EP0250746B1 - Passiver Infrarot-Bewegungsmelder - Google Patents

Passiver Infrarot-Bewegungsmelder Download PDF

Info

Publication number
EP0250746B1
EP0250746B1 EP87105733A EP87105733A EP0250746B1 EP 0250746 B1 EP0250746 B1 EP 0250746B1 EP 87105733 A EP87105733 A EP 87105733A EP 87105733 A EP87105733 A EP 87105733A EP 0250746 B1 EP0250746 B1 EP 0250746B1
Authority
EP
European Patent Office
Prior art keywords
signal
passive infrared
predetermined
movement indicator
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87105733A
Other languages
English (en)
French (fr)
Other versions
EP0250746A3 (en
EP0250746A2 (de
Inventor
Joachim Willie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Fuss GmbH and Co
Original Assignee
Fritz Fuss GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Fuss GmbH and Co filed Critical Fritz Fuss GmbH and Co
Priority to AT87105733T priority Critical patent/ATE71756T1/de
Publication of EP0250746A2 publication Critical patent/EP0250746A2/de
Publication of EP0250746A3 publication Critical patent/EP0250746A3/de
Application granted granted Critical
Publication of EP0250746B1 publication Critical patent/EP0250746B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/191Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using pyroelectric sensor means

Definitions

  • the invention relates to a passive infrared motion detector as specified in the preamble of the main claim.
  • PIR P assiver I nfra R ot
  • IR radiation infrared radiation
  • a PIR motion detector Even the smallest changes in radiation flow, ie changes over time in the temperature difference between the ambient temperature and the respective surface temperature of the object, can be detected.
  • the well-known PIR motion detectors are designed to detect and evaluate dynamic changes. So that a message signal is generated, it is necessary that the object both penetrates into the measuring field and exits the measuring field again.
  • known evaluation methods can be designed to output a corresponding detection signal only after a sequence of preselectable detection sequences, for example a plurality of measuring field entries and exits. The amplitude and number or polarity of the sensor output pulses generated by the entries and exits are compared with specified reference values and specified polarity sequences and time sequences.
  • a passive infrared motion detector according to the preamble of claim 1 is known from EP 107 042 A1. It has a first sensor, the output signal of which is evaluated according to two criteria. The evaluation takes place on the one hand according to the correlation with a stored reference signal and on the other hand according to a predetermined amplitude threshold value of the correlation result. Furthermore, the close range of the first sensor is monitored by a second sensor and the output signal of the second sensor is used as a reference for the output signal of the first sensor.
  • an infrared motion detector is known from EP 70 364 B1, which has a window discriminator with dynamic reference voltage. Both a positive and a negative signal pulse of a given amplitude occur within a given time interval. This voltage curve is characteristic of an entry and exit of a person in the surveillance area.
  • the invention has for its object to provide a passive infrared motion detector of the type mentioned, which is simplified in terms of circuitry and in which a technically complex correlation process can be dispensed with and nevertheless a reliable detection of the useful signal against noise takes place.
  • the invention takes advantage of the fact that after Radiation law changes the radiant power in the square of the distance. In relation to a certain object, a certain characteristic radiation power can therefore be assigned to each distance zone. Due to the generally approximately conical design of the measuring field, which depends on the optical device used, the time between an entry and an exit of the measuring field is also different at two distance zones. The invention is therefore based on the idea of evaluating the measured variables characteristic of the individual distance zones in order to detect a transition of an object from one distance zone to the other. For example, the signal amplitude decreases to a quarter when the distance of the object from the sensor doubles. A movement of the object can therefore be concluded from the change in amplitude.
  • the amplitudes assigned to the distance zones can be determined on the basis of reference objects which are brought into the distance zones. In this way, the signal amplitudes on which the evaluation is based can be measured precisely. It is also easily possible to subdivide into signal amplitudes that are based on movement and signal amplitudes that are caused by interference.
  • a preferred development of the invention consists in that more than two distance zones are specified with an amplitude sequence assigned to the distance zones.
  • a subdivision can consist, for example, of providing a near area in which the object is much larger than the measurement zone, a near area, a middle area and a far area. The classification is made according to the specific detection requirements.
  • the individual distance zones can be assigned different, individual signal intervals will.
  • This measure takes into account the fact that the usually conical measuring field increases with increasing distance from the sensor, so that the time for traversing increases correspondingly with increasing distance from the sensor.
  • the individual distance zones can therefore be assigned a signal sequence corresponding to their diameter of those signals which indicate the entry and exit of an object into or out of the distance zone.
  • a preferred development is that the outputs of all selective amplifiers are connected via a multiplexer to a threshold value comparator with a variable reference threshold, which can be controlled via a multiplexer in accordance with the input signal present.
  • the output of the threshold value comparator is preferably connected to a first and second cross-connected timer in such a way that the first timer when a Threshold value is started and that an output signal can only be tapped at the first timing element if the second timing element has been activated within a predetermined time period by exceeding a negated threshold value.
  • the outputs of the selective amplifiers are connected to an interference signal detection unit, with which the output signals are monitored for signal amplitudes that clearly differ from the expected signal amplitudes.
  • Fig. 1 shows purely schematically the formation of measuring fields of a PIR motion detector and their subdivision into distance zones.
  • Fig. 2 shows a block diagram of an arrangement for monitoring the distance zones acc. Fig. 1.
  • Fig. 3 shows an alternative of a circuit part of the arrangement according to. Fig. 2;
  • Fig. 4 shows an alternative arrangement for monitoring the distance zones acc. Fig. 1
  • FIG. 1 illustrates purely schematically an area monitored by a PIR motion detector with a sensor 1.
  • the infrared radiation of the two measuring zones 20, 20 ' is focused on the sensor 1 via an optical device, not shown. Any change in radiation incidence causes an output voltage change at sensor 1, which is evaluated in an arrangement described in the following figures.
  • the distances of the individual distance zones e1 to e5 as well as their lengths can basically be freely selected. However, it makes sense to make and coordinate the classification according to the specific detection requirements.
  • the radiation in the two measuring fields 20, 20 ' is bundled via the optical device on the sensor 1 from antiparallel connected, adjacent radiation detectors 1, 1' pyro-electric type, which can also be referred to as dual sensors.
  • FIG. 1 also illustrates in a purely schematic manner the manner in which the relationship between the object size and the measurement field size changes in the individual distance zones e1 to e4.
  • a reference object 22 is shown in the measuring field 20 in each of the distance zones.
  • Fig. 1 illustrates that the time for traversing the measuring fields in the individual distance zones e1 to e4 is different at the same speed in the individual distance zones e1 to e4. The determination of this interval can be determined on the basis of an entrance amplitude and an exit amplitude at the outputs of the two detectors 1, 1 '.
  • Fig. 2 illustrates a first example of an evaluation unit with which the output signals of the two radiation detectors 1, 1 'are evaluated.
  • evaluation branches I, I' For both radiation detectors 1, 1 'there are separate evaluation branches I, I'. They each consist of a series connection of selective amplifiers 2, 4, 6 and 2 ', 4', 6 '. The number corresponds to the number of distance zones e1 to e4. With, for example, four distance zones, four selective amplifiers are also connected in series. The output signals of the individual selective amplifiers are passed through differentiators 3, 5, 7 and 3 ', 5', 7 ', to the next stage. Through the series connection of the selective amplifiers and the differentiators, the evaluation circuit can be designed for a predetermined sensitivity with regard to a certain monitoring volume.
  • the radiation changes upon entry and exit into or from a distance zone are evaluated by assigning a selective amplifier to each distance zone e1 to e n and comparing the amplitude of the respective output signal with reference amplitudes will. The assignment and subdivision takes place accordingly the expected useful signal amplitudes in the distance ranges e1 to e n .
  • the respective output signal E to E n of an amplifier 2, 4, 6 of the evaluation branch I is fed via an analog multiplexer 8 to a threshold value comparator 9 with a variable reference voltage, which likewise via a further analog multiplexer 12 in association with the input signal currently being applied can be interpreted as changeable.
  • timing element 10 or 11 When a threshold value is exceeded, one of two timing elements 10 or 11 is triggered, which only emits an output signal if the other negated timing element is activated within a predetermined time. Depending on whether a positive or negative reference threshold is exceeded (reference voltage u+ or reference voltage U ⁇ ), a corresponding output signal A+ or A ⁇ is output by the relevant timing element 10, 11.
  • the two analog multiplexers 8, 12 are controlled via a clock signal ST, which is generated in a predetermined time pattern by a clock stage (not shown).
  • the second evaluation branch I ' is identical to the first evaluation branch I.
  • the output signals of the individual amplifiers 2 ', 3', 6 ', are tapped for comparison purposes and, similarly to the output signals E1 to E n, are fed to an analog multiplexer (not shown).
  • the evaluation branch I ' can improve the evaluation overall depending on the sensor type and requirement.
  • the comparison levels V1 to V n are preferably determined by measurement by placing a reference object in the individual distance zones and measuring the characteristic output amplitudes of the associated selective amplifiers. In this way, an amplitude sequence adapted to the respective monitoring task can be determined and defined.
  • the determined maximum signal amplitudes at the outputs of the amplifiers can also be divided into signal amplitudes that originate from motion detection and signal amplitudes that are caused due to interference.
  • a logical evaluation unit (not shown) can be used in this way prevent a message from the motion detector that can be clearly assigned to interference. With the aid of the logic evaluation not only the absence of a predetermined amplitude sequence but also the absence of an entry / exit detection can be detected and displayed, if the individual distance zones are assigned to e n e1 characteristic signal frequencies.
  • a processor-controlled evaluation can be provided according to FIG. 3.
  • the output signals Se1 to Se n of the selective amplifiers 2, 4, 6 of the first evaluation branch I are fed to a processor 19 which works with an A / D converter with multiplexed inputs and correspondingly multiplexed threshold value outputs (not shown).
  • a threshold value corresponding to the example described in FIG. 2 is exceeded, one of the counter stages 13 and 14 is activated depending on the polarity of the level U x +, U x ⁇ , and then one of the memory elements 15 and 16 is set, each of the two Time counter stages 143 and 14 are connected downstream.
  • an output stage 18 for actuator control is activated with the aid of a logic combination stage 17, one of the corresponding alarm outputs A e1 to A en of the relevant distance stage e1 to e n being activated.
  • FIG. 4 Another example for monitoring the distance zones e1 to e n is illustrated in FIG. 4.
  • the arrangement is designed as an example for four distance levels e1 to e4. Accordingly, the radiation detector 1 is followed by a selective amplifier with four stages 41, 42, 43, 44.
  • the output signal of each amplifier 41 to 44 is fed to an evaluation unit 54, 55, 56 and 57, the circuit details of which are identical.
  • the evaluation unit is representative of all other evaluation units 57 at the output of the amplifier 44 shown in detail.
  • It includes a comparator evaluation 45 for interference signal detection or for detection detection. If signal amplitudes appear within the range selected as a function of the distance, a memory cell 46 and a timer 47 are activated. The timer 47 resets the memory 46 within a time that is selected as a function of the distance. If the corresponding negated signal amplitude is reached within this time, then additional memory element 48 is set and an actuator signal A e4 is set via an AND link 40 of the outputs of the two memories 46, 48.
  • one of the two memory elements 51 or 52 is set as a function of the polarity of the signal amplitude and activates an actuator B e4 with a time delay via a block 13 if the corresponding negated signal amplitude does not appear within the time delay.
  • the actuator B e4 indicates that an object remains in the detection area.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Burglar Alarm Systems (AREA)

Description

  • Die Erfindung geht aus von einem passiven Infrarot-Bewegungsmelder, wie er im Oberbegriff des Hauptanspruchs angegeben ist.
  • Derartige PIR-(Passiver InfraRot)-Bewegungsmelder werden bekanntlich in der Gefahrenmeldetechnik, insbesondere in der Instrusionsschutztechnik und in der Steuerungstechnik zur Erfassung von bewegten Objekten in Innenräumen eingesetzt. Dabei wird die von einem menschlichen Körper oder von einer anderen Wärmequelle abgegebene Infrarotstrahlung (IR-Strahlung) von einer Spiegeloptik gebündelt und einem Pyro-Element zugeführt. Im Meßbereich eines PIR-Bewegungsmelders können auch kleinste Strahlenflußänderungen, d.h. zeitliche Änderungen der Temperaturdifferenz zwischen der Umgebungstemperatur und der jeweiligen Oberflächentemperatur des Objektes, detektiert werden.
  • Die bekannten PIR-Bewegungsmelder sind darauf ausgelegt, dynamische Änderungen zu erfassen und auszuwerten. Damit ein Meldesignal erzeugt wird, ist es erforderlich, daß das Objekt sowohl in das Meßfeld eindringt als auch aus dem Meßfeld wieder austritt. Ferner können bekannte Auswerteverfahren darauf ausgelegt sein, erst nach einer sequenz von vorwählbaren Detektionsabläufen, beispielsweise mehreren Meßfeldeintritten und -austritten, ein entsprechendes Detektionssignal abzugeben. Die von den Eintritten und Austritten erzeugten Sensorausgangsimpulse werden hinsichtlich ihrer Amplituden und ihrer Anzahl bzw. Polarität mit vorgegebenen Referenzwerten sowie vorgegebenen Polaritätsfolgen und Zeitfolgen verglichen.
  • Für diese PIR-Bewegungsmelder ist also charakteristisch, daß sie im wesentlichen auf das Durchqueren des Meßfeldes reagieren, und daß das Verweilen von Objekten im Meßbereich nicht differenziert erkannt werden kann. Die Referenzwerte der bekannten PIR-Bewegungsmelder müssen aus naheliegenden Gründen auf die Kleinsten zu detektierenden Signale sowie die längste Folgezeit des Polaritätswechsels des Sensorsignals ausgelegt sein. Dies hat insbesondere bei der Anwendung eines PIR-Bewegungsmelders im Intrusionsschutz zur Folge, daß entweder der Detektionsbereich sehr klein gehalten werden muß oder daß die Detektion eines bewegten Objektes innerhalb des Meßfeldes nicht erkannt werden kann, so daß in dieser Hinsicht keine Überwachung erfolgt. Im Bereich der Steuerungsanwendungen kann dieser Mangel Fehlfunktionen mit gravierenden Folgeerscheinungen auslösen.
  • Ein passiver Infrarot-Bewegungsmelder gemäß dem Obergegriff des Anspruchs 1 ist aus der EP 107 042 A1 bekannt. Er weist einen ersten Sensor auf, dessen Ausgangssignal nach zwei Kriterien ausgewertet wird. Die Auswertung erfolgt einerseits nach der Korrelation mit einem abgespeicherten Referenzsignal und andererseits nach einem vorgegebenen Amplituden-Schwellenwert des Korrelationsergebnisses. Ferner wird der Nahbereich des ersten Sensors über einen zweiten Sensor überwacht und das Ausgangssignal des zweiten Sensors als Referenz für das Ausgangssignal des ersten Sensors verwertet.
  • Ferner ist aus der EP 70 364 B1 ein Infrarot-Bewegungsmelder bekannt, der einen Fensterdiskriminator mit dynamischer Referenzspannung aufweist. Innerhalb eines vorgegebenen Zeitintervalls tritt sowohl ein positiver als auch ein negativer Signalimpuls vorgegebener Amplitude auf. Dieser Spannungsverlauf ist charakteristisch für einen Eintritt und einen Austritt einer Person in den Überwachungsbereich.
  • Der Erfindung liegt die Aufgabe zugrunde, einen passiven Infrarot-Bewegungsmelder der eingangs genannten Art anzugeben, welcher schaltungstechnisch vereinfacht ist und bei welchem auf einen sich technisch aufwendig gestaltenden Korrelationsvorgang verzichtet werden kann und trotzdem eine zuverlässige Erkennung des Nutzsignals gegenüber dem Rauschen erfolgt.
  • Diese Aufgabe wird mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen gelöst. Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Die Erfindung macht sich den Umstand zunutze, daß sich nach dem Strahlungsgesetz die Strahlungsleistung im Quadrat der Entfernung ändert. Bezogen auf ein bestimmtes Objekt kann daher jeder Entfernungszone eine bestimmte charakteristische Strahlungsleistung zugeordnet werden. Durch die in der Regel etwa kagelförmige Ausbildung des Meßfeldes, die von der verwendeten optischen Einrichtung abhängt, ist ferner auch die Zeit zwischen einem Meßfeld-Eintritt und einem -Austritt bei zwei Entfernungszonen unterschiedlich. Der Erfindung liegt also der Gedanke zugrunde, die für die einzelnen Entfernungszonen charakteristischen Meßgrößen auszuwerten, um einen Übergang eines Objektes von einer Entfernungszone in die andere zu detektieren. Beispielsweise verringert sich die Signalamplitude auf ein Viertel, wenn sich die Entfernung des Objektes vom Sensor verdoppelt. Aus der Amplitudenänderung kann also auf eine Bewegung des Objektes geschlossen werden.
  • Die den Entfernungszonen zugeordneten Amplituden können anhand von Referenzobjekten ermittelt werden, die in die Entfernungszonen gebracht werden. Auf diese Weise können die der Auswertung zugrundeliegenden Signalamplituden genau gemessen werden. Es ist ferner leicht möglich, eine Unterteilung in Signalamplituden, die auf einer Bewegung beruhen, und in Signalamplituden, die aufgrund von Störeinflüssen hervorgerufen werden, vorzunehmen.
  • Eine bevorzugte Weiterbildung der Erfindung besteht darin, daß mehr als zwei Entfernungszonen mit einer den Entfernungszonen zugeordneten Amplitudensequenz vorgegeben werden. Eine Unterteilung kann beispielsweise darin bestehen, daß ein Nahstbereich, in welchem das Objekt sehr viel größer ist als die Meßzone, ein Nahbereich, ein Mittelbereich und ein Fernbereich vorgesehen sein können. Die Einteilung erfolgt sinnvollerweise entsprechend den spezifischen Detektionsanforderungen.
  • Weiterhin kann es vorteilhaft sein, daß den einzelnen Entfernungszonen unterschiedliche, individuelle Signalintervalle zugeordnet werden. Diese Maßnahme trägt dem Umstand Rechnung, daß sich das üblicherweise kegelförmig ausgebildete Meßfeld mit zunehmender Entfernung vom Sensor vergrößert, so daß sich die Zeit zur Durchquerung entsprechend mit zunehmendem Abstand vom Sensor vergrößert. Den einzelnen Entfernungszonen kann daher eine ihrem Durchmesser entsprechend zugeordnete Signalfolge derjenigen Signale zugeordnet werden, die einen Eintritt und einen Austritt eines Objektes in die bzw. aus der Entfernungszone anzeigen.
  • Es erweist sich als vorteilhaft, daß beim Ausbleiben einer vorgegebenen Amplitudensequenz und/oder wenn die Signale nicht innerhalb eines vorgegebenen Intervalls auftreten, eine Störung angezeigt wird. Es erfolgt also anderen Worten eine Plausibilitätskontrolle, durch welche Fehlalarme verhindert werden.
  • Eine bevorzugte Weiterbildung besteht darin, daß die Ausgänge aller selektiven Verstärker über einen Multiplexer mit einem Schwellenwert-Komparator mit variierbarer Referenzschwelle verbunden sind, die über einen Multiplexer entsprechend dem anliegenden Eingangssignal ansteuerbar ist.
  • Bevorzugt ist der Ausgang des Schwellenwert-Komparators mit einem ersten und zweiten kreuzweise verschalteten Zeitglied in der Weise verbunden, daß das erste Zeitglied beim Überschreiten eines Schwellenwertes gestartet wird und daß am ersten Zeitglied nur dann ein Ausgangssignal abgreifbar ist, wenn innerhalb einer vorgegebenen Zeitdauer das zweite Zeitglied durch Überschreiten eines negierten Schwellenwertes aktiviert wurde. Eine andere bevorzugte Weiterbildung besteht darin, daß die Ausgänge der selektiven Verstärker mit einer Störsignalerkennungseinheit verbunden sind, mit welcher die Ausgangssignale auf Signalamplituden überwacht werden, die eindeutig von den erwarteten Signalamplituden abweichen.
  • Im folgenden wird die Erdindung anhand von zwei Ausführungsbeispielen weiter beschrieben:
  • Fig. 1 zeigt rein schematisch die Ausbildung von Meßfeldern eines PIR-Bewegungsmelders und ihre Unterteilung in Entfernungszonen.
  • Fig. 2 zeigt ein Blockschaltbild einer Anordnung zur Überwachung der Entfernungszonen gem. Fig. 1.
  • Fig. 3 zeigt eine Alternative eines Schaltungsteils der Anordnung gem. Fig. 2; und
  • Fig. 4 zeigt eine alternative Anordnung zur Überwachung der Entfernungszonen gem. Fig. 1
  • Fig. 1 veranschaulicht rein schematisch einen von einem PIR-Bewegungsmelder mit einem Sensor 1 überwachten Bereich. Es sind beispielhaft zwei Meßzonen 20, 20′ dargestellt, die etwa kegelförmig ausgebildet sind. Selbstverständlich kann auch eine andere Anzahl von Meßzonen vorgesehen sein. Die infrarote Strahlung der beiden Meßzonen 20, 20′ wird über eine nicht dargestellte optische Einrichtung auf den Sensor 1 gebündelt. Jede Änderung des Strahlungseinfalls bewirkt am Sensor 1 eine Ausgangsspannungsänderung, die in einer in den nachfolgenden Figuren beschriebenen Anordnung ausgewertet wird.
  • Die Meßfelder 20, 20′ sind in mehrere Entfernungszonen e1 bis e5 aufgeteilt, deren Grenzen etwa radial zum Sensor 1 verlaufen. Die Entfernungen der einzelnen Entfernungszonen e1 bis e5 sowie ihre Längen sind grundsätzlich frei wählbar. Allerdings ist es sinnvoll, die Einteilung entsprechend den spezifischen Detektionsanforderungen vorzunehmen und abzustimmen.
  • Die Strahlung in den beiden Meßfeldern 20, 20′ wird über die optische Einrichtung auf den Sensor 1 aus antiparallel geschalteten, nebeneinander liegenden Strahlungsdetektoren 1, 1′ pyro-elektrischer Art, die auch als Dual-Sensoren bezeichnet werden können, gebündelt. Die beiden Strahlungsdetektoren 1, 1′ bestehen jeweils aus einem Kristall im Abstand B mit einer wirksamen Länge X und einer wirksamen Fläche A bzw. A′.
  • In der Fig. 1 ist ferner rein schematisch veranschaulicht, auf welche Weise sich das Verhältnis zwischen Objektgröße und Meßfeldgröße in den einzelnen Entfernungszonen e1 bis e4 ändert. Dazu ist im Meßfeld 20 in jeder der Entfernungszonen jeweils ein Referenzobjekt 22 dargestellt. Es dürfte damit deutlich werden, daß ein gleich großes Objekt beim Eindringen in die unterschiedlichen Entfernungszonen charakteristische Strahlungsänderungen verursacht, die den einzelnen Entfernungszonen zugeordnet werden können. Nach dem Strahlungsgesetz reduziert sich nämlich die Strahlungsleistung im Quadrat der Entfernung. Desweiteren veranschaulicht die Fig. 1, daß die Zeit zum Durchqueren der Meßfelder in den einzelnen Entfernungszonen e1 bis e4 bei gleicher Geschwindigkeit in den einzelnen Entfernungszonen e1 bis e4 unterschiedlich ist. Die Bestimmung dieses Intervalls kann anhand einer Eintrittsamplitude und einer Austrittsamplitude an den Ausgängen der beiden Detektoren 1, 1′ ermittelt werden.
  • Diese Überlegungen lassen sich grundsätzlich auf alle Detektortypen übertragen und sind nicht auf die hier beispielhaft wierdergegebene Detektoranordnung beschränkt.
  • Fig. 2 veranschaulicht ein erstes Beispiel einer Auswerteeinheit, mit welcher die Ausgangssignale der beiden Strahlungsdetektoren 1, 1′ ausgewertet werden. Für beide Strahlungsdetektoren 1, 1′ sind getrennte Auswertezweige I, I′ vorhanden. Sie bestehen jeweils aus einer Hintereinanderschaltung von selektiven Verstärkern 2, 4, 6 bzw. 2′, 4′, 6′. Die Anzahl entspricht jeweils der Anzahl der Entfernungszonen e1 bis e4. Bei beispielsweise vier Entfernungszonen sind also auch vier selektive Verstärker hintereinander geschaltet. Die Ausgangssignale der einzelnen selektiven Verstärker werden über Differenzierglieder 3, 5, 7 bzw. 3′, 5′, 7′, an die folgende Stufe weitergeleitet. Durch die Reihenschaltung der selektiven Verstärker und der Differenzierglieder kann die Auswerteschaltung auf eine vorgegebene Empfindlichkeit hinsichtlich eines bestimmten Überwachungsvolumens ausgelegt werden.
  • Im Auswertezweig I, der dem Strahlungsdetektor 1 nachgeschaltet ist, werden die Strahlungsänderungen beim Eintritt und Austritt in eine bzw. aus einer Entfernungszone dadurch ausgewertet, das jeder Entfernungszone e1 bis en jeweils ein selektiver Verstärker zugeordnet ist und die Amplitude des jeweiligen Ausgangssignals mit Referenzamplituden verglichen werden. Die Zuordnung und Unterteilung erfolgt entsprechend den zu erwartenden Nutzsignalamplituden in den Entfernungsbereichen e1 bis en. Das jeweilige Ausgangssignal E bis En eines Verstärkers 2, 4, 6 des Auswertezweiges I wird über einen Analog-Multiplexer 8 einem Schwellenwert-Komparator 9 mit variabler Referenzspannung zugeführt, welche ebenfalls über einen weiteren Analog-Multiplexer 12 in Zuordnung zu dem gerade anliegenden Eingangssignal veränderbar ausgelegt werden kann. Beim Überschreiten eines Schwellenwertes wird eines von zwei Zeitgliedern 10 oder 11 angesteuert, welches ausschließlich dann ein Ausgangssignal abgibt, wenn innerhalb einer vorgegebenen Zeit das andere negierte Zeitglied aktiviert wird. In Abhängigkeit davon, ob eine positive oder negative Referenzschwelle überschritten wird (Referenzspannung u⁺ oder Referenzspannung U⁻), wird ein entsprechendes Ausgangssignal A⁺ oder A⁻ vom betreffenden Zeitglied 10, 11 ausgegeben.
  • Die beiden Analog-Multiplexer 8, 12 werden über ein Takt-Signal ST angesteuert, das in einem vorgegebenen Zeitraster von einer Taktstufe (nicht dargestellt) erzeugt wird. Der zweite Auswertezweig I′ ist identisch zum ersten Auswertezweig I ausgebildet. Die Ausgangssignale der einzelnen Verstärker 2′, 3′, 6′, werden zu Vergleichszwecken abgegriffen und ähnlich wie die Ausgangssignale E1 bis En einem nicht dargestellten Analog-Multiplexer zugeführt. Der Auswertezweig I′ kann je nach Sensortyp und Anforderung die Auswertung insgesamt verbessern.
  • Die Vergleichspegel V1 bis Vn werden bevorzugt meßtechnisch ermittelt, indem ein Referenzobjekt in die einzelnen Entfernungszonen gebracht wird und dabei die charakteristischen Ausgangsamplituden der zugehörigen selektiven Verstärker gemessen wird. Auf diese Weise kann eine an die jeweilige Überwachungsaufgabe angepaßte Amplitudensequenz ermittelt und festgelegt werden. Die ermittelten maximalen Signalamplituden an den Ausgängen der Verstärker lassen sich darüber hinaus in Signalamplituden einteilen, die von einer Bewegungsdetektion herrühren, sowie in Signalamplituden, die aufgrund von Störeinflüssen hervorgerufen werden. Durch eine logische Auswerteeinheit (nicht dargestellt) läßt sich auf diese Weise ein Meldung des Bewegungsmelders verhindern, die eindeutig Störeinflüssen zugeordnet werden kann. Mit Hilfe der logischen Auswerteeinheit kann nicht nur das Ausbleiben einer vorgegebenen Amplitudensequenz, sondern auch das Ausbleiben einer Eintritts-/Austritts-Detektion erkannt und angezeigt werden, wenn den einzelnen Entfernungszonen e1 bis en charakteristische Signalfrequenzen zugeordnet werden.
  • Alternativ zu der Auswertung mittels des Analog-Multiplexers 8 gemäß Fig. 2 kann entsprechend Fig. 3 eine prozessorgesteuerte Auswertung vorgesehen sein. Die Ausgangssignale Se1 bis Sen der selektiven Verstärker 2, 4, 6 des ersten Auswertezweiges I werden dabei einem Prozessor 19 zugeführt, der mit einem A/D-Wandler mit gemultiplexten Eingängen und entsprechend gemultiplexten Schwellenwert-Ausgängen (nicht dargestellt) arbeitet. Beim Überschreiten eines Schwellenwertes entsprechend dem in Fig. 2 beschriebenen Beispiel wird abhängig von der Polarität des Pegels Ux⁺, Ux⁻ eine der Zählstufen 13 bzw. 14 aktiviert, und daraufhin eines der Speicherelemente 15 bzw. 16 gesetzt, die jeweils den beiden Zeitzählstufen 143 und 14 nachgeschaltet sind. Erfolgt innerhalb einer fest vorgegebenen Zeitfolge das Setzen eines Gegenwertes, wird mit Hilfe einer logischen Verknüpfungsstufe 17 eine Ausgangsstufe 18 zur Aktoransteuerung aktiviert, wobei einer der entsprechenden Alarmausgänge Ae1 bis Aen der betreffenden Entfernungsstufe e1 bis en angesteuert wird.
  • Ein weiteres Beispiel zur Überwachung der Entfernungszonen e1 bis en ist in Fig. 4 veranschaulicht. Die Anordnung ist beispielhaft für vier Entfernungsstufen e1 bis e4 ausgelegt. Demzufolge ist dem Strahlungsdetektor 1 ein selektiver Verstärker mit vier Stufen 41, 42, 43, 44 nachgeschaltet. Das Ausgangssignal eines jeden Verstärkers 41 bis 44 wird jeweils einer Auswerteeinheit 54, 55, 56 bzw. 57 zugeführt, deren Schaltungseinzelheiten identisch sind. Stellvertretend für alle anderen Auswerteeinheiten ist die Auswerteeinheit 57 am Ausgang des Verstärkers 44 im einzelnen dargestellt.
  • Sie umfaßt eine Komparator-Auswertung 45 zur Störsignalerkennung bzw. zur Detektionserkennung. Erscheinen Signalamplituden innerhalb der entfernungsabhängig gewählten Bandbreite, so wird eine Speicherzelle 46 sowie ein Zeitglied 47 aktiviert. Das Zeitglied 47 setzt den Speicher 46 innerhalb einer entfernungsabhängig gewählten Zeit zurück. Wird innerhalb dieser Zeit die entsprechend negierte Signalamplitude erreicht, so wird weiteres Speicherelement 48 gesetzt und über eine UND-Verknüpfung 40 der Ausgänge der beiden Speicher 46, 48 ein Aktorsignal Ae4 gesetzt. Gleichzeitig wird beim Ansprechen der Komparator-Auswertung 45 in Abhängigkeit von der Polarität der Signalamplitude eines der beiden Speicherelemente 51 oder 52 gesetzt, das zeitverzögert über einen Block 13 einen Aktor Be4 aktiviert, wenn innerhalb der Zeitverzögerung nicht die entsprechende negierte Signalamplitude erscheint. Der Aktor Be4 zeigt an, daß ein Objekt im Detektionsbereich verweilt. Diese beiden Aktoren können dazu verwendet werden, eine Meldezentrale (nicht dargestellt) zu aktivieren.

Claims (7)

1. Passiver Infrarot-Bewegungsmelder mit einem Sensor, dessen beim Eintritt und beim Austritt eines Objektes vorgegebener Objektgröße (d.h. vorgegebener lufrarot-Charakteristik) in einen bzw. aus einem Überwachungsbereich erzeugtes Ausgangssignal durch Vergleich mit Referenzwerten ausgewertet wird, wobei der Überwachungsbereich in unterschiedliche Entfernungszonen vom Sensor unterteilt ist und die Referenzwerte entfernungsabhängig sind,
dadurch gekennzeichnet,
- daß die Referenzwerte für jede Entfernungszone (e₁ bis en) aus einem vorgegebenen Amplitudenschwellenwert (U⁺, U⁻, V₁ bis Vn) und einem vorgegebenen Zeit Intervall, in welchem sie auftreten, bestehen;
- daß mit zunehmendem Abstand der Entfernungszonen (e₁ bis en) vom Sensor (1) die Amplitudenschwellenwerte (U⁺, U⁻, V₁ bis Vn) kleiner und das jeweils zugeordnete Zeit Intervall größer gewählt werden, und
- daß ein Alarm nur dann ausgelöst wird, wenn das Ausgangssignal (E₁ bis En) des Sensors (1) den für die jeweilige Entfernungszone (e₁ bis en) vorgegebenen Amplitudenschwellenwert (U⁺, U⁻, V₁ bis Vn) innerhalb des zugeordneten Zeit-Intervalls überschreitet.
2. Passiver Infrarot-Bewegungsmelder nach Anspruch 1,
dadurch gekennzeichnet,
daß mehr als zwei Entfernungszonen (e₁ bis en) mit den Entfernungszonen (e₁ bis en) zugeordneten Amplitudenschwellenwerten (U⁺, U⁻, V₁ bis Vn) und Intervallen vorgegeben sind.
3. Passiver Infrarot-Bewegungsmelder nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß beim Ausbleiben einer vorgegebenen Folge von Amplitudenschwellenwerten (U⁺, U⁻, V₁ bis Vn) und/oder beim Ausbleiben des Ausgangssignals innerhalb des vorgegebenen Intervalls eine Störung angezeigt wird.
4. Passiver Infrarot-Bewegungsmelder nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß eine Auswerte-Einheit vorhanden ist, die mindestens zwei selektive Verstärker (2,4,6) aufweist, welche jeweils einer Entfernungszone (e₁ bis en) zugeordnet sind, und daß der Ausgang eines jeden Verstärkers (2, 4, 6) mit einer Komparator-Einrichtung zum Vergleich des betreffenden Ausgangssignals (E₁ bis En) mit einem individuell auf die zugehörige Entfernungszone (e₁ bis en) ausgelegten Referenzsignal verbunden ist.
5. Passiver Infrarot-Bewegungsmelder nach Anspruch 4,
dadurch gekennzeichnet,
daß die Ausgänge aller selektiven Verstärker (2,4,6) über einen Multiplexer (8) mit einem Schwellenwert-Komparator (9) mit variierbarer Referenzschwelle verbunden sind, die über einen weiteren Multiplexer (12) entsprechend dem anliegenden Eingangssignal ansteuerbar sind.
6. Passiver Infrarot-Bewegungsmelder nach Anspruch 5,
dadurch gekennzeichnet,
daß der Ausgang des Schwellenwert-Komparators (9) mit einem ersten und zweiten kreuzweise verschalteten Zeitglied (10,11) in der Weise verbunden ist, daß das erste Zeitglied beim Überschreiten eines Schwellenwertes gestartet wird und daß am ersten Zeitglied nur dann ein Ausgangssignal abgreifbar ist, wenn innerhalb eines vorgegebenen Intervalls das zweite Zeitglied durch Überschreiten eines negierten Schwellenwertes aktiviert wurde.
7. Passiver Infrarot-Bewegungsmelder nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet,
daß die Ausgänge der selektiven Verstärker (2,4,6) mit einer Störsignal-Erkennungseinheit verbunden sind, mit welcher die Ausgangssignale auf Signalamplituden überwacht werden, die eindeutig von den erwarteten Signalamplituden abweichen.
EP87105733A 1986-07-03 1987-04-16 Passiver Infrarot-Bewegungsmelder Expired - Lifetime EP0250746B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87105733T ATE71756T1 (de) 1986-07-03 1987-04-16 Passiver infrarot-bewegungsmelders.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863622371 DE3622371A1 (de) 1986-07-03 1986-07-03 Verfahren zum detektieren eines in das messfeld eines passiven infrarot-bewegungsmelders eingedrungenen objektes und vorrichtung zur durchfuehrung des verfahrens
DE3622371 1986-07-03

Publications (3)

Publication Number Publication Date
EP0250746A2 EP0250746A2 (de) 1988-01-07
EP0250746A3 EP0250746A3 (en) 1988-10-19
EP0250746B1 true EP0250746B1 (de) 1992-01-15

Family

ID=6304323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87105733A Expired - Lifetime EP0250746B1 (de) 1986-07-03 1987-04-16 Passiver Infrarot-Bewegungsmelder

Country Status (3)

Country Link
EP (1) EP0250746B1 (de)
AT (1) ATE71756T1 (de)
DE (2) DE3622371A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU615291B2 (en) * 1988-04-28 1991-09-26 Australian Electronic Securities Pty. Ltd. Controlled access system
DE19548578C2 (de) * 1995-12-27 2001-02-08 Elbau Elektronik Bauelemente G Positionsselektiver passiver Infrarot-Intrusion-Sensor
DE19607608C2 (de) * 1996-02-29 2003-04-03 Abb Patent Gmbh Bewegungsmelder mit mindestens einem Dualsensor zur Detektion von Wärmestrahlung
GB2314410A (en) * 1996-06-18 1997-12-24 Siemens Plc Passive Infra-Red Detection System suitable for Traffic Control Systems
DE10235292A1 (de) * 2002-08-02 2004-02-12 Abb Patent Gmbh Passiv-Infrarot-Bewegungsmelder
US8354643B2 (en) * 2009-10-29 2013-01-15 Suren Systems, Ltd. Infrared motion sensor
WO2018132546A1 (en) * 2017-01-13 2018-07-19 The Research Foundation For The State University Of New York Chopped passive infrared sensor apparatus and method for stationary and moving occupant detection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599642A5 (de) * 1976-11-15 1978-05-31 Cerberus Ag
US4339748A (en) * 1980-04-08 1982-07-13 American District Telegraph Company Multiple range passive infrared detection system
DE3128256A1 (de) * 1981-07-17 1983-02-03 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen Bewegungsmelder zur raumueberwachung
EP0107042B1 (de) * 1982-10-01 1987-01-07 Cerberus Ag Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum
JPS59195179A (ja) * 1983-04-20 1984-11-06 Uro Denshi Kogyo Kk 侵入警報器

Also Published As

Publication number Publication date
ATE71756T1 (de) 1992-02-15
EP0250746A3 (en) 1988-10-19
DE3776001D1 (de) 1992-02-27
EP0250746A2 (de) 1988-01-07
DE3622371C2 (de) 1989-08-10
DE3622371A1 (de) 1988-02-04

Similar Documents

Publication Publication Date Title
DE3832428C2 (de)
DE2938969C2 (de) Ultraschall-Raumüberwachungssystem nach dem Impuls-Echo-Verfahren
EP0107042A1 (de) Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum
DE60006411T2 (de) Zählvorrichtung
EP0248298B1 (de) Gefahrenmeldeanlage
DE2742389A1 (de) Schaltungsanordnung fuer einen infrarot-eindringdetektor
DE3911180C2 (de)
DE69832549T2 (de) Bewegungsdetektionssystem
DE3603568C2 (de)
DE4141469C2 (de) Verfahren zum Betrieb einer optischen Sensoranordnung zur Feststellung von in einem Überwachungsbereich vorhandenen Gegenständen sowie eine solche optische Sensoranordnung
EP0250746B1 (de) Passiver Infrarot-Bewegungsmelder
DE3854218T2 (de) Kontinuierlich bereitgestellter impulszugprozessor hoher zuverlässigkeit.
EP1071931B1 (de) Sensorvorrichtung und verfahren zum betreiben einer sensorvorrichtung
DE3842494A1 (de) Verfahren und vorrichtung zum wahrnehmen und zaehlen von objekten, die sich mit veraenderlicher geschwindigkeit in einem bestimmten bereich bewegen
DE2939494B2 (de) Schaltungsanordnung für Einbruch- oder Feuermeldea nlagen
DE19548578C2 (de) Positionsselektiver passiver Infrarot-Intrusion-Sensor
DE2427328A1 (de) Einbruchsalarmanlage
EP2112530A2 (de) Verfahren zur Detektion von Objekten mittels eines Sensors
DE2451100A1 (de) Anwesenheits-pruefsystem
DE3624195C2 (de)
EP0646901B1 (de) Verfahren zur Verarbeitung der Signale eines passiven Infrarot-Detektors und Infrarot-Detektor zur Durchführung des Verfahrens
DE4306425C1 (de) Melder für Bewegungsvorgänge
DE3713956A1 (de) Fuehleinheit
DE2707181A1 (de) Verfahren und vorrichtung zur gelaende- und raumueberwachung
EP2259093B1 (de) Optoelektronische Sensoranordnung und Verfahren zum Betrieb einer solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19881019

17Q First examination report despatched

Effective date: 19910117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19920115

Ref country code: BE

Effective date: 19920115

Ref country code: NL

Effective date: 19920115

Ref country code: GB

Effective date: 19920115

REF Corresponds to:

Ref document number: 71756

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3776001

Country of ref document: DE

Date of ref document: 19920227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920330

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920429

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920430

Year of fee payment: 6

K2C1 Correction of patent specification (title page) published

Effective date: 19920115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920605

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930430

Ref country code: LI

Effective date: 19930430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101