JP3815601B2 - トンネル磁気抵抗素子および磁気ランダムアクセスメモリ - Google Patents

トンネル磁気抵抗素子および磁気ランダムアクセスメモリ Download PDF

Info

Publication number
JP3815601B2
JP3815601B2 JP2001279289A JP2001279289A JP3815601B2 JP 3815601 B2 JP3815601 B2 JP 3815601B2 JP 2001279289 A JP2001279289 A JP 2001279289A JP 2001279289 A JP2001279289 A JP 2001279289A JP 3815601 B2 JP3815601 B2 JP 3815601B2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
tunnel magnetoresistive
intermediate layer
single crystal
random access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001279289A
Other languages
English (en)
Other versions
JP2003086863A (ja
Inventor
新治 湯浅
太郎 長濱
義茂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001279289A priority Critical patent/JP3815601B2/ja
Priority to EP02730704A priority patent/EP1391942A4/en
Priority to US10/478,203 priority patent/US7220498B2/en
Priority to PCT/JP2002/005049 priority patent/WO2002099905A1/ja
Priority to KR1020037015607A priority patent/KR100886602B1/ko
Publication of JP2003086863A publication Critical patent/JP2003086863A/ja
Application granted granted Critical
Publication of JP3815601B2 publication Critical patent/JP3815601B2/ja
Priority to US11/673,919 priority patent/US7514160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル磁気抵抗素子に係り、特に、その磁気抵抗効果のバイアス電圧依存性を制御したトンネル磁気抵抗素子および磁気ランダムアクセスメモリに関する。
【0002】
【従来の技術】
トンネル磁気抵抗効果とは、絶縁体を強磁性金属の電極で挟んだトンネル接合において、その電気抵抗が二つの強磁性電極の磁化の相対的な向きによって変化する現象である。磁気抵抗の大きさは以下の式で表される。
【0003】
【数1】
Figure 0003815601
この現象は、1995年に発見され〔T.Miyazaki and N.Tezuka,J.Magn.Magn.Mater.,Vol.139(1995)L231.〕、現在では、固定磁気ディスクのピックアップヘッドの磁場センサーや強磁性ランダムアクセスメモリーへの応用研究が進んでいる。この効果を利用して磁気センサーや強磁性ランダムアクセスメモリーを実現するには、有限のバイアス電圧下の磁気抵抗効果の大きさを人為的に制御できることが望ましい。
【0004】
しかし、一般にトンネル磁気抵抗効果はバイアス電圧の増加にともない単調に減少してしまう。このバイアス電圧の増加に伴う磁気抵抗効果の減少は、マグノン散乱やフォノン散乱の増大に起因する本質的なものなので簡単には制御できない。そこで、例えば、トンネル障壁層を二重にしてバイアス電圧の増加に対する磁気抵抗効果の減少を抑える試みがなされている。
【0005】
一方、Moodera等は、強磁性電極とバリヤ層の間に多結晶非磁性中間層を挟んで磁気抵抗のバイアス依存性を変化させることを試みた(Moodera,Phys.Rev.Lett.,vol.83,1999,page 3029−3032.)。
【0006】
図7はかかる磁気抵抗効果素子のゼロバイアス、77KでのAu中間層の膜厚に対する接合磁気抵抗効果の依存性を示す図であり、横軸にAu中間層の厚さ(nm)、縦軸に磁気抵抗効果を示している。また、図8はそのバイアス電圧に対する磁気抵抗効果の依存性を示す図であり、横軸にバイアス電圧(V)、縦軸に磁気抵抗効果を示している。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した強磁性電極とバリヤ層の間に非磁性中間層を挿入したものにおいては、その非磁性中間層として多結晶試料を用いたために極僅かの変化しか見出せなかった。特に、多結晶中間層による電子の散乱のために磁気抵抗効果がその膜厚の増加に伴い急激に減少してしまい、磁気抵抗効果のバイアス電圧依存性をある程度制御することに成功したものの、実用に足る特性は得られなかった。
【0008】
そこで、非磁性中間層の電子散乱を抑えて、大きな中間層膜厚に対しても磁気抵抗効果が大きく減少せず、非磁性層内のスピン偏極の振動を磁気抵抗効果として取り出すことの出来る素子の開発が望まれる。
【0009】
本発明は、上記状況に鑑み、非磁性中間層の電子散乱を抑える素子構造を開発し、非磁性中間層の挿入による磁気抵抗効果の減少の抑制を図るとともに、非磁性中間層の精密な膜厚制御により磁気抵抗効果のバイアス電圧依存性を人為的に制御することができるトンネル磁気抵抗素子および磁気ランダムアクセスメモリを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、
