CN1755963B - 磁电阻效应元件及其制造方法 - Google Patents

磁电阻效应元件及其制造方法 Download PDF

Info

Publication number
CN1755963B
CN1755963B CN2005100987654A CN200510098765A CN1755963B CN 1755963 B CN1755963 B CN 1755963B CN 2005100987654 A CN2005100987654 A CN 2005100987654A CN 200510098765 A CN200510098765 A CN 200510098765A CN 1755963 B CN1755963 B CN 1755963B
Authority
CN
China
Prior art keywords
ferromagnetic layer
layer
layer whose
magneto
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005100987654A
Other languages
English (en)
Other versions
CN1755963A (zh
Inventor
大卫·D.贾亚普拉维拉
恒川孝二
长井基将
前原大树
山形伸二
渡边直树
汤浅新治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Canon Anelva Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Canon Anelva Corp
Publication of CN1755963A publication Critical patent/CN1755963A/zh
Application granted granted Critical
Publication of CN1755963B publication Critical patent/CN1755963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3204Exchange coupling of amorphous multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及磁电阻效应元件及其制造方法,特别是涉及利用简单的溅射成膜法制作的具有极高磁电阻比的磁电阻效应元件及其制造方法。该磁电阻效应元件包含由一对强磁性层和位于其中间的势垒层组成的积层结构,至少一个强磁性层的至少与势垒层接触的部分为非晶态,势垒层是具有单晶结构的MgO层。

Description

磁电阻效应元件及其制造方法
技术领域
本发明涉及磁电阻效应元件及其制造方法,特别是涉及利用简单的溅射成膜法制作的具有极高磁电阻比的磁电阻效应元件及其制造方法。
背景技术
近年来,作为不挥发性储存器的被称为MRAM(Magnetoresistive Random Aceess Memory)的磁存储器装置受到瞩目,并逐渐进入实用化阶段。MRAM结构简单,容易达到千兆比特级的超高集成化,由于利用磁性动量的旋转而产生储存作用,从而具有可擦写的次数极大、并且能够使动作速度达到纳秒量级的特性。
图4所示的是MRAM的结构。在MRAM101中,102是存储器元件,103是字线,104是位线。多个储存器元件102分别配置在多个字线103和多个位线104的各交点位置,配置成网格状的位置关系。多个储存器元件102分别储存1比特的信息。
如图5所示,MRAM101的存储器元件102由在字线103和位线104的交点位置储存1比特信息的磁电阻效应元件即TMR元件110和具有开关功能的晶体管106组成。该存储器元件102中主要的特点是使用了TMR(Tunneling Magneto resistance)元件110。如图6所示,TMR元件的基本结构是强磁性金属电极(强磁性层)107/隧穿势垒层108/强磁性金属电极(强磁性层)109所组成的3层积层的结构。TMR元件110由一对强磁性层107、109和位于其中间的隧穿势垒层108构成。
如图6所示,TMR元件110具有以下特性:在隧穿势垒层108两侧的强磁性层107、109之间施加所需要的电压而流过恒定电流的状态下,施加外加磁场,强磁性层107、109的磁化方向同向平行时(所谓‘平行状态’),TMR元件的电阻为最小((A)的状态:电阻值RP),强磁性层的磁化方向反向平行时(所谓‘反平行状态’),TMR元件的电阻为最大((B)的状态:电阻值RA)。因此,TMR元件110能够通过利用外加磁场得到平行状态和反平行状态,利用电阻值变化来进行信息的储存。
对于以上的TMR元件,为了实现具有实用性的千兆比特级的MRAM,需要使‘平行状态’的电阻值RP和‘反平行状态’的电阻值RA之差大。作为其指标使用的是磁电阻比(MR比)。MR比定义为[(RA-RP)÷RP]。
为了提高MR,原来所进行的是使强磁性金属电极(强磁性层)的电极材料最佳化,或在隧穿势垒层的制造方法上下功夫。例如,在特开2003-304010号公报和特开2004-63592号公报中提出了对强磁性金属电极(强磁性层)的材料使用FexCoyBz等几个最佳实施例的方案。
上述特开2003-304010号公报和特开2004-63592号公报中所公布的TMR元件的MR比低于70%,需要进一步提高MR比。
此外,最近,有关使用了MgO势垒层的单晶TMR薄膜,有报道使用MBE和超高真空蒸发装置制作Fe/MgO/Fe的单晶TMR薄膜,得到了MR比88%(汤浅新治、及另外4人,“High Tunnel Megnetoresistance at room temperature in Fully Epitaxial Fe/MgO/Tunnel Junctions due to Coherent Spin-Polarized Tunneling”,纳米电子学研究所,应用物理的日本期刊,2004年4月2日出版,第43卷、第4B号,p.L588-L590)。该TMR薄膜具有完全外延单晶的结构。
为了制作使用了上述文献中的单晶MgO势垒层的单晶TMR薄膜,需要使用昂贵的MgO单晶基片。此外,还有以下缺点:需要昂贵的MBE装置制备Fe膜的外延生长或超高真空电子束蒸发制备MgO薄膜等先进的成膜技术,成膜时间变长等不适合于批量生产的问题。
发明内容
本发明的目的是提供具有高MR比,提高量产性、提高实用性的磁电阻效应元件及其制造方法。
本发明的磁电阻效应元件及其制造方法为了达成上述目的,而采用以下结构。
该磁电阻效应元件的特征在于:包含由一对强磁性层和位于其中间的势垒层组成的积层结构,至少一个强磁性层的至少与势垒层接触的部分为非晶态,势垒层是具有单晶结构的MgO层。
采用上述磁电阻效应元件,通过势垒层具有单晶结构,使得强磁性层间的电流的流动可以直线前进,使其MR比为极高的值成为可能。
磁电阻效应元件较好是MgO层为利用溅射法成膜的单晶层。采用该结构,能够以简单的方法制作作为中间层的势垒层,最适合于量产。
磁电阻效应元件较好是MgO层为用MgO靶并且利用溅射法成膜的单晶层。
磁电阻效应元件较好是强磁性层为CoFeB层。
磁电阻效应元件的制造方法是包含由一对强磁性层和位于其中间的势垒层组成的积层结构的磁电阻效应元件的制造方法,做成至少与势垒层接触的部分为非晶态的强磁性层,使用溅射法制作具有单晶结构的势垒层。并且磁电阻效应元件的制造方法较好是在制作MgO层的溅射法中使用MgO靶,并且实施RF(射频)磁控溅射。
采用本发明,由于作为TMR元件等磁电阻效应元件的中间层的隧道势垒层是具有单晶结构的MgO层,从而能够使MR比极高,在将其用作MRAM的存储器元件时能够实现千兆比特级的超高集成度的MRAM。再有,通过利用溅射法制备上述单晶MgO层,能够制作适合于批量生产,实用性高的磁电阻效应元件。
本发明的所述目的以及特征,从与下面附图相关的优选实施例的技术可以明白。
附图说明
图1是展示本发明的磁电阻效应元件(TMR元件)的结构的图。
图2是展示制作本发明的磁电阻效应元件(TMR元件)的装置的俯视图。
图3是展示本发明的磁电阻效应元件(TMR元件)的磁特性的压力依赖关系的曲线图。
图4是展示MRAM的主要部分结构的立体图。
图5是展示MRAM的存储器元件的结构的图。
图6是说明TMR元件的特性的图。
具体实施方式
以下,基于附图来说明本发明的最佳实施例。
