EP0315163B1 - Verfahren zur Optimierung des Fahrverhaltens eines Fahrzeugs - Google Patents

Verfahren zur Optimierung des Fahrverhaltens eines Fahrzeugs Download PDF

Info

Publication number
EP0315163B1
EP0315163B1 EP19880118307 EP88118307A EP0315163B1 EP 0315163 B1 EP0315163 B1 EP 0315163B1 EP 19880118307 EP19880118307 EP 19880118307 EP 88118307 A EP88118307 A EP 88118307A EP 0315163 B1 EP0315163 B1 EP 0315163B1
Authority
EP
European Patent Office
Prior art keywords
shock absorber
vehicle
force measuring
measuring means
car body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880118307
Other languages
English (en)
French (fr)
Other versions
EP0315163A3 (en
EP0315163A2 (de
Inventor
Hans Wilhelm Häfner
Reinhard Drews
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Pfister GmbH
Original Assignee
Bayerische Motoren Werke AG
Pfister GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG, Pfister GmbH filed Critical Bayerische Motoren Werke AG
Publication of EP0315163A2 publication Critical patent/EP0315163A2/de
Publication of EP0315163A3 publication Critical patent/EP0315163A3/en
Application granted granted Critical
Publication of EP0315163B1 publication Critical patent/EP0315163B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/067Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper characterised by the mounting on the vehicle body or chassis of the spring and damper unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/001Arrangements for attachment of dampers
    • B60G13/005Arrangements for attachment of dampers characterised by the mounting on the axle or suspension arm of the damper unit
    • B60G13/008Arrangements for attachment of dampers characterised by the mounting on the axle or suspension arm of the damper unit involving use of an auxiliary cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/104Damping action or damper continuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance

Definitions

  • the invention relates to a method and an apparatus for optimizing the driving characteristics of vehicles according to the precharacterizing parts of claim 1 and claim 6, respectively..
  • the DE-A- 35 34 211 corresponding to WO-A-8702192 discloses a method and apparatus for optimizing the operating characteristics of vehicles, especially of cars or trucks, according to the preamables of claims 1 and 6 respectively, wherein the forces and/or moments acting on the vehicle or on parts thereof, respectively, are measured by devices integrated in elastic connections of the vehicle.
  • the results of the measurements are processed and the operating characteristics of the vehicle are optimized on the results of the processing, for example, the suspension, attentuation and/or the clearance of the car body above ground is/are adjusted and regulated.
  • the force measuring devices are integrated in the connecting joints of the spring supports of the vehicle between the shock absorber and the car body, the flanges of the force measuring device being fixed to the shock absorber and the car body with several screws.
  • the GB-A- 2 097 344 discloses a suspension with automatic level control for a vehicle, wherein a sensor is used to measure the level or height of the car body of the vehicle above ground. If the level differs from a reference value there are actuated two seperate hydraulic chambers provided at the suspension units to lift or lower the car body of the vehicle. This system requires extra special level sensors and seperate hydraulic chambers in addition to the spring/shock absorber unit thus raising the expense of this system.
  • Lotus system does not use mechanical springs anymore but a hydraulic device as shock absorber and spring support of the car body. It uses a double-acting hydraulic cylinder fitted with a force measuring sensor and an extra level sensor and a level adjusting means controlled by a servo valve getting the information from a hybrid analog/digital computer. Furthermore, the suspension of each wheel requires an accelerating sensor, so that this construction with three sensors at each wheel is very complicated. Security makes it necessary to provide each wheel with a basic light spring to support the chassis in case of a motor deficiency or loss of pressure.
  • an apparatus for optimizing the driving characteristics of a vehicle, especially of a motor vehicle comprising the features of claim 6.
  • the invention uses in an advantageous way the existing force-measuring sensor used to determine the wheel load also for the determination of the clearance above ground while the vehicle is in a resting position and/or while driving. Thus no additional level sensors like displacement transducers or acceleration sensors are necessary.
  • the force measuring device may be fixed at the shock-absorber in a very simple way without screwing elements by integrating thereof into a spring/shock absorber unit.
  • the damping-characteristics can be regulated in dependence on the output signal of the force measuring sensor with the vehicle in rest or/and on the oscillations of the signals (amplitude, frequency) with the vehicle in motion, especially when using a mean value thereof.
  • the schematic view of Fig. 1 shows the principle of a spring-and-shock absorber-unit 10 and of a supply unit 20 for the control and adjustment of the clearance-above-ground and/or adjustement of the damping characteristics of the shock absorber.
  • the spring-and-shock absorber unit 10 consists in particular of a spring 16 linked by a joint 22 to an axle 18 supporting a wheel 60, and of a shock absorber 30 connected to the axle 18 by a joint 50.
  • the axle 18 is linked to the chassis 12.
  • An end of the spring 16 opposite to the joint 22 acts on a force measuring sensor 24 fixed by a joint 26 at the upper part of the car body generally designated by reference numeral 14.
  • the shock absorber 30 is fixed by an upper joint 34 to the car body 14.
  • the shock absorber 30 comprises a cylinder 32 and a first piston 36 being arranged in the cylinder 32 separating an upper gas chamber 38 from a first upper hydraulic pressure chamber 40.
  • a second lower hydraulic pressure chamber 42 is formed seperated by a partition wall 44 which is fixedly arranged for the instant embodiment, from the upper hydraulic pressure chamber 40.
