EP0320763A1 - Verfahren zur Wärmebehandlung von Metallen - Google Patents

Verfahren zur Wärmebehandlung von Metallen Download PDF

Info

Publication number
EP0320763A1
EP0320763A1 EP88120403A EP88120403A EP0320763A1 EP 0320763 A1 EP0320763 A1 EP 0320763A1 EP 88120403 A EP88120403 A EP 88120403A EP 88120403 A EP88120403 A EP 88120403A EP 0320763 A1 EP0320763 A1 EP 0320763A1
Authority
EP
European Patent Office
Prior art keywords
gas
gases
heat treatment
oxygen
protective gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP88120403A
Other languages
English (en)
French (fr)
Inventor
Reinhard Dipl.-Ing. Strigl
Andreas Dipl.-Ing. Dey
Thomas Dipl.-Ing. Kamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0320763A1 publication Critical patent/EP0320763A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • Heat treatments of metals in furnaces are usually carried out under a protective gas atmosphere at temperatures of around 500 to 1200 ° C, with the high temperatures often being generated with gas burners. Both the used shielding gas and the exhaust gases from the heating burner are usually discharged unused today. From an economic point of view, this is not necessarily sensible and, above all, not environmentally friendly.
  • a further problem in the heat treatment of metals is that special high-quality protective gases, e.g. with very low CO2 and H2O proportions are necessary, e.g. with carbon neutral annealing.
  • This requirement can be met with a gas generator or a retort in the furnace that generates protective gas, e.g. a catalyst insert, possibly not accessible, so that the protective gas generated must be subjected to a preliminary cleaning before being introduced into the furnace. So far, this has only been possible with very expensive MEA washing systems or molecular sieve devices.
  • the object of the present invention is therefore to provide an economical and effective method for cleaning exhaust gases and other contaminated process gases.
  • This object is achieved in that at least some of the exhaust gases and / or the contaminated process gases are cooled by direct and / or indirect heat exchange with at least one of the starting gases present in liquefied form in such a way that the contaminants contained therein condense or freeze out and the condensed or frozen impurities are separated from the product gas thus generated.
  • the method described is particularly advantageous since a process gas which is kept in liquefied form, as is the case with many heat treatment methods, serves to solve an additional task.
  • the latent heat or cold necessary for gasification of the liquid gas is used, which is simple in known methods is removed from the environment, ie remains unused, in order to achieve the cleaning of a gas which also occurs in the process, for example heating burner exhaust gases or used protective gas, via condensation and freezing out of undesired substances.
  • carbon dioxide, water vapor and hydrocarbons are "filtered out".
  • the process thus delivers an exhaust gas that meets today's environmental protection requirements or, if applicable, a reusable product gas.
  • At least part of the cleaned gas is used for the ongoing heat treatment.
  • the gases to be cleaned are sucked in with the aid of at least one injector, in which the liquid gas is injected to produce the water jet pump effect, and brought into direct contact with the liquid gas.
  • an independent pump unit can be dispensed with and rapid cooling, condensation and freezing are achieved through direct contact between the liquid gas and the gas to be cleaned.
  • This procedure enables continuous process control with simple removal of the accumulated impurities during the regeneration time of a separator.
  • Claims 5 to 8 contain process variants in which the method according to the invention is used particularly advantageously or particularly advantageous refinements in special applications.
  • FIG. 1 shows the use of the method according to the invention for cleaning and treating the exhaust gas from the heating burner in a heat treatment device.
  • the exhaust gas coming from a heating burner 1 from a heat treatment furnace 2 is passed through a precooler 3 by the effect of a Liquid jet injector 4 having a water jet pump is sucked in and transported further into one of two separators 5, 6 arranged in parallel.
  • separator 5 is connected as a separator, whereas separator 6 is in the regeneration state.
  • the separator 5 connected as a filter is cooled with liquid nitrogen, so that pollutants condense and freeze therein or remain condensed and frozen out.
  • a largely impurity-free product gas leaves it, which can be released into the atmosphere without any problems, or at least partially can be used in a mixing unit 7 to form protective gas with suitable admixture of further starting gases or alcohols, for example nitrogen or hydrogen or methanol or ethanol.
  • the liquid nitrogen used for cooling which is then in the gaseous state, is fed into the supply of gaseous nitrogen and is thus actually used.
  • the separator 6 switched for regeneration is meanwhile "thawed" and the accumulated pollutants are discharged in liquid form or driven out in gaseous form with a low gas flow and appropriately disposed of.
  • FIG. 2 shows a diagram for the production of high-purity protective gas which is generated with a retort 9 lying in the heat treatment furnace 2 and which is pre-cleaned before it is actually fed into the furnace 2.
  • the protective gas containing slightly impurities is suctioned off after its synthesis in the retort 2 and then, as described in the previous exemplary embodiment, cleaned, any dilution with nitrogen being possible on the one hand by the injector and on the other hand by adding gaseous nitrogen in another way.
  • This product gas is then fed to the furnace 2 as a high-purity protective gas.
  • the protective gas can be subjected to such cleaning immediately after generation in the generator.
  • exhaust gas cleaning and reuse can of course also be carried out.
  • the method according to the invention e.g. the exploitation of the latent heat of the liquefied gas on the one hand and on the other hand the production of gaseous gas from liquefied gas as well as the provision of reusable gas from exhaust gas or spent shielding gas, a process that is both economical because of the economical use of starting gases and environmentally friendly because of the low level of pollution represents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Es handelt sich um ein Verfahren zur Wärmebehandlung von Metallen mit zunächst in verflüssigter, kalter Form vorliegenden Ausgangsgasen, die z.B. zur Schutzgasbildung dienen. Ziel ist, weniger verunreinigte Abgase und hochreine Schutzgase zu erreichen und auch Einsparungen an Ausgangsgasen zu erzielen. Dies wird dadurch erreicht, daß zumindest ein Teil der Abgase, z.B. Heizbrennerabgase, und/oder verunreinigte Prozeßgase, z.B. verbrauchtes Schutzgas, durch direkten und/oder indirekten Wärmetausch mit mindestens einem der in verflüssigter Form vorliegenden Ausgangsgase so gekühlt wird, daß die darin enthaltenen Verunreinigungen kondensieren oder ausfrieren und die kondensierten oder ausgefrorenen Verunreinigungen vom so entstehenden Produktgas abgetrennt werden. Dabei wird, wenn möglich, zumindest ein Teil des Produktgases in der laufenden Wärmebehandlung weiterverwendet.

Description

  • Es handelt sich um ein Verfahren zur Wärmebehandlung von Metallen mit zunächst in verflüssigter Form vorliegenden, kalten Ausgangsgasen und Abgasen und/oder anderen verunreinigten Prozeßgasen.
  • Wärmebehandlungen von Metallen in Öfen werden in aller Regel unter Schutzgasatmosphären bei Temperaturen von etwa 500 bis 1200 °C durchgeführt, wobei die hohen Temperaturen häufig mit Gasbrennern erzeugt werden. Sowohl verbrauchtes Schutzgas als auch die Abgase der Heizbrenner werden heute in der Regel ungenutzt abgeleitet. Dies ist aus ökonomischer Sicht nicht unbedingt sinnvoll und vor allem nicht umweltfreundlich.
  • Aus der DE-PS 31 04 280 sind Verfahren bekannt, die durch geeignete Verbrennung der Brennerheizgase ein aufbereitbares Abgasgemisch erzeugen, das dann mit einer üblichen Gasaufbereitungsanlage zu Schutzgas aufbereitet wird. Diese Verfahren setzen aber einen nicht unbeträchtlichen Aufwand voraus.
  • Ein weiteres Problem in der Wärmebehandlung von Metallen besteht darin, daß bei speziellen Wärmebehandlungen besonders hochwertige Schutzgase, z.B. mit sehr niedrigen CO₂- und H₂O-Anteilen notwendig sind, z.B. beim Kohlungsneutralglühen. Diese Forderung ist mit einem Gasgenerator oder einer im Ofen liegenden, Schutzgas erzeugenden Retorte, z.B. einem Katalysatoreinsatz, unter Umständen nicht erreichbar, so daß das erzeugte Schutzgas vor Einführung in den Ofen einer Vorreinigung unterzogen werden muß. Diese ist bisher nur mit sehr teuren MEA-Waschanlagen oder Molekularsiebeinrichtungen möglich.
  • Die Aufgabenstellung der vorliegenden Erfindung besteht deshalb darin, ein wirtschaftliches und effektives Verfahren zur Reinigung von Abgasen und und anderen verunreinigten Prozeßgasen bereitzustellen.
  • Diese Aufgabe wird dadurch gelöst, daß zumindest ein Teil der Abgase und/oder der verunreinigten Prozeßgase durch direkten und/oder indirekten Wärmetausch mit mindestens einem der in verflüssigter Form vorliegenden Ausgangsgase so gekühlt wird, daß die darin enthaltenen Verunreinigungen kondensieren oder ausfrieren und die kondensierten oder ausgefrorenen Verunreinigungen vom so entstehenden Produktgas abgetrennt werden.
  • Das beschriebene Verfahren ist besonders vorteilhaft, da ein in verflüssigter Form vorrätig gehaltenes Prozeßgas, wie es bei vielen Wärmebehandlungsverfahren der Fall ist, zur Lösung einer zusätzlichen Aufgabe dient. Es wird die zur Vergasung des Flüssiggases notwendige latente Wärme bzw. Kälte genutzt, die bei bekannten Verfahren einfach der Umgebung entnommen wird, also ungenutzt bleibt, um die Reinigung eines ebenfalls im Prozeßablauf auftretenden Gases, z.B. Heizbrennerabgase oder verbrauchtes Schutzgas, über Kondensation und Ausfrieren von unerwünschten Stoffen zu erreichen. Dabei werden insbesondere Kohlendioxid, Wasserdampf und Kohlenwasserstoffe "herausgefiltert". Das Verfahren liefert so ein, den heutigen Umweltschutz-­anforderungen gerecht werdendes Abgas oder gegebenenfalls ein weiter verwendbares Produktgas.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung wird zumindest ein Teil des gereinigten Gases für die laufende Wärmebehandlung verwendet.
  • Aufgrund der Reinigung bestimmter Prozeßgase ist zumindest eine teilweise Verwendung des daraus entstehenden Produktgases, z.B. zur Schutzgasbildung oder als Fluidisierungsgas für den Betrieb von Wirbelschichtöfen, möglich. Dies führt zum Teil zu erheblichen Einsparungen, z.B. bei der Verwendung zur Schutzgasbildung zu Einsparungen bis zu 50 % bei den ansonsten noch zur Schutzgaserzeugung notwendigen Ausgangsmedien.
  • In einer günstigen Ausgestaltung des Verfahrens werden die zu reinigenden Gase mit Hilfe mindestens eines Injektors, in dem das Flüssiggas unter Erzeugung des Wasserstrahlpumpeneffekts eingedüst wird, angesaugt und direkt mit dem Flüssiggas in Berührung gebracht.
  • Durch den Einsatz eines Injektors kann auf ein eigenständiges Pumpaggregat verzichtet werden und es wird durch die direkte Berührung zwischen Flüssiggas und zu reinigendem Gas ein schnelles Abkühlen, Kondensieren und Ausfrieren erreicht.
  • Besonders vorteilhaft ist es, wenn zur Abscheidung der Kondensate und Ausfrierprodukte zwei vertauschbar geschaltete Abscheider verwendet werden, von denen jeweils einer abscheidet, während der andere regeneriert wird.
  • Dieses Vorgehen ermöglicht eine kontinuierliche Verfahrensführung mit einfacher Entnahme der angefallenen Verunreinigungen während der Regenerationszeit eines Abscheiders.
  • Die Ansprüche 5 bis 8 enthalten Verfahrensvarianten, in denen das erfindungsgemäße Verfahren besonders vorteilhaft Anwendung findet oder besonders vorteilhafte Ausgestaltungen in speziellen Anwendungsfällen.
  • Im folgenden sollen Ausführungsbeispiele des erfindungsgemäßen Verfahrens anhand der Figuren näher erläutert werden.
  • Es zeigen:
    • Figur 1 Schema zur Brennerabgasreinigung mit Weiterverwendung des gereinigten Abgases als Schutzgas
    • Figur 2 Schema zur Herstellung hochreinen Schutzgases bei Schutzgaserzeugung mit Erzeugungsretorte.
  • In Figur 1 ist der Einsatz des erfindungsgemäßen Verfahrens zur Reinigung und Aufbereitung des Abgases der Heizbrenner bei einer Wärmebehandlungseinrichtung dargestellt. Das von einem Heizbrenner 1 aus einem Wärmebehandlungsofen 2 kommende Abgas wird über einen Vorkühler 3 durch einen, die Wirkung einer Wasserstrahlpumpe besitzenden Flüssiggasinjektor 4 angesaugt und in einen von zwei parallel angeordneten Abscheidern 5, 6 weitertransportiert. In der in der Zeichung dargestellten Einstellung ist Abscheider 5 als Abscheider geschaltet, wogegen sich Abscheider 6 im Regenerationszustand befindet. Der als Filter geschaltete Abscheider 5 wird mit flüssigem Stickstoff gekühlt, so daß darin Schadstoffe kondensieren und ausfrieren bzw. kondensiert und ausgefroren bleiben. Ihn verläßt ein weitgehend verunreinigungsfreies Produktgas, das problemlos in die Atmospäre entlassen werden kann, oder zumindest teilweise zur Bildung von Schutzgas unter geeigneter Beimischung weiterer Ausgangsgase oder Alkohole, z.B. Stickstoff oder Wasserstoff bzw. Methanol oder Äthanol, in einer Mischeinheit 7 einsetzbar ist. Der zur Kühlung verwendete Flüssigstickstoff, der sich danach in gasförmigen Zustand befindet, wird in die Versorgung mit gasförmigem Stickstoff eingespeist und gelangt so zu seiner eigentlichen Anwendung. Der zur Regeneration geschaltete Abscheider 6 wird währenddessen "aufgetaut" und die angesammelten Schadstoffe werden in flüssiger Form abgeführt oder in gasförmiger Form mit einem geringen Gasstrom ausgetrieben und geeignet entsorgt.
  • Das gesamte, eben beschriebene Verfahren ist so abzustimmen¸ daß möglichst die gesamte Abgasmenge einer Reinigung unterzogen wird. Entsprechende Kriterien sind auch bei den anderen Verfahrensvarianten anzulegen.
  • Figur 2 zeigt ein Schema zur Herstellung von hochreinem Schutzgas, das mit einer im Wärmebehandlungsofen 2 liegenden Retorte 9 erzeugt wird und das vor seiner eigentlichen Einspeisung in den Ofen 2 vorgereinigt wird. Das geringfügig Verunreinigungen enthaltende Schutzgas wird nach seiner Synthese in der Retorte 2 abgesaugt und dann, wie im vorhergehenden Ausführungsbeispiel beschrieben, gereinigt, wobei eine beliebige Verdünnung mit Stickstoff einerseits durch den Injektor und andererseits durch anderweitige Zugabe von gasförmigem Stickstoff erfolgen kann. Dieses Produktgas wird dann als hochreines Schutzgas dem Ofen 2 zugeführt. Auch bei Schutzgaserzeugung mit einem Gasgenerator kann das Schutzgas einer solchen Reinigung direkt nach der Erzeugung im Generator unterzogen werden. Parallel zur jetzt beschriebenen Vorreinigung von Schutzgas kann natürlich auch eine Abgasreinigung und Wiederverwendung durchgeführt werden.
  • Das erfindungsgemäße Verfahren stellt durch seine geschickte, vernetzte Ausnutzung vorhandener Eigenschaften und Möglichkeiten, wie z.B. die Ausnutzung der latenten Wärme des Flüssiggases einerseits und andererseits gleichzeitig die Herstellung von gasförmigem Gas aus flüssigem Gas sowie die Bereitstellung von weiter verwendbarem Gas aus Abgas oder verbrauchtem Schutzgas, ein sowohl wirtschaftliches, weil sparsam im Verbrauch von Ausgangsgasen sowie umweltfreundliches, weil verunreinigungsarmes Abgas, Verfahren dar.

Claims (8)

  1. Verfahren zur Wärmebehandlung von Metallen mit zunächst in verflüssigter Form vorliegenden, kalten Ausgangsgasen und Abgasen und/oder anderen verunreinigten Prozeßgasen, dadurch gekennzeichnet, daß zumindest ein Teil der Abgase und/oder der verunreinigten Prozeßgase durch direkten und/oder indirekten Wärmetausch mit mindestens einem der in verflüssigter Form vorliegenden Ausgangsgase so gekühlt wird, daß die darin enthaltenen Verunreinigungen kondensieren oder ausfrieren und die kondensierten oder ausgefrorenen Verunreinigungen vom so entstehenden Produktgas abgetrennt werden.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zumindest ein Teil des Produktgases für die laufende Wärmebehandlung verwendet wird.
  3. 3. Verfahren nach einem der Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß das zu reinigende Gas mit Hilfe mindestens eines Flüssiggassinjektors angesaugt und direkt mit dem Flüssiggas in Berührung gebracht wird.
  4. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Abscheidung der Kondensate und Ausfrierprodukte zwei vertauschbar geschaltete Abscheider vorgesehen sind, wovon jeweils einer abscheidet, während der andere regeneriert wird.
  5. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Abgase der Heizbrenner der Wärmebehandlungseinrichtung und/oder verbrauchtes Schutzgas gereinigt oder aufbereitet werden.
  6. 6. Verfahren nach einem der Ansprüche 1, 3 oder 4, dadurch gekennzeichnet, daß unverbrauchtes, Verunreinigungen enthaltendes Schutzgas, z.B. von einem Gasgenerator oder einer Schutzgas-­Erzeugungs-Retorte, zu hochreinem Schutzgas gereinigt wird.
  7. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß bei Sauerstoffeinsatz bei einer Wärmebehandlung, z.B. bei Verwendung von Sauerstoffheizbrennern, auch Sauerstoff zum Kondensieren und Ausfrieren von Verunreinigungen eingesetzt wird.
  8. 8. Verfahren nach einem der Ansprüche 1 bis 5 oder 7, dadurch gekennzeichnet, daß das Abgas vor der Reinigung durch Kondensieren und Ausfrieren zur Entfernung von brennbaren Verunreinigungen, wie Kohlenmonoxid, Kohlenwasserstoffen und Wasserstoff, einer Verbrennung unterzogen wird, wobei Sauerstoff oder sauerstoffhaltige Gase zugesetzt werden.
EP88120403A 1987-12-16 1988-12-07 Verfahren zur Wärmebehandlung von Metallen Ceased EP0320763A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3742685 1987-12-16
DE19873742685 DE3742685A1 (de) 1987-12-16 1987-12-16 Verfahren zur waermebehandlung von metallen

Publications (1)

Publication Number Publication Date
EP0320763A1 true EP0320763A1 (de) 1989-06-21

Family

ID=6342771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120403A Ceased EP0320763A1 (de) 1987-12-16 1988-12-07 Verfahren zur Wärmebehandlung von Metallen

Country Status (2)

Country Link
EP (1) EP0320763A1 (de)
DE (1) DE3742685A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011999A1 (de) * 1993-10-28 1995-05-04 Loi Thermoprocess Gmbh Verfahren zum glühen von glühgut sowie zugehöriger glühofen
EP1338658A3 (de) * 2002-02-26 2005-01-12 Westfalen Ag Verfahren und Vorrichtung zur Wärmebehandlung von Werkstücken
EP2218803A1 (de) * 2009-02-12 2010-08-18 Linde AG Vorrichtung und Verfahren zur Aufkohlung von Stahl

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4125215A1 (de) * 1991-07-30 1993-02-04 Linde Ag Verfahren zur reinigung oder auch aufbereitung von gasen
DE4125216A1 (de) * 1991-07-30 1993-02-04 Linde Ag Vorrichtung zur reinigung oder auch aufbereitung von gasen
DE4318400C1 (de) * 1993-06-03 1994-06-23 Loi Ind Ofenanlagen Verfahren und Vorrichtung zum Wärmebehandeln von Werkstücken

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2082634A (en) * 1980-08-13 1982-03-10 Boc Ltd Heat treatment method
DE3104280A1 (de) * 1981-02-07 1982-08-12 Daimler-Benz Ag, 7000 Stuttgart Verfahren zur erzeugung von schutzgas aus dem abgas von strahlrohrbeheizten oefen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2082634A (en) * 1980-08-13 1982-03-10 Boc Ltd Heat treatment method
DE3104280A1 (de) * 1981-02-07 1982-08-12 Daimler-Benz Ag, 7000 Stuttgart Verfahren zur erzeugung von schutzgas aus dem abgas von strahlrohrbeheizten oefen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 138 (C-231)[1575], 27. Juni 1984; & JP-A-59 047 321 (MARUZEN ENGINEERING K.K.) 17-03-1984 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011999A1 (de) * 1993-10-28 1995-05-04 Loi Thermoprocess Gmbh Verfahren zum glühen von glühgut sowie zugehöriger glühofen
EP1338658A3 (de) * 2002-02-26 2005-01-12 Westfalen Ag Verfahren und Vorrichtung zur Wärmebehandlung von Werkstücken
EP2218803A1 (de) * 2009-02-12 2010-08-18 Linde AG Vorrichtung und Verfahren zur Aufkohlung von Stahl

Also Published As

Publication number Publication date
DE3742685A1 (de) 1989-07-13

Similar Documents

Publication Publication Date Title
DE2750621C2 (de) Verfahren zum Entfernen von gasförmigen Verunreinigungen aus Gasgemischen
DE69737617T2 (de) Vorrichtung und Verfahren zur Rückgewinnung von Aminen in einem Verfahren zur Beseitigung von Kohlendioxid
DE2731517A1 (de) Verfahren zur entfernung von gasfoermigen verunreinigungen aus gasgemischen
DE2407405A1 (de) Verfahren zur regeneration von zur entfernung von gasfoermigen verunreinigungen aus gasgemischen verwendeten absorptionsloesungen durch abstreifen mit wasserdampf
DD236717A5 (de) Verfahren zur rueckgewinnung von wasserstoff
DE1951277A1 (de) Verfahren zur Beseitigung und zur Gewinnung von Verunreinigung in Gasgemischen
EP0054772A1 (de) Verfahren zum Reinigen eines Gasstroms
DD220289A5 (de) Verfahren zur erzeugung von wasserstoff aus kohlenwasserstoffen
DE2726552A1 (de) Destillierverfahren und zugehoerige vorrichtung
DE3008794C2 (de)
DE2705056A1 (de) Verfahren und vorrichtung zur aufarbeitung des bei der gasentschwefelung anfallenden sauergases
DE2839287A1 (de) Verfahren zur entfernung von schwefeloxiden und vorrichtung zur verminderung der luftverschmutzung
EP0320763A1 (de) Verfahren zur Wärmebehandlung von Metallen
DE2231640B2 (de) Verfahren zur abtrennung von dampf- oder gasfoermigen verunreinigungen aus einem luft- oder gasstrom
DE2916993A1 (de) Verfahren zum reinigen von fluessigkeiten und/oder zum regenerieren absorptionsfaehiger loesungen
EP0955352A1 (de) Abreicherung von Siliziumverbindungen aus Brenngasen
DE3609292C2 (de)
EP0442146A1 (de) Verfahren zum Rückgewinnen von Kohlenwasserstoffen
DE2828001A1 (de) Verfahren zur herstellung von wasserstoff
DE3210236A1 (de) Verfahren zur reinigung eines mit dampf- und/oder gasfoermigen schadstoffen beladenen abgasstroms
EP0277125B1 (de) VERFAHREN ZUR ENTFERNUNG VON FLüCHTIGEN INHALTSSTOFFEN AUS IN KOKEREIANLAGEN ANFALLENDEN WäSSERN
DE4238289C2 (de) Verfahren und Anlage zum Vorbehandeln von Prozeßabwasser
EP0546527B1 (de) Verfahren zur Reinigung eines H2S- und Stickstoff-haltigen Rohgases
WO1997003920A1 (de) Verfahren und anlage zur erzeugung von schwefel in einem claus-prozess
DE4206943A1 (de) Verfahren zur reinigung eines durch vergasung von kohlenstoffhaltigem material gewonnenen gases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB NL

17P Request for examination filed

Effective date: 19890708

17Q First examination report despatched

Effective date: 19910408

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930503