CN1906272A - 烷基芳族烃的催化加氢脱烷基化方法 - Google Patents

烷基芳族烃的催化加氢脱烷基化方法 Download PDF

Info

Publication number
CN1906272A
CN1906272A CNA2004800407582A CN200480040758A CN1906272A CN 1906272 A CN1906272 A CN 1906272A CN A2004800407582 A CNA2004800407582 A CN A2004800407582A CN 200480040758 A CN200480040758 A CN 200480040758A CN 1906272 A CN1906272 A CN 1906272A
Authority
CN
China
Prior art keywords
catalyzer
metal
zeolite
benzene
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800407582A
Other languages
English (en)
Other versions
CN1906272B (zh
Inventor
V·阿卡
A·波斯科洛波斯科勒托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polimaly Europe S P A
Original Assignee
Polimaly Europe S P A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polimaly Europe S P A filed Critical Polimaly Europe S P A
Publication of CN1906272A publication Critical patent/CN1906272A/zh
Application granted granted Critical
Publication of CN1906272B publication Critical patent/CN1906272B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

单独催化加氢脱烷基化包含C8-C13烷基芳族化合物并任选地与C4-C9脂族和脂环族产品混合的烃的方法,其包括在氢气的存在下,在400-650℃的温度,2-4MPa的压力和H2/原料摩尔比为3-6的条件下,用催化剂连续处理所述烃组合物,其中催化剂由按原样的或以粘合形式的ZSM-5沸石组成,其中ZSM-5中Si/Al摩尔比为5-35,其由选自IIB、VIB、VIII族的至少一种金属改性。

Description

烷基芳族烃的催化加氢脱烷基化方法
本发明涉及一种烷基芳族烃的催化加氢脱烷基化方法。
更具体地说,本发明涉及一种烃组合物的催化加氢脱烷基化方法,该烃组合物包含C8-C13烷基芳族化合物,其任选地与C4-C9脂族和脂环族产品混合。
甚至更具体地,本发明涉及一种与脂族产品混合的烷基芳族烃的催化加氢脱烷基化方法,其中几乎定量地抑制了伴随的烷基转移、异构化、歧化和缩合反应。这导致苯、甲苯和乙烷(BTE)的高生产率,并减少或不形成甲烷和基本上为萘和二苯基产物的缩合产物。
在文献中烷基芳族烃的催化加氢脱烷基化方法是已知的。例如,欧洲专利138,617描述了利用加氢脱烷基化转化烷基芳族烃的方法,其包括在常规反应条件下,利用由钼改性的沸石催化剂处理基本上由乙基苯和二甲苯组成的烃流。然而,所述方法中,所述一般性反应条件不允许加氢脱烷基化反应不存在同时发生的异构化、烷基转移、歧化和缩合反应。从现有技术描述的各种其它方法中也出现了向着选择性催化加氢脱烷基化进行的局限性。一些情况中,所述反应实际上形成了对应于异构化、烷基转移、歧化和缩合反应的次级反应。
本申请人现在已发现可以通过选择合适的操作条件和沸石催化剂配方,单独催化加氢脱烷基化C8-C13烷基芳族烃成为苯、甲苯和乙烷(BTE),而没有总是代表已知技术方法的特征的伴随的烷基转移、歧化、异构化和缩合反应。
特别地,在使用本发明的操作条件和催化剂组成的情况下,已经令人吃惊地发现加氢脱烷基化反应不仅定量选择性地向着形成苯和甲苯的方向进行,而且苯/甲苯比例总是明确地有利于苯。因此该方法的经济优点可以涉及两个反应物流的内在价值:液相用于有利的苯和甲苯值,特别注意苯的产生量总是高于甲苯;气相可以用于循环在任何热解工艺中产生的乙烷,例如循环至烘炉,并回收相当多该循环保证的能量。
因此本发明的一个目的涉及一种烃组合物的单独催化加氢脱烷基化方法,其中该烃组合物包括C8-C13烷基芳族化合物,其任选地与C4-C9脂族和脂环族产品混合,该方法包括在氢气的存在下,在温度为400-650℃、优选450-580℃,压力为2-4MPa、优选2.8-3.6MPa,和H2/原料摩尔比为3-6、优选3.8-5.2的条件下用催化剂连续处理所述烃组合物,其中该催化剂由ZSM-5沸石载体介质组成,该ZSM-5沸石载体介质具有的Si/Al摩尔比为5-35,并由选自IIB、VIB、VIII族的至少一种金属改性。
根据本发明,进行加氢脱烷基化的烃原料包括C8-C13烷基芳族化合物,例如乙基苯、二甲苯、二乙基苯、乙基二甲苯、三甲基苯、四甲基苯、丙基苯、乙基甲苯、丙基甲苯等。例如,所述原料可以得自于重整单元的流出物或形成热解工艺例如蒸汽裂解的单元,并任选地包含C4-C9脂族和脂环族产品的混合物,以及含杂原子例如硫的有机化合物,其通常含量为来自重整单元或热解工艺的原料中的含量。
也可以对用于本方法的烃原料进行分离处理,例如蒸馏或萃取,以浓缩随后待进行加氢脱烷基化的产品,或可以对其进行芳构化工艺处理,以提高烷基芳族烃的浓度并降低链烷烃的浓度。还可能需要对上述原料进行先前的氢化以消除存在于脂族化合物中的不饱和度,以及芳环的相同烷基取代基上的不饱和度。所述同一氢化可以从通常存在于待处理原料中的物质中除去硫、氮或氧,即使这后一方面不是特别的重要,因为根据本发明在催化加氢脱烷基化条件下,这些杂原子被定量地除去(例如,作为H2S的硫)。
根据本发明,该加氢脱烷基化催化剂由用至少一种金属改性的ZSM-5沸石组成,该金属选自IIB、VIB和VIII族,特别是钼、锌、镍、钴、钯或它们的混合物(例如,钼/锌和钼/钴),其中金属对加氢脱烷基化施加协同作用。本发明的单独或成对使用的金属对象中,优选金属为钼。沸石载体介质的组成对于本发明的实施方案特别重要,设计其以使得烷基芳族化合物的加氢脱烷基化在基本上没有次级异构化、烷基转移、歧化和缩合反应的情况下进行。实际上已经证实使用富含铝,特别是Si/Al摩尔比为5-35、优选15-30的ZSM-5沸石有助于获得所需结果。
ZSM-5沸石可以在市场上获得,或可以根据美国专利3,702,886和4,139,600中描述的方法制备。ZSM-5沸石的结构由Kokotailo等人(“Nature”,第272期,第437页,1978)和Koningsveld等人(“ActaCryst”,第B43期,第127页,1987;“Zeolites”,第10期,第235页,1990年)描述。
该方法中,为了本发明的目的,优选以粘合形式使用该沸石催化剂,使用赋予其形状和坚实度(consistency)例如耐机械性的粘合物质,使得该沸石/粘合剂催化剂适合方便地用于工业用反应器。粘合剂的实例包括氧化铝,其中包括假勃姆石(pseudo-bohemite)和γ-氧化铝;粘土,其中包括高岭石、蛭石、绿坡缕石、绿土、蒙脱土;二氧化硅;硅铝酸盐;氧化钛和氧化锆;上述两种或更多种的结合物,其使用量使得沸石/粘合剂重量比为100/1-1/10。
可以按照常规技术例如浸渍、离子交换、汽相沉积或表面吸附,将金属分散在沸石或沸石/粘合剂催化剂中。优选使用初期的浸渍技术,用水溶液或含水有机溶液(有机溶剂优选选自醇、酮和腈或它们的混合物),其包含该金属的至少一种水可溶的和/或有机可溶的化合物,金属在催化剂中的最终总含量为0.5-10重量%。
用IIB、VIB和VIII族金属浸渍有或者没有粘合剂的沸石。特别地,可以按照以下方法处理粘合或没有粘合的催化剂,该方法包括:
-制备待负载在介质上的金属化合物的一种或多种溶液;
-用上述溶液浸渍沸石;
-干燥如此浸渍的沸石;
-在400-650℃的温度锻烧该浸渍并干燥的沸石;
-根据需要任选地重复上述步骤一次或若干次。
使用的金属化合物实例是:乙酸钼(II)、钼酸铵(VI)、二钼酸二铵(III)、七钼酸铵(VI)、磷钼酸铵(VI)、和类似的钠盐和钾盐,溴化钼(III)、氯化钼(III)-(V)、氟化钼(VI)、氯氧化钼(VI)、硫化钼(IV)-(VI)、钼酸和相应酸铵、钠盐和钾盐,以及氧化钼(II-VI);乙酸钴(II)、乙酰丙酮钴(II)、乙酰丙酮钴(III)、苯甲酰丙酮钴(II)、2-乙基己酸钴(II)、氯化钴(II)、溴化钴(II)、碘化钴(II)、氟化钴(II)-(III)、碳酸钴(II)、硝酸钴(II)、硫酸钴(II);乙酸镍(II)、乙酰丙酮镍(II)、溴化镍(II)、碳酸镍(II)、硝酸镍(II)、氯化镍(II)、碘化镍(II)、钼酸镍(II)、硫酸镍(II);乙酸锌(II)、乙酰丙酮锌(II)、氯化锌(II)、溴化锌(II)、柠檬酸锌(II)、酒石酸锌(II)、氟化锌(II)、碘化锌(II)、钼酸锌(II)、硝酸锌(II)、硫酸锌(II)、硫化锌(II);乙酸钯(II)、乙酰丙酮钯(II)、溴化钯(II)、氯化钯(II)、碘化钯(II)、硝酸钯(II)、硫酸钯(II)、硫化钯(II)、三氟乙酸钯(II)。
在浸渍结束时,单独或成对的金属在催化剂中的总含量为0.1-10重量%,优选0.5-8重量%。
在催化剂制备结束时,将其进料到连续进料烃原料和氢气的固定床反应器中。在这方面,不仅控制至此描述的绝对重要的实验参数,并且选择反应物的流量,以获得任选地与C4-C9脂族和脂环族烃混合的C8-C13芳族烃的加氢脱烷基化选择性。烃和氢气混合物的进料流量必须保证根据烃流计算的LHSV(液体时空速度)为3-5小时-1,更优选3.5-4.5小时-1。为此,氢气和进料原料之间的摩尔比必须保持为3-6摩尔/摩尔,更优选3.8-5.2摩尔/摩尔。
使用的实验装置包括由不锈钢制成的固定床反应器(内径为20毫米,总高度84.5厘米)、围绕反应器的电加热设备、冷却设备、气液分离器和高压液泵。
将催化剂装入利用自动控制保持恒温的反应器的等温区域。反应器的剩余体积填充颗粒状惰性固体,例如刚玉,以保证在催化床之前反应物气流的最佳分布和混合,以及提供给反应的热量的最佳分布和混合。
位于反应器之前在200-400℃、优选250-320℃运转的预热器也有助于确保反应物(原料和氢气)在气相中与催化剂最佳接触。该***有利于在非常短的时间内建立等温条件,不限于单独的固定床,而是沿着整个反应器能够更容易并更精确地控制催化剂的工作温度。每隔一段时间分离该反应产生的液体和气体流出物,并用气相色谱法分析。
下列实施例提供了对本发明方法的进一步说明,但是决不应该被认为是限定所附权利要求标明的范围。
制备催化剂的参考实施例:
催化剂A(对比)
通过混合ZSM-5沸石和作为粘合剂的氧化铝(两相重量比为60/40),并挤出混合物来制备获得催化剂A。
在空气中在550℃锻烧挤出的产物5小时,其BET表面积是290平方米/克。
一旦达到室温,将其粉碎并筛分以产生尺寸20-40目(0.84-0.42毫米)的粉末,使得12.4g催化剂粉末占据20ml等效(equivalent)体积。
催化剂B
通过在约25℃用包含1.88克钼酸铵[(NH4)6MO7O24·4H2O]的水溶液(60ml)浸渍催化剂A(50g)16小时,随后放在氮气流下12小时,在真空下在烘箱中以120℃干燥4小时,并在空气中以550℃锻烧5小时来获得催化剂B。催化剂中的钼含量计算为2.0重量%,利用ICP-MS分析测定为2.1%。
催化剂C
通过用包含0.78g钼酸铵[(NH4)6MO7O24·4H2O]的水溶液(17ml)浸渍催化剂A(14g),随后按照用于制备催化剂B的方法来获得催化剂C。计算的钼含量是3.0重量%,通过ICP-MS获得的值为3.05重量%。
催化剂D
通过用包含3.76g钼酸铵[(NH4)6MO7O24·4H2O]的水溶液(60ml)浸渍催化剂A(50g),随后按照用于制备催化剂A的方法来获得催化剂D。计算的钼含量是3.9重量%,通过ICP-MS获得的值为4.1重量%。
催化剂E
通过分为两个步骤浸渍催化剂A(50g)来获得催化剂E:首先用包含1.88g钼酸铵[(NH4)6MO7O24·4H2O]的水溶液(60ml)浸渍,随后用包含2.77g乙酸锌二水合物[Zn(OCOCH3)2·2H2O]的水溶液(50ml)第二次浸渍。按照催化剂B的描述进行用第一金属浸渍的过程,但是不锻烧,随后使用相同的操作程序用第二金属浸渍,并最后在空气中以550℃锻烧5小时。
催化剂中计算的钼和锌含量分别是2.0重量%和1.6重量%,与通过ICP-MS测定的值2.0重量%和1.7重量%相比。
催化剂F
通过分为两个步骤浸渍催化剂A(20g)来获得催化剂F:首先用包含1.15g钼酸铵[(NH4)6MO7O24·4H2O]的水溶液(24ml)浸渍,随后用包含0.5g硝酸钴六水合物[Co(NO3)2·6H2O]的水溶液(23ml)第二次浸渍。按照催化剂E的描述用两种金属进行浸渍过程。
催化剂中计算的钼和钴含量分别是3.0重量%和0.5重量%,与通过ICP-MS测定的值3.0重量%和0.5重量%相比。
催化剂G
按照用于制备催化剂B的方法,通过用包含1.85g硝酸镍[Ni(NO3)2·6H2O]的水溶液(50.5ml)浸渍催化剂A(50g)来获得催化剂G。
计算的镍含量是0.74重量%,相对于通过ICP-MS获得的值为0.77重量%。
催化剂H
按照用于制备催化剂B的方法,通过用包含4.0g硝酸镍[Ni(NO3)2·6H2O]的水溶液(60ml)浸渍催化剂A(50g)来获得催化剂H。
计算的镍含量是1.6重量%,相对于通过ICP-MS获得的值为1.7重量%。
催化剂I
按照用于制备催化剂B的方法,通过用20ml丙酮中0.6g乙酸钯[Pd(OCOCH3)2]水溶液浸渍催化剂A(14g)来获得催化剂I。
计算的钯含量是2.0重量%,与通过ICP-MS获得的值2.1重量%相比。
实施例1-4(对比)
在反应器中装入20cm3(12.4g)催化剂A,其中剩余体积用刚玉颗粒填充,以保证反应物气流的最佳分布和混合,以及提供给反应的热量的最佳分布混合。
将合适地与氢气混合并预热至280℃的下表1中标明组成的两种不同原料交替地进料至反应器中。两种原料中,由C4-C9产品和饱和的C5二氢化茚环负载脂族部分。
表1-进料原料的组成
 原料1(wt%)   原料2(wt%)
  乙基苯  43   34
  邻,间,对-二甲苯  20   32
  2,3-二氢化茚  12   9
  异丙基苯  1   1
  正-丙基苯  3   3
  2-,3-,4-乙基甲苯  16   16
  ∑(C4-C9脂族+C9+芳族)  5   5
  总计  100   100
在3MPa的压力下进行反应,反应物原料流量使得LHSV为3.9-4.1小时-1,H2/原料摩尔比为4.2-4.4。结果列于下表2中。
表2
 实施例1   实施例2   实施例3   实施例4
  催化剂  A   A   A   A
  金属  -   -   -   -
  反应温度  450℃   510℃   510℃   550℃
  原料  原料1   原料1   原料2   原料2
  原料转化率(%)  80.0   80.2   78.6   81.3
  液体流出物组成  wt%   wt%   wt%   wt%
  甲烷  3.2   6.9   10.3   13.8
  ∑C2  7.0   10.8   11.2   11.4
  ∑C3  7.9   3.0   3.1   1.3
  ∑C4-C5  0.1   0.1   -   -
  乙基苯  2.6   1.5   0.9   0.8
  邻,间,对-二甲苯  15.1   14.8   15.9   14.5
  2,3-二氢化茚  -   -   -   -
  异丙基苯  -   -   -   -
  ∑C9-C9+芳族  6.9   5.6   5.5   5.0
  苯  27.4   26.6   24.0   26.3
  甲苯  29.6   31.1   28.4   26.9
  总计  100.0   100.0   100.0   100.0
  ∑(苯+甲苯)  57.0   57.7   52.4   53.3
  (苯+甲苯)的选择性(wt%)  71.3   71.9   66.7   65.6
  R(苯+甲苯)  0.93   0.86   0.76   0.98
实施例5-20
使用与上述实施例1-4相同的方法,实质性差异是用如上所述催化剂B-I代替催化剂A。结果标明于附表3、4和5中。
表3
 实施例1   实施例5   实施例6   实施例7   实施例8   实施例9
  催化剂  A   B   D   G   H   I
  金属  -   Mo 2wt%   Mo 4wt%   Ni 0.8wt%   Ni 1.7wt%   Pd 2wt%
  反应温度  450℃   450℃   450℃   450℃   450℃   450℃
  原料  原料1   原料1   原料1   原料1   原料1   原料2
  原料转化率(%)  80.0   81.8   80.7   81.2   83.2   81.4
  液体流出物组成  wt%   wt%   wt%   wt%   wt%   wt%
  甲烷  3.2   0.6   0.4   1.7   1.7   0.4
  ∑C2  7.0   19.0   18.0   11.4   14.5   18.0
  ∑C3  7.9   2.7   2.1   5.9   5.5   3.1
  ∑C4-C5  0.1   0.1   -   0.1   0.1   0.1
  乙基苯  2.6   0.7   0.5   2.3   1.1   0.2
  邻,间,对-二甲苯  15.1   15.9   14.6   14.3   13.7   15.6
  2,3-二氢化茚  -   -   -   -   -   -
  异丙基苯  -   -   -   -   -   -
  ∑C9-C9+芳族  6.9   3.2   4.3   5.7   4.4   3.8
  苯  27.4   37.1   37.5   30.6   31.5   29.5
  甲苯  29.6   20.7   22.6   28.0   27.5   29.3
  总计  100.0   100.0   100.0   100.0   100.0   100.0
  ∑(苯+甲苯)  57.0   57.8   60.1   58.6   59.0   58.8
  (苯+甲苯)的选择性(wt%)  71.3   70.7   74.5   72.2   70.9   72.2
  R(苯+甲苯)  0.93   1.79   1.66   1.09   1.15   1.01
表4
  实施例10   实施例11   实施例12   实施例13   实施例14   实施例15   实施例16   实施例17   实施例18
催化剂   B   B   B   C   C   G   H   I   I
金属   Mo2wt%   Mo2wt%   Mo2wt%   Mo3wt%   Mo3wt%   Ni0.8wt%   Ni1.7wt%   Pd2wt%   Pd2wt%
反应温度   510℃   510℃   550℃   510℃   550℃   510℃   510℃   510℃   525℃
原料   原料1   原料2   原料2   原料2   原料2   原料1   原料1   原料2   原料2
原料转化率(%)   85.8   84.5   88.7   86.0   86.5   83.6   85.2   86.2   87.0
液体流出物组成   wt%   wt%   wt%   wt%   wt%   wt%   wt%   wt%   wt%
甲烷   1.3   3.2   7.0   1.0   3.5   3.5   5.8   2.8   2.9
∑C2   17.3   20.6   19.2   18.1   17.7   12.3   14.1   16.5   16.8
∑C3   2.0   3.8   2.2   1.4   1.4   5.0   2.6   1.9   0.9
∑C4-C5   0.1   0.1   0.1   -   -   0.1   -   -   -
乙基苯   0.3   0.2   0.1   0.1   0.5   0.2   0.1   0.1   0.1