图1所示的是本发明的磁电阻效应元件的积层结构的一个例子,所示的是TMR元件的积层结构。根据该TMR元件10,在基片11上形成有构成TMR元件10的例如9层的多层膜。该9层的多层膜从最下层的第1层朝向最上层的第9层按‘Ta’、‘PtMn’、‘70CoFe’、‘Ru’、‘CoFeB’、‘MgO’、‘CoFeB’、‘Ta’、‘Ru’的顺序积层磁性膜。第1层(Ta:钽)为接地层,第2层(PtMn)为反铁磁性层,第3层到第5层(70CoFe、Ru、CoFeB)组成的层形成强磁性层。实际上的磁化固定层为第5层‘CoFeB’组成的强磁性层。第6层(MgO:氧化镁)为作为绝缘层的隧穿势垒层。第7层(CoFeB)为强磁性层,是磁化自由层。第6层(MgO)为在位于其上下的一对强磁性层(CoFeB)之间的中间层。第8层(Ta:钽)和第9层(Ru:铷)形成为硬屏蔽层。利用上述磁化固定层(第5层‘CoFeB’)和隧穿势垒层(第6层‘MgO’)和磁化自由层(第7层‘CoFeB’)形成作为基本结构狭义上的TMR元件部12。作为磁化固定层的第5层‘CoFeB’和作为磁化自由层的第7层‘CoFeB’是作为非晶态的强磁性体而知道的。作为隧穿势垒层的MgO层在整个厚度方向具有单晶结构而形成。
还有,在图1中,各层中括号中记载的数值表示各层的厚度,单位是‘nm(纳米)’。该厚度是一个例子,并不限定于此。
其次,参照图2对制造具有上述积层结构的TMR元件10的装置和制造方法进行说明。图2是制造TMR元件10的装置的概略俯视图,本装置是能够制作包含多层磁性膜的多层膜的装置,是批量生产用的溅射成膜装置。
图2所示的磁性多层膜制作装置20是组群式装置,具备基于溅射法的多个成膜腔室。在本装置20中,具备未图示出的机器人搬送装置的搬送腔室22设置在中间位置。在磁性多层膜制作装置20的搬送腔室22内设有2个装料/取料腔室25、26,分别进行基片(硅基片)11的搬入/搬出。通过交替使用这些装料/取料腔室25、26,而成为能够以更高的生产效率制作多层膜的结构。
在上述磁性多层膜制作装置20中,在搬送腔室22周围,例如,设有3个成膜腔室27A、27B、27C和一个刻蚀腔室28。在刻蚀腔室28对TMR元件10的所要表面进行刻蚀处理。在各腔室之间设置隔离两个腔室并根据需要开关自如的闸板阀30。还有,在各腔室附属设置有未图示出的真空排气机构、气体导入机构、电力供给机构等。
在磁性多层膜制作装置20的成膜腔室27A、27B、27C利用溅射法在基片11上分别从下侧依次沉积上述各磁性膜。例如在成膜腔室27A、27B、27C的顶部,分别配置有4个或5个配置于适当的圆周上的靶(31、32、33、34、35)、(41、42、43、44、45),(51、52、53、54)。并且,在位于与该圆周同轴的位置上的基片台上配置基片。
在上述中,例如,靶31的材料为‘Ta’,靶33的材料为‘CoFeB’。此外,靶41的材料为‘PtMn’,靶42的材料为‘CoFe’,靶43的材料为‘Ru’。再有,靶51的材料为‘MgO’。
上述多个靶为了更有效地沉积适当组分的磁性膜,较好的是设置成朝向各基片倾斜,以与基片面平行的状态设置亦可。此外,基于多个靶和基片相对旋转的结构来配置。在具有上述结构的装置20中,图1所示的磁性多层膜是利用各成膜腔室27A、27B、27C通过溅射法在基片11上依次成膜的。
叙述作为本发明的主要元件部的TMR元件部12的成膜条件。磁化固定层(第5层‘CoFeB’)是用CoFeB组分比为60/20/20原子百分比的靶,以Ar压力0.03Pa,利用磁控DC溅射(磁控直流溅射)以溅射率来成膜的。接着,隧穿势垒层(第6层‘MgO’)是用MgO组分比为50/50原子百分比的靶,以Ar为溅射气体,压力在0.01~0.4Pa的范围改变来成膜的。利用磁控射频溅射以溅射率来进行成膜。然后,以与磁化固定层(第5层‘CoFeB’)相同的成膜条件制备磁化自由层(第7层‘CoFeB’)。
在本实施例中,MgO的成膜速率为但在0.01~
Figure B2005100987654D00054
的范围成膜也没问题。
在成膜腔室27A、27B、27C分别进行溅射而沉积结束的TMR元件10在热处理炉中进行退火处理。此时,退火温度为例如约300℃,在例如8kOe(632kA/m)的磁场中,进行例如4小时的退火处理。这样,使TMR元件10的第2层PtMn得到所要的磁化率。
图3所示的是测量MgO的磁性质的结果。在测量的全范围得到了高的MR比。特别地,在压力为0.05Pa或其以上0.2或其以下的范围,得到高的MR比。这可能是因为在压力为0.05Pa或其以上的范围,基片上的压力增加,离子碰撞降低,结果膜的缺陷减少。在压力为0.05Pa或其以上,MR比增大,隧穿电阻值(RA)增加。这可能是因为形成了良好的单晶膜,结果,膜的漏电流减少。另一方面,在0.05Pa或其以下的范围,隧穿电阻值(RA)降低,MR比下降。这被认为是离子碰撞增大导致MgO单晶膜的缺陷增多。以截面TEM观察样品的结果,在测量的压力的所有范围,MgO膜从下侧的界面直到上侧的界面横跨整个层具有单晶结构,观察到取向为MgO单晶的(001)面平行于界面。另外,观察到CoFeB层形成非晶状态。
此次的样品在MgO层的两侧的强磁性层都以非晶的CoFeB形成,但以非晶CoFeB仅形成某一层强磁性层都观察到同样的结果。该强磁性层至少与势垒层接触的部分具有非晶物质态就足够。
另一方面,在形成具有多晶结构的CoFe作为MgO层两侧的强磁性层时,在MgO层发现许多扩散,没得到良好的单晶膜,特性较差。
此时,如前所述,使用MgO靶51作为靶,并且较好是采用RF(射频)磁控溅射法。还有,使用反应溅射法,用Ar和O2的混合气体溅射Mg靶也能够形成MgO膜。
还有,在上述中,MgO层横跨整个层都是单晶,具有(001)面平行于界面的取向单晶结构。再有,形成TMR元件部12的一对强磁性层能够代替具有非晶态的CoFeB而使用CoFeZr、CoTaZr、CoFeNbZr、CoFeZr、FeTaC、FeTaN、FeC等具有非晶态的强磁性层。
对以上的实施例说明的结构、形状、大小以及配置关系来说,本发明只是以能够理解和实施本发明的程度大致地进行了说明,或者只是例示数值以及各结构的组成(材质)。因此,本发明并不限定于说明过的实施例,只要不超脱权利要求的范围所示的技术思想的范围,能够有各种变更。
本开示涉及到2004年9月7日提出的日本专利申请第2004-259280号所包含的主题,其公布内容因明确地参照其整体而被包括。

Claims (7)

1.一种磁电阻效应元件,包含:由第一强磁性层、第二强磁性层和位于所述第一强磁性层和第二强磁性层之间的势垒层组成的积层结构;以及位于所述第一强磁性层侧的基板,其特征在于:
所述势垒层自与所述第一强磁性层的界面至与所述第二强磁性层的界面,在层厚度方向上,具有(001)面与界面平行取向的单晶结构的MgO;所述第一强磁性层的至少与所述势垒层接触的部分为非晶态。
2.根据权利要求1所述的磁电阻效应元件,其特征在于:
所述第一强磁性层是CoFeB。
3.根据权利要求1所述的磁电阻效应元件,其特征在于:在所述势垒层成膜时,所述第一强磁性层是非晶态。
4.根据权利要求1-3中任一项所述的磁电阻效应元件,其特征在于:上述势垒层是用MgO靶并以溅射法成膜的层。
5.一种磁电阻效应元件的制造方法,该磁电阻效应元件包含由强磁性层和该强磁性层上的势垒层构成的积层结构,其特征在于:使至少表面为非晶态的强磁性层成膜,用溅射法使得从与所述强磁性层的界面至与所述强磁性层相反一侧的界面,在厚度方向上,将具有(001)面与界面平行取向的单晶结构的氧化镁的势垒层成膜的工序。
6.根据权利要求5所述的磁电阻效应元件的制造方法,其特征在于,所述强磁性层是CoFeB。
7.根据权利要求5所述的磁电阻效应元件的制造方法,其特征在于:使所述势垒层成膜的工序包括:使用溅射法使MgO层成膜的工序;以及进行退火处理的工序。
CN2005100987654A 2004-09-07 2005-09-07 磁电阻效应元件及其制造方法 Active CN1755963B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004259280A JP4292128B2 (ja) 2004-09-07 2004-09-07 磁気抵抗効果素子の製造方法
JP2004-259280 2004-09-07
JP2004259280 2004-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2009101180744A Division CN101572184A (zh) 2004-09-07 2005-09-07 磁性多层膜制作装置

Publications (2)

Publication Number Publication Date
CN1755963A CN1755963A (zh) 2006-04-05
CN1755963B true CN1755963B (zh) 2010-09-29

Family

ID=35326492

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2005100987654A Active CN1755963B (zh) 2004-09-07 2005-09-07 磁电阻效应元件及其制造方法
CNA2009101180744A Pending CN101572184A (zh) 2004-09-07 2005-09-07 磁性多层膜制作装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2009101180744A Pending CN101572184A (zh) 2004-09-07 2005-09-07 磁性多层膜制作装置

Country Status (8)

Country Link
US (6) US20060056115A1 (zh)
EP (3) EP1633007B1 (zh)
JP (1) JP4292128B2 (zh)
KR (6) KR20060051048A (zh)
CN (2) CN1755963B (zh)
AT (1) ATE431969T1 (zh)
DE (1) DE602005014526D1 (zh)
TW (3) TWI504032B (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100025B2 (ja) * 2002-04-09 2008-06-11 ソニー株式会社 磁気抵抗効果素子及び磁気メモリ装置
US7696169B2 (en) * 2003-06-06 2010-04-13 The Feinstein Institute For Medical Research Inhibitors of the interaction between HMGB polypeptides and toll-like receptor 2 as anti-inflammatory agents
US7911832B2 (en) * 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7884403B2 (en) 2004-03-12 2011-02-08 Japan Science And Technology Agency Magnetic tunnel junction device and memory device including the same
WO2006022183A1 (ja) * 2004-08-27 2006-03-02 Japan Science And Technology Agency 磁気抵抗素子及びその製造方法
JP4292128B2 (ja) * 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JP2006210391A (ja) * 2005-01-25 2006-08-10 Japan Science & Technology Agency 磁気抵抗素子及びその製造方法
JP5096702B2 (ja) * 2005-07-28 2012-12-12 株式会社日立製作所 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP4782037B2 (ja) 2006-03-03 2011-09-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び製造装置
JP4731393B2 (ja) 2006-04-28 2011-07-20 株式会社日立製作所 磁気再生ヘッド
JP2007305768A (ja) * 2006-05-11 2007-11-22 Tdk Corp トンネル磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法及び磁気メモリの製造方法
US7535069B2 (en) * 2006-06-14 2009-05-19 International Business Machines Corporation Magnetic tunnel junction with enhanced magnetic switching characteristics
JP4673274B2 (ja) * 2006-09-11 2011-04-20 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 外部ストレス耐性の高い磁気抵抗効果型ヘッド
JP4923896B2 (ja) * 2006-09-15 2012-04-25 富士通株式会社 交換結合膜及び磁気デバイス
JP2008078379A (ja) * 2006-09-21 2008-04-03 Alps Electric Co Ltd トンネル型磁気検出素子の製造方法
US7751156B2 (en) * 2006-09-29 2010-07-06 Hitachi Global Storage Technologies Netherlands, B.V. Dual-layer free layer in a tunneling magnetoresistance (TMR) element
JP2008135432A (ja) * 2006-11-27 2008-06-12 Tdk Corp トンネル磁気抵抗効果素子及びその製造方法
US7695761B1 (en) 2006-12-21 2010-04-13 Western Digital (Fremont), Llc Method and system for providing a spin tunneling magnetic element having a crystalline barrier layer
US7715156B2 (en) 2007-01-12 2010-05-11 Tdk Corporation Tunnel magnetoresistive effect element and thin-film magnetic head with tunnel magnetoresistive effect read head element
JP2008192634A (ja) * 2007-01-31 2008-08-21 Fujitsu Ltd トンネル磁気抵抗効果膜および磁気デバイス
JP4885769B2 (ja) * 2007-03-09 2012-02-29 株式会社アルバック 磁気抵抗素子の製造方法、磁気デバイスの製造方法、磁気抵抗素子の製造装置および磁気デバイスの製造装置
US8559141B1 (en) 2007-05-07 2013-10-15 Western Digital (Fremont), Llc Spin tunneling magnetic element promoting free layer crystal growth from a barrier layer interface
US8174800B2 (en) 2007-05-07 2012-05-08 Canon Anelva Corporation Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus
JP2008306169A (ja) * 2007-05-07 2008-12-18 Canon Anelva Corp 磁気抵抗素子、磁気抵抗素子の製造方法及び磁性多層膜作成装置
US8679301B2 (en) * 2007-08-01 2014-03-25 HGST Netherlands B.V. Repeatability for RF MgO TMR barrier layer process by implementing Ti pasting
JP2009065040A (ja) * 2007-09-07 2009-03-26 National Institute Of Advanced Industrial & Technology 磁性材料及びそれを用いた磁気抵抗素子
CN101821423A (zh) * 2007-10-04 2010-09-01 佳能安内华股份有限公司 真空薄膜形成设备
WO2009044473A1 (ja) * 2007-10-04 2009-04-09 Canon Anelva Corporation 高周波スパッタリング装置
US8133745B2 (en) * 2007-10-17 2012-03-13 Magic Technologies, Inc. Method of magnetic tunneling layer processes for spin-transfer torque MRAM
WO2009069672A1 (ja) * 2007-11-28 2009-06-04 Ulvac, Inc. スパッタ装置及び成膜方法
US8545999B1 (en) 2008-02-21 2013-10-01 Western Digital (Fremont), Llc Method and system for providing a magnetoresistive structure
WO2009110119A1 (ja) 2008-03-06 2009-09-11 富士電機ホールディングス株式会社 強磁性トンネル接合素子および強磁性トンネル接合素子の駆動方法
KR101271353B1 (ko) * 2008-03-07 2013-06-04 캐논 아네르바 가부시키가이샤 자기 저항 소자의 제조 방법 및 자기 저항 소자의 제조 장치
US8077436B2 (en) 2008-03-20 2011-12-13 Tdk Corporation CPP-type magnetoresistance effect element having three magnetic layers
WO2010023833A1 (ja) * 2008-09-01 2010-03-04 キヤノンアネルバ株式会社 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
WO2010026667A1 (en) 2008-09-03 2010-03-11 Canon Anelva Corporation Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline mgo tunnel barrier
JP2010062353A (ja) * 2008-09-04 2010-03-18 Fujitsu Ltd 磁気抵抗効果素子
JPWO2010026705A1 (ja) * 2008-09-08 2012-01-26 キヤノンアネルバ株式会社 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
JPWO2010029702A1 (ja) * 2008-09-09 2012-02-02 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法、該製造方法に用いる記憶媒体
JP2010080806A (ja) * 2008-09-29 2010-04-08 Canon Anelva Corp 磁気抵抗素子の製造法及びその記憶媒体
JP2010109319A (ja) * 2008-09-30 2010-05-13 Canon Anelva Corp 磁気抵抗素子の製造法および記憶媒体
JP2010102805A (ja) * 2008-10-27 2010-05-06 Hitachi Global Storage Technologies Netherlands Bv トンネル接合型磁気抵抗効果ヘッド
JP5133232B2 (ja) * 2008-12-26 2013-01-30 株式会社アルバック 成膜装置及び成膜方法
KR101584747B1 (ko) * 2009-01-20 2016-01-13 삼성전자주식회사 자기 메모리 소자
WO2010150590A1 (ja) 2009-06-24 2010-12-29 キヤノンアネルバ株式会社 真空加熱冷却装置および磁気抵抗素子の製造方法
US8183653B2 (en) 2009-07-13 2012-05-22 Seagate Technology Llc Magnetic tunnel junction having coherent tunneling structure
US8498084B1 (en) 2009-07-21 2013-07-30 Western Digital (Fremont), Llc Magnetoresistive sensors having an improved free layer
JP5588642B2 (ja) * 2009-09-02 2014-09-10 エイチジーエスティーネザーランドビーブイ トンネル接合型磁気抵抗効果ヘッド及びその製造方法
US8194365B1 (en) 2009-09-03 2012-06-05 Western Digital (Fremont), Llc Method and system for providing a read sensor having a low magnetostriction free layer
WO2011030826A1 (ja) * 2009-09-11 2011-03-17 株式会社 アルバック 薄膜形成方法及び薄膜形成装置
JP2011123923A (ja) 2009-12-08 2011-06-23 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果ヘッド、磁気記録再生装置
JP5576643B2 (ja) 2009-12-10 2014-08-20 エイチジーエスティーネザーランドビーブイ トンネル接合型磁気抵抗効果素子、トンネル接合型磁気抵抗効果ヘッド、磁気記録再生装置、及びその製造方法
RU2451769C2 (ru) * 2009-12-22 2012-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" Способ, устройство для получения многослойных пленок и многослойная структура, полученная с их использованием
KR101374325B1 (ko) 2009-12-28 2014-03-14 캐논 아네르바 가부시키가이샤 자기 저항 소자의 제조 방법
US8692343B2 (en) * 2010-04-26 2014-04-08 Headway Technologies, Inc. MR enhancing layer (MREL) for spintronic devices
KR20130041089A (ko) * 2010-06-21 2013-04-24 가부시키가이샤 알박 기판 반전 장치, 진공 성막 장치 및 기판 반전 방법
WO2012056807A1 (ja) 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、積層体、半導体製造装置用部材及びスパッタリングターゲット部材
WO2012056808A1 (ja) 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、半導体製造装置用部材、スパッタリングターゲット部材及びセラミックス材料の製造方法
CN103250263B (zh) * 2010-12-22 2015-07-01 株式会社爱发科 穿隧磁阻元件的制造方法
KR101522992B1 (ko) 2010-12-28 2015-05-26 캐논 아네르바 가부시키가이샤 제조장치
US8503135B2 (en) 2011-09-21 2013-08-06 Seagate Technology Llc Magnetic sensor with enhanced magnetoresistance ratio
US8710602B2 (en) 2011-12-20 2014-04-29 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having improved characteristics
JP5856490B2 (ja) 2012-01-20 2016-02-09 ルネサスエレクトロニクス株式会社 磁気抵抗効果素子及び磁気メモリ
TWI514373B (zh) * 2012-02-15 2015-12-21 Ind Tech Res Inst 上固定型垂直磁化穿隧磁阻元件
JP5895610B2 (ja) * 2012-03-07 2016-03-30 富士通株式会社 磁気抵抗メモリおよび磁気抵抗メモリの製造方法
JP5935444B2 (ja) * 2012-03-29 2016-06-15 Tdk株式会社 スピン伝導素子、及びスピン伝導を用いた磁気センサ及び磁気ヘッド
JP5774568B2 (ja) 2012-09-21 2015-09-09 株式会社東芝 半導体装置の製造方法
JP2014090109A (ja) * 2012-10-31 2014-05-15 Hitachi High-Technologies Corp 磁気抵抗素子の製造方法
KR102100850B1 (ko) 2012-11-07 2020-04-14 엔지케이 인슐레이터 엘티디 세라믹스 재료 및 스퍼터링 타겟 부재
WO2014073388A1 (ja) * 2012-11-07 2014-05-15 日本碍子株式会社 セラミックス材料及びスパッタリングターゲット部材
US9070381B1 (en) 2013-04-12 2015-06-30 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
JP6225835B2 (ja) * 2013-08-28 2017-11-08 株式会社デンソー 磁気抵抗素子およびそれを用いた磁気センサ
US9209386B2 (en) * 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
US8956882B1 (en) 2013-09-12 2015-02-17 Kazuhiro Tomioka Method of manufacturing magnetoresistive element
US9425388B2 (en) 2013-09-12 2016-08-23 Kabushiki Kaisha Toshiba Magnetic element and method of manufacturing the same
JP6173854B2 (ja) 2013-09-20 2017-08-02 株式会社東芝 歪検知素子、圧力センサ、マイクロフォン、血圧センサ及びタッチパネル
KR102126975B1 (ko) 2013-12-09 2020-06-25 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
WO2016017047A1 (ja) * 2014-07-28 2016-02-04 キヤノンアネルバ株式会社 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、半導体電子素子の製造方法、半導体電子素子、照明装置
JP2017059740A (ja) * 2015-09-18 2017-03-23 富士通株式会社 磁気トンネル接合素子及び半導体記憶装置
US11646143B2 (en) 2019-05-21 2023-05-09 International Business Machines Corporation Magnetic multi-layers containing MgO sublayers as perpendicularly magnetized magnetic electrodes for magnetic memory technology
KR20210006725A (ko) 2019-07-09 2021-01-19 삼성전자주식회사 스퍼터링 장치 및 이를 이용한 반도체 장치의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181537B1 (en) * 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
US6674617B2 (en) * 2002-03-07 2004-01-06 International Business Machines Corporation Tunnel junction sensor with a multilayer free-layer structure

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA849070B (en) * 1983-12-07 1985-07-31 Energy Conversion Devices Inc Semiconducting multilayered structures and systems and methods for synthesizing the structures and devices incorporating the structures
US5506063A (en) * 1990-11-14 1996-04-09 Nec Corporation Soft magnetic film of iron and process of formation thereof
JPH06196648A (ja) * 1992-12-25 1994-07-15 Fuji Xerox Co Ltd 配向性強誘電体薄膜素子
US5817366A (en) * 1996-07-29 1998-10-06 Tdk Corporation Method for manufacturing organic electroluminescent element and apparatus therefor
US5945694A (en) * 1997-01-31 1999-08-31 Motorola, Inc. Compound semiconductor device having reduced temperature variability
JP3219713B2 (ja) * 1997-02-07 2001-10-15 アルプス電気株式会社 磁気抵抗効果素子の製造方法
US6201672B1 (en) * 1999-04-26 2001-03-13 International Business Machines Corporation Spin valve sensor having improved interface between pinning layer and pinned layer structure
US6436526B1 (en) * 1999-06-17 2002-08-20 Matsushita Electric Industrial Co., Ltd. Magneto-resistance effect element, magneto-resistance effect memory cell, MRAM and method for performing information write to or read from the magneto-resistance effect memory cell
US6252750B1 (en) * 1999-07-23 2001-06-26 International Business Machines Corporation Read head with file resettable double antiparallel (AP) pinned spin valve sensor
US6275362B1 (en) * 1999-07-30 2001-08-14 International Business Machines Corporation Magnetic read head having spin valve sensor with improved seed layer for a free layer
WO2001056090A1 (fr) 2000-01-28 2001-08-02 Sharp Kabushiki Kaisha Dispositif a magnetoresistance et procede de fabrication de celui-ci, base pour dispositif a magnetoresistance et procede de fabrication de celle-ci, et capteur a magnetoresistance
JP2002050011A (ja) * 2000-08-03 2002-02-15 Nec Corp 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気抵抗変換システム及び磁気記録システム
JP2002167661A (ja) * 2000-11-30 2002-06-11 Anelva Corp 磁性多層膜作製装置
JP3576111B2 (ja) * 2001-03-12 2004-10-13 株式会社東芝 磁気抵抗効果素子
JP3961777B2 (ja) 2001-03-26 2007-08-22 株式会社東芝 磁気センサー
JP2002359413A (ja) 2001-05-31 2002-12-13 National Institute Of Advanced Industrial & Technology 強磁性トンネル磁気抵抗素子
JP4304568B2 (ja) 2002-04-23 2009-07-29 独立行政法人産業技術総合研究所 平坦化トンネル磁気抵抗素子
US7220498B2 (en) * 2001-05-31 2007-05-22 National Institute Of Advanced Industrial Science And Technology Tunnel magnetoresistance element
JP3815601B2 (ja) 2001-09-14 2006-08-30 独立行政法人産業技術総合研究所 トンネル磁気抵抗素子および磁気ランダムアクセスメモリ
DE10136806A1 (de) 2001-07-27 2003-02-13 Uvex Sports Gmbh & Co Kg Sichtscheibe, insbesondere für Skibrillen o. dgl. und Verfahren zu deren Herstellung
US6936903B2 (en) * 2001-09-25 2005-08-30 Hewlett-Packard Development Company, L.P. Magnetic memory cell having a soft reference layer
JP2003124541A (ja) * 2001-10-12 2003-04-25 Nec Corp 交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリ
KR100954970B1 (ko) * 2001-10-12 2010-04-29 소니 주식회사 자기 저항 효과 소자, 자기 메모리 소자, 자기 메모리 장치 및 이들의 제조 방법
FR2830971B1 (fr) * 2001-10-12 2004-03-12 Commissariat Energie Atomique Dispositif magnetoresistif a vanne de spin a performances ameliorees
JP2003152239A (ja) * 2001-11-12 2003-05-23 Fujitsu Ltd 磁気抵抗効果素子、及び、それを有する読み取りヘッド並びにドライブ
JP2003267750A (ja) 2002-03-15 2003-09-25 Nihon Yamamura Glass Co Ltd 抵抗体被覆用ガラス組成物
JP4100025B2 (ja) 2002-04-09 2008-06-11 ソニー株式会社 磁気抵抗効果素子及び磁気メモリ装置
FR2840925B1 (fr) * 2002-06-18 2005-04-01 Riber Chambre d'evaporation de materiaux sous vide a pompage differentiel
JP2004063592A (ja) 2002-07-25 2004-02-26 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
JP2004071897A (ja) * 2002-08-07 2004-03-04 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
TWI277363B (en) * 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
US6831312B2 (en) * 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
JP2004128015A (ja) * 2002-09-30 2004-04-22 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
JP2004128229A (ja) * 2002-10-02 2004-04-22 Nec Corp 磁性メモリ及びその製造方法
US6828260B2 (en) 2002-10-29 2004-12-07 Hewlett-Packard Development Company, L.P. Ultra-violet treatment of a tunnel barrier layer through an overlayer a tunnel junction device
US7318236B2 (en) 2003-02-27 2008-01-08 Microsoft Corporation Tying a digital license to a user and tying the user to multiple computing devices in a digital rights management (DRM) system
JP2004348777A (ja) * 2003-05-20 2004-12-09 Hitachi Ltd 垂直磁気記録媒体および磁気記録装置
US7598555B1 (en) * 2003-08-22 2009-10-06 International Business Machines Corporation MgO tunnel barriers and method of formation
JP2005071555A (ja) 2003-08-28 2005-03-17 Sony Corp ディスク装置及びこれを備えた電子機器
US20050110004A1 (en) * 2003-11-24 2005-05-26 International Business Machines Corporation Magnetic tunnel junction with improved tunneling magneto-resistance
US7252852B1 (en) * 2003-12-12 2007-08-07 International Business Machines Corporation Mg-Zn oxide tunnel barriers and method of formation
US7149105B2 (en) * 2004-02-24 2006-12-12 Infineon Technologies Ag Magnetic tunnel junctions for MRAM devices
US7884403B2 (en) * 2004-03-12 2011-02-08 Japan Science And Technology Agency Magnetic tunnel junction device and memory device including the same
US7270896B2 (en) * 2004-07-02 2007-09-18 International Business Machines Corporation High performance magnetic tunnel barriers with amorphous materials
US20060012926A1 (en) * 2004-07-15 2006-01-19 Parkin Stuart S P Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
US7408749B2 (en) * 2004-08-23 2008-08-05 Hitachi Global Storage Technologies Netherlands B.V. CPP GMR/TMR structure providing higher dR
WO2006022183A1 (ja) * 2004-08-27 2006-03-02 Japan Science And Technology Agency 磁気抵抗素子及びその製造方法
JP4292128B2 (ja) * 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US7595967B1 (en) * 2004-09-07 2009-09-29 Western Digital (Fremont), Llp Method for fabricating a spacer layer for a magnetoresistive element
US7377025B2 (en) * 2004-10-29 2008-05-27 Headway Technologies, Inc. Method of forming an improved AP1 layer for a TMR device
US20060128038A1 (en) * 2004-12-06 2006-06-15 Mahendra Pakala Method and system for providing a highly textured magnetoresistance element and magnetic memory
US7443639B2 (en) * 2005-04-04 2008-10-28 International Business Machines Corporation Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
JP2008263031A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
EP1986284B1 (en) * 2007-04-23 2014-08-20 Sumitomo Wiring Systems, Ltd. A connector and an assembling method therefor
JP2009124058A (ja) * 2007-11-19 2009-06-04 Fujitsu Ltd 磁気抵抗効果素子の面積抵抗の測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181537B1 (en) * 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
US6674617B2 (en) * 2002-03-07 2004-01-06 International Business Machines Corporation Tunnel junction sensor with a multilayer free-layer structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 6674617 B2,全文.

Also Published As

Publication number Publication date
EP1633007B1 (en) 2009-05-20
JP4292128B2 (ja) 2009-07-08
KR20100036294A (ko) 2010-04-07
US20140024140A1 (en) 2014-01-23
US20110094875A1 (en) 2011-04-28
EP1973178A3 (en) 2009-07-08
US20060056115A1 (en) 2006-03-16
EP2166581A8 (en) 2010-08-11
US8934290B2 (en) 2015-01-13
US8394649B2 (en) 2013-03-12
JP2006080116A (ja) 2006-03-23
ATE431969T1 (de) 2009-06-15
KR20120055505A (ko) 2012-05-31
KR20090071521A (ko) 2009-07-01
TWI536624B (zh) 2016-06-01
KR20060051048A (ko) 2006-05-19
EP1633007A2 (en) 2006-03-08
US20080055793A1 (en) 2008-03-06
CN1755963A (zh) 2006-04-05
TWI390780B (zh) 2013-03-21
KR20100039310A (ko) 2010-04-15
US20080124454A1 (en) 2008-05-29
EP1973178A2 (en) 2008-09-24
KR20120090902A (ko) 2012-08-17
TW200614556A (en) 2006-05-01
TW201515293A (zh) 2015-04-16
KR101234441B1 (ko) 2013-02-18
KR101196511B1 (ko) 2012-11-01
EP1633007A3 (en) 2007-08-29
CN101572184A (zh) 2009-11-04
DE602005014526D1 (de) 2009-07-02
EP1973178B1 (en) 2012-10-24
TWI504032B (zh) 2015-10-11
EP2166581A2 (en) 2010-03-24
TW201304221A (zh) 2013-01-16
EP2166581A3 (en) 2011-08-24
US20080180862A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
CN1755963B (zh) 磁电阻效应元件及其制造方法
US9048411B2 (en) Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US9006704B2 (en) Magnetic element with improved out-of-plane anisotropy for spintronic applications
US8139325B2 (en) Tunnel magnetoresistive thin film
JP4774082B2 (ja) 磁気抵抗効果素子の製造方法
JP2011138954A (ja) 強磁性層の垂直磁化を用いた磁気トンネル接合デバイスの製造方法
KR101636492B1 (ko) 메모리 소자
WO2021045801A1 (en) Spin-transfer torque magnetoresistive memory device with a free layer stack including multiple spacers and methods of making the same
JP4774092B2 (ja) 磁気抵抗効果素子およびそれを用いたmram
WO2011062005A1 (ja) 強磁性トンネル接合素子
JP2009044173A (ja) 磁性多層膜形成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant