior art keywords
circuit
galette
primary winding
frequency
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92106470A
Other languages
English (en)
French (fr)
Other versions
EP0511549A2 (de
EP0511549A3 (en
Inventor
Uwe Dr. Baader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP0511549A2 publication Critical patent/EP0511549A2/de
Publication of EP0511549A3 publication Critical patent/EP0511549A3/de
Application granted granted Critical
Publication of EP0511549B1 publication Critical patent/EP0511549B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll

Definitions

  • the invention relates to a godet according to the preamble of claim 1.
  • This godet is known from DE-A-34 15 967.
  • the frequency of the primary current is variably controlled as a function of the measured temperature, so that the temperature can be kept constant. It is unavoidable that the frequency is also in electrically / magnetically unfavorable areas with low energy requirements.
  • the galette known from DE-OS 16 60 215 (Bag 599) is operated at a constant primary frequency.
  • the primary circuit ie the network
  • This galette is characterized by its simple structure.
  • the godet of FR-A-2 098 131 it has no separate secondary winding. The function of the secondary winding is taken over by the godet jacket.
  • a godet is known from DE-PS 18 04 777 (Bag. 651), which, in addition to the features mentioned in the preamble, has a hollow godet casing which is partly filled with a liquid and partly with steam from this liquid. With this godet, an outstandingly uniform temperature can be achieved over the entire length of the godet.
  • the disadvantage of this solution is again its high technical complexity.
  • the object of the invention is to reduce the effort with a firmly connected to the godet, electrically conductive secondary winding from z. B. to spare copper and yet to ensure good temperature control with minimal energy loss.
  • An improvement in the uniformity of the temperature distribution over the axial length of the godet can be achieved by the measure according to claim 4.
  • This invention is particularly advantageous to use in conjunction with this measure and allows the disadvantages of such a solution to be compensated for.
  • These disadvantages consist in the fact that the webs lying between the individual primary windings reduce the cross-sectional area of the electrical conductors available on the primary side and also the possible number of turns of these conductors. This leads to increased electrical power on the primary side Losses and due to the reduced number of turns to a deterioration of the cosine phi, which indicates the ratio of the usable active power to the apparent power consumed.
  • the invention makes it possible to match the desired and optimal alternating current frequency to one another by adapting the resonant circuit parameters, in particular inductance of the primary winding and capacitance.
  • the resonant circuit is preferably controlled via circuit breakers, which in turn can be controlled with a predetermined pulse train. This control can take place with a predetermined pulse sequence. However, temperature control is also desirable. It is therefore further proposed to apply the predetermined pulse sequence to the circuit breakers at control intervals. The duration of the control intervals depends on the temperature of the godet jacket. This temperature is measured by a temperature sensor which is attached to the godet casing in the inductive area of influence of the primary winding.
  • the circuit breakers serve both as switches and for input into the resonant circuits.
  • a particularly high cosine phi of almost 1 is made possible.
  • the two circuit breakers which are each assigned to a primary winding, are switched on in a half-bridge circuit with a constant direct voltage applied to the direct current intermediate circuit in the same current direction, and are controlled by a control circuit with a predetermined pulse sequence. This control can be switched on and off by a temperature controller depending on the temperature measured in the area of the assigned primary winding. Such a half-winding is assigned to each primary winding.
  • the inventive A special feature is that the inverters simultaneously serve as circuit breakers.
  • the resonant circuit is built up from the inductance of the primary winding and an additional capacitor.
  • This resonant circuit is connected to an alternating current, the amplitude of which is half the voltage of the direct current intermediate circuit.
  • the inductance of the primary winding and the capacitance of the capacitor are matched to one another in such a way that the feed frequency of the resonant circuit is somewhat greater than the resonant frequency of the resonant circuit. In this way it can be achieved that the transistors, which serve as circuit breakers, are switched off in an almost currentless state.
  • the shaft 30 has a conical end 31 at its free end and then a concentric screw 36.
  • the godet jacket 32 is fastened to the conical end 31 of the godet.
  • the godet casing 32 is a circular cylinder which concentrically surrounds the shaft 30 and on the bearing side of the Wave 30 is open.
  • the opposite end face of the godet casing 32 is closed by a cover 33.
  • the cover 33 is fixedly connected to a hub 34 directed into the interior of the godet casing 32.
  • the hub 34 is drilled out conically, to match the cone at the front end of the shaft 30.
  • the hub is placed on this cone 31 of the shaft 30 and firmly clamped by means of a nut 35 which is screwed onto the screw 36.
  • a protective cap 37 sits at the front on the cover 33.
  • the inner diameter of the godet casing is larger than the outer diameter of the hub 34 and the shaft 30.
  • An annular space is thus formed between the inner circumference of the godet casing 32 and the outer circumference of the hub 34 and shaft 30. This annulus is filled by the package of primary windings, which are fixed and stationary.
  • a cooling pipe 39 is fastened to the stationary holder 38 concentrically with the shaft 30. The cooling tube protrudes into the said annular space and extends up to the front cover 33.
  • each primary winding package consists of a flux tube 41, the flux poles 42 and the primary winding 40.
  • the flux tubes 41 and flux poles 42 consist of magnetically highly conductive material.
  • the flow tubes each extend over the area of a primary winding.
  • the packets formed in this way are threaded with the flux tubes 41 onto the cooling tube 39 with tight play and are screwed with the longitudinal screws Bracket clamped, with flux discs 43 are still provided at the two ends of the overall package.
  • Galette jacket 32 consists only of magnetically conductive material, especially iron, and contains no copper deposits or deposits or coatings of good electrically conductive material. This makes the godet casing considerably cheaper. Furthermore, the manufacture of such a godet casing is technically simple. Above all, however, the godet jacket becomes more robust, since there is a risk with conventional godet jackets that the electrically conductive coatings or inserts become detached.
  • the godet casing 32 can be freely rotated with respect to the winding packages and is driven to rotate.
  • the windings 40 are supplied with energy by the stationary holder 38 in a circuit diagram according to FIG. 2.
  • the energy is supplied from phases L1, L2, L3 of a three-phase network.
  • the three-phase current is rectified and smoothed by rectifiers 4 and 5 as well as choke 6 and capacitance 7. This creates a DC link with positive phase 8 and a negative phase.
  • This primary voltage intermediate circuit feeds three primary windings 22 (designated 40 in FIG. 1) of the godet. These primary windings are arranged coaxially to one another in a stationary manner within the iron, rotating godet casing 32 (FIG. 1). In this case, the primary windings lie between the legs 42 of the iron packet which are designed as radial rings and are U-shaped in axial section.
  • Adjacent primary windings each have one leg in common (see, for example, DE-PS 16 60 232 (Bag. 599)).
  • Such a multi-zone godet can achieve a good temperature distribution over the length of the godet casing if a temperature sensor 26 is arranged in the godet casing adjacent to each of the primary windings.
  • a temperature sensor can e.g. B. on the inner skin of the godet casing are glued or otherwise fastened.
  • the solution according to DE-PS 16 60 215 is also considered.
  • the power supply for each primary winding comprises the transistors 9 and 10, which are connected in series and with the same flow direction between the two phases of the DC link.
  • a drive circuit 11 also belongs to the power supply of each primary winding. Through this commercially available control circuit 11, the transistors 9 and 10 are controlled or blocked at a predetermined frequency. These two switching states are predetermined by a temperature controller 14, which is connected to the control circuit 11 via a line 24. The temperature controller in turn is controlled on the one hand by the temperature sensor 16 already mentioned and on the other hand by a setpoint generator 15.
  • the control circuit is switched when the temperature falls below the target temperature so that a predetermined control voltage is output to the transistors 9 and 10 via the lines 12 and 13 with a predetermined pulse sequence (supply frequency of the resonant circuit) or that when exceeded the predetermined target temperature, the transistors 9 and 10 are blocked.
  • the transistors 9 and 10 of each power supply are connected to the DC voltage intermediate circuit 8 with free-wheeling diodes 17, 18 in a half-bridge circuit. Between the center point 19 of the half-bridge and one of the two conductors - here the negative conductor of the DC link - lies the respectively assigned primary winding 20 for inductive heating of a godet zone.
  • the secondary winding is shown in the circuit diagram of FIG. 2 as an electrical symbol for an inductor.
  • it is not a conventional conductor material made in particular of copper or brass, but exclusively the iron godet jacket.
  • the iron godet jacket has the dual function of a) the electrical conductor of the secondary winding forming a single turn and b) the iron core of the secondary winding.
  • each heating zone is connected to the previously mentioned conductor of the DC link via a capacitor 25. Therefore, the primary winding 20 and the capacitor 25 form a resonant circuit, which is acted upon by the transistor 10 in the operating phases with a pulsating direct current with a predetermined supply frequency and half the voltage of the direct current intermediate circuit.
  • the capacitance of the capacitor 25 is preferably designed to be somewhat lower than the feed frequency of the resonant circuit specified by the control circuit 11.
  • the drive circuit is set so that the transistors 9 and 10 are driven at a frequency which is above 500 Hz.
  • An upper limit is set by the load capacity of the components, in particular diodes and transistors, by the switching losses of the transistors and by the increasing losses of the primary-side circuit.
  • a limitation for the optimal frequency should help 2000 Hz. Good results were achieved at a set frequency of 1500 Hz. In particular in the range between 1000 and 2000 Hz, it is possible without affecting the components to use the transistors 9 and 10 serving as inverters at the same time for switching the primary circuit on and off.
  • the voltage diagram shows a pulsating DC voltage in the operating phases. The amplitude of this DC voltage is 250 V if the voltage drop of the DC link is 500 V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Description

  • Die Erfindung betrifft eine Galette nach dem Oberbegriff des Anspruches 1.
  • Diese Galette ist bekannt durch die DE-A-34 15 967. Bei der bekannten Galette wird die Frequenz des Primärstroms in Abhängigkeit von der gemessenen Temperatur variabel gesteuert, so daß die Temperatur konstant gehalten werden kann. Dabei ist unvermeidbar, daß bei geringem Energiebedarf die Frequenz auch in elektrisch/magnetisch ungünstigen Bereichen liegt.
  • Der Vorteil der guten Regelbarkeit wird daher durch die Gefahr eines verschlechterten Wirkungsgrades und einer Erhöhung der abzuführenden Leistungsverluste erkauft.
  • Die durch die DE-OS 16 60 215 (Bag 599) bekannte Galette wird mit konstanter Primärfrequenz betrieben. Zur Temperaturregelung wird der Primärkreis, d.h. das Netz, in von der gemessen Temperatur abhängigen Zeitintervallen ein- und ausgeschaltet. Diese Galette zeichnet sich durch ihren einfachen Aufbau aus. Sie weist, ebenso wie die Galette des FR-A-2 098 131 keine gesonderte Sekundärwicklung auf. Die funktion der Sekundärwicklung wird vom Galettenmantel über nommen.
  • Es ist auch bekannt, eine Sekundärwicklung vorzusehen, die gut leitend ist und in dem bekannten Fall aus einem Kupfer- oder Messingring besteht, der mit dem Innenumfang des magnetischen Eisenmantels der Galette fest verbunden ist.
  • Eine solche Sekundärwicklung, die mit dem Galettenmantel bei allen thermischen und mechanischen Belastungsfällen fest und sicher verbunden sein muß, ist nur mit großem technischen Aufwand herstellbar.
  • Durch die DE-PS 18 04 777 (Bag. 651) ist eine Galette bekannt, die neben den im Oberbegriff genannten Merkmalen einen hohlen Galettenmantel aufweist, der zum Teil mit einer FLüssigkeit, zum anderen mit Dampf dieser Flüssigkeit gefüllt ist. Durch diese Galette ist eine hervorragend gleichmäßige Temperatur über die gesamte Länge der Galette zu erzielen. Der Nachteil dieser Lösung besteht wiederum in ihrem hohen technischen Aufwand.
  • Es ist zwar aus der WO-A-85/01532 bekannt, daß die induktive Beheizung von Galetten bei bestimmten Frequenzen mit nur geringen Verlusten arbeitet. Dort ist allerdings eine Temperaturregelung nur über Änderung der Spaltweite vorgesehen.
  • Aufgabe der Erfindung ist es, den Aufwand mit einer mit dem Galettenmantel fest verbundenen, elektrisch gut leitenden Sekündärwicklung aus z. B. Kupfer zu erübrigen und dennoch bei geringsten Energieverlusten für eine gute Temperaturregelung zu sorgen.
  • Die Lösung ergibt sich aus dem Anspruch 1.
  • Bei der Einstellung der Frequenz wird in der bevorzugten Ausführung nach Anspruch 2 eine Optimierung nach den dort angegebenen Kriterien vorgenommen.
  • Diese Optimierung ist nicht nur von der elektrischen Auslegung der Primärwicklung, sondern besonders auch von der mechanischen Auslegung der Galette und der Verteilung ihrer magnetisch leitenden Massen abhängig. Es hat sich herausgestellt, daß mit dem in Anspruch 3 angegebenen Frequenzbereich die Optimierung herkömmlich ausgelegter Galetten möglich ist.
  • Eine Verbesserung der Gleichmäßigkeit der Temperaturverteilung über die axiale Länge der Galette läßt sich durch die Maßnahme nach Anspruch 4 erreichen. Diese Erfindung ist besonders vorteilhaft in Verbindung mit dieser Maßnahme einzusetzen und erlaubt es, die Nachteile einer solchen Lösung zu kompensieren. Diese Nachteile bestehen darin, daß die zwischen den einzelnen Primärwicklungen liegenden Stege die primärseitig zur Verfügung stehende Querschnittsfläche der elektrischen Leiter und auch die mögliche Windungszahl dieser Leiter verkleinern. Das führt primärseitig zu erhöhten elektrischen Verlusten und infolge der verminderten Windungszahl zu einer Verschlechterung des Kosinus phi, der das Verhältnis der nutzbaren Wirkleistung zur aufgenommenen Scheinleistung angibt.
  • Durch die Erfindung wird es möglich, die gewünschte und optimale Wechselstromfrequenz durch Anpassung der Schwingkreisparameter, insbesondere Induktivität der Primärwicklung und Kapazität aufeinander abzustimmen. Dabei wird der Schwingkreis vorzugsweise über Leistungsschalter angesteuert, welche ihrerseits mit einer vorgegebenen Impulsfolge ansteuerbar sind. Diese Ansteuerung kann mit fest vorgegebener Impulsfolge erfolgen. Erstrebt ist jedoch auch eine Temperaturregelung. Daher wird weiter vorgeschlagen, die Leistungsschalter in Ansteuerintervallen mit der vorgegebenen Impulsfolge zu beaufschlagen. Die Zeitdauer der Aussteuerintervalle ist von der Temperatur des Galettenmantels abhängig. Diese Temperatur wird durch einen Temperaturfühler gemessen, der an dem Galettenmantel im induktiven Einflußbereich der Primärwicklung angebracht ist Mit der Kombination nach den Ansprüchen 1 und 5 wird erreicht, daß bei geeigneter Anpassung der Schwingkreise nur niedrige Ströme bei niedrigen Lastspannungen geschaltet werden müssen. Die Leistungsschalter dienen gleichzeitig als Schalter und zur Eingabe in die Schwingkreise. Es wird ein besonders hoher Kosinus phi von fast 1 ermöglicht. Dabei werden die beiden Leistungsschalter, die jeweils einer Primärwicklung zugeordnet sind, in einer Halbrückenschaltung bei gleicher Stromrichtung mit konstanter Gleichspannung beaufschlagten Gleichstromzwischenkreis eingeschaltet und über eine Ansteuerschaltung mit einer fest vorgegebenen Impulsfolge angesteuert. Diese Ansteuerung ist durch einen Temperaturregler in Abhängigkeit von der im Bereich der zugeordneten Primärwicklung gemessenen Temperatur ein- und ausschaltbar. Jeder Primärwicklung ist eine derartige Halbwicklung zugeordnet. Die erfinderische Besonderheit besteht darin, daß die Wechselrichter gleichzeitg als Leistungsschalter dienen. Das wird dadurch ermöglicht, daß aus der Induktivität der Primärwicklung und einem zusätzlichen Kondensator der Schwingkreis aufgebaut wird. Dieser Schwingkreis liegt an einem Wechselstrom, dessen Amplitude halb so groß ist wie die Spannung des Gleichstromzwischenkreises. Die Induktivität der Primärwicklung und die Kapazität des Kondensators werden so aufeinander abgestimmt, daß die Speisefrequenz des Schwingkreises etwas größer ist als die Resonanzfrequenz des Schwingkreises. Auf diese Weise kann man erreichen, daß die Transistoren, die als Leistungsschalter dienen, im nahezu stromlosen Zustand abgeschaltet werden.
  • Man erreicht hier, daß die Bauelemente des Umrichters auch in der Schaltphase nur einer definierten und kleinen Belastung unterworfen sind.
  • Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles beschrieben.
  • Es zeigen:
  • Figur 1:
    Den Axialschnitt durch die Mehrzonengalette;
    Figur 2:
    Einen Schaltplan einer Mehrzonengalette mit drei in axialer Richtung nebeneinander angeordneten Primärwicklungen.
  • Die Galette nach Fig. 1 ist auf einer drehend angetriebenen, fliegend gelagerten Welle 30 drehfest angebracht. Hierzu besitzt die Welle 30 an ihrem freien Ende ein konisches Ende 31 und daran anschließend eine konzentrische Schraube 36. An dem konischen Ende 31 der Galette ist der Galettenmantel 32 befestigt. Der Galettenmantel 32 ist ein Kreiszylinder, der die Welle 30 konzentrisch umgibt und an der Lagerseite der Welle 30 offen ist. Die gegenüberliegende Stirnseite des Galettenmantels 32 ist durch einen Deckel 33 verschlossen. Der Deckel 33 ist mit einer in das Innere des Galettenmantels 32 gerichteten Nabe 34 fest verbunden. Die Nabe 34 ist kegelig aufgebohrt, passend zu dem Kegel am vorderen Ende der Welle 30. Die Nabe wird auf diesen Kegel 31 der Welle 30 gestülpt und mittels einer Mutter 35, die auf die Schraube 36 geschraubt wird, fest verspannt. Vorne auf dem Deckel 33 sitzt eine Schutzkappe 37. Hervorzuheben ist, daß Innedurchmesser des Galettenmantels größer ist als der Außendurchmesser der Nabe 34 und der Welle 30. Es entsteht also zwischen dem Innenumfang des Galettenmantels 32 und Außenumfang der Nabe 34 und Welle 30 ein Ringraum. Dieser Ringraum wird ausgefüllt durch das Paket der Primärwicklungen, die ortsfest und stillstehend angebracht sind. Hierzu wird an dem ortsfesten Halter 38 konzentrisch zur Welle 30 ein Kühlrohr 39 befestigt. Das Kühlrohr ragt in den genannten Ringraum hinein und erstreckt sich bis zu dem vorderen Deckel 33. Es sei betont, daß das Kühlrohr 39 feststeht und die Welle 30 konzentrisch und ohne Berührung umgibt. Auf dem Kühlrohr 39 sind vier Zonen mit Primärwicklungen 40 angeordnet. Jedes Primärwicklungspaket besteht aus einem Flußrohr 41, den Flußpolen 42 sowie der Primärwicklung 40. Die Flußrohre 41 und Flußpole 42 bestehen aus magnetisch gut leitendem Material. Die Flußrohre erstrekken sich jeweils über den Bereich einer Primärwicklung. Auf den Enden der Flußrohre 41 sitzen fest zwei ringförmige Flußpole 42. Zwischen jeweils zwei Flußpolen 42 liegt jeweils eine der Primärwicklungen 40. Die auf diese Weise gebildeten Pakete sind mit den FLußrohren 41 auf das Kühlrohr 39 mit engem Spiel aufgefädelt und werden durch Längsschrauben mit der Halterung verspannt, wobei an den beiden Enden des Gesamtpaketes noch Flußscheiben 43 vorgesehen sind.
  • Der Außendurchmesser der Flußpole 42 ist dabei nur geringfügig kleiner als der Innendurchmesser des Galettenmantels 32. Der Galettenmantel 32 besteht nur aus magnetisch leitendem Material, vor allem Eisen und enthält keinerlei Kupereinlagen oder Einlagen bzw. Beschichtungen von gut elektrisch leitendem Material. Dadurch wird eine erhebliche Verbilligung des Galettenmantels erzielt. Ferner ist die Herstellung eines solchen Galettenmantels technisch einfach. Vor allem aber wird der Galettenmantel robuster, da bei Galettenmänteln üblicher Bauart die Gefahr besteht, daß sich die elektrisch leitenden Beschichtungen oder Einlagen ablösen.
  • Es sei besonders betont, daß - wie üblich - der Galettenmantel 32 gegenüber den Wicklungspaketen frei drehbar ist und drehend angetrieben wird. Die Energieversorgung der Wicklungen 40 geschieht durch die ortsfeste Halterung 38 in einem Schaltplan nach Figur 2.
  • Entsprechend dem Schaltplan nach Figur 2 erfolgt die Energieversorgung von den Phasen L1, L2, L3 eines Drehstromnetzes. Durch Gleichrichter 4 und 5 sowie Drossel 6 sowie Kapazität 7 wird der Drehstrom gleichgerichtt und geglättet. Hierdurch entsteht ein Gleichspannungszwischenkreis mit der positiven Phase 8 und einer negativen Phase. Durch diesen Gleichspannungszwischenkreis werden drei Primärwicklungen 22 (in Fig. 1 mit 40 bezeichnet) der Galette gespeist. Diese Primärwicklungen sind gleichachsig zueinander ortsfest innerhalb des eisernen, rotierenden Galettenmantels 32 angeordnet (Fig. 1). Dabei liegen die Primärwicklungen zwischen den als radiale Ringe ausgebildeten, im Axialschnitt U-förmigen Schenkeln 42 des Eisenpaketes. Benachbarten Primärwicklungen ist jeweils ein Schenkel gemeinsam (vgl. z. B. DE-PS 16 60 232 (Bag. 599)). Durch eine derartige Mehrzonengalette läßt sich eine gute Temperaturverteilung über die Länge des Galettenmantels erreichen, wenn in dem Galettenmantel benachbart zu jeder der Primärwicklungen jeweils ein Temperaturfühler 26 angeordnet ist. Ein solcher Temperatuarfühler kann z. B. auf die Innenhaut des Galettenmantels geklebt oder sonstwie befestigt werden. Auch die Lösung nach der DE-PS 16 60 215 kommt in Betracht.
  • Die Stromversorgung für jede Primärwicklung umfaßt die Transistoren 9 und 10, die in Reihe und mit derselben Durchflußrichtung zwischen die beiden Phasen des Gleichstromzwischenkreises geschaltet sind. Ferner gehört zu der Stromversorgung jeder Primärwicklung eine Ansteuerschaltung 11 . Durch diese handelsübliche Ansteuerschaltung 11 werden die Transistoren 9 und 10 mit vorbestimmter Frequenz angesteuert oder gesperrt. Diese beiden Schaltzustände werden vorgegeben durch einen Temperaturregler 14, der mit der Ansteuerschaltung 11 über eine Leitung 24 verbunden ist. Der Temperaturregler seinerseits wird auf der einen Seite durch den bereits erwähnten Temperaturfühler 16 und andererseits durch einen Sollwertgeber 15 angesteuert. In Abhängigekeit von der gemessenen Temperatur am Temperaturfühler 16 wird bei Unterschreiten der Solltemperatur die Ansteuerschaltung so geschaltet, daß eine vorgegebene Ansteuerspannung an die Transistoren 9 und 10 über die Leitungen 12 und 13 mit fest vorgegebener Impulsfolge (Speisefrequenz des Schwingkreises) ausgegeben wird oder daß bei Überschreiten der vorgegebenen Solltemperatur die Transistoren 9 und 10 gesperrt werden.
  • Die Transistoren 9 und 10 einer jeden Stromversorgung sind mit Freilaufdioden 17, 18 in einer Halbrückenschaltung in den Gleichspannungszwischenkreis 8 geschaltet. Zwischen dem Mittelpunkt 19 der Halbbrücke und dem einen der beiden Leiter - hier dem negativen Leiter des Gleichstromzwischenkreises - liegt die jeweils zugeordnete Primärwicklung 20 zur induktiven Heizung einer Galettenzone.
  • Die Sekundärwicklung ist in dem Schaltplan nach Fig. 2 als elektrisches Symbol für eine Induktivität dargestellt. Dabei handelt es sich jedoch im Rahmen dieser Erfindung nicht um ein übliches Leitermaterial aus insbesondere Kupfer oder Messing, sondern ausschließlich um den eisernen Galettenmantel. Im Rahmen dieser Erifndung hat der eiserne Galettenmantel die doppelte Funktion a) des eine einzige Windung bildenden elektrischen Leiters der Sekundärwicklung und b) des Eisenkerns der Sekundärwicklung.
  • In Fig. 2 ist die induktiv beheizte Galette nur schematisch mit dem Bezugszeichen 21 angedeutet.
  • Die Primärwicklung einer jeden Heizzone ist mit dem bereits erwähnten Leiter des Gleichspannungszwischenkreises über einen Kondensator 25 verbunden. Daher bilden die Primärwicklung 20 und der Kondensator 25 einen Schwingkreis, der mittels des Transistors 10 in den Betriebsphasen mit einem pulsierenden Gleichstrom mit vorgegebener Speisefrequenz und der halben Spannung des Gleichstromzwischenkreises beaufschlagt wird. Durch Anpassung der Kapazität des Kondensators 25 an die Induktivität der Primärwicklung 20 wird die Eigenfrequenz des Schwingkreises vorzugsweise etwas niedriger als die durch die Ansteuerschaltung 11 vorgegebene Speisefrequenz des Schwingkreises ausgelegt.
  • Hierdurch läßt sich erreichen, daß in den Momenten, in denen die Ansteuerschaltung 11 die Transistoren 9 und 10 sperrt, kein Strom fließt.
  • Die Ansteuerschaltung ist so eingestellt, daß die Transistoren 9 und 10 mit einer Frequenz angesteuert werden, die über 500 Hz liegt. Eine Grenze nach oben ist gesetzt durch die Belastbarkeit der Bauelemente, insbesondere Dioden und Transistoren, durch die Schaltverluste der Transistoren sowie durch die höher werdenden Verluste des primärseitigen Stromkreises. Praktisch dürfte eine Begrenzung für die optimale Frequenz bei 2000 Hz liegen. Bei einer eingestellten Frequenz von 1500 Hz wurden gute Ergebnisse erzielt. Insbesondere in dem Bereich zwischen 1000 und 2000 Hz ist es ohne Beeinträchtigung der Bauelemente möglich, die als Wechselrichter dienenden Transistoren 9 und 10 gleichzeitig zur Ein- und Ausschaltung des Primärstromkreises zu benutzen. Das Spannungsdiagramm zeigt in den Betriebsphasen eine pulsierende Gleichspannung. Die Amplitude dieser Gleichspannung beträgt 250 V, wenn der Spannungsabfall des Gleichstromzwischenkreises 500 V beträgt. Es muß also an den Leistungsschaltern 9, 10 (Transistoren) nur die Hälfte der Betriebsspannung des Gleichstromzwischenkreises geschaltet werden. Die Frequenz kann fest vorgegeben werden. Die Abschaltung in die Ruhephase erfolgt dann, wenn die Spannung leich Null ist. Dies geschieht - wie gesagt - durch Abstimmung des aus Induktivität 20 und Kapazität 25 bestehenden Schwingkreises. Die Ruhephase wird geschaltet, wenn die gemessene Temperatur am Fühler 16 die am Sollwertgeber 15 eingestellte Sollwerttemperatur überschreitet.

Claims (5)

  1. Galette zum Erhitzen eines laufenden Fadens, mit einer ortsfesten Primärwicklung (40) und einem magnetisch leitenden Galettenmantel (32), der konzentrisch zu der Primärwicklung (40) drehbar gelagert und der mit der Primärwicklung (40) über einen engen Spalt zur Erzeugung von Sekundärströmen induktiv verbunden ist, und der keine definierte Sekundärwicklung und insbesondere weder eine Kupfereinlage noch eine Kupferauflage besitzt,
    dadurch gekennzeichnet, daß
    eine Ansteuerschaltung (11) vorgesehen ist, welche die Primärwicklung (40) mit einem Wechselstrom fest einstellbarer Wechselstromfrequenz von mindestens 300 Hz, vorzugsweise über 500Hz betreibt,
    die Primärwicklung in einen Schwingkreis eingeschlossen ist, der auf die eingestellte Wechselstromfrequenz abgestimmt ist,
    die Stromversorgung der Galette aus einer Wechselspannungsquelle und einem von dieser gespeisten Gleichspannungszwischenkreis (8) besteht, von dem aus der Schwingkreis über Leistungsschalter (9,10) mit vorgegebener Impulsfolge ansteuerbar ist, indem die Leistungsschalter (9,10) von einem zugeordneten Temperaturregler (14) in Abhängigkeit von der im Bereich der Primärwicklung (40) gemessenenen Temperatur bei Unterschreiten einer vorgegebenen Soll-Temperatur eingeschaltet und mit der Impulsfolge angesteuert und bei Überschreiten einer vorgegebenen Soll-Temperatur ausgeschaltet werden.
  2. Galette nach Anspruch 1,
    dadurch gekennzeichnet, daß
    die Frequenz über 300 Hz, vorzugsweise über 400 Hz derart vorgegeben wird,
    daß unter Berücksichtigung des elektrischen Widerstandes des Galettenmantels (32) und der Frequenz bei großem Kosinus phi, vorzugsweise Kosinus phi > 0,9, die erforderliche Energiemenge auf den Galettenmantel (32) übertragen wird.
  3. Galette nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
    die Frequenz höher als 900 Hz, vorzugsweise höher als 1000 Hz ist und vorzugsweise zwischen 1000 und 2000 Hz kliegt.
  4. Galette nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß
    primärseitig mehrere Wicklungen (40) axial nebeneinander angeordnet und durch gemeinsame Stege ihres Eisenkernes voneinander getrennt sind.
  5. Galette nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß
    jeder Schwingkreis, bestehend aus jeweils einer der Primärwicklungen (20) der Galette sowie einem Kondensator (25), an den Mittelpunkt zweier elektronischer Leistungsschalter (9, 10) und einen der Stränge des Gleichspannungszwischenkreises (8) angeschlossen ist, wobei die elektronischen Leistungschalter (9,10) als Halbbrücke zwischen den Phasen des Gleichspannungszwischenkreises (8) liegen.
EP92106470A 1991-04-27 1992-04-15 Galette zum Erhitzen eines laufenden Fadens Expired - Lifetime EP0511549B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4113832 1991-04-27
DE4113832 1991-04-27
US07/873,414 US5362945A (en) 1991-04-27 1992-04-24 Godet for heating an advancing yarn

Publications (3)

Publication Number Publication Date
EP0511549A2 EP0511549A2 (de) 1992-11-04
EP0511549A3 EP0511549A3 (en) 1993-01-27
EP0511549B1 true EP0511549B1 (de) 1995-07-05

Family

ID=25903215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92106470A Expired - Lifetime EP0511549B1 (de) 1991-04-27 1992-04-15 Galette zum Erhitzen eines laufenden Fadens

Country Status (3)

Country Link
US (1) US5362945A (de)
EP (1) EP0511549B1 (de)
DE (1) DE59202786D1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950703675A (ko) * 1992-10-01 1995-09-20 클라우스 퓌팅, 디이터 핑슈텐 얀을 유도하고 진행시키기 위한 고데트(godet for guiding and advancing a yarn)
DE4313837C1 (de) * 1993-04-29 1994-09-01 Neumag Gmbh Verfahren zum induktiven Beheizen einer Galette und induktiv beheizte Galette
US5660754A (en) * 1995-09-08 1997-08-26 Massachusetts Institute Of Technology Induction load balancer for parallel heating of multiple parts
DE19610763A1 (de) * 1996-03-19 1997-09-25 Zinser Textilmaschinen Gmbh Beheizte Galette zum Erwärmen synthetischer Fäden
KR100446346B1 (ko) * 1996-06-18 2004-10-14 바마크 악티엔게젤샤프트 진행하는 합성 필라멘트 사의 가열용 고데트
DE19854034A1 (de) 1998-11-16 2000-05-18 Walzen Irle Gmbh Induktionsheizung für Thermowalzen
DE102007054147A1 (de) * 2007-11-12 2009-05-20 Khs Ag Leimwalze sowie Etikettieraggregat mit einer solchen Leimwalze

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE716725A (de) * 1965-12-03 1968-12-02
DE1660215B2 (de) * 1965-12-03 1973-10-04 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Regelbar beheizte Galette
US3412229A (en) * 1966-10-20 1968-11-19 Cameron Brown Capital Corp Electric heating means
DE1660235C3 (de) * 1967-08-16 1980-06-26 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Induktiv beheizbare Galette
RO55797A (de) * 1967-08-16 1974-01-03
US3448233A (en) * 1967-09-26 1969-06-03 Pillar Corp Induction heating assembly
US3508024A (en) * 1968-06-17 1970-04-21 Gen Electric Dual inductance induction heater
BE736709A (de) * 1968-10-24 1969-12-31
GB1319318A (en) * 1970-07-01 1973-06-06 Platt International Ltd Inductively heatable roller having a temperature sensor
US3718852A (en) * 1971-07-14 1973-02-27 Gen Electric Phase angle regulator for high frequency inverter
DE2608295C2 (de) * 1976-02-28 1982-11-18 Brown, Boveri & Cie Ag, 6800 Mannheim Elektronischer Temperaturregler zur Regelung der Energiezufuhr für ein elektrisches Heizelement
AT365028B (de) * 1978-04-11 1981-12-10 Vertina Anstalt Verfahren und anlage zum induktiven erwaermen von metallischen werkstuecken
DE2950411C2 (de) * 1979-12-14 1986-07-03 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen Gleichrichtervorrichtung mit gesiebter Ausgangsspannung
US4426564A (en) * 1979-12-26 1984-01-17 General Electric Company Parallel resonant induction cooking surface unit
DE3236033A1 (de) * 1982-09-29 1984-03-29 Robert Bosch Gmbh, 7000 Stuttgart Schraubvorrichtung
DE3415967A1 (de) * 1983-05-07 1984-11-22 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Induktive heizung fuer ferromagnetische materialien
EP0159337B2 (de) * 1983-10-03 1996-02-28 Valmet Oy Verfahren und vorrichtung zum elektromagnetischen aufwärmen einer rolle, vorzugsweise einer kalanderrolle verwendet bei der papierherstellung oder sonstigem blattförmigen erzeugnis
US5027002A (en) * 1989-10-04 1991-06-25 Westinghouse Electric Corp. Redundant power bus arrangement for electronic circuits
US5233509A (en) * 1992-04-03 1993-08-03 International Business Machines Corporation Switch-mode AC-to-DC converter

Also Published As

Publication number Publication date
US5362945A (en) 1994-11-08
EP0511549A2 (de) 1992-11-04
EP0511549A3 (en) 1993-01-27
DE59202786D1 (de) 1995-08-10

Similar Documents

Publication Publication Date Title
DE3040028C2 (de) HF-Siegeleinrichtung zum Versiegeln von Verpackungsmaterial
EP1001658B1 (de) Induktionsheizung für Thermowalzen
DE3208895A1 (de) Schaltungsanordnung zum betreiben eines hochfrequenz-ozonisators
EP0511549B1 (de) Galette zum Erhitzen eines laufenden Fadens
DE2200489B2 (de) Induktorvorrichtung für die Hochfrequenz-Induktionserhitzung von Werkstücken
WO2003047077A1 (de) Vorrichtung zur elektrischen versorgung wenigstens eines supraleiters
DE3415967C2 (de)
DE19538261C2 (de) Induktiv beheizte Galette
DE3441000C2 (de)
DE737852C (de) Gegen UEberspannungen geschuetzte Wicklung fuer Transformatoren oder Drosselspulen
DE643404C (de) Einrichtung zum Unterbrechen von Hochleistungswechselstromkreisen
DE10055467A1 (de) Elektrische Maschine, insbesondere Drehstromgenerator
DE700264C (de) Aus mehreren konzentrisch nebeneinander und parallel zur Ofenzustellung angeordneten und mit praktisch demselben resultierenden Kraftfluss verketteten Wicklungsteilen bestehende Spule fuer Induktionsoefen ohne geschlossenen ferromagnetischen Kreis
EP2182533B1 (de) Transformator
EP3420570B1 (de) Elektrisches hochspannungsgerät mit einer regelwicklungsgruppe
DE102007017702A1 (de) Elektrisches Bauteil mit Wicklung und Anzapfung
AT160908B (de)
DE616605C (de) Anlage elektrischer Induktionsoefen, die in Parallelschaltung an ein gemeinsames Stromnetz angeschlossen sind
DE756914C (de) Regeltransformatoranordnung fuer Wechselstromfahrzeuge
DE948985C (de) Hochfrequenztransformator ohne Eisenschluss zur regelbaren Erzeugung verschieden hoher Spannungen fuer den Betrieb von Kathodenstrahlroehren
DE708533C (de) Einankerumformer mit Spannungsregelung durch Verdrehen der Kommutierungszone gegenueber der magnetisch neutralen Zone
DE102015208470A1 (de) Elektrische Spuleneinrichtung zur Strombegrenzung
EP0154697B1 (de) Hochspannungswicklung mit gesteuerter Spannungsverteilung für Transformatoren
DE1065079B (de) Stromrichteranordnung mit parallel arbeitenden Ventilstrecken
AT233276B (de) Luftgekühlte Spule für Induktionsöfen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19930206

17Q First examination report despatched

Effective date: 19940520

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950705

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59202786

Country of ref document: DE

Date of ref document: 19950810

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950807

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BARMAG GMBH ENGINEERING & MANUFACTURING

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040329

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050415

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080422

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100420

Year of fee payment: 19

Ref country code: DE

Payment date: 20100511

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100512

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59202786

Country of ref document: DE

Effective date: 20111101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110415