邻,间,对-二甲苯   10.4   13.1   10.0   9.9   12.4   13.7   12.4   11.4   10.9
2,3-二氢化茚   -   -   -   -   -   -   -   -   -
异丙基苯   -   -   -   -   -   -   -   -   -
∑C9-C9+芳族   3.9   3.0   1.9   4.0   1.8   4.6   3.0   3.1   4.0
  35.4   27.2   29.6   36.0   29.9   32.8   30.3   32.9   34.4
甲苯   29.3   28.8   29.9   29.5   32.8   27.4   30.8   31.3   30.0
总计   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0
∑(苯+甲苯)   64.7   56.0   59.5   65.5   62.7   60.2   61.1   64.2   64.4
(苯+甲苯)的选择性(wt%)   75.4   66.3   67.1   76.2   72.5   72.0   71.7   74.5   74.0
R(苯+甲苯)   1.21   0.94   0.99   1.22   0.91   1.20   0.98   1.05   1.15
表5
  实施例19   实施例20
 催化剂   E   F
 金属   Zn 1.7wt%+Mo 2wt%   Co 0.5wt%+Mo 3wt%
 反应温度   510℃   450℃
 原料   原料2   原料2
 原料转化率(%)   84.3   80.3
 液体流出物组成   wt%   wt%
 甲烷   3.8   1.0
 ∑C2   16.5   19.7
 ∑C3   5.7   2.8
 ∑C4-C5   0.1   0.1
 乙基苯   0.8   0.3
 邻,间,对-二甲苯   13.1   17.0
 2,3-二氢化茚   -   -
 异丙基苯   -   -
 ∑C9-C9+芳族   3.3   3.6
 苯   29.6   32.6
 甲苯   27.1   22.9
 总计   100.0   100.0
 ∑(苯+甲苯)   56.7   55.5
 (苯+甲苯)的选择性(wt%)   67.3   69.1
 R(苯+甲苯)   1.09   1.42
在450℃用原料1(参见表3)进行的加氢脱烷基化反应表明:相对于用催化剂按原样进行的反应(实施例1),根据本发明存在所述金属之一和ZSM-5如何明显有利于芳族烃的选择性脱烷基化,通过抑制伴随产生甲烷来有助于乙烷净增长。此外,不仅增加了苯和甲苯的产量,而且它们(苯/甲苯)的重量比变得出人意料并且明显地有利于苯(实施例5-8)。在用原料2进行反应的情况下(实施例9),除了对于原料1已经表明的正面结果,观察到即便使用更大量的二甲苯(相对于原料1约1.5倍重量),其在流出物中的浓度没有增加,保持与用原料1进行反应产生的流出物有关的典型值。这进一步清楚地表明在″重质″原料的情况下(通过增加二甲苯的含量),本发明的方法、目标保证选择性脱烷基化没有伴随的异构化、烷基转移、歧化和缩合反应的能力。
在高于450℃的温度(表4),和总是在用金属浸渍的催化剂存在下,同时使原料(1和2)的转化率和苯加上甲苯的选择性进一步明显增加,产生的苯和甲苯之间的比例仍然有利于苯。对于液相中获得的产物所观察到的选择性增加也在气相中观察到,其中记录了乙烷产量的增加,然而甲烷浓度的增加与被选择性脱烷基的二甲苯和C9-C9+芳族烃含量进一步降低直接相关(实施例10-18)。
该结果特别重要,因为用本发明方法目标的每个单程转化的二甲苯和高级芳族烃的量达到持续循环流出物中剩余物的程度。
在450℃和510℃用由成对金属浸渍的催化剂进行加氢脱烷基化反应(实施例19-20,表5)相对于单一的金属进一步改善了苯/甲苯比例(即,它使得反应有利于苯)、全部脱烷基化产物,使其更加具有选择性。
实施例2双、5双、10双
表6表明所述实施例与前述实施例中与加氢脱烷基化反应有关的实施例具有相当大的差异,即,将二甲基二硫醚(DMDS)形式的硫加入至原料1中。
表6
 实施例2  实施例2双   实施例5   实施例5双   实施例10   实施例10双
  催化剂  A  A   B   B   B   B
  金属  -  -   Mo 2wt%   Mo 2wt%   Mo 2wt%   Mo 2wt%
  反应温度  510℃  510℃   450℃   450℃   510℃   510℃
  原料  原料1  原料1   原料1   原料1   原料1   原料1
  存在DMDS(ppm/w)*  -  200   -   200   -   200
  原料转化率(%)  80.2  82.8   81.8   82.0   85.8   85.1
  苯  26.6  24.7   37.1   36.0   35.4   33.7
  甲苯  31.1  29.8   20.7   21.4   29.3   30.3
  ∑(苯+甲苯)  57.7  54.5   57.8   57.4   64.7   64.0
  (苯+甲苯)的选择性(wt%)  71.9  65.8   70.7   70.0   75.4   75.2
  R(苯+甲苯)  0.86  0.83   1.79   1.68   1.21   1.11
*硫当量等于136ppm/w
在操作条件下,定量氢化脱硫本发明的对象原料,液体流出物中相应保留的H2S低于0.5ppm/w。
表6的实施例表明当用金属浸渍催化剂时,加氢脱烷基化反应在催化活性没有任何改变的情况下进行。特别地,在450℃已经很明显,得到的苯加上甲苯的收率结果和苯/甲苯比例明显高于在510℃用未处理的催化剂得到的结果,然而在两个温度下的原料转化率是相同的。

Claims (14)

1.一种烃的单独催化加氢脱烷基化方法,其中该烃包含C8-C13烷基芳族化合物,其任选地与C4-C9脂族和脂环族产品混合,该方法包括在氢气的存在下,在温度为400-650℃、压力为2-4MPa和H2/原料摩尔比为3-6的条件下用催化剂连续处理所述烃组合物,其中该催化剂由ZSM-5沸石组成,该ZSM-5沸石具有的Si/Al摩尔比为5-35,并由选自IIB、VIB、VIII族的至少一种金属改性。
2.权利要求1的方法,其中该加氢脱烷基化反应在以下条件下进行:温度为450-580℃,压力为2.8-3.6MPa,H2/原料摩尔比为3.8-5.2,和反应物流量能够保证根据烃流计算的LHSV(液体时空速度)为3-5小时-1,优选3.5-4.5小时-1
3.权利要求1-2的方法,其中进行加氢脱烷基化的烃原料包含C8-C13烷基芳族化合物,其选自乙基苯、二甲苯、丙基苯、乙基甲苯、三甲基苯、二乙基苯、乙基二甲苯、四甲基苯、丙基甲苯、乙基三甲基苯、三乙基苯、二丙基甲苯。
4.权利要求3的方法,其中该C8-C13烷基芳族烃原料来自重整单元、或来自进行热解工艺的单元、或来自蒸汽裂解。
5.权利要求1-4的方法,其中进行加氢脱烷基化的烃原料包含C8-C13烷基芳族化合物,其任选地与C4-C9脂族和脂环族产品以及包含杂原子的有机化合物混合。
6.权利要求1-5的方法,其中该催化剂由粘合形式的ZSM-5沸石组成,该粘合剂选自氧化铝,其中包括假勃姆石和γ-氧化铝;粘土,其中包括高岭石、绿土、蒙脱土;二氧化硅;硅铝酸盐;氧化钛和氧化锆;它们的混和物,其中沸石/粘合剂重量比为100/1-1/10。
7.权利要求1-6的方法,其中用选自IIB、VIB和VIII族的至少一种金属改性该ZSM-5催化剂/粘合剂。
8.上述权利要求任一项的方法,其中属于IIB、VIB和VIII族的金属选自钼、锌、镍、钴、钯和它们的混合物。
9.权利要求8的方法,其中该金属是钼。
10.上述权利要求任一项的方法,其中该ZSM-5沸石的特征在于Si/Al摩尔比为15-30。
11.上述权利要求任一项的方法,其中根据选自浸渍、离子交换、汽相沉积或表面吸附的技术将金属分散在催化剂上。
12.上述权利要求任一项的方法,其中根据包括以下步骤的方法用IIB、VIB和VIII族金属浸渍按原样或以粘合形式的ZSM-5沸石:
-制备待负载在介质上的金属化合物的一种或多种溶液;
-用上述溶液浸渍沸石;
-干燥如此浸渍的沸石;
-在400-650℃的温度锻烧该浸渍并干燥的沸石;和
-任选地重复上述步骤一次或若干次。
13.权利要求12的方法,其中通过用水溶液或含水有机溶液浸渍将金属分散在催化剂上,有机溶剂选自醇、酮和腈或它们的混合物,其以使得金属在催化剂中的最终总含量为0.1-10重量%的浓度含有金属的至少一种水可溶的或有机可溶的化合物。
14.上述权利要求任一项的方法,其中金属在催化剂中的总含量为0.5-8重量%。
CN2004800407582A 2004-01-22 2004-12-13 烷基芳族烃的催化加氢脱烷基化方法 Expired - Fee Related CN1906272B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2004A000077 2004-01-22
IT000077A ITMI20040077A1 (it) 2004-01-22 2004-01-22 Procedimento per la idrodealchilazione catalitica di idrocarburi alchilaromatici
PCT/EP2004/014165 WO2005071045A1 (en) 2004-01-22 2004-12-13 Process for the catalytic hydrodealkylation of alkylaro­matic hydrocarbons

Publications (2)

Publication Number Publication Date
CN1906272A true CN1906272A (zh) 2007-01-31
CN1906272B CN1906272B (zh) 2010-09-08

Family

ID=34803699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800407582A Expired - Fee Related CN1906272B (zh) 2004-01-22 2004-12-13 烷基芳族烃的催化加氢脱烷基化方法

Country Status (12)

Country Link
US (1) US7880045B2 (zh)
EP (1) EP1706471B1 (zh)
JP (1) JP2007518856A (zh)
CN (1) CN1906272B (zh)
DK (1) DK1706471T3 (zh)
EA (1) EA010238B1 (zh)
ES (1) ES2741149T3 (zh)
HU (1) HUE045833T2 (zh)
IT (1) ITMI20040077A1 (zh)
PL (1) PL1706471T3 (zh)
PT (1) PT1706471T (zh)
WO (1) WO2005071045A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174428A (zh) * 2013-05-22 2014-12-03 中国石油化工股份有限公司 一种催化剂及其用于c9以上重质芳烃轻质化的方法
CN105085153A (zh) * 2014-05-08 2015-11-25 中国石油化工股份有限公司 一种使用碳9以上的芳烃生产苯、甲苯、二甲苯的方法
CN108435235A (zh) * 2018-03-26 2018-08-24 福州大学 一种介孔Zn-ZSM-5分子筛及低成本制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20040554A1 (it) * 2004-03-23 2004-06-23 Polimeri Europa Spa Procedimento per la idrodealchilazione catalitica selettiva di idrocarburi alchilaromatici
WO2007114127A1 (ja) * 2006-03-29 2007-10-11 Toray Industries, Inc. エチルベンゼンの転化方法およびパラキシレンの製造方法
JP5292699B2 (ja) * 2006-03-29 2013-09-18 東レ株式会社 エチルベンゼンの転化方法およびパラキシレンの製造方法
ITMI20061548A1 (it) * 2006-08-03 2008-02-04 Polimeri Europa Spa Composizioni catalitiche per idrodealchilazioni altamente selettive di idrocarburi alchilaromatici
DE102007004079A1 (de) 2007-01-26 2008-07-31 Linde Ag Verfahren zur Trennung der gasförmigen Reaktionsprodukte der Dampf-Dealkylierung
DE102007004077A1 (de) 2007-01-26 2008-07-31 Linde Ag Verfahren zur Dampf-Dealkylierung
DE102007004075A1 (de) 2007-01-26 2008-07-31 Linde Ag Verfahren zur Temperaturführung einer Dampf-Dealkylierung
DE102007004078A1 (de) 2007-01-26 2008-07-31 Linde Ag Verfahren zur Dampf-Dealkylierung unter Einbindung einer Wassergas-Shift-Reaktion
DE102007004074A1 (de) 2007-01-26 2008-07-31 Linde Ag Verfahren und Vorrichtung zur Regeneration eines Katalysators zur Dampf-Dealkylierung
EP2253607B1 (en) * 2008-03-19 2012-06-20 Toray Industries, Inc. Method of converting ethylbenzene and process for producing p-xylene
JP6566306B2 (ja) * 2015-06-24 2019-08-28 Jxtgエネルギー株式会社 芳香族転換反応用触媒及び芳香族炭化水素の製造方法
EP3524587A1 (en) * 2015-08-21 2019-08-14 SABIC Global Technologies B.V. Process for producing btx from a c5-c12 hydrocarbon mixture
US10093873B2 (en) 2016-09-06 2018-10-09 Saudi Arabian Oil Company Process to recover gasoline and diesel from aromatic complex bottoms
US10053401B1 (en) 2017-02-16 2018-08-21 Saudi Arabian Oil Company Process for recovery of light alkyl mono-aromatic compounds from heavy alkyl aromatic and alkyl-bridged non-condensed alkyl aromatic compounds
US11066344B2 (en) 2017-02-16 2021-07-20 Saudi Arabian Oil Company Methods and systems of upgrading heavy aromatics stream to petrochemical feedstock
US10508066B2 (en) 2017-02-16 2019-12-17 Saudi Arabian Oil Company Methods and systems of upgrading heavy aromatics stream to petrochemical feedstock
US11279663B2 (en) 2017-02-16 2022-03-22 Saudi Arabian Oil Company Methods and systems of upgrading heavy aromatics stream to petrochemical feedstock
US10899685B1 (en) 2019-10-07 2021-01-26 Saudi Arabian Oil Company Catalytic hydrodearylation of heavy aromatic stream containing dissolved hydrogen
US11267769B2 (en) 2019-10-07 2022-03-08 Saudi Arabian Oil Company Catalytic hydrodearylation of heavy aromatic streams containing dissolved hydrogen with fractionation
FR3116818A1 (fr) * 2020-11-30 2022-06-03 IFP Energies Nouvelles Procede d’hydrogenolyse selective de charges comportant des composes aromatiques c8+ mettant en œuvre un catalyseur a structure zeolithique
US11484869B2 (en) 2020-12-09 2022-11-01 Saudi Arabian Oil Company Modified ultra-stable Y (USY) zeolite catalyst for dealkylation of aromatics
US11613714B2 (en) 2021-01-13 2023-03-28 Saudi Arabian Oil Company Conversion of aromatic complex bottoms to useful products in an integrated refinery process
US11591526B1 (en) 2022-01-31 2023-02-28 Saudi Arabian Oil Company Methods of operating fluid catalytic cracking processes to increase coke production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351979A (en) * 1980-04-14 1982-09-28 Mobil Oil Corporation Manufacture of aromatic compounds
DE3272042D1 (en) * 1982-11-23 1986-08-21 Toray Industries Conversion of xylenes containing ethylbenzene
CA1227809A (en) 1983-10-17 1987-10-06 Nancy A. Kutz Modification of hydrocarbon conversion processes over crystalline aluminosilicate zeolite-based catalysts by incorporation of a molybdenum compound
US5689027A (en) * 1994-11-18 1997-11-18 Mobil Oil Corporation Selective ethylbenzene conversion
US5744674A (en) * 1996-02-06 1998-04-28 China Petrochemical Corporation Catalyst and process for the conversion of heavy aromatics to light aromatics
US5877374A (en) * 1997-04-02 1999-03-02 Chevron Chemical Company Low pressure hydrodealkylation of ethylbenzene and xylene isomerization
TW482751B (en) * 1997-06-06 2002-04-11 China Petro Chemical Technolog Catalysts and processes for the conversion of aromatic hydrocarbons and uses thereof in the production of aromatic hydrocarbons
US5883034A (en) * 1997-07-09 1999-03-16 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
KR100557558B1 (ko) * 2000-11-30 2006-03-03 에스케이 주식회사 탄화수소 혼합물로부터 방향족 탄화수소 및 액화석유가스를 제조하는 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174428A (zh) * 2013-05-22 2014-12-03 中国石油化工股份有限公司 一种催化剂及其用于c9以上重质芳烃轻质化的方法
CN104174428B (zh) * 2013-05-22 2019-11-12 中国石油化工股份有限公司 一种催化剂及其用于c9以上重质芳烃轻质化的方法
CN105085153A (zh) * 2014-05-08 2015-11-25 中国石油化工股份有限公司 一种使用碳9以上的芳烃生产苯、甲苯、二甲苯的方法
CN108435235A (zh) * 2018-03-26 2018-08-24 福州大学 一种介孔Zn-ZSM-5分子筛及低成本制备方法

Also Published As

Publication number Publication date
JP2007518856A (ja) 2007-07-12
HUE045833T2 (hu) 2020-01-28
WO2005071045A1 (en) 2005-08-04
US20070203377A1 (en) 2007-08-30
PT1706471T (pt) 2019-08-07
EP1706471A1 (en) 2006-10-04
CN1906272B (zh) 2010-09-08
PL1706471T3 (pl) 2020-01-31
EA010238B1 (ru) 2008-06-30
ITMI20040077A1 (it) 2004-04-22
ES2741149T3 (es) 2020-02-10
US7880045B2 (en) 2011-02-01
DK1706471T3 (da) 2019-08-05
EA200601202A1 (ru) 2006-12-29
EP1706471B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
CN1906272B (zh) 烷基芳族烃的催化加氢脱烷基化方法
CN101517043B (zh) 用于烷基芳族烃的高选择性加氢脱烷基化的催化组合物
CN1934228B (zh) 烷基芳烃的选择催化加氢脱烷基化的方法
CN1689701A (zh) 含10mr沸石和12mr沸石的催化剂及其在烷基芳族烃烷基转移中的应用
CN1356927A (zh) 多孔无机氧化物的含金属的宏观结构,其制备方法和用途
CN1061214A (zh) 制取支链烯烃的方法
CN1386728A (zh) 转化重芳烃的方法
CN106925339A (zh) 用于碳八芳烃中二甲苯异构化反应的多级孔分子筛催化剂的制备方法
US9199894B2 (en) Isomerisation catalyst preparation process
CN112657539B (zh) 一种稠环芳烃选择性加氢裂解催化剂及其制备方法应用
CN108367281B (zh) 催化剂组合物和异构化方法
CN1753728A (zh) 用于制备直链烷烃的催化剂和方法
US10377683B2 (en) Isomerisation catalyst preparation process
CN110694675A (zh) 一种低碳烃择形芳构化高效合成对二甲苯的催化剂
CN104107717B (zh) 提高二甲苯选择性的甲苯歧化催化剂及其用途
CN109569714B (zh) 一种费托合成石脑油转化催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100908

CF01 Termination of patent right due to non-payment of annual fee