  • the lower hydraulic pressure chamber 42 is sealed by a second piston 46, movable in longitudinal direction and connected to the joint 50 connected to the axle 18 by a piston rod 48.
  • the upper hydraulic pressure chamber 40 is connected to the lower hydraulic pressure chamber 42 by a line 52 including a throttle valve 54, the passage cross section of which is adjustable by a setting motor 56.
  • Hydraulic liquid leaking from the lower hydraulic pressure chamber 42 is removed via a line 78 into a tank 90 for hydraulic liquid.
  • Via a supply line 84 hydraulic liquid is supplied by a pump 80 through a pressure adjusting device 76 from the tank 90 to a level adjusting device 74 connected to the upper hydraulic pressure chambers 40 by a pressure line 64.
  • An overpressure produced by the pump 80 is led off over a discharge line 82 from the pressure adjusting device 76 into the tank 90.
  • a piston 28 in the level adjusting device 74 is movable by a motor 72 such that it either closes the inlet line 92 of the pressure adjusting device 76 or opens it fully or partially for supplying hydraulic liquid to the pressure line 64.
  • the motor 72 is activated by a level control device 66 to operate in one or other direction in dependence on the desired level set at a level setting device 70, as a potentiometer, and applied to the level control device 66 through a lead 68. Furthermore, the actual value of the force corresponding to the wheel load is applied to the level control device 66 through line 62 from the force measuring sensor 24.
  • the level control device 66 may be of well known design generating an energizing signal for the motor 72 as long as the value of the signal supplied from the force measuring device 24 and the value of the signal generated by the level setting device 70 has not reached a predermined relation, specifically are not equal.
  • the unit 66 is only shown as an activating device for the motors 72, 56.
  • the unit 66 may also be a general control means, e.g. a board computer initiating various controls in dependence on the signal of various force measuring sensors 24, as it is explained in the above mentioned DE-A- 35 34 211.
  • the motor 56 is adjusting the through-put cross section of the throttle valve 54 depending on the amplitude of and frequency of the oscillational signals from the force measuring devices 24 in order to adjust the desired damping response of the apparatus.
  • the level setting device 70 is preferably calibrated according to the clearance of the car body.
  • the motor 72 is energised by the level adjusting device 74 and hydraulic liquid 88 is fed in or off the upper hydraulic pressure chamber 40 through the level adjusting device 74 and the pressure line 64 (and discharged back by the discharge line 86 into the tank 90) until the car body has attained the desired clearance above ground.
  • the motor 56 may be energised manually or in dependence of the wheel load measured by the force measuring sensor(s) 24, whereby the throttle valve 54 is closed more or less. This results in a corresponding adjustment of the damping characteristics of the shock absorber 30, as the cross section of the throttle valve 54 determines the quantity of hydraulic liquid 88 that is passing during a certain period from the upper hydraulic pressure chamber 40 to the lower hydraulic pressure chamber 42 vice versa.
  • the total quantity of hydraulic liquid contained in the chambers 40 and 42 determines the clearance-above-ground of the car body.
  • This kind of adjustment is not limited to the vehicle being in rest, it may be used as well whith the vehicle in motion.
  • the adjustment of the clearance-above-ground will then be based on an average value derived from the continuously periodically determined wheel load forces.
  • an adjustement of the damping characteristics of the shock absorber by means of the throttle valve 54 is made in dependence on the oscillations (amplitude of frequency) the car body which are evaluated as electric signals from the force measuring sensor(s) 24.
  • Fig. 1 The schematic view of Fig. 1 serves to explain the principle of the invention.
  • the spring and shock absorber unit shown in Fig. 1 as two seperate elements, can be implemented in various ways. The most advantegeous solutions with some modifications are explained below by referring to Figs. 2 and 3.
  • Fig. 2 shows a spring and shock absorber unit 100 according to a first embodiment of the invention.
  • the spring and shock absorber unit 100 comrises a compact coaxial design with an integrated force measuring sensor 106.
  • the force measuring sensor is arranged at the lower end of a cylindrical housing 102, the connection to the car body is made in form of a vibration absorber 104 to the joint 50 connected to the axle 18 (Fig. 1).
  • the force measuring sensor 106 is provided which may preferably be a force measuring sensor according to EP-A-145001.
  • a cylindrical tube 116 is acting via a pressure cap 110 onto the force introduction head 108 of the force measuring sensor 106.
  • the cylindrical tube 116 is fixed in upper and lower rings, 120 and 112, respectively, surrounded by elastomeric material 118 and 114,respectively.
  • the interior of the cylindrical tube 116 has in principle the same design as the interior of the shock absorber of Fig. 1.
  • a gas chamber 38 in the lower part closed by a laterally sealed piston 36.
  • the piston 46 connected to a piston rod 122 (Fig. 2) corresponding to the piston rod 48 in Fig. 1.
  • Fig. 2 the arrangement in Fig. 2 is reversed to that of Fig. 1, in order to show that top and bottom are exchangeable.
  • the end of the piston rod 122 is reduced in cross section and connected by a nut 126 to a vibration absorber 124 consisting in two leaf springs sandwiching a piece of rubber.
  • a vibration absorber 124 consisting in two leaf springs sandwiching a piece of rubber.
  • the cylindrical tube 116 exterior of the housing 102, the cylindrical tube has a ring 130, on which one end of a spring 128 is supported by a base plate 132 whilst the other end of said spring urges against the vibration absorber 124.
  • the essential point of the invention consists in the compact combinational coaxial system of the spring and shock absorber unit and in the regulation of the clearance-above-ground and of the damping characteristics by the use of only one integrated force measuring unit 106, measuring both the wheel load, the generated signals being used in various ways for optimising the driving characteristics of the vehicle, in particular including the regulation of the clearance-above-ground and the adjustment of the damping characteristics.
  • Fig. 3 shows a second embodiment of a spring-and-shock absorber unit 150 with an especially high degree of integration.
  • There is no compression spring 128 as in the example of Fig. 2 but there is used a completely hydraulic spring and shock absorber system, similar to that of the already mentioned Lotus-system, however, without the additional level sensor and without the additional acceleration sensor, the signals supplied by the force measuring sensor being used in several ways.
  • the elements of Fig. 3 correspond to the elements of Fig. 2, the same reference numerals are used in Fig. 3 as in Fig. 2 and there is no further description thereof.
  • Fig. 3 is characterised by a high degree of integration of the force measuring sensor in the spring and shock absorber unit.As it is illustrated in Fig. 3 a potlike base part 164 is arranged on the bottom of the housing 102 in rotational symmetry about the central lonngitudinal axis. A cylindrical sleeve 160 is inserted into the potlike base part 164, forming a narrow gap therebetween, whereby the gap and the bottom of the base part are filled with bubblefree elastomeric material 162, which adheres at the metallic surfaces of the base part 164 and of the sleeve 160, in particular by vulcanization. A cylindrical shock absorber tube 156 is inserted in a concentric recess in the sleeve 160, again surrounded by elastomeric material 158.
  • a pressure sensor 166 is arranged in contact with the elastomeric material 162, receiving the pressure on the shock absorber tube 156 and transforming it into electrical signals.
  • the signals are supplied to the control unit of the vehicle, in particular to the control device 66 (Fig.1) or to the board-computer.
  • the integrated potlike design of the force measuring cell has a high stability in respect of lateral forces, which are shunted by the elastomeric material 158 and 162, respectively, to the base part 164.
  • Another modification of the spring and shock absorber unit consists in the possibility to control or vary the gas pressure in the chamber 38 in order to adjust the level of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Claims (18)

  1. Verfahren zum Optimieren der Fahreigenschaften eines Fahrzeuges, insbesondere eines Kraftfahrzeuges, umfassend eine Federbein/Stoßdämpfereinheit (10, 100, 150) mit einem zwischen einer Fahrzeugkarosserie (14) und Achsen (18) des Fahrzeuges vorgesehenen Stoßdämpfer (30, 130) für jedes aus einer Vielzahl von Rädern (60) des Fahrzeuges, durch:
    - Bestimmen der momentanen Radlastkraft, die auf jedes der Räder (60) wirkt, mittels der Kraftmeßvorrichtung (24, 106, 166);
    - Erzeugen eines Referenzsignales, das ein einstellbares gewünschtes Bodenabstandsniveau der Fahrzeugkarosserie (14) anzeigt;
    - Vergleichen des Referenzsignals mit einem von den Kraftmeßvorrichtungen (24, 106, 166) bestimmten, die momentane Radlastkraft anzeigenden Signal; und
    - Einstellen des Bodenabstandes der Fahrzeugkarosserie (14), bis ein vorbestimmtes Verhältnis zwischen dem Referenzsignal und dem die momentane Radlastkraft anzeigenden Signal erreicht ist;
    gekennzeichnet durch
    Integrieren einer Kraftmeßvorrichtung (24, 106, 166) in jeder der Federbein/Stoßdämpfereinheiten (10, 100, 150).
  2. Verfahren nach Anspruch 1, wobei die Länge der Stoßdämpfer (30, 130) vergrößert/verringert wird durch Zuführen/Abführen von Hydraulikmedium (88) zu/von wenigstens einer Kammer (40, 42), die in dem Stoßdämpfer (30, 130) der Federbein/Stoßdämpfereinheit (10, 100, 150) vorgesehen ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei Dämpfungseigenschaften des Stoßdämpfers (30, 130) in Abhängigkeit von Schwingungssignalen eingestellt werden, die durch die Kraftmeßeinrichtung (24, 106, 166) erzeugt werden, während das Fahrzeug in Bewegung ist.
  4. Verfahren nach Anspruch 3, wobei die Dämpfungseigenschaften durch Veränderung eines Durchflußquerschnittes einer Verbindung (52) zwischen zwei Kammern (40, 42) eingestellt werden, die in dem Stoßdämpfer (30, 130) vorgesehen sind und Hydraulikmedium (88) enthalten.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein tatsächlicher Bodenabstand während der Bewegung des Fahrzeuges durch Ermitteln der die momentanen Radlastkräfte anzeigenden Signale festgestellt wird.
  6. Vorrichtung zur Optimierung der Fahreigenschaften eines Fahrzeuges, insbesondere eines Kraftfahrzeuges, umfassend:
    - eine Federbein/Stoßdämpfereinheit (10, 100, 150) mit einem zwischen einer Fahrzeugkarosserie (14) und Achsen (18) des Fahrzeuges angeordneten Stoßdämpfer (30, 130) für jedes aus einer Vielzahl von Rädern des Fahrzeuges;
    - Kraftmeßvorrichtungen (24, 106, 166) zum Feststellen momentaner Radlastkräfte, die auf die Räder (60) wirken;
    - Einrichtungen (70) zum Erzeugen eines Referenzsignals, das ein einstellbares gewünschtes Bodenabstandsniveau der Fahrzeugkarosserie (14) anzeigt;
    - Einrichtungen (66) zum Vergleichen des Referenzsignals mit Signalen, die die momentanen, von den Kraftmeßvorrichtungen (24, 106, 166) festgestellten Radlastkräfte anzeigen; und
    - Einrichtungen (72, 74) zum Einstellen des Bodenabstands der Fahrzeugkarosserie (14), bis ein vorbestimmtes Verhältnis zwischen dem Referenzsignal und dem die momentane Radlastkraft anzeigenden Signal erreicht ist;
    dadurch gekennzeichnet, daß
    die Kraftmeßvorrichtungen (24, 106, 166) in jeder der Federbein/Stoßdämpfereinheiten (10, 100, 150) integriert sind.
  7. Vorrichtung nach Anspruch 6, wobei der Stoßdämpfer (30, 130) der Federbein/Stoßdämpfereinheit (10, 100, 150) mit wenigstens einer hydraulischen Druckkammer (40, 42) in Verbindung steht und die Einstelleinrichtungen (72, 74) eine zu/von dieser Kammer (40, 42) zugeführte/abgeführte Hydraulikmediummenge regelt.
  8. Vorrichtung nach Anspruch 6 oder 7, weiterhin umfassend Einrichtungen (54, 56) zur Einstellung von Dämpfungseigenschaften der Federbein/Stoßdämpfer (30, 130) in Abhängigkeit von Schwingungssignalen, die von den Kraftmeßvorrichtungen (24, 106, 166) erzeugt werden, während das Fahrzeug in Bewegung ist.
  9. Vorrichtung nach Anspruch 8, umfassend Einrichtungen zum Verändern eines Durchflußquerschnittes einer Verbindung (52), die zwischen zwei für den Stoßdämpfer (30, 130) vorgesehenen Kammern (40, 42) vorgesehen ist und Hydraulikmedium (88) enthält.
  10. Vorrichtung nach einem der Ansprüche 6 bis 9, wobei die Einstelleinrichtung (72, 74) Vorrichtungen umfaßt, die die Länge des Stoßdämpfers (30, 130) der Federbein/Stoßdämpfereinheit (10, 100, 150) erhöhen/verringern, bis zwischen dem Referenzsignal und dem die momentane Radlastkraft anzeigenden Signal ein vorbestimmtes Verhältnis erreicht ist.
  11. Vorrichtung nach Anspruch 10, wobei die Einstelleinrichtung (72, 74) eine Zuführung (20) für Hydraulikmedium (88), die an wenigstens eine für den Stoßdämpfer (30, 130) ausgebildete Kammer (40, 42) über eine Hydraulikflüssigkeitzuführleitung (64) angeschlossen ist und Regeleinrichtungen umfaßt, die von der Kontrolleinheit (66) zum Zuführen/Abführen des Hydraulikmediums (88) zu/von wenigstens einer Kammer (40, 42) in Abhängigkeit von dem Verhältnis zwischen dem Referenzsignal und dem die momentane Radlastkraft anzeigenden Signal geregelt sind.
  12. Vorrichtung nach einem der Ansprüche 8 bis 11, wobei die Einstelleinrichtungen (72, 74) an eine den Durchflußquerschnitt verändernde Einrichtung (54) angeschlossen sind, die in eine Verbindung (52) eingefügt ist, die zwei in dem Stoßdämpfer (30, 130) vorgesehene Kammern (40, 42) zur Veränderung von Dämpfungseigenschaften des Stoßdämpfers (30, 130) in Abhängigkeit von Schwingungssignalen verbindet, die von der Kontrolleinrichtung (66) von den Kraftmeßvorrichtungen (24, 106, 166) empfangen werden, während das Fahrzeug in Bewegung ist.
  13. Vorrichtung nach einem der Ansprüche 6 bis 12, wobei der Stoßdämpfer (30, 130) zwei hydraulische Druckkammern (40, 42) umfaßt, die voneinander durch eine Trennwand (44) abgeteilt sind und jeweils gegenüberliegende, von einem Kolben (36, 46) geschlossene Enden aufweist, wobei einer von diesen (36) nachgiebig gelagert ist, während der andere (46) die Radlastkraft aufnimmt.
  14. Vorrichtung nach einem der Ansprüche 6 bis 13, wobei die Kraftmeßvorrichtung (106, 166) in einem röhrenförmigen Gehäuse (102) eingesetzt ist und den im Gehäuse (102) für eine Längenbewegung geführten Stoßdämpfer (130) abstützt, wobei das Gehäuse (102) mit einer der Achsen (18) oder der Fahrzeugkarosserie (14) verbunden ist, während das entgegengesetzte Ende des Stoßdämpfers mit der Achse (18) bzw. der Fahrzeugkarosserie (14) durch einen Schwingungsdämpfer (124) verbunden ist.
  15. Vorrichtung nach Anspruch 14, wobei in einem topfförmigen Bodenbereich (164) des Gehäuses (102) die Kraftmeßeinrichtung (106, 166) einstückig ausgebildet ist und einen Drucksensor (166) umfaßt, der in Kontakt mit in dem topfförmigen Bodenbereich (164) eingefülltem elastomerem Material (162) steht und ein Ringspalt zwischen dem topfförmigen Bodenbereich (164) und einem kolbenartigen Ende (156) des Stoßdämpfers (130) vorgesehen ist.
  16. Vorrichtung nach Anspruch 15, wobei die Kraftmeßvorrichtung (106, 166) einstückig zwischen dem unteren Ende (156) des zylindrischen Rohres und dem topfförmigen Bodenbereich (164) des Gehäuses (102) ausgebildet ist.
  17. Vorrichtung nach Anspruch 15 oder 16, wobei der Spalt zwischen dem unteren Ende (156) und dem topfförmigen Bodenbereich (164) mit elastomerem Material (162) gefüllt ist und ein Kraftmeßsensor (166) in dem elastomeren Material (162) eingebettet ist.
  18. Vorrichtung nach einem der Ansprüche 15 bis 17, wobei eine Hülse (160) zwischen dem einen Ende (156) des zylindrischen Rohres (156) und dem topfförmigen Bodenbereich (164) des Gehäuses (102) eingesetzt ist, die mit elastomerem Material (158, 162) miteinander verbunden sind.
EP19880118307 1987-11-06 1988-11-03 Verfahren zur Optimierung des Fahrverhaltens eines Fahrzeugs Expired - Lifetime EP0315163B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873737760 DE3737760A1 (de) 1987-11-06 1987-11-06 Verfahren zum optimieren der fahreigenschaft von fahrzeugen
DE3737760 1987-11-06

Publications (3)

Publication Number Publication Date
EP0315163A2 EP0315163A2 (de) 1989-05-10
EP0315163A3 EP0315163A3 (en) 1990-05-30
EP0315163B1 true EP0315163B1 (de) 1993-02-03

Family

ID=6339973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880118307 Expired - Lifetime EP0315163B1 (de) 1987-11-06 1988-11-03 Verfahren zur Optimierung des Fahrverhaltens eines Fahrzeugs

Country Status (3)

Country Link
US (1) US4913457A (de)
EP (1) EP0315163B1 (de)
DE (2) DE3737760A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8723339D0 (en) * 1987-10-05 1987-11-11 Kellett M A Transducer control circuits
US5113345A (en) * 1989-05-29 1992-05-12 Fuji Jukogyo Kabushiki Kaisha System for controlling active suspensions of a vehicle
DE4014466A1 (de) * 1990-05-07 1991-11-14 Bosch Gmbh Robert Fahrzeugfederung
DE4136104A1 (de) * 1991-11-02 1993-05-06 Fichtel & Sachs Ag, 8720 Schweinfurt, De Verfahren zur lastabhaengigen beeinflussung eines federnden und daempfenden abstuetzsystems zwischen fahrwerk und aufbau eines fahrzeugs und abstuetzsystems zur durchfuehrung dieses verfahrens
US5383680A (en) * 1992-12-21 1995-01-24 Cadillac Gage Textron Inc. Anti-roll system for wheeled vehicles
US6006597A (en) * 1993-02-15 1999-12-28 Japan Electronics Industry, Limited Wheel-acting force measuring device
GB9305841D0 (en) * 1993-03-20 1993-05-05 Lucas Ind Plc Vehicle force transducer system
DE4414022C2 (de) * 1994-04-22 1996-02-29 Daimler Benz Ag Aktives Federungssystem
US6036206A (en) * 1997-11-13 2000-03-14 Case Corporation Traction control and active suspension
DE19907432A1 (de) * 1999-02-22 2000-08-24 Fritz Frederich Verfahren zur Verbesserung des Schwingungsverhaltens von Fahrzeugen
DE10033046A1 (de) * 2000-07-07 2002-01-17 Volkswagen Ag Reglungseinrichtung zur Regelung einer Luftfederung eines Radfahrzeuges in Abhängigkeit erfaßter Radlasten
US6398227B1 (en) * 2000-10-13 2002-06-04 Case Corp. Ride control apparatus and method
DE10111551A1 (de) * 2001-03-10 2002-09-12 Bayerische Motoren Werke Ag Aktives Fahrwerksystem eines Fahrzeugs
US6981558B2 (en) * 2001-05-02 2006-01-03 Wacker Construction Equipment Ag Controller for an unbalanced mass adjusting unit of a soil compacting device
DE10318005A1 (de) * 2003-04-22 2004-11-11 Continental Aktiengesellschaft Verfahren zur Ermittlung eines Fahrparameters für ein Fahrzeug
DE10333997B4 (de) * 2003-07-25 2014-07-17 Volkswagen Ag Sensoranordnung für ein Landfahrzeug
US7551265B2 (en) * 2004-10-01 2009-06-23 Nikon Corporation Contact material and system for ultra-clean applications
DE102006053295B4 (de) * 2006-11-13 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ansteuerung eines semiaktiven oder aktiven Schwingungsdämpfers eines Rades im Fahrwerk eines Fahrzeugs
US8616351B2 (en) 2009-10-06 2013-12-31 Tenneco Automotive Operating Company Inc. Damper with digital valve
US9217483B2 (en) 2013-02-28 2015-12-22 Tenneco Automotive Operating Company Inc. Valve switching controls for adjustable damper
US9884533B2 (en) 2013-02-28 2018-02-06 Tenneco Automotive Operating Company Inc. Autonomous control damper
JP6346908B2 (ja) 2013-02-28 2018-06-20 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッドTenneco Automotive Operating Company Inc. 統合された電子回路を有するダンパ
US9879748B2 (en) 2013-03-15 2018-01-30 Tenneco Automotive Operating Company Inc. Two position valve with face seal and pressure relief port
US9879746B2 (en) 2013-03-15 2018-01-30 Tenneco Automotive Operating Company Inc. Rod guide system and method with multiple solenoid valve cartridges and multiple pressure regulated valve assemblies
EP3400142B1 (de) 2016-01-08 2020-06-17 Multimatic, Inc. Zweistufiges fahrzeugaufhängungssystem
US10479160B2 (en) 2017-06-06 2019-11-19 Tenneco Automotive Operating Company Inc. Damper with printed circuit board carrier
US10588233B2 (en) 2017-06-06 2020-03-10 Tenneco Automotive Operating Company Inc. Damper with printed circuit board carrier
IT201700083402A1 (it) 2017-07-21 2019-01-21 Ari Automotive Res Innovation S A S Di Francesca Bianco & C Sospensione provvista di dispositivo reattivo ai carichi.
DE102020111915B3 (de) * 2020-05-04 2021-06-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Ermittlung von Fahrzeugkenngrößen
US11872862B2 (en) 2022-02-04 2024-01-16 GM Global Technology Operations LLC Automatic corner weight adjustment of vehicle with automated spring seats

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU522455B2 (en) * 1977-10-12 1982-06-10 Leonard Jefferson Blee Servo controlled vehicle suspension
GB2097344B (en) * 1981-04-08 1984-05-16 Lucas Ind Plc Self-leveling suspension system
DE3301774A1 (de) * 1983-01-20 1984-07-26 August Bilstein GmbH & Co KG, 5828 Ennepetal Kraftfahrzeug-vorderachsbein
DE3312433A1 (de) * 1983-04-07 1984-10-11 Lothar Ing.(grad.) 5300 Bonn Stanetzki Zigarettenhuelsen-fuellgeraet
DE3444996A1 (de) * 1984-12-10 1986-06-12 Pfister Gmbh, 8900 Augsburg Verfahren und vorrichtung zum blasenfreien aushaerten von polymeren kunststoffen
JPS61181711A (ja) * 1985-02-06 1986-08-14 Kayaba Ind Co Ltd 車高調整システム
DE3534211A1 (de) * 1985-09-25 1987-03-26 Pfister Gmbh Kraftfahrzeug und verfahren zu dessen betrieb
DE3631876A1 (de) * 1986-09-19 1988-03-31 Bosch Gmbh Robert Fahrzeugfederung
US4776610A (en) * 1986-12-01 1988-10-11 Moog Inc. Short-stroke position transducer for a vehicle suspension system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fachkunde Metall", Dipl. Ing. G. Würtemberger, 46. Auflage 1983, Verlag Europa-Lehrmittel, Wuppertal *

Also Published As

Publication number Publication date
EP0315163A3 (en) 1990-05-30
DE3878152T2 (de) 1993-09-09
EP0315163A2 (de) 1989-05-10
DE3878152D1 (de) 1993-03-18
US4913457A (en) 1990-04-03
DE3737760A1 (de) 1989-05-18

Similar Documents

Publication Publication Date Title
EP0315163B1 (de) Verfahren zur Optimierung des Fahrverhaltens eines Fahrzeugs
US4830399A (en) Elastic connection between at least two rigid parts
US5113345A (en) System for controlling active suspensions of a vehicle
EP0091017B1 (de) Automatisches System zur Regelung der Fahrzeughöhe
US4846317A (en) Strut with controlled variable damping rate
US4798369A (en) Ultrasonic air spring system
EP0133589B1 (de) Computeroptimiertes regelbares Aufhängungssystem
EP0157181B1 (de) Steuersystem für einstellbare Stossdämpfer für ein Fahrzeug mit veränderbarer Dämpfungscharakteristik in Abhängigkeit vom Strassenzustand
US5016908A (en) Method and apparatus for controlling shock absorbers
US4595072A (en) Vehicle suspension system
US5103396A (en) System for controlling active suspensions of a vehicle
US5287277A (en) Method and apparatus for controlling height of a vehicle
US20060267296A1 (en) Electronic control of vehicle air suspension
US5013067A (en) Method and apparatus for controlling vehicle height
EP0255720A1 (de) Radaufhängung für ein Fahrzeug
GB2233939A (en) Actively-controlled vehicle suspension giving adjustable cornering characteristics
US5063512A (en) Control unit of active suspension system of vehicle
JPH07304318A (ja) 能動懸架装置
EP0114680A1 (de) Kraftfahrzeugfederung mit einer Regelvorrichtung für die Fahrzeughöhe
EP0355715B1 (de) Anti-Rollsystem für Fahrzeuge zur Stabilisierung der Fahrzeugaufbaulage
GB2227722A (en) A method and apparatus for controlling height of a vehicle
JPH0416791Y2 (de)
EP0289364B1 (de) Fahrzeugaufhängungssysteme
US20040159515A1 (en) Coil over shock absorber with spring seat load adjusted damping
CA1289221C (en) Elastic connection between at least two rigid parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881126

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19910911

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930203

Ref country code: SE

Effective date: 19930203

REF Corresponds to:

Ref document number: 3878152

Country of ref document: DE

Date of ref document: 19930318

ET Fr: translation filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PFISTER GMBH

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST