EP0182172B1 - Procédé pour améliorer les propriétés de stabilité des particules de résine échangeuse d'ions radioactives solidifiées - Google Patents

Procédé pour améliorer les propriétés de stabilité des particules de résine échangeuse d'ions radioactives solidifiées Download PDF

Info

Publication number
EP0182172B1
EP0182172B1 EP19850113953 EP85113953A EP0182172B1 EP 0182172 B1 EP0182172 B1 EP 0182172B1 EP 19850113953 EP19850113953 EP 19850113953 EP 85113953 A EP85113953 A EP 85113953A EP 0182172 B1 EP0182172 B1 EP 0182172B1
Authority
EP
European Patent Office
Prior art keywords
resin particles
ion exchange
treatment
exchange resin
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19850113953
Other languages
German (de)
English (en)
Other versions
EP0182172A1 (fr
Inventor
Dietrich Dr. Laske
Lothar Döhring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gesellschaft zur Forderung der Industrieorientierten Forschung
Original Assignee
Der Industrieorientierten Forschung An Den Schweizerischen Hochschulen und Weiteren Institutionen Gesell zur Forderung
Gesellschaft zur Forderung der Industrieorientierten Forschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Der Industrieorientierten Forschung An Den Schweizerischen Hochschulen und Weiteren Institutionen Gesell zur Forderung, Gesellschaft zur Forderung der Industrieorientierten Forschung filed Critical Der Industrieorientierten Forschung An Den Schweizerischen Hochschulen und Weiteren Institutionen Gesell zur Forderung
Publication of EP0182172A1 publication Critical patent/EP0182172A1/fr
Application granted granted Critical
Publication of EP0182172B1 publication Critical patent/EP0182172B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media

Definitions

  • the present invention relates to a method for improving the stability properties of solidified radioactive ion exchange resin particles, in which method the resin particles are embedded in a mixture containing inorganic and / or organic binders, which is then allowed to harden.
  • organic ion exchange resins in the form of small balls or in powder form are used to clean the various water circuits.
  • both the balls and the powder particles of the ion exchange resins are referred to as resin particles.
  • the ion exchange resin particles have the task of retaining general impurities in the water circuits, but also radionuclides. The activity of the circuits can thus be kept within limits.
  • Active ion exchange resins are also obtained in reprocessing plants.
  • the ion exchange resins are almost always used in the mixed bed process, i.e. Anion and cation exchange resins mixed. Only fresh resins in the OH 'or H' form are used, so that no foreign ions are introduced into the circuits.
  • the ion exchange resins must be replaced when their capacity is exhausted by loading them with general impurities or when they are no longer able to take up activity.
  • the exchanged ion exchange resins are to be regarded as weakly to moderately active radioactive waste that has to be disposed of.
  • radioactive waste For final storage, but also for transport, radioactive waste generally has to be solidified, with various requirements being placed on the solidified waste for safety reasons. This includes a sufficiently high compressive strength, good water resistance, sulfate resistance and the lowest possible leaching rate.
  • radioactive ion exchange resins When radioactive ion exchange resins are solidified, the resin particles are embedded in inorganic or / and organic binders such as cements, bitumen or plastics to form a so-called matrix.
  • the aim is to accommodate the largest possible amount of waste in a given matrix volume.
  • the swelling and shrinking behavior of organic ion exchange resins is to blame for the fact that the matrix may not be water-resistant after it has solidified.
  • the cement hardening of such resins is therefore often viewed with skepticism. In fact, such a matrix can crack or even disintegrate when it is later stored in water if special techniques are not taken into account during solidification.
  • the amount of resin has generally been limited to about 20 kg of dry resin particles per 100 liters of matrix, resulting in a compressive strength of slightly more than 20 N / mm 2 . If the cement mixture is also cured under overcoated water, the matrix also becomes water-resistant, provided that it is not dried in between. With a higher proportion of ion exchange resin in the matrix, the compressive strength drops to below 10 N / mm 2 . Such a matrix can also remain stable when stored in water, as long as no drying takes place beforehand. But if test specimens of such cement consolidation, for example in air with 20% rel.
  • test pieces usually disintegrate within hours to a few days, or at least large cracks appear.
  • DE-A-31 02 473 discloses a method in which the radioactive resin particles are treated with additives and / or thermally before their embedding in order to separate anion and cation resins.
  • the influencing of the source factor was not controlled, but only the aforementioned separation was aimed for.
  • the invention is based on the knowledge that the swelling and shrinking properties of the resin particles can be improved by a suitable treatment of the radioactive ion exchange resin particles before or during the solidification process in such a way that the resulting solidified matrix not only considerably more ion exchange resins with an approximately constant compressive strength may contain, but also has good water resistance after drying.
  • the treatment according to the invention allows the ion exchange resin particles to be brought into a stable state in which they have a reduced swelling capacity compared to untreated resin particles and possibly also have a smaller volume.
  • ion exchange resins are used in Switzerland, namely mostly powder resins in boiling water reactors, e.g. the Powdex resins from Graver Water Conditioning Co.USA, and almost exclusively spherical resins in pressurized water reactors, e.g. the Lewatit resins from Bayer / Leverkusen, FRG.
  • the following examples are based on tests with spherical resins of the latter type. However, practically the same results can also be seen with powder resins.
  • the Lewatit M-500 was used as the anion exchange resin and the Lewatit S-100 as the cation exchange resin, both from Bayer / Leverkusen FRG.
  • radioactive ion exchange resins taken from the water circuits of a nuclear power plant were also loaded as follows: M-500 anion exchange resin with about 200 g of boric acid (H 3 B0 3 ) per liter of resin; Cation exchange resin S-100 with 4 g lithium per liter resin.
  • the anion resin particles By treating the anion resin particles with a polysulfide, it was surprisingly possible to induce the resin particles to shrink considerably while at the same time allowing water to escape. After drying at room temperature and subsequent washing of the resin particles treated in this way, they had a swelling factor of only 1.5 to 2.0 prior to the treatment.
  • the swelling factor is defined here as the quotient of the shaking volume of the resin particles in the water-wet, swollen state and the shaking volume of the same resin particles in the dry state.
  • the swelling factor even decreased to around 1.0, which means that the resin particles then no longer swell and shrink when washed and drying.
  • the anion resin particles still contain a vulcanizing agent, e.g. a xanthate was added, the swelling factor dropped to 1.0 to 1.1 even at room temperature.
  • the swelling factor of anion resin particles could not only be greatly reduced by treatment with polysulfides, but also by ion exchange with special organic acids or anion-active organic compounds.
  • Examples include: Monofunctional and polyfunctional carboxylic acids, their salts and their derivatives, e.g. Stearic acid, acrylic acid, natural and modified root resins, sebacic acid, etc .; Sulfuric acid mono-esters, e.g. Lauryl sulfate; Sulfonates, e.g. Vinyl sulfonates; Phosphoric acid mono- and di-esters, e.g. Stearyl phosphates, butyl phosphates, nonylphenol phosphates. These substances block the hydrophilic groups of the anion resins and can then also be partially crosslinked.
  • anion resin In the case of the anion resin, a thermolysis process also proved to be as suitable as the treatment by adding polysulfide or another of the abovementioned compounds.
  • the elimination of amines from anion resins at higher temperatures is generally known.
  • the manufacturers of the resins expressly warn against excessive temperatures, as this affects the ion exchange properties.
  • this previously undesirable phenomenon can be used to improve the stability properties of solidified radioactive ion exchange resin particles. If anion resin particles are heated to 150 ° C. for a long time, preferably in an air stream with stirring, amines split off, primarily trimethylamine. The resin particles shrink considerably and lose their swelling and shrinking capacity.
  • the decomposition temperature can be slightly reduced by adding alkali and alkaline earth hydroxides.
  • the duration of the thermal treatment depends on the treatment temperature. The higher the temperature, the shorter the treatment time can be.
  • the temperature for the thermolysis can be selected in the range from 50 ° C to 250 ° C, preferably between 100 ° C and 200 ° C, the treatment time e.g. can range from 24 hours down to 1/2 hour.
  • Anion resin particles which have previously been treated with sulfides or polysulfides, can also be removed by additional heat treatment within the temperature limits described above. Surprisingly, this can already be done successfully at a temperature below 100 ° C, for example at 70-80 ° C. This low decomposition temperature offers significant technical advantages, especially in exhaust gas cleaning. Subsequent oxidation with H 2 0 2 can then be used to produce cation-active resins from the original anion resins, which are more easily oxidatively degradable.
  • the swelling and shrinking capacity of cation resin particles could be reduced by ion exchange with very specific cations or cation-active compounds as much as that of anion resin particles. This was done by adding a substance from the following groups: primary, secondary, tertiary and quaternary basic amines which have either one, two or more amine groups per molecule, it being possible for the organic radicals to be additionally crosslinkable; basic organic phosphonium compounds; basic organic sulfonium compounds. Ba ++ and Fe H salts have a similar effect.
  • Some of the ionic compounds that sterically fit into the ion exchange resins are so strongly bound to the resins that they no longer exchange these ions in the environment of a cement lye or in highly mineralized groundwater and the resins therefore remain stable in volume.
  • This adhesive strength could often be determined by retrofitting Improve heat treatment even more, whereby the swelling factor could be reduced again.
  • mixtures of anion and cation resin particles are mostly used.
  • either one of the treatments described for the anion resin particles and one of the treatments described for the cation resin particles should be used, or the mixture of anion and cation
  • the volume ratios and the swelling factors of mixtures of anion and cation resins treated in this way are proportional to the mixture ratio from the data of the individual components and can therefore be calculated for mixtures in advance if the data for the individual components are known.
  • the comparison volumes given in Table 1 are each the specific vibrating volume in liters of an amount of 1 kg of dry ion exchange resin particles in the H or OH form, the specific vibrating volume once for the wet, swollen resin particles and once for the dry resin particles is listed.
  • the swelling factor is the quotient wet volume by dry volume.
  • the initial state of the resin particles was always the H or
  • the resin particles were treated with solutions which exclusively contained the substances listed in Table I.
  • the quantities of the treatment solutions were each sufficiently large so that the resins could be fully loaded in accordance with their maximum capacity.
  • the resin particles were each treated with the relevant solution for 1/2 hour at 50 ° C., then cooled to 20 ° C., after which stirring was continued at 20 ° C. for 1/2 hour before being filtered off and the resin particles were washed with distilled water. To determine the specific shaking volume of the dry resin particles, the latter were dried in vacuo at 40 ° C. until their water content was less than 1% by weight.
  • the untreated ion exchange resin particles have a swelling factor between 2.10 and 2.24 with a specific vibrating volume in the wet, swollen state of 2.50 to 3.23 liters per kg of dry substance. Furthermore, Table I shows that the swelling factor can be considerably reduced to or almost to 1.0 by suitable treatment of the resin particles. All those types of treatment that result in a swelling factor of less than 1.7 are of interest in practice.
  • the information in Table I regarding the wet volume of the treated resin particles is also important. The smaller the specific wet volume, the greater the amount of resin particles that can be solidified in a given volume. It is therefore preferable to select a type of treatment which results in an optimum between the lowest possible swelling factor and at the same time the lowest possible specific wet volume.
  • the mixture according to the above recipe was allowed to harden with an overcoating of water.
  • the resulting solidified matrix had the key figures shown in Table 11.
  • the cation resin was loaded with Ba ++ and the anion resin with S 4 - .
  • the borate detached from the anion resin was precipitated with further Ba ++ as an insoluble barium metaborate.
  • heat was released, which caused the mixture to warm itself from room temperature to approx. 50 ° C.
  • the mixture was kept at 50 ° C for a few hours.
  • the cement solidification took place about 24 hours after the pretreatment described.
  • the mixture was further stirred to prevent the solids from settling and the formation of larger crystals. Loss of water due to evaporation during this time was compensated for by adding more water.
  • the resin particles pretreated in this way had the key figures listed in Table I under No. 89.
  • Table II compares the corresponding key figures of the solidified matrix produced in accordance with section a) (prior art) and the matrix produced in accordance with sections b) and c).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (4)

1. Procédé pour améliorer les propriétés de stabilité des particules de résine échangeuse d'ions radioactives solidifiées, dans lequel ces dernières sont enrobées par un mélange contenant un liant inorganique ou/et organique, le mélange étant ensuite laissé se durcir, caractérisé en ce que les particules de résine échangeuse d'ions radioactives sont altérées avant ou pendant le processus de solidification par au moins un additif ion-actif et, le cas échéant, par un traitement thermique additionnel de telle manière à ce que leur comportement de gonflement et de retrait soit réduit à un facteur de gonflement en dessous de 1.7, ledit facteur de gonflement étant égal au quotient du volume après tassage des particules de résine dans un état mouillé par de l'eau et gonflé et le volume après tassage des mêmes particules de résine à l'état sec, et ledit additif pour le traitement des particules de résine anioniques étant choisi parmi le groupe suivant: mono- et polysulfures inorganiques et organiques, monoesters de l'acide sulfurique, sulfonates, mono- et diesters de l'acide phosphorique; et ledit additif pour le traitement des particules de résine cationiques étant choisi parmi le groupe suivant: amines basiques primaires, secondaires, tertiaires et quaternaires, pouvant également contenir deux ou plus groupes amino, composés basiques organiques du phosphonium, composés basiques organiques du sulfonium, composés du barium++ et du fer++.
2. Procédé selon la revendication 1, caractérisé en ce que les particules de résine sont soumises, en vue de l'altération de la fraction en anions de la résine, à un traitement thermique à une température dans la gamme entre 50°C et 250°C, de préférence entre 100°C et 200°C.
3. Procédé selon la revendication 1, caractérisé en ce que les particules de résine traitées par ledit additif sont soumises ensuite à un traitement thermique à une température dans la gamme entre 50°C et 250°C, de préférence entre 100°C et 200°C.
4. Procédé selon l'une des revendications 2 et 3 caractérisé en ce que l'on fait passer, pendant le traitement thermique, un fluide gazeux, de préférence de l'air, comme moyen de transport à travers ou sur les particules de résine pour ainsi emporter des produits de décomposition volatiles.
EP19850113953 1984-11-12 1985-11-02 Procédé pour améliorer les propriétés de stabilité des particules de résine échangeuse d'ions radioactives solidifiées Expired - Lifetime EP0182172B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5407/84 1984-11-12
CH5407/84A CH664843A5 (de) 1984-11-12 1984-11-12 Verfahren zur verbesserung der stabilitaetseigenschaften von verfestigten radioaktiven ionenaustausch-harzpartikeln.

Publications (2)

Publication Number Publication Date
EP0182172A1 EP0182172A1 (fr) 1986-05-28
EP0182172B1 true EP0182172B1 (fr) 1990-08-16

Family

ID=4293063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850113953 Expired - Lifetime EP0182172B1 (fr) 1984-11-12 1985-11-02 Procédé pour améliorer les propriétés de stabilité des particules de résine échangeuse d'ions radioactives solidifiées

Country Status (4)

Country Link
US (1) US4732705A (fr)
EP (1) EP0182172B1 (fr)
CH (1) CH664843A5 (fr)
DE (1) DE3579219D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420658A1 (de) * 1994-06-14 1995-12-21 Siemens Ag Verfahren zur Volumenreduzierung einer Mischung aus Pulverharzen und inerten Kunststoffasern

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608457B1 (fr) * 1986-12-19 1993-09-10 Charbonnages Ste Chimique Procede d'extraction de cations et son application au traitement d'effluents aqueux
US5481061A (en) * 1987-03-13 1996-01-02 Hitachi, Ltd. Method for solidifying radioactive waste
FR2624769B1 (fr) * 1987-12-16 1991-04-19 Sgn Soc Gen Tech Nouvelle Procede d'immobilisation de resines echangeuses d'ions provenant des circuits secondaires des reacteurs nucleaires a eau pressurisee et des reacteurs graphite-gaz
US5269975A (en) * 1991-02-21 1993-12-14 Noakes John E Solidification of organic waste materials in cement
DE4137947C2 (de) * 1991-11-18 1996-01-11 Siemens Ag Verfahren zur Behandlung von radioaktivem Abfall
US5545798A (en) * 1992-09-28 1996-08-13 Elliott; Guy R. B. Preparation of radioactive ion-exchange resin for its storage or disposal
DE4324818C2 (de) * 1993-07-23 2002-06-27 Framatome Anp Gmbh Verfahren zum Entsorgen von Ionenaustauscherharz
AT401122B (de) * 1994-05-09 1996-06-25 Oesterr Forsch Seibersdorf Verfahren zur stabilisierung von mit radioaktiven stoffen beladenen ionenaustauscherharzen und derart stabilisierte produkte
DE19700832A1 (de) * 1997-01-13 1998-07-16 Siemens Ag Produkt zur Endlagerung radioaktiv kontaminierter Ionenaustauscherharze
DE19707982A1 (de) * 1997-02-27 1998-09-03 Siemens Ag Produkt zur Endlagerung radioaktiv kontaminierter Ionenaustauscherharze
US5960368A (en) * 1997-05-22 1999-09-28 Westinghouse Savannah River Company Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
DE102009006518A1 (de) * 2009-01-28 2010-09-16 Areva Np Gmbh Verfahren und Vorrichtung zur Behandlung eines Ionenaustauscherharzes
JP5168437B2 (ja) * 2011-02-15 2013-03-21 富士電機株式会社 樹脂減容処理システムおよび樹脂減容処理方法
RU2685697C1 (ru) * 2018-07-12 2019-04-23 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Способ обработки отработанных ионообменных смол для захоронения и устройство для его осуществления

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334050A (en) * 1964-08-24 1967-08-01 Minnesota Mining & Mfg Organic carbonaceous matrix with radioisotope dispersed therein
US3791981A (en) * 1971-04-07 1974-02-12 Aerochem Res Lab Volume reduction of radioactive ion exchange resins for disposal
FR2290745A1 (fr) * 1974-11-05 1976-06-04 Asea Atom Ab Procede pour enrober dans le ciment des matieres organiques echangeuses d'ions, granulees ou usees
AT338388B (de) * 1975-06-26 1977-08-25 Oesterr Studien Atomenergie Verfahren und vorrichtung zur uberfuhrung von radioaktiven ionenaustauscherharzen in eine lagerfahige form
US4204974A (en) * 1975-07-15 1980-05-27 Kraftwerk Union Aktiengesellschaft Method for removing radioactive plastic wastes and apparatus therefor
DE2628286C2 (de) * 1976-06-24 1986-04-10 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Verbesserung der Auslaugbeständigkeit von Bitumenverfestigungsprodukten radioaktiver Stoffe
FR2361724A1 (fr) * 1976-08-12 1978-03-10 Commissariat Energie Atomique Procede de stockage de resines echangeuses d'ions contaminees
US4268409A (en) * 1978-07-19 1981-05-19 Hitachi, Ltd. Process for treating radioactive wastes
DE2945007A1 (de) * 1979-11-08 1981-05-21 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur endlagerreifen, umweltfreundlichen verfestigung von radioaktiven ionenaustauscherharzen
SE420249B (sv) * 1980-01-31 1981-09-21 Asea Atom Ab Sett for behandling av en i en reningskrets i en kernreaktoranleggning anvend organisk jonbytarmassa
SE425708B (sv) * 1981-03-20 1982-10-25 Studsvik Energiteknik Ab Forfarande for slutbehandling av radioaktivt organiskt material
US4559170A (en) * 1983-11-03 1985-12-17 Rockwell International Corporation Disposal of bead ion exchange resin wastes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420658A1 (de) * 1994-06-14 1995-12-21 Siemens Ag Verfahren zur Volumenreduzierung einer Mischung aus Pulverharzen und inerten Kunststoffasern
US5877225A (en) * 1994-06-14 1999-03-02 Siemens Aktiengesellschaft Method of reducing the volume of a mixture of resin powder and inert synthetic fibers

Also Published As

Publication number Publication date
EP0182172A1 (fr) 1986-05-28
US4732705A (en) 1988-03-22
DE3579219D1 (de) 1990-09-20
CH664843A5 (de) 1988-03-31

Similar Documents

Publication Publication Date Title
EP0182172B1 (fr) Procédé pour améliorer les propriétés de stabilité des particules de résine échangeuse d'ions radioactives solidifiées
DE1496645A1 (de) Verfahren zur Verstaerkung eines Glasgegenstandes
DE2460771A1 (de) Verfahren zur herstellung von zirkonphosphaten
DE3206736A1 (de) Verfahren zur einkapselung von radioaktivem abfallmaterial
DE3687361T2 (de) Verfahren zur behandlung radioaktiver abfaelle.
DE2945007A1 (de) Verfahren zur endlagerreifen, umweltfreundlichen verfestigung von radioaktiven ionenaustauscherharzen
DE69302016T2 (de) Herstellung von anorganischem, härtbarem Schlamm und seine Verwendung zur Verfestigung von Abfallstoffen
DE1813708A1 (de) Verfahren zum Entseuchen von radioaktiven Fluessigkeiten
DE3215508C2 (de) Verfahren zur Verbesserung der Radionuklid-Rückhalteeigenschaften von Verfestigungen radioaktiver Abfälle
DE3780436T2 (de) Block mit abfaellen zur endlagerung derselben und verfahren zur herstellung eines solchen blocks.
DE3044764A1 (de) Veredelung von tonen durch kompaktieren
DE2356253A1 (de) Verfahren zum vorbereiten von organischen, radioaktive stoffe enthaltenden abfallfluessigkeiten zur umweltfreundlichen und sicheren handhabung, transportierung und endlagerung
DE2143505A1 (de) Verfahren zum Dekontaminieren von radioaktiven Flüssigkeiten
EP0283572B1 (fr) Procédé de fabrication d'un produit solide à base de ciment apte à entreposer des eaux contenant du tritium dans un dépôt final accessible
DE3402700A1 (de) Verfahren zur entfernung von radium aus sauren loesungen
DE2915034C2 (fr)
DE3238961C2 (de) Verfahren zur Volumenreduktion wäßriger, nitrathaltiger radioaktiver Abfallösungen
DE60005296T2 (de) Verfahren zum Co-Verfestigen von schwach radioaktiven nassen Abfallstoffen aus Siedewasserkernkraftreaktoren
DE10238789B4 (de) Verfahren zur Herstellung von Suspensionen und deren Verwendung
Laske et al. Procedure for improvement of the stability of solidified radioactive ion-exchange resin particles
DE3026184C2 (de) Mischung zur Herstellung eines Formkörpers auf der Basis einer Wasserglaslösung und Verfahren zur Herstellung des Formkörpers
CH655198A5 (en) Process for enhancing the radionuclide retention properties of solidified radioactive wastes
DE2738415B2 (de) Calciumsulfatfasern mit anorganischen Überzügen
DE1048887B (de) Verfahren zum Ersetzen der austauschbaren Kationen eines Tons mit dehnbarem Gitter
DE69915898T2 (de) Verfahren zur Konditionierung von mit Radioactiv- und/oder Verunreinigenden Ionen beladenen Ionenaustauschharzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19860625

17Q First examination report despatched

Effective date: 19880104

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GESELLSCHAFT ZUR FOERDERUNG DER INDUSTRIEORIENTIER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19900816

REF Corresponds to:

Ref document number: 3579219

Country of ref document: DE

Date of ref document: 19900920

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GESELLSCHAFT ZUR FOERDERUNG DER INDUSTRIEORIENTIER

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911001

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921009

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931130

BERE Be: lapsed

Owner name: GESELLSCHAFT ZUR FORDERUNG DER INDUSTRIEORIENTIER

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST