EP0056150B1 - Elektrischer Heizkörper - Google Patents

Elektrischer Heizkörper Download PDF

Info

Publication number
EP0056150B1
EP0056150B1 EP81110787A EP81110787A EP0056150B1 EP 0056150 B1 EP0056150 B1 EP 0056150B1 EP 81110787 A EP81110787 A EP 81110787A EP 81110787 A EP81110787 A EP 81110787A EP 0056150 B1 EP0056150 B1 EP 0056150B1
Authority
EP
European Patent Office
Prior art keywords
insulator
insulating layer
plate
heater according
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110787A
Other languages
English (en)
French (fr)
Other versions
EP0056150A3 (en
EP0056150A2 (de
Inventor
Karl(Verstorben) Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Austria Elektrogerate GmbH
Original Assignee
EGO AUSTRIA ELEKTRO-GERAETE
EGO Austria Elektrogerate GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO AUSTRIA ELEKTRO-GERAETE, EGO Austria Elektrogerate GmbH filed Critical EGO AUSTRIA ELEKTRO-GERAETE
Priority to AT81110787T priority Critical patent/ATE24814T1/de
Publication of EP0056150A2 publication Critical patent/EP0056150A2/de
Publication of EP0056150A3 publication Critical patent/EP0056150A3/de
Application granted granted Critical
Publication of EP0056150B1 publication Critical patent/EP0056150B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/06Arrangement or mounting of electric heating elements
    • F24C7/067Arrangement or mounting of electric heating elements on ranges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/70Plates of cast metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/04Heating plates with overheat protection means

Definitions

  • DE-OS 2820 139 describes such a heater, which consists of an insulating body carrying the electrical heating resistors, the outside of which is reinforced by a metal grid, for example a wire mesh or an expanded metal grid, is surrounded.
  • the present invention aims to further improve the properties of the radiator mentioned in the introduction, in particular with regard to the good handling and strength as well as the insulating properties of the insulating body.
  • an upper, relatively thin insulating layer can consist of a mechanically stronger insulating material that supports the heating resistors, while the layer underneath is selected primarily with regard to good insulating properties.
  • Everything is held together by the metal grille, so that a manageable body is created, which can advantageously be used both as a unit that can be used directly in this form for heating the underside of a glass ceramic plate, or in conjunction with a plate made of metal with side flanges as a single hot plate can be used.
  • the metal grid not only ensures sufficient strength, but can also be grounded.
  • the invention can be used in connection with exposed heating coils as radiant heating or in connection with tubular heaters in which the heating resistors are insulated in a mostly triangular metal jacket.
  • the top insulating layer carries the heating coils or the tubular heating elements, preferably on protruding ribs.
  • contact radiators tubular radiators
  • sufficient pressure is ensured against the metal or glass ceramic plate by placing springs on the underside of the insulating body, i.e. the lower part of the metal grille.
  • peripheral ribs By means of ribbing between the individual insulating layers, air spaces which are preferably enclosed by peripheral ribs can be formed, which further contribute to improving the insulating properties without increasing the thermal inertia in the slightest.
  • the ribs should, if possible, be designed in such a way that they ensure the distance under all circumstances, for example by a combination of circular and radial ribs.
  • the switch head can be arranged outside the insulating body and only the rod-shaped sensor can protrude transversely through the insulating body, preferably lying in a recess in one of the lower insulating layers, while the upper insulating layer has openings in the area of the temperature sensor to ensure a good and, if possible, instantaneous temperature coupling between the temperature sensor and the heating resistors.
  • additional coupling elements can be provided, such as a channel-like reflector part, which lies below the temperature sensor and couples it in terms of radiation in the manner of a parabolic mirror, or a heat-conducting bridge between a tubular heater and the temperature sensor, which projects through one of the openings.
  • FIG. 1 to 3 show an electric radiator 11, which is used to heat a plate 12d, which is an essentially flat and relatively thin-walled plate made of steel or cast material.
  • the tubular heaters consist in a known manner of inner, usually helical heating resistors 33, which are located in an electrically insulating investment material and are surrounded by a thin-walled jacket 34 made of stainless steel tube, which is pressed in a triangular shape, so that an upper contact surface results the bottom 51 rests.
  • the tubular heater can be made with relatively large distances that are larger than the width dimensions of the tubular heater itself, be arranged and still generate a sufficient power density.
  • a downwardly directed, essentially cylindrical outer edge 13 is formed on the outer circumference of the plate 12d and has an oblique groove in its upper area adjacent to the cooking surface 32 for receiving an outer hold-up ring 19 made of stainless sheet metal material.
  • the plate thus has the shape of an inverted flat box, which receives the heater 52, which is designed as a coherent unit, in its interior. It has an insulating body 28d, which in the example shown consists of two insulating layers 29, 30, which are held together by a metal grid 49d.
  • the upper insulating layer 30 is in the form of a relatively thin disk made of a mechanically stronger, temperature-resistant heat insulating material, which is pressed, for example, from mineral fibers, as are known under the trade name “Fiberfrax”. It has radially extending ribs 53 on the top, on which the tubular heating elements 31 rest. On the underside, the insulating layer 30 also has a ribbing 54, which, however, is arranged in the form of concentric circles in the example shown.
  • Radially arranged ribs 55 of the lower insulating layer 29 in turn work together with the ribbing 54, so that an air gap 56 is created between the insulating layers 29, 30, which is largely closed to the outside by the outer annular rib 54 on an annular rib 57 encircling the outer circumference lower insulating layer 29 rests.
  • the insulating layers 29, 30 are held together by the metal grid 49d, which is a relatively fine-mesh steel wire mesh with mesh sizes on the order of 2 mm.
  • the metal grid 49d is a relatively fine-mesh steel wire mesh with mesh sizes on the order of 2 mm.
  • the metal grid 49d is deformed into the shape of a flat circular shell and takes in the two insulating layers.
  • the upper edge 58 is bent inwards over the edge of the upper insulating layer, so that the two insulating layers are held firmly together.
  • the radiator 52 is produced in such a way that a shell is first formed from the metal grid, which shell does not yet have cylindrical, but rather somewhat conical, side walls.
  • the material for the lower insulating layer 29 which consists of a mechanically not so strong material, but which has very good insulating properties with good temperature resistance, for example an inorganic molding compound made of short fibers or powdery material, this mixture, if necessary with a binder can be offset, is pressed into the metal grid shell, the ribs 55 also being produced.
  • the second layer, to which the tubular heating elements 31 are possibly already attached, is placed on top and the metal grid is deformed into its final shape with cylindrical side walls and an inwardly bent edge.
  • the bottom 58 of the metal grid 49d is profiled, so that radial or star-shaped recesses 59 are preferably formed (FIG. 3), which not only provide stiffening of the underside, but also, in cooperation with a pressure spring 25d, a security against rotation of the radiator 28d prevented relative to the plate 12d.
  • the pressure spring 25d has the shape of a three-pointed star made of spring plate, the arms of which are bent in such a way that their central region press against the metal grid 49d, while the arm ends lie on projections 60 of tab-like fastening elements 44d which are welded on the outside at the edge 13 of the plate 12d three and protrude essentially vertically downwards. At their lower end they have barbs 45 which reach through a lower cover 43 of a hob or a corresponding support bracket and thereby hold the entire radiator 11 in place. This attachment is preferably carried out resiliently by an underlying leaf spring 48.
  • the insulating body 28d is thus pressed upwards by the pressure springs 25d, so that the relatively thin flexible, spirally wound tubular heating elements are pressed resiliently onto the underside 51 of the plate 12d.
  • the metal grid 49d forms the lower surface of the insulating body and thus also of the entire radiator 11. There is therefore no need for a separate cover plate. Electrical safety is also ensured because the metal grid can be grounded.
  • a temperature protection switch 37 is used, which is held by the fact that its lower Shoulder 61 is supported on the edge of a recess in the metal grid 49d. As a result, its connection ends with the insulation surrounding them are freely accessible from the outside.
  • the switch body of the temperature protection switch 37 is located in a recess in the lower insulating layer 29, during which the temperature sensor, for example a bimetal element, protrudes through a narrower recess in the upper insulating layer 30 and rests on the underside of a tubular heating element 31 in order to sense its temperature as quickly as possible .
  • the upper insulating layer 30 thus protects the more temperature-sensitive switch part of the temperature protection switch against excessive heating.
  • the insulating body 28e thus obtained is attached to the underside of a plate 12d which, like the one according to FIGS. 1 to 3, represents a hotplate to be installed in a hob.
  • the insulating body is installed in such a way that the heating resistors 33e are at a distance from the underside 51 of the plate 12d, but this is due to the good fixing of the heating resistors 33e to the upper insulating layer 30e, which has no tendency to bulge, and because of the possibility of the plate 12d and to ground the metal grid 49d can be very low, so that not only the overall height becomes low, but also the radiation heat transfer to the plate 12d is very good.
  • the insulating body 28e is fixed to the plate in that projections 60e in the form of lateral, upright tabs of the fastening elements 44e, which are otherwise the same as in FIG. 1, engage in depressions 62 on the outer circumference of the metal grid shell 49d (see detail in FIG dash-dotted circle in Fig. 4).
  • a temperature protection switch 37e lies flat in a recess in the lower insulating layer 29 and is completely covered by the upper insulating layer 30e in order not to be directly exposed to the high temperatures of the heating resistors 33e.
  • FIG. 4 also shows the hotplate connection 64, which consists of a conventional connection block 65, into which the internal connection lines 66 lead and can be connected there to the outer connection lines.
  • the connecting block 65 is fastened to a connecting plate 67 which projects beyond the edge of the hotplate and is attached to the bottom section 58 of the metal grid 49d by spot welding or other fastening means. It should be noted here that the attachment of parts to the metal grille is particularly simple, since this can be easily accomplished with wood or self-tapping screws.
  • the embodiment according to FIG. 5 differs from that according to FIG. 4 in that instead of the lower insulating layer 29, a plurality of thin plate-shaped insulating layers 29f are provided, which are each provided with mismatched profiles on their top and bottom sides, so that they are between them Create insulating air gaps 56.
  • the insulating layers could consist of a mechanically stronger, possibly also ceramic material.
  • Fig. 6 shows an electric heater 11g, which is pressed below a glass ceramic plate 12g, the top of which forms the cooking surface 32g, by means of spring elements, not shown. It lies with an upwardly projecting peripheral edge 67 of the upper insulating layer 30g on the underside of the plate 12g.
  • the upper insulating layer 30g has on its top in a shallow recess radially extending grooves which, as in FIGS. 4 and 5, define helical heating resistors 33e.
  • the circular disk-shaped central part of the insulating layer 30g is crossed somewhat eccentrically by the rod-shaped temperature sensor 68 of a temperature switch 69 which runs in a groove 70 of the lower insulating layer 29g which can be seen in FIG. 8. Openings 71 in the sensor area are provided in the upper, thinner insulating layer 30g between the ribs 53e, which ensure sufficient heat coupling between the heating and the temperature sensor.
  • the switch head of the temperature switch 69 is arranged outside the radiator.
  • FIG. 9 shows other embodiments of the arrangement of the temperature sensor 68.
  • the embodiment according to FIG. 9 corresponds to that according to FIG. 8, except for the fact that the recess 70h in the lower insulating layer 29h is larger.
  • FIG. 10 shows a sensor arrangement in which the recess 68i corresponds in size to that according to FIG. 9. Under the temperature sensor there is inserted a reflector part 74, which consists of a sheet of metal running approximately below the temperature sensor 68 and having an approximately semicircular cross section, which reflects the radiation coming in through the openings 71i back onto the temperature sensor 68.
  • a reflector part 74 which consists of a sheet of metal running approximately below the temperature sensor 68 and having an approximately semicircular cross section, which reflects the radiation coming in through the openings 71i back onto the temperature sensor 68.
  • the heating element 11k is also provided for heating a glass ceramic plate 12g, but by means of contact heating elements designed as tubular heating elements 31, which are pressed against the underside of the plate 12g by ribs of the upper insulating layer 30k.
  • An outer upright edge 67k of the upper insulating layer 30k largely closes off the space 27 formed between the plate and the insulation, but does not lie firmly against the plate.
  • the pressure is also applied here via spring elements, not shown, from a support structure of the cooker or the built-in hob.
  • the temperature sensor 68 of the temperature switch 69 runs in a recess 70k (FIG. 12) of the lower insulating layer 29k.
  • the recess 70k is connected to the space 27 via openings 71k in the upper insulating layer 30k.
  • a heat-conducting coupling part 76 extends through the openings 70k. It consists of a sheet metal clamp which extends around the temperature sensor 68 and rests on the underside of the tubular heater 31 with two flange-like bends. This ensures a secure coupling between the temperature sensor and the tubular heater.
  • the invention creates an electric radiator that has numerous advantages. It is very light, so that it can follow a glass ceramic plate even when subjected to impact stresses and does not form an anvil on which the glass ceramic plate could be destroyed. Its low thermal inertia leads to good efficiency and safe and energy-saving parboiling. Efficiency is also increased by the good insulation, which at the same time results in a low floor temperature for the radiator, which can therefore also be used in lower built-in hobs without a cover plate. Nevertheless, the mechanical strength is excellent.
  • the thin and relatively strong upper carrier plate provides for the mounting and storage of the heating resistors (coils or tubular heating elements) and is preferably pressed from a firmer long-fiber inorganic fiber, while the lower insulating layer only needs to have enough mechanical strength to cover its entire surface the total contact pressure, if there is one, must take up.
  • the metal grid takes care of all other wearing properties. In any case, a manageable unit is created, which contains the heating elements and any temperature limiters and can be easily installed and replaced.
  • the outer surfaces of the insulating body with a coating 77 on its surfaces surrounded by the metal grid and possibly also on its upper side, for example by spraying with a heat-resistant lacquer or an organic binder layer, in order to also use insulating materials with low abrasion resistance can without fear of dust.
  • This coating is preferably carried out only after the insulating body, which is pressed in the moist state, has dried out.
  • the result is a radiator with a floor temperature that is approx. 80 to 100 ° lower than that of conventional radiators. This not only improves efficiency, but also protects the environment against high temperatures, so that less effort is required even when routing cables and arranging controllers and switches.
  • a radiator is shown, the heating coil of which is arranged in the form of a catchy spiral.
  • Two heating coils can advantageously be essentially par as a two-start spiral allel to each other, which can also be switched on separately to improve controllability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Saccharide Compounds (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Baking, Grill, Roasting (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

  • Die Erfindung betrifft einen elektrischen Heizkörper nach dem Oberbegriff des Anspruchs 1. Die DE-OS 2820 139 beschreibt einen solchen Heizkörper, der aus einem die elektrischen Heizwiderstände tragenden Isolierkörper besteht, dessen Aussenseite von einer Armierung aus einem Metallgitter, beispielsweise einem Drahtnetz oder einem Streckmetallgitter, umgeben ist.
  • Aus der US-A-2 261 496 ist ein elektrischer Heizkörper bekanntgeworden, bei dem zwei in Abstand von den Heizelementen angeordnete lsolierschichten in einer Metallschüssel liegen, von dieser aber nicht zusammengehalten sind. Dabei besteht die Gefahr, dass die Isolierschichten sich beim Transport oder auch im Betrieb aus ihrer Lage bewegen und zu Betriebsstörungen führen. Eine Befestigung der Heizelemente auf der oberen Isolierschicht wäre daher nicht anzuraten.
  • Die vorliegende Erfindung bezweckt eine weitere Verbesserung der Eigenschaften des eingangs erwähnten Heizkörpers insbesondere im Hinblick auf die gute Handhabbarkeit und Festigkeit sowie die Isoliereigenschaften des Isolierkörpers.
  • Diese Aufgabe wird gemäss der Erfindung durch die Merkmale des Anspruchs 1 gelöst.
  • Der mehrschichtige, zusammengehaltene lsolierkörper ermöglicht es, die Isoliermaterialien so auszubilden, dass sie jeweils entsprechend ihrem besonderen Zweck optimal eingesetzt sind. So kann beispielsweise eine obere relativ dünne Isolierschicht aus einem mechanisch festeren Isoliermaterial bestehen, das die Heizwiderstände trägt, während die darunter liegende Schicht in erster Linie im Hinblick auf gute Isoliereigenschaften ausgewählt ist. Alles wird durch das Metallgitter zusammengehalten, so dass ein handhabbarer Körper entsteht, der vorteilhaft sowohl als eine in dieser Form unmittelbar verwendbare Einheit zur Beheizung der Unterseite einer Glaskeramikplatte eingesetzt werden kann, oder auch in Verbindung mit einer aus Metall bestehenden Platte mit seitlichen Flanschen als Einzelkochplatte einsetzbar ist. Dabei ist es in den meisten Fällen nicht notwendig, eine weitere untere Abdeckung, beispielsweise eine Blechabdeckung, an der Unterseite der Kochplatte vorzusehen, weil das Metallgitter nicht nur für ausreichende Festigkeit sorgt, sondern auch geerdet werden kann. Einsetzbar ist die Erfindung in Verbindung mit offenliegenden Heizwendeln als Strahlheizung oder in Verbindung mit Rohrheizkörpern, bei denen die Heizwiderstände isoliert in einem meist dreiecksförmigen Metallmantel liegen. In jedem Falle trägt die oberste Isolierschicht die Heizwendeln oder die Rohrheizkörper vorzugsweise auf vorstehenden Rippen. Bei den Kontaktheizkörpern (Rohrheizkörper) wird für eine ausreichende Andrückung an die Metall- oder Glaskeramikplatte dadurch gesorgt, dass Federn auf die Unterseite des Isolierkörpers, d.h. den unteren Teil des Metallgitters, einwirken.
  • Durch Verrippungen zwischen den einzelnen Isolierschichten können vorzugsweise durch umlaufende Randrippen abgeschlossene Luftzwischenräume gebildet werden, die weiter zur Verbesserung der Isoliereigenschaften beitragen, ohne die Wärmeträgheit im geringsten zu erhöhen. Die Verrippungen sollten nach Möglichkeit so gestaltet sein, dass sie den Abstand unter allen Umständen sicherstellen, beispielsweise durch eine Kombination von kreisförmigen mit radialen Rippen.
  • Es ist ferner vorteilhaft möglich, Temperaturschutzschalter oder andere temperaturempfindliche Schaltorgane mit in den Isolierkörper einzubeziehen. Dabei kann sowohl der gesamte Schalterkörper innerhalb des Isolierkörpers angeordnet sein, wobei u.U. die oberste Isolierschicht für eine Abschirmung des nicht so temperaturbeständigen Schalterkörpers sorgen kann. Bei einer Ausführung eines Temperaturschalters mit einem stabförmigen Temperaturfühler kann der Schalterkopf ausserhalb des Isolierkörpers angeordnet sein und lediglich der stabförmige Fühler quer durch den Isolierkörper hindurchragen, wobei er vorzugsweise in einer Ausnehmung einer der unteren Isolierschichten liegt, während die obere Isolierschicht im Bereich des Temperaturfühlers Durchbrüche hat, um eine gute und möglichst verzögerungsfreie Temperaturkopplung zwischen dem Temperaturfühler und den Heizwiderständen sicherzustellen. Dazu können zusätzliche Kopplungselemente vorgesehen sein, wie beispielsweise ein rinnenartiges Reflektorteil,das unter dem Temperaturfühler liegt und diesen nach Art eines Parabolspiegels strahlungsmässig ankoppelt, oder eine Wärmeleitbrücke zwischen einem Rohrheizkörper und dem Temperaturfühler, die durch einen der Durchbrüche hindurchragt.
  • Weitere Vorteile und Merkmale der Erfindung gehen aus den Unteransprüchen und der Beschreibung im Zusammenhang mit den Zeichnungen hervor, wobei die dargestellten und beschriebenen Merkmale einzeln oder in Kombination miteinander, insbesondere auch in Kombination mit anderen Ausführungsvarianten, vorteilhaft sind. Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
    • Fig. 1 einen vertikalen Schnitt durch einen elektrischen Heizkörper,
    • Fig. 2 eine Unteransicht des Heizkörpers nach Fig. 1,
    • Fig. 3 eine seitliche Ansicht der unteren Randkante des Heizkörpers nach Fig. 1,
    • Fig. 4 bis Fig. 6 vertikale Schnitte durch weitere Ausführungbeispiele eines elektrischen Heizkörpers,
    • Fig. 7 eine abgebrochene Draufsicht auf den Heizkörper nach Fig. 6, mit Schnittangabe VI-VI für Fig. 6,
    • Fig. 8 bis Fig. 10 unterschiedliche Ausführungen der Anordnung eines Temperaturfühlers, geschnitten nach der Linie VII-VII in Fig. 7.
    • Fig. 11 einen vertikalen Schnitt durch einen weiteren elektrischen Heizkörper,
    • Fig. 12 einen Detailschnitt aus Fig. 11 und
    • Fig. 13 eine Teildraufsicht auf ein Streckmetallgitter.
  • Fig. 1 bis 3 zeigen einen elektrischen Heizkörper 11, der zur Beheizung einer Platte 12d dient, die eine im wesentlichen ebene und relativ dünnwandige Platte aus Stahl oder Gussmaterial ist.
  • Sie besitzt eine obere ebene Kochfläche 32 und eine untere, ebenfalls ebene Unterseite 51, an die Rohrheizkörper 31 zur Kontakt-Wärmeübertragung angedrückt sind. Die Rohrheizkörper bestehen in an sich bekannter Weise aus inneren, meist wendelförmigen Heizwiderständen 33, die in einer elektrisch isolierenden Einbettmasse liegen und von einem dünnwandigen Mantel 34 aus rostfreiem Stahlrohr umgeben sind, der dreiecksförmig verpresst ist, so dass sich eine obere Kontaktfläche ergibt, die an der Unterseite 51 anliegt. Wegen der guten Wärmeübertragungseigenschaft vom Rohrheizkörper zur Kochfläche 32, die sich aus dem geringen Abstand des Heizwiderstandes zur Platte 12d bei guter Wärmeübertragung der hochverdichteten Einbettmasse im Rohrheizkörper und guter Wärmequerleitung in der Platte 12d ergibt, können die Rohrheizkörper mit relativ grossen Abständen, die grösser sind als die BreitenAbmessungen der Rohrheizkörper selbst, angeordnet sein und trotzdem eine ausreichende Leistungsdichte erzeugen.
  • Am äusseren Umfang der Platte 12d ist ein nach unten gerichteter, im wesentlichen zylinderförmiger Aussenrand 13 angeformt, der in seinem oberen, an die Kochfläche 32 angrenzenden Bereich eine schräge Nut zur Aufnahme eines äusseren Überfallringes 19 aus rostfreiem Blechmaterial aufweist. Die Platte hat somit die Form einer umgekehrten flachen Dose, die in ihrem Inneren den als eine zusammenhängende Einheit ausgebildeten Heizkörper 52 aufnimmt. Er besitzt einen Isolierkörper 28d, der im dargestellten Beispiel aus zwei Isolierschichten 29, 30 besteht, die von einem Metallgitter 49d zusammengehalten sind.
  • Die obere Isolierschicht 30 hat die Form einer relativ dünnen Scheibe aus einem mechanisch festeren temperaturbeständigen Wärmeisoliermaterial, das beispielsweise aus mineralischen Fasern, wie sie unter dem Handelsnamen «Fiberfrax» bekannt sind, gepresst ist. Sie hat an der Oberseite radial verlaufende Rippen 53, auf denen die Rohrheizkörper 31 aufliegen. An der Unterseite hat die Isolierschicht 30 ebenfalls eine Verrippung 54, die jedoch im dargestellten Beispiel in Form von konzentrischen Kreisen angeordnet ist. Mit der Verrippung 54 arbeiten wiederum radial angeordnete Rippen 55 der unteren Isolierschicht 29 zusammen, so dass zwischen den Isolierschichten 29, 30 ein Luftzwischenraum 56 entsteht, der nach aussen dadurch weitgehend abgeschlossen ist, dass die äussere Ringrippe 54 auf einer am Aussenumfang umlaufenden Ringrippe 57 der unteren Isolierschicht 29 aufliegt.
  • Die Isolierschichten 29, 30 werden durch das Metallgitter 49d zusammengehalten, das ein relativ feinmaschiges Stahldrahtnetz mit Maschenweiten in der Grössenordnung von 2 mm ist. Es können jedoch als Metallgitter auch andere Arten von Drahtnetzen oder auch Streckmetallgitter 49' verwendet werden, die aus einem Metallblech durch Einschlitzen und Streckung quer zur Schlitzrichtung erzeugt werden und dementsprechend eine etwas flach sechseckige Wabenstruktur hat.
  • Das Metallgitter 49d ist in die Form einer flachen kreisrunden Schale verformt und nimmt, in sich die beiden Isolierschichten auf. Der obere Rand 58 ist über den Rand der oberen Isolierschicht nach innen umgebogen, so dass beide Isolierschichten fest zusammen gehalten sind. Die Herstellung des Heizkörpers 52 erfolgt so, dass zuerst aus dem Metallgitter eine Schale geformt wird, die noch keine zylindrischen, sondern etwas keglige Seitenwände hat. Danach wird das Material für die untere Isolierschicht 29, das aus einem mechanisch nicht so festen Material besteht, das jedoch bei guter Temperaturbeständigkeit sehr gute Isoliereigenschaften hat, beispielsweise eine anorganische Pressmasse aus kurzen Fasern oder pulvrigem Material, diese Mischung, die ggf. mit einem Bindemittel versetzt sein kann, wird in die Metallgitter-Schale eingepresst, wobei auch die Rippen 55 erzeugt werden. Danach wird die zweite Schicht, an der ggf. die Rohrheizkörper 31 schon befestigt sind, aufgelegt und das Metallgitter in seine endgültige Form mit zylindrischen Seitenwänden und nach innen umgebogenem Rand verformt. Dabei wird der Boden 58 des Metallgitters 49d profilliert, so dass vorzugsweise radiale oder sternförmige Ausnehmungen 59 entstehen (Fig. 3), die nicht nur für eine Versteifung der Unterseite sorgen, sondern vor allem im Zusammenwirken mit einer Andruckfeder 25d eine Sicherung gegen Verdrehung des Heizkörpers 28d gegenüber der Platte 12d verhindert.
  • Die Andruckfeder 25d hat, wie aus Fig. 2 hervorgeht, die Form eines dreistrahligen Sterns aus Federblech, dessen Arme so gebogen sind, dass sie mit ihrem Mittelbereich gegen das Metallgitter 49d drücken, während die Armenden auf Vorsprüngen 60 von laschenartigen Befestigungselementen 44d liegen, von denen am Rand 13 der Platte 12d aussen drei am Umfang angeschweisst sind und im wesentlichen senkrecht nach unten ragen. An ihrem unteren Ende haben sie Widerhaken 45, die durch eine untere Abdeckwanne 43 einer Herdmulde oder einen entsprechenden Tragbügel hindurchgreifen und dadurch den gesamten Heizkörper 11 festhalten. Vorzugsweise wird diese Befestigung durch eine untergelegte Blattfeder 48 federnd vorgenommen.
  • Der Isolierkörper 28d wird also durch die Andruckfedern 25d nach oben gedrückt, so dass die relativ dünnen flexiblen, spiralig gewundenen Rohrheizkörper federnd an die Unterseite 51 der Platte 12d angedrückt werden. Dabei bildet das Metallgitter 49d die untere Fläche des Isolierkörpers und damit auch des gesamten Heizkörpers 11. Es ist also kein gesondertes Abdeckblech erforderlich. Auch für die elektrische Sicherheit ist gesorgt, weil das Metallgitter geerdet sein kann.
  • In einer Ausnehmung des Isolierkörpers ist ein Temperaturschutzschalter 37 eingesetzt, der dadurch festgehalten wird, dass sich seine untere Schulter 61 an dem Rand einer Ausnehmung im Metallgitter 49d abstützt. Dadurch sind seine Anschlussenden mit der sie umgebenden Isolierung von aussen frei zugänglich. Der Schalterkörper des Temperaturschutzschalters 37 liegt in einer Ausnehmung der unteren Isolierschicht 29, während der den Temperaturfühler, beispielsweise ein Bimetall enthaltene Fühlerteil durch eine schmalere Ausnehmung in der oberen Isolierschicht 30 hindurchragt und sich an der Unterseite eines Rohrheizkörpers 31 anlegt, um dessen Temperatur möglichst verzögerungsfrei abzufühlen.
  • Die obere Isolierschicht 30 schützt also den temperaturempfindlicheren Schalterteil des Temperaturschutzschalters gegen zu hohe Erwärmung.
  • In Fig. 4 ist eine Variante dargestellt, die mit der den Fig. 1 bis 3 bis auf folgende Unterschiede übereinstimmt:
    • In der Metallgitter-Schale 49d des Isolierkörpers 28e befindet sich eine untere Isolierschicht 29, die der vorherbeschriebenen entspricht. Die obere Isolierschicht 30e hat jedoch an ihrer Oberseite eine flache Ausnehmung, so dass der Rand 58 des Metallgitters auf einen nach oben vorstehenden Rand der Isolierschicht 30e greift. An der Oberseite der Isolierschicht 30e sind radiale Rippen 53e ausgeformt, in die wendelförmige Heizwiderstände 33e bei der Verformung der Isolierschicht 30e teilweise eingepresst sind. Die Einpressung erfolgt so, dass im Bereich der Rippen der Drahtquerschnitt der Heizwendeln von dem Isoliermaterial umgeben ist, jedoch nicht der gesamte Wendelumfang von der Isoliermasse abgedeckt ist. Im Bereich zwischen den radialen Rippen verlaufen die Heizwiderstände weitgehend uneingebettet auf der Oberfläche der Isolierschicht 30e. Eine derartige Festlegung der Heizwiderstände ist aus der deutschen Patentschrift 2 729 929 bekannt geworden. Sie schafft einen besonders wirksamen Strahlheizkörper, bei dem an der plattenförmigen oberen Isolierschicht 30e die Heizwiderstände sicher und leicht handhabbar festgelegt sind, ohne dass partielle Überhitzungen an den Festlegungsstellen oder eine Lösung der Heizwiderstände zu befürchten sind.
  • Der so beschaffene Isolierkörper 28e ist an der Unterseite einer Platte 12d angebracht, die, ebenso wie die nach den Fig. 1 bis 3, eine in eine Herdmulde einzubauende Kochplatte darstellt. Der Isolierkörper ist so eingebaut, dass die Heizwiderstände 33e einen Abstand zur Unterseite 51 der Platte 12d haben, der jedoch wegen der guten Festlegung der Heizwiderstände 33e an der oberen Isolierschicht 30e, die keine Neigung zum Aufwölben hat, und wegen der Möglichkeit, die Platte 12d und das Metallgitter 49d zu erden, sehr gering sein kann, so dass nicht nur die Bauhöhe gering wird, sondern auch die Strahlungs-Wärmeübertragung zur Platte 12d sehr gut ist.
  • Der Isolierkörper 28e ist dadurch an der Platte festgelegt, dass Vorsprünge 60e in Form von seitlichen, aufrecht stehenden Lappen der Befestigungselemente 44e, die im übrigen denen nach Fig. 1 gleichen, in Vertiefungen 62 am Aussenumfang der Metallgitter-Schale 49d eingreifen (siehe Detail im strichpunktierten Kreis in Fig. 4).
  • Es ist auch möglich, im Bereich des Aussenumfanges der Metallgitterschale eine vorspringende Schulter 63 vorzusehen, die auf der Unterkante des Randes 13 aufliegt (Fig. 4 rechter Teil).
  • Ein Temperaturschutzschalter 37e liegt flach in einer Ausnehmung der unteren Isolierschicht 29 und wird von der oberen Isolierschicht 30e ganz abgedeckt, um nicht den hohen Temperaturen der Heizwiderstände 33e unmittelbar ausgesetzt zu sein.
  • In Fig. 4 ist noch der Kochplattenanschluss 64 dargestellt, der aus einem üblichen Anschlussstein 65 besteht, in dem die internen Anschlussleitungen 66 hineinführen und dort mit den äusseren Anschlussleitungen verbindbar sind. Der Anschlussstein 65 ist an einem Anschlussblech 67 befestigt, das über den Rand der Kochplatte hinausragt und am Bodenabschnitt 58 des Metallgitters 49d durch Punktschweissung oder andere Befestigungsmittel angebracht ist. Hier ist zu bemerken, dass die Anbringung von Teilen an dem Metallgitter besonders einfach ist, da sich dies mit Holz- oder Blechschrauben leicht bewerkstelligen lässt.
  • Die Ausführung nach Fig. 5 unterscheidet sich von der nach Fig. 4 dadurch, dass anstelle der unteren Isolierschicht 29 mehrere dünne plattenförmige Isolierschichten 29f vorgesehen sind, die jeweils mit nicht zusammenpassenden Profilierungen an ihrer Ober- und Unterseite versehen sind, so dass sie zwischen sich isolierende Luftzwischenräume 56 erzeugen. In diesem Falle könnten die Isolierschichten aus einem mechanisch festeren, eventuell auch keramischen Material bestehen.
  • Fig. 6 zeigt einen elektrischen Heizkörper 11g, der unterhalb einer Glaskeramikplatte 12g, deren Oberseite die Kochfläche 32g bildet, mittels nicht dargestellter Federelemente angedrückt ist. Sie liegt dabei mit einem nach oben vorstehenden umlaufenden Rand 67 der oberen Isolierschicht 30g an der Unterseite der Platte 12g an.
  • Die obere Isolierschicht 30g trägt an ihrer Oberseite in einer flachen Vertiefung radial verlaufende Nuten, die, wie in Fig. 4 und 5, wendelförmige Heizwiderstände 33e festlegen. Der kreisscheibenförmige Mittelteil der Isolierschicht 30g wird etwas aussermittig von dem stabförmigen Temperaturfühler 68 eines Temperaturschalters 69 gequert, der in einer aus Fig. 8 erkennbaren Nut 70 der unteren Isolierschicht 29g verläuft. Zwischen den Rippen 53e sind in der oberen, dünneren Isolierschicht 30g Durchbrüche 71 im Fühlerbereich vorgesehen, die für eine ausreichende Wärmekopplung zwischen der Beheizung und dem Temperaturfühler sorgen. Der Schalterkopf des Temperaturschalters 69 ist ausserhalb des Heizkörpers angeordnet.
  • Das Metallgitter 49g entspricht bis auf die folgende Ausnahme demnach den bisherigen Figuren:
    • Aus dem im strichpunktierten Kreis herausgezeichneten Detail ist zu ersehen, dass der obere, nach innen gebogene Rand, der bei den vorigen Ausführungsformen durch eine Einwärtsbiegung des Metallgitters selbst gebildet war, hier durch einen kreisförmigen Blechring 72 mit L-förmigem Querschnitt gebildet wird, an dessen nach unten weisenden, am Aussenumfang der oberen Isolierschicht 30g anliegenden Schenkel der aufwärtsgerichtete Rand des Metallgitters durch Punktschweissung o.dgl. angebracht ist. Der horizontale L-Schenkel liegt auf einer Schulter 73, die zwischen dem Aussenumfang des Isolierkörpers und dem Rand 67 gebildet ist. Durch diesen Ring wird der freie Rand des Metallgitters zusammengefasst und ohne hervorstehende Einzeldrähte abgeschlossen. Bei einem aus Streckmetall bestehenden Metallgitter könnte dieser Rand aus dem dort nicht unterbrochenen Streckmetallmaterial selbst bestehen. Es ist auch möglich, den freien Rand des Metallgitters in das Material des oberen Isolierringes hineinzudrücken, so dass dadurch die freien Enden des Randes verdeckt werden. Auf jeden Fall hält auch hier das Metallgitter die beiden Isolierschichten 30g, 29g zusammen.
  • In der Fig. 9 sind andere Ausführungsformen der Anordnung des Temperaturfühlers 68 gezeigt. Die Ausführung nach Fig. 9 entspricht der nach Fig. 8, ausser der Tatsache, dass die Ausnehmung 70h in der unteren Isolierschicht 29h grösser ist.
  • Fig. 10 zeigt eine Fühleranordnung, bei der die Ausnehmung 68i in der Grösse der nach Fig. 9 entspricht. Unter den Temperaturfühler ist dort ein Reflektorteil 74 eingelegt, das aus einem unterhalb des Temperaturfühlers 68 parallel verlaufenden Blech mit etwa halbkreisförmigem Querschnitt besteht, das die durch die Durchbrüche 71i hineinkommende Strahlung auf den Temperaturfühler 68 zurückreflektiert.
  • Der Heizkörper 11k ist ebenfalls zur Beheizung einer Glaskeramikplatte 12g vorgesehen, jedoch durch als Rohrheizkörper 31 ausgebildete Kontaktheizkörper, die von Rippen der oberen Isolierschicht 30k an die Unterseite der Platte 12g angepresst werden. Ein äusserer aufrecht stehender Rand 67k der oberen Isolierschicht 30k schliesst den zwischen Platte und Isolierung gebildeten Raum 27 weitgehend ab, ohne jedoch fest an der Platte anzuliegen. Die Andrückung erfolgt auch hier über nicht dargestellte Federelemente von einer Tragstruktur des Herdes oder der Einbaukochmulde aus.
  • Der Temperaturfühler 68 des Temperaturschalters 69 läuft in einer Ausnehmung 70k (Fig. 12) der unteren Isolierschicht 29k. Die Ausnehmung 70k steht über Durchbrüche 71k in der oberen Isolierschicht 30k mit dem Raum 27 in Verbindung. Es ist in Fig. 12 gezeigt, dass ein wärmeleitendes Koppelungsteil 76 durch die Durchbrüche 70k hindurchreicht. Es besteht aus einer Blechschelle, die um den Temperaturfühler 68 herumgreift und an der Unterseite des Rohrheizkörpers 31 mit zwei flanschartigen Abbiegungen anliegt. Dadurch wird eine sichere Kopplung zwischen dem Temperaturfühler und dem Rohrheizkörper erreicht.
  • Durch die Erfindung wird ein elektrischer Heizkörper geschaffen, der zahlreiche Vorteile hat. Er ist sehr leicht, so dass er unterhalb einer Glaskeramikplatte auch bei Schlagbeanspruchungen dieser folgen kann und keinen Amboss bildet, auf dem die Glaskeramikplatte zerstört werden könnte. Seine geringe Wärmeträgheit führt zu einem guten Wirkungsgrad und zu einem sicheren und energiesparenden Ankochen. Der Wirkungsgrad wird auch durch die gute Isolierung erhöht, wodurch gleichzeitig eine geringe Bodentemperatur des Heizkörpers erreicht wird, der somit ohne Abdeckblech auch in niedrigeren Einbaukochmulden verwendbar ist. Trotzdem ist die mechanische Festigkeit ausgezeichnet. Es ist zu erkennen, dass bei allen Ausführungen das Zentrum der kreisförmigen Kochflächen frei bleibt, so dass dort ohne weiteres ein Mittelfühler, beispielsweise eine bei der Unterseite der Platte anliegende oder auch diese durchbrechende Fühlerdose eines Temperaturreglers vorgesehen sein kann. Auch bei Strahlheizkörpern ist ein geringer Abstand zur Platte (Mindest-Kontaktabstand von 3 mm) möglich, so dass die Wärmekopplung zur Platte gut ist. Durch den mehrschichtigen Aufbau werden in idealer Weise die Eigenschaften der Isoliermaterialien ausgenutzt. Die dünne und relativ feste obere Trägerplatte sorgt für eine Halterung und Lagerung der Heizwiderstände (Wendeln oder Rohrheizkörper) und ist vorzugsweise aus einer festeren langfasrigen anorganischen Faser verpresst, während die untere Isolierschicht nur so viel mechanische Festigkeit zu haben braucht, dass sie auf ihre gesamte Fläche den Gesamt-Kontaktdruck, falls ein solcher vorhanden ist, aufnehmen muss. Alle übrigen Trageigenschaften übernimmt das Metallgitter. In jedem Falle entsteht eine handhabbare Einheit, die die Heizelemente und evtl. Temperaturbegrenzer enthält und leicht montiert und ausgewechselt werden kann. Es ist möglich, die Aussenflächen des Isolierkörpers an seinen von dem Metallgitter umgebenen Flächen und ggf. auch an seiner oberen Seite mit einer Beschichtung 77 zu versehen, beispielsweise mit einem hitzebeständigen Lack oder einer organischen Bindemittelschicht zu spritzen, um auch Isoliermaterialien mit geringer Abriebfestigkeit verwenden zu können, ohne dass Staubentwicklung zu befürchten ist. Diese Beschichtung erfolgt vorzugsweise erst nach dem Austrocknen des in feuchtem Zustand gepressten Isolierkörpers.
  • Es entsteht ein Heizkörper, dessen Bodentemperaturen um ca. 80 bis 100° tiefer liegen, als die üblicher Heizkörper. Dadurch wird nicht nur der Wirkungsgrad verbessert, sondern auch die Umgebung gegen hohe Temperaturen geschützt, so dass auch bei der Leitungsführung und der Anordnung von Reglern und Schaltern nur ein geringerer Aufwand getrieben werden muss.
  • In Fig. 4-7 ist ein Heizkörper gezeigt, dessen Heizwendel in Form einer eingängigen Spirale angeordnet ist. Vorteilhaft können zwei Heizwendeln als zweigängige Spirale im wesentlichen parallel zueinander verlaufen, die auch gesondert eingeschaltet werden können, um die Regelbarkeit zu verbessern.

Claims (12)

1. Elektrischer Heizkörper (11) zur Beheizung einer Platte (12d; 12g), mit einem Isolierkörper (28d; 28e), an dem elektrische Heizelemente (31, 33) angebracht sind, wobei der Isolierkörper (28d; 28e) mit einer korbartig geformten Metallgitterstruktur (49d; 49g) verbunden ist, die ihn im Bereich seiner Aussenflächen umgibt, dadurch gekennzeichnet, dass der Isolierkörper (28d; 28e) aus mehreren Isolierschichten (29; 29f; 29g; 29k; 30; 30e; 30g; 30k) besteht, die durch die Metallgitterstruktur (49d; 49e) zusammengehalten werden, indem die Metallgitterstruktur (49d; 49e) mit ihrem oberen Rand im Abstand von der Platte (12d; 12g) endet und im Bereich des oberen Randes zum Isolierkörper hin umgebogen ist, wobei im Bereich dieses Randes die Enden der das Metallgitter bildenden draht- oder streifenförmigen Elemente zu einer zusammenhängenden Randbegrenzung zusammengefasst und/oder in den Isolierkörper eingeschlossen sind.
2. Heizkörper nach Anspruch 1, dadurch gekennzeichnet, dass die Randbegrenzung ein Blechring (72) mit winkelförmigem Querschnitt ist, der über eine Schulter (53) der oberen Isolierschicht (39g) greift.
3. Heizkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Metallgitter (49) in seiner die Unterseite des Isolierkörpers (28d) bildenden Fläche vorzugsweise radial verlaufende Vertiefungen (59) aufweist.
4. Heizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aussenflächen des Isolierkörpers (28d; 20e) zumindest teilweise mit einer temperaturbeständigen Schicht (77) versehen sind.
5. Heizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die obere Isolierschicht (30) Rippen (53) aufweist, die die in Rohrheizkörpern (31) eingeschlossenen Heizwiderstände (33) tragen.
6. Heizkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die obere Isolierschicht (30e) Rippen (53e) aufweist, in die wendelförmige Heizwiderstände (33e) vorzugsweise während des Pressvorganges der Isolierschicht mit einem Teil ihres Wendelumfanges eingebettet sind, wobei gegebenenfalls zwei vorzugsweise gesondert zuschaltbare Heizwendeln parallel zueinander spiralförmig angeordnet sind.
7. Heizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vorzugsweise aus gepresstem körnigem oder fasrigem Material bestehenden Isolierschichten (29, 30; 29f) an ihren oberen und/oder unteren Flächen Verrippungen zur Bildung von Luftzwischenräumen (56) haben und dass vorzugsweise die obere, dünnere Isolierschicht (30) aus einem mechanisch festeren Material besteht als die darunter liegende Isolierung (29).
8. Heizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die von ihm beheizte Platte (12d) eine an Ober- und Unterseite im wesentlichen ebene kreisrunde Metallplatte mit einem im wesentlichen kreiszylindrischen, nach unten gerichteten Rand (13) am Aussenumfang ist, und dass zwischen der Plattenunterseite (51) dem Rand (13) und dem Isolierkörper (28d) ein die Beheizung (31, 33e) aufnehmender Raum (27) gebildet ist.
9. Heizkörper nach Anspruch 8, dadurch gekennzeichnet, dass an dem Rand (13) Befestigungselemente (44), vorzugsweise in Form von Laschen mit widerhakenartigen Abbiegungen (45) angebracht sind, die mit Einbauteilen (43) in Form von Herdmulden, Tragbügeln etc. zusammenwirken und ggf. den Isolierkörper (28d, e) an der Platte (12d) festlegen, wobei sich vorzugsweise an den Befestigungselementen (44d) wenigstens ein blattfederartiges, den Isolierkörper (28d) aufwärts drückendes Anpresselement (25d) abstützt und gegebenenfalls an den Befestigungselementen (44e) Vorsprünge (60e) ausgebildet sind, die in Vertiefungen (62) eingreifen, die im Metallgitter (49d) ausgeformt sind.
10. Heizkörper nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass am Umfang des Isolierkörpers (28e) eine sich auf den Rand (13) der Platte (12d) abstützende Stufe (63) vorgesehen ist.
11. Heizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Isolierkörper (28d; 28e) ein Temperaturschutzschalter (37; 37e) vorgesehen ist, dessen Schalterteil in einer Ausnehmung einer unteren Isolierschicht (29) liegt und vorzugsweise von der oberen Isolierschicht (30; 30e) zumindest teilweise thermisch abgeschirmt ist, wobei der Temperaturfühler des Temperaturschutzschalters (37) insbesondere durch die obere Isolierschicht (30) hindurchragt und an der Unterseite eines Rohrheizkörpers (31) anliegt.
12. Heizkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Isolierkörper von einem stabförmigen Temperaturfühler (68) eines Temperaturschalters (69) horizontal durchragt wird, der in einer Ausnehmung einer unteren Isolierschicht (29g) verläuft, dass die obere Isolierschicht (30g, 30k) im Bereich des Temperaturfühlers (68) zu den Heizwiderständen (33) bzw. Rohrheizkörpern (31) führende Durchbrüche (71, 71k) aufweist, dass vorzugsweise in der Ausnehmung (70i) ein rinnenartiges, unter den Temperaturfühler (68) gelegtes Reflektorteil (74) für den Temperaturfühler vorgesehen ist und dass gegebenenfalls zwischen Rohrheizkörper (31) und Temperaturfühler (68) ein wärmeleitendes Kupplungsteil (76) vorgesehen ist, das den Mantel (34) des Rohrheizkörpers und den Temperaturfühler (68) berührt.
EP81110787A 1980-12-30 1981-12-25 Elektrischer Heizkörper Expired EP0056150B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81110787T ATE24814T1 (de) 1980-12-30 1981-12-25 Elektrischer heizkoerper.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3049521 1980-12-30
DE19803049521 DE3049521A1 (de) 1980-12-30 1980-12-30 Elektrischer heizkoerper

Publications (3)

Publication Number Publication Date
EP0056150A2 EP0056150A2 (de) 1982-07-21
EP0056150A3 EP0056150A3 (en) 1983-01-12
EP0056150B1 true EP0056150B1 (de) 1987-01-07

Family

ID=6120563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110787A Expired EP0056150B1 (de) 1980-12-30 1981-12-25 Elektrischer Heizkörper

Country Status (11)

Country Link
US (1) US4447711A (de)
EP (1) EP0056150B1 (de)
JP (1) JPS57134886A (de)
AT (1) ATE24814T1 (de)
AU (1) AU548785B2 (de)
DE (2) DE3049521A1 (de)
ES (1) ES8302993A1 (de)
FI (1) FI814160L (de)
GR (1) GR76103B (de)
YU (1) YU310481A (de)
ZA (1) ZA818992B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063454B4 (de) 2010-12-17 2022-02-03 BSH Hausgeräte GmbH Strahlungsheizkörper für ein Kochfeld sowie Kochfeld

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113414A1 (de) * 1981-04-03 1982-11-04 Karl 7519 Oberderdingen Fischer Elektrokochplatte
DE3223417A1 (de) * 1982-06-23 1983-12-29 Karl 7519 Oberderdingen Fischer Elektrokochplatte
GB2132060B (en) * 1982-12-24 1985-12-18 Thorn Emi Domestic Appliances Heating apparatus
DE3703768A1 (de) * 1987-02-07 1988-08-18 Fissler Gmbh Vorrichtung zum erfassen der temperatur einer mittels heizwicklungen oder halogenlampen aufgeheizten glaskeramikplatte
KR970008839B1 (en) * 1994-04-27 1997-05-29 Korea Inst Sci & Tech Heater for chemical deposition
FR2760957B1 (fr) * 1997-03-21 1999-10-01 Moulinex Sa Appareil de cuisson electrique
US6614007B1 (en) 1999-02-17 2003-09-02 The Garland Group Griddle plate with infrared heating element
GB2361160B (en) * 2000-04-03 2004-11-03 Ceramaspeed Ltd Radiant electric heater
DE10127223A1 (de) * 2001-05-22 2003-01-23 Ego Elektro Geraetebau Gmbh Heizungseinrichtung für Filterelemente eines Partikelfilters und Partikelfilter
CN101061578A (zh) * 2004-10-19 2007-10-24 佳能安内华股份有限公司 基板支撑·运送用托盘
DE102005005520A1 (de) * 2005-02-01 2006-08-10 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung mit Temperatursensor und Kochfeld mit Heizeinrichtungen
DE102005042799A1 (de) 2005-09-08 2007-03-22 BSH Bosch und Siemens Hausgeräte GmbH Universalhalter für Kochfelder
US8049143B2 (en) * 2007-10-29 2011-11-01 Smiths Medical Asd, Inc. Hot plate heater for a respiratory system
US9296154B1 (en) * 2008-08-07 2016-03-29 Mcelroy Manufacturing, Inc. Tapered wattage radial heater
CN201365481Y (zh) * 2009-02-13 2009-12-23 东莞市前锋电子有限公司 电磁式烧烤炉
US20130192584A1 (en) * 2012-01-26 2013-08-01 General Electric Company Heating element mounting features for a cook top appliance
USD787041S1 (en) 2015-09-17 2017-05-16 Whirlpool Corporation Gas burner
US10837651B2 (en) 2015-09-24 2020-11-17 Whirlpool Corporation Oven cavity connector for operating power accessory trays for cooking appliance
US11777190B2 (en) 2015-12-29 2023-10-03 Whirlpool Corporation Appliance including an antenna using a portion of appliance as a ground plane
US10757761B2 (en) * 2016-01-14 2020-08-25 Techyidco Llc Apparatus and method for safely warming food
US10145568B2 (en) 2016-06-27 2018-12-04 Whirlpool Corporation High efficiency high power inner flame burner
GB2560154A (en) * 2017-02-05 2018-09-05 Stuart Morris Gary Single sided food warming hotplate
US10551056B2 (en) 2017-02-23 2020-02-04 Whirlpool Corporation Burner base
US10451290B2 (en) 2017-03-07 2019-10-22 Whirlpool Corporation Forced convection steam assembly
US10660162B2 (en) 2017-03-16 2020-05-19 Whirlpool Corporation Power delivery system for an induction cooktop with multi-output inverters
US10627116B2 (en) 2018-06-26 2020-04-21 Whirlpool Corporation Ventilation system for cooking appliance
US10619862B2 (en) 2018-06-28 2020-04-14 Whirlpool Corporation Frontal cooling towers for a ventilation system of a cooking appliance
US10837652B2 (en) 2018-07-18 2020-11-17 Whirlpool Corporation Appliance secondary door

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163036A (en) * 1934-06-21 1939-06-20 Herman A Sperlich Electric heater
US2261496A (en) * 1938-11-23 1941-11-04 Arthur H Happe Electric heating unit
US3384737A (en) * 1965-04-14 1968-05-21 Doutre Adelard Electric stove with heating metallic plates
DE1301404C2 (de) * 1967-01-05 1974-06-06 Gustav Dipl Ing Massekochplatte mit einem Temperaturregler
BR6896943D0 (pt) * 1967-03-25 1973-12-26 Ag Siemens Pirometro de resistencia eletrica
US3646321A (en) * 1970-06-22 1972-02-29 Gen Motors Corp Infrared surface heating unit
US3612829A (en) * 1970-07-17 1971-10-12 Gen Motors Corp Ceramic top infrared cooking assembly
US3612826A (en) * 1970-07-17 1971-10-12 Gen Motors Corp Surface temperature indicator light for ceramic top infrared radiant range
US3632983A (en) * 1970-10-13 1972-01-04 Gen Electric Smooth surfaced, heated cooktop
GB1433478A (en) * 1972-08-05 1976-04-28 Mcwilliams J A Electrical heating apparatus
DE2729930A1 (de) * 1977-07-02 1979-01-11 Karl Fischer Strahlungs-heizeinheit fuer glaskeramik-elektrokochgeraete
US4032750A (en) * 1976-03-26 1977-06-28 General Electric Company Flat plate heating unit with foil heating means
US4166878A (en) * 1976-10-01 1979-09-04 Caterpillar Tractor Co. Gas turbine engine internal insulation comprising metallic mesh--restrained ceramic fiber layer
ZA774922B (en) * 1977-03-09 1978-06-28 Emerson Electric Co Open coil heater
DE2729929C3 (de) * 1977-07-02 1981-10-08 Karl 7519 Oberderdingen Fischer Strahlungs-Heizeinheit für Glaskeramik-Elektrokochgeräte
SE7806238L (sv) * 1977-07-02 1979-01-03 Fischer Karl Elektriskt stralningsvermeelement, serskilt for glaskeramikkokhell
DE2820139A1 (de) * 1978-05-09 1979-11-15 Karl Fischer Elektrischer heizkoerper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063454B4 (de) 2010-12-17 2022-02-03 BSH Hausgeräte GmbH Strahlungsheizkörper für ein Kochfeld sowie Kochfeld

Also Published As

Publication number Publication date
GR76103B (de) 1984-08-03
JPS57134886A (en) 1982-08-20
DE3049521A1 (de) 1982-07-29
EP0056150A3 (en) 1983-01-12
DE3175825D1 (en) 1987-02-12
ES508395A0 (es) 1982-12-01
ATE24814T1 (de) 1987-01-15
AU548785B2 (en) 1986-01-02
ES8302993A1 (es) 1982-12-01
FI814160L (fi) 1982-07-01
ZA818992B (en) 1982-11-24
AU7880481A (en) 1982-07-08
US4447711A (en) 1984-05-08
YU310481A (en) 1984-12-31
EP0056150A2 (de) 1982-07-21

Similar Documents

Publication Publication Date Title
EP0056150B1 (de) Elektrischer Heizkörper
DE2205132C3 (de) Elektrokochgerät
EP0047490B1 (de) Elektrokochplatte
EP0024621B1 (de) Elektrokochplatte
AT398874B (de) Elektrische strahlungsheizeinrichtung für kochgeräte mit ebener kochfläche
CH634451A5 (de) Strahlungs-heizeinheit.
DE2339768C3 (de) Elektrische Kochplatte
DE2165569C3 (de) Elektrokochgerät mit einer oberen Platte aus hochwärmebeständigem glasartigem bzw. keramischem Material
EP0021107B1 (de) Stahlungs-Heizelement für eine Kocheinheit mit einem Temperaturfühler
EP0288915B1 (de) Elektrischer Strahlungsheizkörper zur Beheizung einer Platte, insbesondere einer Glaskeramikplatte
DE2518949A1 (de) Glaskeramik-kochfeld mit filmheizelement
EP0490289B1 (de) Elektrischer Heizkörper, insbesondere Strahlheizkörper
DE2729929C3 (de) Strahlungs-Heizeinheit für Glaskeramik-Elektrokochgeräte
EP0757210A1 (de) Strahlungs-Kochstelleneinheit
DE2729930A1 (de) Strahlungs-heizeinheit fuer glaskeramik-elektrokochgeraete
CH672831A5 (de)
CH658761A5 (de) Elektrische heizvorrichtung fuer kochherde mit einer kochplatte aus glaskeramik.
DE2820138C2 (de)
DE2751991A1 (de) Kocheinheit mit einer von abgeflachten rohrheizkoerpern gebildeten kochflaeche
DE3810586A1 (de) Beheizung fuer elektrische kochgeraete
DE19540004A1 (de) Strahlungs-Heizer
DE2933350A1 (de) Elektrokochplatte
DE2760339C3 (de) Elektrischer Strahlungsheizkörper für Glaskeramikkochplatten
DE2901801A1 (de) Temperaturmelder zur anzeige des temperaturzustandes einer glaskeramikkochflaeche
DE102010063454A1 (de) Strahlungsheizkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19830616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.G.O. AUSTRIA ELEKTRO-GERAETE GESELLSCHAFT M.B.H.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FISCHER, KARL(VERSTORBEN)

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 24814

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175825

Country of ref document: DE

Date of ref document: 19870212

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19881226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881231

Ref country code: CH

Effective date: 19881231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901225

Ref country code: AT

Effective date: 19901225

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

EUG Se: european patent has lapsed

Ref document number: 81110787.9

Effective date: 19891215