〔1〕トンネル磁気抵抗素子において、バリヤ層と強磁性電極の間にCuの(100)面からなる非磁性金属単結晶中間層を挿入した構造を有することを特徴とする。
【0011】
〕上記〔1〕記載のトンネル磁気抵抗素子において、前記中間層の厚さが2〜32Åであることを特徴とする。
【0012】
〕上記〔1〕記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がMgO(100)単結晶であることを特徴とする。
【0013】
〕上記〔1〕記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がGaAs(100)単結晶であることを特徴とする。
【0014】
〕磁気ランダムアクセスメモリであって、上記〔1〕〜〔〕の何れか一項記載のトンネル磁気抵抗素子をマトリックス型磁気ランダムアクセスメモリのワード線とビット線の交差点に接続配置することを特徴とする。
【0015】
すなわち、本発明は、図1に示すように、強磁性電極1上に非磁性金属単結晶中間層又は非磁性金属高配向多結晶中間層2を積層する。次いで、絶縁層3、強磁性電極4を形成する。このように、非磁性中間層を持つトンネル磁気抵抗素子の非磁性層を(100)面からなる非磁性金属単結晶または非磁性金属高配向多結晶中間層2とした。つまり、非磁性金属単結晶の単結晶方位を、立方晶系の(100)±10度以内の高配向とすることにより電子の伝導特性と平坦性を改良する。また、前記非磁性金属高配向多結晶の単結晶方位を、立方晶系の(100)±10度以内で分布する高配向とすることにより電子の伝導特性と平坦性を改良する。これらの素子をMgO(100)またはGaAs(100)単結晶下地層または基板の上に形成することにより特に平坦性と配向性を改善できる。また、Cr(100)下地層を用いることによっても平坦性と配向性を改善できる。
【0016】
また、中間層2をCu,Au,Ag,Cr又はこれらを母材とする合金膜として、その厚さを制御して、最適な厚さを選定することにより、磁気抵抗効果を高いものに設定することができる。
【0017】
さらに、中間層2に印加されるバイアス電圧を制御することにより、極性が反転される磁気抵抗効果を得ることができる。
【0018】
そして、その非磁性中間層の結晶方位を立方晶系の(100)±10度以内と高配向して、より大きな効果を得ることが出来る。
【0019】
また、他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの交差点の素子の磁気状態を読み出すことができる。
【0020】
さらに、他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの交差点の素子の磁気状態を二次の高調波によって選択的に読み出すことも可能である。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
【0022】
以下、その実施例を詳細に説明する。
【0023】
図2は本発明の実施例を示すトンネル磁気抵抗素子の断面図である。
【0024】
例えば、MgO(100)単結晶又は高配向多結晶基板上にPt,Co,Cuの順にバッファー層を成長し、表面を非常に平坦にした後に、Co(100)単結晶電極11及びCu(100)非磁性単結晶中間層12を成長し、その上にアルミナバリヤ(Al−O barrier)13と強磁性多結晶上部電極(Ni−Fe poly−crystal)14を成長した素子では、低バイアスにおける磁気抵抗効果がCu層の膜厚に対して図3に示すように振動的に変化する。この結果からCu層の挿入によりスピン偏極が制御されているのが明らかである。
【0025】
また、磁気抵抗効果が1/10になる膜厚は2nm程度であり、図7に示す従来のMooderaの結果の5倍程度に改善されている。
【0026】
また、磁気抵抗のバイアス依存性をいろいろな形に制御することが出来る。特に適当な膜厚を選ぶと、図4に示すようにバイアスの正負によって磁気抵抗の符号が反転する素子も作ることができる。このときの磁気抵抗の大きさも、図8に示す従来のMoodera等の多結晶の場合に比較して10倍程度大きくなる。
【0027】
この他に基板としてSi又はGaAs(100)単結晶を用いることができる。非磁性単結晶又は高配向多結晶膜として、Au,Ag,Cr(100)を用いる場合は、基板としてMgO(100)又はGaAs(100)を用いる。
【0028】
特に、Cr(100)の場合には、基板としてMgO(100)又はGaAs(100)を用いることが望ましい。
【0029】
このような特性を利用すると、例えば高安定度な磁場センサーが可能となる。磁気抵抗素子の抵抗は温度変化するので、磁気抵抗効果の測定には二つの特性のそろった磁気抵抗素子を用意して、片方の素子にのみ測定磁場を加えて、そのときの抵抗の変化をもう一方の素子と比較して検出する差動検出が通常用いられる。ところがこの方法では装置の回路が複雑になるし、素子間のばらつきにより測定を誤るという問題がある。
【0030】
さて、図4に示すような特性を持つ素子に交流電圧を加えると磁気抵抗に起因する非線形応答によって高調波が発生する。この高調波の強度・符号及び位相は磁化の向きに依存する。このような非線形応答はバリスティックな伝導成分によって決まるので電気抵抗の温度変化と無関係で外部環境の変化に対して非常に安定である。従って、差動検出なしに磁化の方向を超高安定度・超高感度に測定することが出来る。
【0031】
上記したように、本発明では、下部電極に強磁性金属と非磁性金属からなる単結晶人工格子を用い、量子サイズ効果、特にスピン偏極量子井戸準位の形成とTMR効果の関係を調べた。単結晶fcc Co(100)電極とアモルファスAl−Oトンネルバリア層の間に非磁性のCu(100)層(2〜32Å)を挿入したMTJ(マグネティック・トンネル・接合)(図2参照)を作製し、TMR効果のCu膜厚依存性を測定した結果を図3に示した。この図から明らかなように、MR比はCu膜厚に対して12.5Å周期の減衰振動を示した。特筆すべきこととして、MR比の符号が反転するほど大きな振動が観測された。この振動周期はCo(100)/Cu(100)多層膜の層間結合の周期(Period)と一致しており、Cu(100)層中に生成したスピン偏極量子井戸準位に起因していると考えられる。
【0032】
図5は本発明のトンネル磁気抵抗素子を適用した第1の回路構成例を示す図である。
【0033】
この図において、21はワード線、22はビット線、23は本発明のトンネル磁気抵抗素子、24は直流電源、25は電流計である。
【0034】
また、本発明のトンネル磁気抵抗素子を用いて非常に単純な強磁性ランダムアクセスメモリを構成することが出来る。今までの強磁性ランダムアクセスメモリでは、記録の担体であるトンネル磁気抵抗素子にアクセスするためにMOS−FETをパストランジスタとして用いる必要があった。
【0035】
ところが、本発明のトンネル磁気抵抗素子を用いると、図5に示すような単純なマトリックスから記録情報を選択的に読み出すことが出来る。一対のワード・ビット線間に直流電圧Vを加えると、その交差点にあるトンネル素子にこの電圧が加わるが周辺の素子にも例えばV/3の電圧が加わる。
【0036】
従って、通常の素子を使うと回りの素子とのクロストークが問題となる。そこで、本発明の図4に示すような特性を持つトンネル磁気抵抗素子を使うとバイアス電圧Vに対しては磁気抵抗効果を示すが、V/3に対しては磁気抵抗効果を示さないので、他の素子とのクロストークなしに交差点の素子の磁気状態を読み出すことが出来る。
【0037】
図6は本発明のトンネル磁気抵抗素子を適用した第2の回路構成例を示す図である。この図において、31はワード線、32はビット線、33は本発明のトンネル磁気抵抗素子、34は高調波検出器、35は高周波電源である。
【0038】
また、別の方法として、二次の高調波によって信号を選択的に読み出すことも可能である。線形応答によって磁気抵抗を測定すると、磁気抵抗にバイアス依存が無い場合、目的の素子とその周辺の素子との信号への寄与率は1:1/3だが非線形応答である2次の応答による高調波の発生やパルス形状の変化を使って検出すると、その信号比は1:1/9となり大幅に周辺の素子からのクロストークを減らすことが出来る。さらに、応答のバイアス依存性を最適に設計すれば、この比をもっと大きく取ることも可能である。
【0039】
さらに、上記実施例では中間層として、単結晶fcc Cu(100)を用いたが、これに代えて、Au,Ag,Cr又はこれらを母材とする合金の単結晶又は高配向多結晶を用いるようにしてもよい。
【0040】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0041】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0042】
(A)非磁性中間層の電子散乱を抑える素子構造を開発し、非磁性中間層の精密な膜厚制御により磁気抵抗効果を抑え、磁気抵抗効果のバイアス電圧依存性を人為的に制御することができる。
【0043】
(B)強磁性トンネル磁気抵抗膜において原子層のオーダーの非磁性極薄膜を強磁性電極とバリヤ層の間に挿入することにより、磁気抵抗効果がバイアス電圧に対して振幅動的に変化するトンネル磁気抵抗素子を得ることができる。
【0044】
(C)中間層をCu,Au,Ag,Cr又はこれらを母材とする合金膜として、その厚さを制御して、最適な厚さを選定することにより、磁気抵抗効果を高いものに設定することができる。
【0045】
(D)さらに、中間層に印加されるバイアス電圧を制御することにより、極性が反転される磁気抵抗効果を得ることができる。
【0046】
(E)非磁性中間層の結晶方位を立方晶系の(100)±10度以内に分布するように制御することにより、より大きな磁気抵抗効果を得ることが出来る。
【0047】
(F)他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの交差点の素子の磁気状態を読み出すことができる。
【0048】
(G)さらに、他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの二次の高調波によって信号を選択的に読み出すことも可能である。
【図面の簡単な説明】
【図1】 本発明にかかるトンネル磁気抵抗素子の断面図である。
【図2】 本発明の実施例を示すトンネル磁気抵抗素子の断面図である。
【図3】 本発明の実施例を示すトンネル磁気抵抗素子の低バイアスにおける室温での磁気抵抗のCu層の膜厚依存性を示す図である。
【図4】 本発明の実施例を示すトンネル磁気抵抗素子の室温での磁気抵抗のバイアス依存性を示す図である。
【図5】 本発明のトンネル磁気抵抗素子を適用した第1の回路構成例を示す図である。
【図6】 本発明のトンネル磁気抵抗素子を適用した第2の回路構成例を示す図である。
【図7】 従来の磁気抵抗効果素子のゼロバイアス、77KでのAu中間層の膜厚に対する磁気抵抗効果の依存性を示す図である。
【図8】 従来の磁気抵抗効果素子のゼロバイアス、77KでのAu中間層の膜厚に対する磁気抵抗効果の依存性を示す図である。
【符号の説明】
1 強磁性電極
2 非磁性金属単結晶又は高配向非磁性金属多結晶中間層
3 絶縁層
4 強磁性電極
11 Co(100)単結晶電極
12 Cu(100)非磁性単結晶中間層
13 アルミナバリヤ(Al−O barrire)
14 強磁性多結晶上部電極(Ni−Fe poly−crystal)
21,31 ワード線
22,32 ビット線
23,33 トンネル磁気抵抗素子
24 直流電源
25 電流計
34 高調波検出器
35 高周波電源

Claims (5)

  1. バリヤ層と強磁性電極の間にCuの(100)面からなる非磁性金属単結晶中間層を挿入した構造を有することを特徴とするトンネル磁気抵抗素子。
  2. 請求項1記載のトンネル磁気抵抗素子において、前記中間層の厚さが2〜32Åであることを特徴とするトンネル磁気抵抗素子。
  3. 請求項1記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がMgO(100)単結晶であることを特徴とするトンネル磁気抵抗素子。
  4. 請求項1記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がGaAs(100)単結晶であることを特徴とするトンネル磁気抵抗素子。
  5. 請求項1〜の何れか一項記載のトンネル磁気抵抗素子をマトリックス型磁気ランダムアクセスメモリのワード線とビット線の交差点に接続配置することを特徴とする磁気ランダムアクセスメモリ。
JP2001279289A 2001-05-31 2001-09-14 トンネル磁気抵抗素子および磁気ランダムアクセスメモリ Expired - Lifetime JP3815601B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001279289A JP3815601B2 (ja) 2001-09-14 2001-09-14 トンネル磁気抵抗素子および磁気ランダムアクセスメモリ
EP02730704A EP1391942A4 (en) 2001-05-31 2002-05-24 TUNNEL MAGNETIC RESISTANCE ELEMENT
US10/478,203 US7220498B2 (en) 2001-05-31 2002-05-24 Tunnel magnetoresistance element
PCT/JP2002/005049 WO2002099905A1 (fr) 2001-05-31 2002-05-24 Element de magnetoresistance tunnel
KR1020037015607A KR100886602B1 (ko) 2001-05-31 2002-05-24 터널자기저항소자
US11/673,919 US7514160B2 (en) 2001-05-31 2007-02-12 Tunnel magnetoresistance element having a double underlayer of amorphous MgO and crystalline MgO(001)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279289A JP3815601B2 (ja) 2001-09-14 2001-09-14 トンネル磁気抵抗素子および磁気ランダムアクセスメモリ

Publications (2)

Publication Number Publication Date
JP2003086863A JP2003086863A (ja) 2003-03-20
JP3815601B2 true JP3815601B2 (ja) 2006-08-30

Family

ID=19103513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279289A Expired - Lifetime JP3815601B2 (ja) 2001-05-31 2001-09-14 トンネル磁気抵抗素子および磁気ランダムアクセスメモリ

Country Status (1)

Country Link
JP (1) JP3815601B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133687B2 (ja) 2003-08-27 2008-08-13 独立行政法人産業技術総合研究所 トンネルジャンクション素子
WO2005088745A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency 磁気抵抗素子及びその製造方法
JP4292128B2 (ja) 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
EP2065886A1 (en) * 2007-11-27 2009-06-03 Hitachi Ltd. Magnetoresistive device
WO2011036752A1 (ja) * 2009-09-24 2011-03-31 株式会社日立製作所 共鳴トンネル磁気抵抗効果素子、磁気メモリセル及び磁気ランダムアクセスメモリ
US8564911B2 (en) 2011-02-17 2013-10-22 Tdk Corporation Magneto-resistive effect element having spacer layer including gallium oxide layer with metal element
US8593766B2 (en) 2011-02-22 2013-11-26 Tdk Corporation Magneto-resistive effect element having spacer layer including main spacer layer containing gallium oxide and metal intermediate layer
US8498083B2 (en) * 2011-03-16 2013-07-30 Tdk Corporation Magneto-resistive effect element having spacer layer containing gallium oxide, partially oxidized copper

Also Published As

Publication number Publication date
JP2003086863A (ja) 2003-03-20

Similar Documents

Publication Publication Date Title
JP4568926B2 (ja) 磁気機能素子及び磁気記録装置
US7514160B2 (en) Tunnel magnetoresistance element having a double underlayer of amorphous MgO and crystalline MgO(001)
KR100280558B1 (ko) 개선된 자계 반응을 위해 비-강자성 계면층을 갖는 자기 터널접합 장치
Zhu et al. Magnetic tunnel junctions
JP5142923B2 (ja) 磁性発振素子、磁気センサ及び磁気記録再生装置
US5936293A (en) Hard/soft magnetic tunnel junction device with stable hard ferromagnetic layer
US8411394B2 (en) Magneto resistive effect element with a magnetic film generating spin fluctuation of conduction electrons
TW591813B (en) Magnetoresistive effect element and magnetic memory having the same
KR102006671B1 (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
JP5746595B2 (ja) 磁気メモリ及びその製造方法
JPH11161919A (ja) 磁気トンネル接合素子及び読取りセンサ
JP2004179667A (ja) 磁気抵抗効果素子および磁気抵抗効果記憶素子およびデジタル信号を記憶させる方法
JP2008124322A (ja) 強磁性トンネル接合素子、その製造方法、及びそれを用いた磁気ヘッド、磁気メモリ
JPH10162326A (ja) 磁気トンネル接合素子、接合メモリ・セル及び接合磁界センサ
JP2005539376A (ja) 磁気デバイス用アモルファス合金
JP2009152333A (ja) 強磁性トンネル接合素子、磁気ヘッド、及び磁気記憶装置
JP5987613B2 (ja) 記憶素子、記憶装置、磁気ヘッド
EP1151482A1 (en) Spin dependent tunneling sensor
JP2012064623A (ja) 記憶素子、メモリ装置
JPH11238924A (ja) スピン依存伝導素子とそれを用いた電子部品および磁気部品
JP3815601B2 (ja) トンネル磁気抵抗素子および磁気ランダムアクセスメモリ
JP5034317B2 (ja) 記憶素子及びメモリ
JP3559722B2 (ja) 磁気抵抗素子、固体メモリ
US11163023B2 (en) Magnetic device
JPH10308313A (ja) 磁気素子とそれを用いた磁気ヘッドおよび磁気記憶装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 3815601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term